

MATHS

BOOKS - CENGAGE PUBLICATION

FUNCTIONS

Single Correct Answer Type

1. If
$$f(x) = x^5 + 1$$
, then find $f^{-1}(x)$.

Watch Video Solution

2. If
$$f(x) = x^2 - 4x + 4$$
, then find $f^{-1}(x)$.

3. If
$$f(x)=x^4+1$$
, then find $f^{-1}(x)$.

4. If $f(x)=x^3+4$, then find $f^{-1}(x)$.

5. If $f(x) = x^5 - 3x^3 + 1$, then find f(-1).

6. If $f(x) = 3x^2 - x + 1$, then find f(-2).

- Watch Video Solution
- Watch video Solution

8. If
$$f(x)=3x^4-5x^3+7$$
, then find $f(-1)$

9. If
$$f(x)=x^2-5x+3$$
, then find $f(x+1)$

10. If $f(x) = 3x^2 + 2x + 1$, then find f(x - 1)

11. If $f(x)=3x^2-5x+7$, then find f(x-1)

12. If $f(x) = x^2 - 6$, then find $f^{-1}(x)$.

Watch Video Solution

13. If $f(x) = x^2 + 3$, then find $f^{-1}(x)$

14. If $f(x) = x^2 + 2x + 1$, then find $f^{-1}(x)$

15. If $f(x) = 5x^2$, then find $f^{-1}(x)$.

17. If
$$f(x)=x^2-3x+1$$
, then find $f(1)$.

18. If
$$f(x)=x^3-4x+1$$
, then find $f(0)$.

19. If $f(x) = (x-1)^2 - x + 1$, then find f(0).

Watch Video Solution

20. If $f(x) = x^2 - 3x + 1$, then find f(0).

21. Period of $f(x) = \sin 3x \cos[3x] - \cos 3x \sin[3x]$ (where[] denotes the greatest integer function), is

A.
$$1/6$$

B.2/3

C.5/6

D.1/3

Answer: D

View Text Solution

22. What is the fundamental period of
$$f(x) = \frac{\sin x + \sin 3x}{\cos x + \cos 3x}$$

A.
$$\pi/2$$

 $B. \pi$

 $\mathsf{C.}\ 2\pi$

D. 3π

Answer: B

Watch Video Solution

- **23.** If $f\!:\!R o R$ is a function satisfying the property f(x+1)+f(x+3)=2 for $\mathrm{all}x\in R$ than f is
 - A. periodic with period 3
 - B. periodic with period 4
 - C. non periodic
 - D. periodic with period 5

Answer: B

Watch Video Solution

24. Period of f(x) = sgn([x] + [-x]) is equal to (where [.] denotes greatest integer function

- A. 1
- B. 2
- C. 3
- D. does not exist

Answer: A

- **25.** If F(x) and G(x) are even and odd extensions of the functions $f(x)=x|x|+\sin \lvert x
 vert +xe^x$, where $x\in (0,1),$ $g(x)=\cos \lvert x
 vert +x^2-x$, is where $x \in (0,1)$ respectively to the ars interval (-1,0) then
- F(x) + G(x)in (-1, 0) is
 - A. $\sin x + \cos x + xe^{-x}$
 - $\mathsf{B.} \left(\sin x + \cos x + xe^{-x}\right)$
 - $\mathsf{C.} \left(\sin x + \cos x + x + xe^{-x}\right)$
 - D. $-(\sin x + \cos x + x^2 + xe^{-x})$

Answer: C

View Text Solution

26. Let $P(x)=x^{10}+a_2x^8+a_3x^6+a_4x^4+a_5x^2$ be a polynomial with real coefficients. If P(1)=1 and P(2)=-5, then the minimum number of distinct real zeroes of P(x) is

A. 5

B. 6

C. 7

D. 8

Answer: A

Let
$$f\!:\!R o[1,\infty)$$
 be

defined

ลร

$$f(x) = \log_{10}\!\left(\sqrt{3x^2-4x+k+1}+10
ight)$$
 If f(x) is surjective then k =

$$A. k = \frac{1}{3}$$

B.
$$k < rac{1}{3}$$
 C. $k > rac{1}{3}$

D.
$$k=1$$

Answer: A

Watch Video Solution

28. about to only mathematics

A. injective but not surjective

B. injective as well as surjective

C. neither injective nor surjective

D. surjective but injective

Answer: B

View Text Solution

29. about to only mathematics

- A. a bijection
- B. one-one but not onto
- C. onto but not one-one
- D. neither one-one nor onto

