

India's Number 1 Education App

MATHS

BOOKS - CENGAGE PUBLICATION

GRAPH OF INVERSE TRIGONOMETRIC FUNCTIONS

Illustration

1. Solve $\sin^{-1} x \le \cos^{-1} x$ graphically. Check the differentiability of f (x)

=min. $\{\sin^{-1} x \le \cos^{-1} x\}$. Also find the range of y = f(x)

2. Evaluate: $\left[(\lim)_{x \to 0} \frac{\tan^{-1} x}{x} \right]$, where [.]represent the greatest integer function

3. Find the values of a for which $\sin^{-1}x=|x-a|$ will have at least one solution.

4. Draw the graph of $y = \sin^{-1} 2x$ and $y = \sin^{-1} (x/2)$ and compare with $y = \sin^{-1} x$.

5. Draw the graphs of $y=\sin^{-1}\{x\}$, where $\{\,\cdot\,\}$ resresent the fractional part function.

6. Draw the graph of $y = \sin^{-1} x + \cos^{-1} x$.

7. Draw the graph of
$$y = \sec^{-1} x + \cos ec^{-1} x$$

8. Draw the graph of $y = \cos^2 x$.

$$y = \sin^{-1} x.$$

10. Draw the graph of
$$f(x) = \lceil \tan^{-1} x \rceil$$
, where $\lceil \cdot \rceil$ represents the greatest integer function.

9. Draw the graph of $y=\sin^{-1}x^3$ and compare with the graph of

11. Draw the graph of $y=\sin^{-1}(\log_e x)$. Also find the point of inflection.

12. Draw the graph of the function $y=f(x)= an^{-1}igg(rac{1-x^2}{1+x^2}igg).$

13. Draw the graph of $y=\sin(\sin^{-1}x)$ or $y=\cos(\cos^{-1}x)$

14. Draw the graph of $y = \tan(\tan^{-1} x)$ or $y = \cot(\cot^{-1} x)$

15. Draw the graph of $y = \sin^{-1}(\sin x)$

Watch Video Solution

16. Draw the graph of $y = \cos^{-1}(\cos x)$.

Watch Video Solution

17. Let $f\colon [0,4\pi] \overrightarrow{0,\pi}$ be defined by $f(x) = \cos^{-1}(\cos x)$. The number of points $x \in [0,4\pi]sati$ y $\in \ > he$ equation $f(x) = rac{10-x}{10}$ is____

Watch Video Solution

18. Draw the graph of $y = \tan^{-1}(\tan x)$

Watch Video Solution

19. Draw the graph of $y = \cot^{-1}(\cot x)$

Watch Video Solution

20. Draw in graph of $y = \csc^{-1}(\csc x)$.

Watch Video Solution

21. Draw the graph of $f(x) = \sec^{-1}(\sec x)$

Watch Video Solution

22. Find the area bounded by $y = \sin^{-1}(\sin x)$ and x-axis for x in

 $[0, 100\pi]$

Watch Video Solution

23. The sum of roots of the equation $\cos^{-1}(\cos x) = [x], [.]$ denotes the greatest integer function, is $2\pi + 3$ (b) $\pi + 3$ (c) $\pi - 3$ (d) $2\pi - 3$

24. Draw the graph of $f(x)\sin^{-1}|\sin x|+\cos^{-1}(\cos x)$. Find the range of the function. Find the points of non-differentiability. Also find the value of $\int_0^{10\pi} \left[\sin^{-1}|\sin x|+\cos^{-1}(\cos x)\right] \mathrm{d}x$

25. Draw the graph of $y=2x^2-1$ and heance the graph of f(x) $=\cos^{-1}(2x^2-1).$

27. Draw the graph of
$$y=\sin^{-1}\!\left(rac{2x}{1+x^2}
ight)$$

28. Draw the graph of
$$y=\cos^{-1}.$$
 $\frac{1-x^2}{1+x^2}.$

Draw

the

 $y = \sin^{-1} |\sin x| \text{ and } y = (\sin^{-1} |\sin x|)^2, 0 \le x \le 2\pi$

graph

of

29.

1. Draw the graph of $y = \tan^{-1} x - \cot^{-1} x$.

Watch Video Solution

Find the number of real solutions to the equation 2. $3\cos^{-1}x - \pi x - \frac{\pi}{2} = 0$

A. A. 0

B. B. 1

C. C. 2

D. D. Infinite

Answer:

3. Evalute $\left[\lim_{x\to 0}\frac{\sin^{-1}x}{x}\right]=1$, where $[\cdot]$ represets the greatest interger function.

4. Solve $\tan^{-1} x > \cot^{-1} x$ graphically. Also find where f(x) = max.

 $\left[an^{-1}x,\cot^{-1}x
ight]$ is non-differentiable. Also find the range of y=f(x).

Watch Video Solution

5. Match the colums.

Column I	Column II
a) $\sin^{-1} x + x > 0$, for	(p) $x < 0$
(b) $\cos^{-1} x - x \ge 0$, for	(q) $x \in (0, 1]$
c) $\tan^{-1} x + x < 0$ for	(r) $x \in [-1, 0]$
d) $\cot^{-1} x + x > 0$, for	(s) $x > 0$

Watch Video Solution

6. Draw the graph of $y=\cos^{-1}\sqrt{\log_{\lfloor x\rfloor}\left(\frac{|x|}{x}\right)}$ where $\lfloor\cdot\rfloor$ represents the greastest integer function.

7. Find the value of
$$\int_0^{100\pi} \sin^{-1}(\sin x) dx$$
.

8. Draw the graph of
$$y=\sin^{-1}\!\left(rac{1}{x}
ight)$$

9. Draw the graph of
$$y=\sin^{-1}ig(x^2ig)$$

Draw

10.

graph

of

the

watch video Solution

11. Draw the graph of $y = \cos^{-1}(2^x)$.

12. Draw the graph of $y=\cos^{-1}\{x\}, \ \ ext{where} \ \ \{\,\cdot\,\,\} \ \ ext{represents the fractional part function.}$

13. If $\cos^{-1}(\cos x) = \frac{n-x}{n}, \, x \geq 0$, has seven roots, then find values of n.

14. Draw the graph of $f(x) = \left[\cot^{-1} x\right]$, where $[\cdot]$ represents the greatest integer funtion.

15. Draw the graph of $y = \operatorname{cosec}(\operatorname{cosec}^{-1} x)$ or $y = \operatorname{sec}(\operatorname{sec}^{-1} x)$.

16. Draw the graph of $f(x) = \cot^{-1} \left(\frac{2-|x|}{2+|x|} \right)$.

17. Draw the graph of $y=\sin^{-1}\!\left(2x\sqrt{1-x^2}
ight)$

18. Draw the graph of $y=\frac{3x-x^3}{1-3x^2}$ and hence the graph of

$$y = \tan^{-1} \cdot \frac{3x - x^3}{1 - 3x^2}.$$