Answer: A

View Text Solution

30.
$$f{:}R o R$$
 defined by $f(x) = rac{1}{2}x|x| + \cos + 1$ is

A. one-one and onto

- B. one-one and into C. many-one and onto D. many-one and into Answer: A View Text Solution 31. about to only mathematics
- - A. [1, 4]
 - B. [-2, 3]
 - C.(0,3]
 - D. [2, 5]

Answer: C

32. Let $f{:}R o \left(0,rac{2\pi}{3}
ight]$ defined as $f(x) = \cot^{-1}ig(x^2 - 4x + lphaig)$ Then

the smallest integral value of α such that, f(x) is into function is

- A. 2
- B. 4
- C. 6
- D. 8

Answer: B

View Text Solution

33. about to only mathematics

- A. many-one and onto
- B. many-one and into
- C. one-one and onto
- D. one-one and into

Answer: B

View Text Solution

34. Which of the following statements are incorrect? I. If f(x) and g(x) are one-one then f(x)+g(x) is also one-one. II. If f(x) and g(x) are one-one then f(x)g(x) is also one-one. III. If f(x) is odd then it is necessarily one-one? $IandIIonly\ b$. $IIandIIIonly\ c$. IIIandIII

A. I and II only

B. II and III only

C. III and I only

D. I, II and III

Answer: D

35. Which of the following functions is one-one ? $(1)f:R \to R$ defined as

$$f(x)=e^{sgnx}+e^{x^2}$$
 $\qquad (2)f{:}[\,-1,\infty) o (0,\infty) \qquad ext{defined} \qquad ext{by}$

$$f(x)=e^{sgnx}+e^{x^2}$$
 $\qquad (2)f\colon [-1,\infty) o (0,\infty)$ defined by

$$f(x) = e^{x^2 + \lfloor x
floor} \hspace{1cm} (3) f{:} [3,4]
ightarrow [4,6] \hspace{1cm}$$
 defined

f(x) = |x-1| + |x-2| + |x-3| + x - 4|

A. $f\!:\!R o R$ denined as $f(x)=d^{{
m sgn}\;x}+d^{x^2}$

B. $f{:}\,[\,-1,\infty) o (0,\infty)$ defined by $f(x)=e^{x^2+\,|\,x\,|}$

 $(4)f(x) = \sqrt{\ln(\cos(\sin x))}$

 $D. f(x) = \sqrt{\ln(\cos(\sin x))}$

View Text Solution

36. about to only mathematics

C.

Answer: C

$$f(x) = e^{x^2 + |x|}$$
 (3) $f \colon [3,4] o [4,6]$ defined by

$$f(x)=e^{x^2+|x|}$$
 $(2)f\colon [3,4] o [4,6]$ defined

 $f \colon [3,4] \to [4,6]$ defined by f(x) = |x-1| + |x-2| + |x-3| + |x-3|

$$f(x)=e^{sgnx}+e^{x^2}$$
 $\qquad (2)f{:}[\,-1,\infty) o (0,\infty)$ defined b

A.
$$-1$$

B. 0

C. 1

D. 100

Answer: D

37. If
$$f(x)=x^2+x+rac{3}{4}$$
 and $g(x)=x^2+ax+1$ be two real functions, then the range of a for which $g(f(x))=0$ has no real solution is $(-\infty,-2)$ b. $(-2,2)$ c. $(-2,\infty)$ d. $(2,\infty)$

A.
$$(-\infty, -2)$$

B.
$$(-2, 2)$$

C.
$$(-2,\infty)$$

D.
$$(2, \infty)$$

Answer: C

Watch Video Solution

38. If domain of f(x) is [1, 3], then the domain of $figl(\log_2igl(x^2+3x-2igr)igr)$ is

A.
$$[-5, -4] \cup [1, 2]$$

$$\mathsf{B.}\left[\,-\,13,\;-\,2\right]\cup\left[\frac{3}{5},\,5\right]$$

$$\mathsf{C}.\,[4,1]\cup[2,7]$$

D.
$$[-3, 2]$$

Answer: A

Watch Video Solution

39. Let $f(x)=\frac{x}{1+x}$ and $g(x)=\frac{rx}{1-x}$. Let S be the set of all real numbers r , such that f(g(x))=g(f(x)) for infinitely many real numbers x. The number of elements in set S is

B. 2

C. 3

D. 5

Answer: B

View Text Solution

40. Let
$$f(x)=rac{ax+b}{cx+d}.$$
 Then the $fof(x)=x$, provided that : $(a
eq 0,b
eq 0,c
eq 0,d
eq 0)$

A.
$$d = -a$$

B.d = a

C. a = b = 1

D. a = b = c = d = 1,

Answer: A

41. If
$$f\!:\!R o R$$
 , $f(x)=x^3+3$,and $g\!:\!R o R$, $g(x)=2x+1$, then $f^{-1}ig(g^{-1}(23)ig)$ equals

B. 3

C. $(14)^{1/3}$

D. $(15)^{1/3}$

Answer: A

42. If
$$f(x)=x(x-1)$$
 is a function from $\left[\frac{1}{2},\infty\right) \to \left[-\frac{1}{4},\infty\right)$, then $\left\{x\in r\colon f^{-1}(x)=f(x)\right\}$ is a null set b. $\{0,2\}$ c. $\{2\}$ d. a set containing 3 elements

- A. null set
- B. $\{0, 2\}$
- $C. \{2\}$
- D. a set containing 3 elements

Answer: C

- **43.** Let a>1 be a real number and $f(x)=\log_a x^2$ for x>0. If f^{-1} is the inverse function of f and b and c are real numbers then $f^{-1}(b+c)$ is equal to
 - A. $f^{-1}(b)$. $f^{-1}(c)$
 - B. $f^{-1}(b) + f^{-1}(c)$
 - C. $\dfrac{1}{f(b+c)}$
 - D. $\frac{1}{f^{-1}(b)+f^{-1}(c)}$

Answer: A

Watch Video Solution

44. If the function $f(x)=\{x+1\ \text{if}\ x\le 1\ ,\, 2x+1\ \text{if}\ 1< x\le 2\ \text{and}$ $g(x)=\{x^2\ \text{if}\ -1\le x\le 2,\, x+2\ \text{if}\ 2\le x\le 3\ \text{then}\ \text{the number of}$ roots of the equation f(g(x))=2

A. 4

B. 3

C. 2

D. 1

Answer: C

45. Suppose f(x)=ax+bandg(x)=bx+a, whereaandb are positive integers. If $f(g(20))-g(f(20))=28,\,$ then which of the following is not true? a=15 b. a=6 c. b=14 d. b=3

A.
$$a = 15$$

B.
$$a=6$$

$$\mathsf{C}.\,b=14$$

D.
$$b=3$$

Answer: D

46. If
$$f(x)$$
 is an invertible function and $g(x)=2f(x)+5$, then the value of $g^{-1}(x)is$ (a) $2f^{-1}(x)-5$ (b) $\frac{1}{2f^{-1}(x)+5}$ $\frac{1}{2}f^{-1}(x)+5$ (d) $f^{-1}\Big(\frac{x-5}{2}\Big)$

A.
$$2f^{-1}(x)-5$$

C. 3

D. 4

A. 0

B. 2

Answer: D

 $f(x) - f^{-1}(x) = 0$ is

Answer: D

47. If $f(x)=egin{cases} -x+1, & x\leq 0 \ & ext{, then the number of solutions} \ -\left(x-1
ight)^2, & x\geq 1 \end{cases}$

B. $\frac{1}{2f^{-1}(x)+5}$

C. $\frac{1}{2}f^{-1}(x) + 5$

D. $f^{-1}\left(\frac{x-5}{2}\right)$

48. about to only mathematics

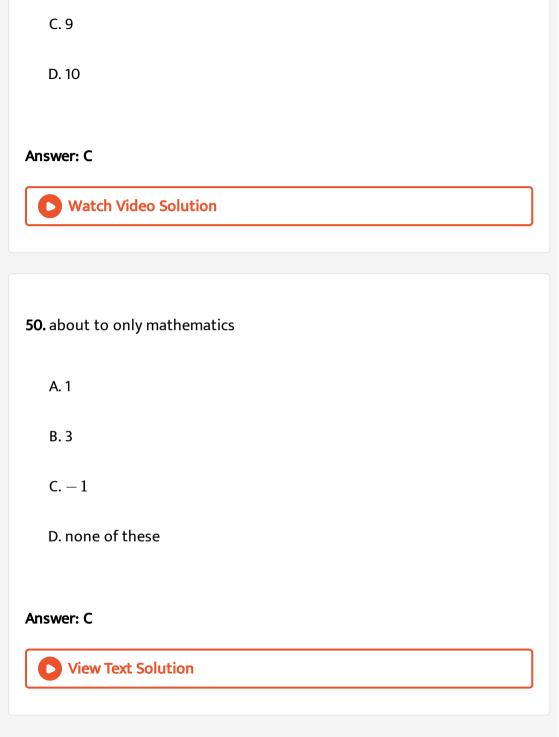
A.
$$-1$$

B. 0

C. 1

D. none of these

Answer: B



View Text Solution

49. If $f(x^2-6x+6)+f(x^2-4x+4)=2x, \ \forall x\in R$ $f(\,-\,3)\,+\,f(9)\,-\,5f(1)\,=\,?$ (A) 7 (B) 8 (C) 9 (D) 10

then

- A. 7
- B. 8

51. If
$$f\!:\!R o R$$
 is a function satisfying $f(x+y)=f(xy)$ for all x,y in R

and
$$f{\left(rac{3}{4}
ight)}=rac{3}{4}$$
, then $f{\left(rac{9}{16}
ight)}$ is a. $rac{3}{4}$ b. $rac{9}{16}$ c. $rac{\sqrt{3}}{2}$ d. 0

A.
$$\frac{3}{4}$$

B.
$$\frac{9}{16}$$
 C. $\frac{\sqrt{3}}{2}$

Answer: A

52. A function
$$f\colon R o R$$
 satisfy the equation $f(x)f(y)-f(xy)=x+y$

for all $x, y \in R$ and f(y) > 0, then

A.
$$f(x)f^{-1}(x) = x^2 - 4$$

B.
$$f(x)f^{-1}(x) = x^2 - 6$$

C.
$$f(x)f^{-1}(x) = x^2 - 1$$

D. none of these

Answer: C

Watch Video Solution

53. Let f be a function defined from $R^+ o R^+$. If $(f(xy))^2=x(f(y))^2$ for all positive numbers x and y, If f(2)=6, find f(50)=?

- A. 20
- B. 30
- C. 5
- D. 40

Answer: B

54. Suppose f is a real function satisfying f(x+f(x))=4f(x) and f(1)=4. Then the value of f(21) is $16\ 21\ 64$

A. 16

105

B. 64

C. 4

D. 44

Answer: B

Watch Video Solution

55. The graph of a function y=g(x) is shown in the following figure. If $f(x)=-3x^2-kx-12, k\in Randf(g(x))>0\, \forall x\in R$ then lest integral value of k is equal to a. b. c. d.

A. 13

B. 14

C. 15

D. 16

Answer: C

View Text Solution

- **56.** Let $f \colon \stackrel{\longrightarrow}{II}$ be a function (I is set of integers) such that f(0)=1, f(f(n)=f(f(n+2)+2)=n then f(3)=0 b. f(2)=0 c.
- f(3 = -2) d. f is many one function

$$\mathsf{A.}\,f(3)=0$$

B. f(2) = 0

C. f(3) = -2

D. f is many -one function

Answer: C

Multiple Correct Answers Type

1. If
$$f(x)=3x^2-x+1$$
, then find $f(\,-1)$

2. If
$$f(x)=x^2-2x+1$$
, then find $f(1)$

3. If $f(x)=x^2-3x+1$, then find $f\Big(rac{1}{2}\Big)$

4. The function 'g' defined by $g(x)=\sin\bigl(\sin^{-1}\bigl\{\sqrt{x}\bigr\}+\cos\bigl(\sin^{-1}\bigl\{\sqrt{x}\bigr\}\bigr)-1 \text{ where {x} denotes the functional part function is}$

A. an even function

B. a periodic function

C. an odd function

D. neither even nor odd

Answer: A::B

View Text Solution

5. Let f be a differential function such that f(x)=f(2-x) and g(x)=f(1+x) then (1) g(x) is an odd function (2) g(x) is an even function (3) graph of f(x) is symmetrical about the line x= 1 (4) f'(1)=0

A. g(x) is an odd function

B. g(x) is an even function

C. graph of f(x) is symmetrical about the line x = 1

D. f'(1) = 0

Answer: B::C::D

then:

Watch Video Solution

If a differentiable function satisfies 6. $(x-y)f(x+y)-(x+y)f(x-y)=2ig(x^2y-y^2ig)\,orall x,y\in R \, ext{ and }\, f(1)=$

A. f(x) must be polynomial function

C. f(0) = 0

D. f(x) may not be differentiable

Answer: A::B::C

B. f(3) = 12

7. about to only mathematics

A.
$$f(0) = 0$$

B. f(0) cannot be determined

$$C. k = 2$$

D. k cannot be determined

Answer: A::C

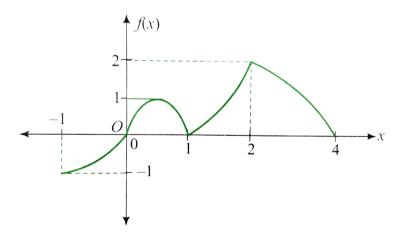
View Text Solution

8. Suppose that f(x)f(f(x))=1 and f(1000)=999 then which of the following is true

A.
$$f(500) = rac{1}{500}$$

B.
$$f(199) = \frac{1}{199}$$

C.
$$f(x) = rac{1}{x}\,orall x\in R-\{0\}$$


D.
$$f(1999) = \frac{1}{1999}$$

Answer: A::B

View Text Solution

9. If graph of a function f(x) which is defined in [-1, 4] is shown in the following figure then identify the correct statement(s).

A. domain of f(|x|-1) is $[\,-5,5]$

B. range of f(|x|+1) is [0,2]

C. range of $f(\,-\,|x|)$ is $[\,-\,1,\,0]$

D. domain of f[-3,3]

Answer: A::B::C

View Text Solution

Comprehension Type

1. Let $f(x)=x^2-2x-1\,orall x\in R.$ Let $f\colon (-\infty,a] o [b,\infty)$, where a

is the largest real number for which f(x) is bijective.

If $f\!:\!R o R$, then range of values of k for which equation f(|x|)=k has

4 distinct real roots is

A. -9/4

B.-5/4

 $\mathsf{C.}-2$

D. -1

Answer: C

View Text Solution

2. Let $f(x)=x^2-2x-1\, \forall x\in R.$ Let $f\colon (-\infty,a]\to [b,\infty)$, where a is the largest real number for which f(x) is bijective.

If $f\!:\!R o R$, then range of values of k for which equation f(|x|)=k has

4 distinct real roots is

A.
$$1 + \sqrt{x+2}$$

B.
$$1-\sqrt{x+3}$$

C.
$$1 - \sqrt{x+2}$$

D.
$$1 + \sqrt{x+3}$$

Answer: A

3. Let $f(x)=x^2-2x-1\,orall \xi nR$ Let $f\!:\!(\,-\infty,a] o[b,\infty)$, where a is the largest real number for which f(x) is bijective. If $f\!:\!R o R$,

g(x) = f(x) + 3x - 1 , then the least value of function y = g(|x|) is

A.
$$(-2, -1)$$

B.
$$(-2,0)$$

$$\mathsf{C.}\,(\,-1,0)$$

Answer: A

View Text Solution

Consider differentiable $f: R \to R$ for 4. a which $f(1) = 2 \,\, ext{and} \,\, f(x+y) = 2^x f(y) + 4^y f(x) \, orall x, y \in R.$

The value of f(2) is

A. 16

B. 12

C. 20

D. none of these

Answer: B

5.

Watch Video Solution

 $f(1) = 2 \,\, ext{and} \,\, f(x+y) = 2^x f(y) + 4^y f(x) \, orall x, y \in R.$

Consider a differentiable $f\!:\!R o R$ for

which

The minimum value of f(x) is

A. 1

 $\mathsf{B.}-\frac{1}{2}$

 $C.-\frac{1}{4}$

D. none of these

Answer: C

6. Let
$$f(x)$$
 be real valued and differentiable function on R such that

$$f(x+y)=rac{f(x)+f(y)}{1-f(x)f(y)}\,f(0)$$
 is equals a. b. c. d. none of these

$$C. -1$$

D. none of these

Answer: B

View Text Solution

7. Let f(x) be real valued and differentiable function on R such that

$$f(x+y)=rac{f(x)+f(y)}{1-f(x)\,f(y)}\,f(0)$$
 is equals a. b. c. d. none of these

A. odd function

- B. even function
- C. odd and even function simultaneously
- D. neither even nor odd

Answer: A

