

MATHS

BOOKS - CENGAGE PUBLICATION

HIGHT AND DISTANCE

1. From te top of a tower, 60 meters high, the

angles of depression of the top and bottom of

a pole are lpha and eta respectively .Find the

height of the pole.

2. The angle of elevation of the top of a tower a point A due south of it is 30° and from a point B due west of it is 45° . If the height of the tower is 100 meters ,then find the distance AB.

3. ABC is a triangular park with AB = AC = 100 m. A block tower is situated at the midpoint of BC.The angles of elevation of the top of the tower at A and B are $\cot^{-1}(3.2)$ and $\cos ec^{-1}(2.6)$ respectively.The height of the tower is: a) 16m b)25m c)50m d)None of These

4. The angle of elevation of a stationary cloud from a point 2500 feet above a lake is 30° and the angle of depression of its reflection in the

lake is 45° .Find the height of cloud above the

lake water surface.

5. Some portion of a 20 meters long tree is broken by the wind and its top struck the ground at an angle of 30° .Find the height of the point where the tree is broken.

Watch Video Solution

6. An observer on the top of a tree ,finds the angle of depression of a car moving towards the tree to be 30° .After 3 minutes this angle becomes 60° .After how much more time , the car will reach the tree ?

Watch Video Solution

7. A man observes when he has climbed up $\frac{1}{3}$ of the length of an inclined ladder, placed against a wall, the angular depression of an

object on the floor is α . When he climbs the ladder completely, the angleof depression is β . If the inclination of the ladder to the floor is θ , then prove that $\cot \theta = \frac{3 \cot \beta - \cot \alpha}{2}$

Watch Video Solution

8. A vertical pole with height more than 100 m consists of two parts, the lower being one-third of the whole. At a point on a horizontal plane through the foot and 40 m from it,the

upper part subtends an angle whose tangent

is
$$\frac{1}{2}$$
.Find the height of the pole.

> Watch Video Solution

9. A circular ring of radius 3cm hangs horizontally form a point 4cm vertically above the centre by 4 strings attached at equal intervals to its circumference. If the angle between two consecutive strings be θ , then $\cos \theta$ is equal to $\frac{4}{5}$ (b) $\frac{4}{25}$ (d) $\frac{16}{25}$ (d) none of

these

10. A balloon is observed simultaneously from three points A, B and C on a straight road directly under it. The angular elevation at B is twice and at C is thrice that at A . If the distance between A and B is 200 metres and the distance between B and C is 100 metres, then find the height of balloon above the road.

11. A spherical ballon of radius r while floating in the sky, makes an angle α in the eye of viewer. If the angle of elevation of the centre of the ballon in the eye of the viewer be β , show that the altitude of the centre of the ballon from the ground is $r \cos ec \frac{\alpha}{2} \sin \beta$.

Watch Video Solution

12. A vertical tower PQ subtends the same anlgle of $30^{\,\circ}$ at each of two points A and B ,60

m apart on the ground .If AB subtends an angle of 120° at P the foot of the tower ,then find the height of the tower .

Watch Video Solution

13. From a point on a hillside of constant inclination, the angle of elevation of the top a flagstaff on its summit is observed to be α and a meters nears the top of the hill, it is β . If h is the height of the flagstaff ,find the inclination of the hill to the horizon.

14. PQ is a vertical tower having P as the foot. A,B,C are three points in the horizontal plane through P. The angles of elevation of Q from A,B,C are equal and each is equal to θ . The sides of the triangle ABC are a,b,c, and area of the triangle ABC is riangle . Then prove that the height of the tower is (abc) $rac{ an heta}{{\it A'}~{\it \wedge}~{\it '}}$

Watch Video Solution

1. The tops of two poles of height 20 m and 14 m are connected by a wire. If the wire makes an angle of 30° with horizontal, then the length of the wire is (a) 12 m (b) 10 m (c) 8 m (d) 6 m

A. 8 m

B. 12 m

C. 10 m

D. 3 m

Answer:

2. The angle of elevation of the top of an unfinished tower at a distance of 120 m from its base is 30° . How much higher must the tower be raised so that the angle of elevation of its top at the same point may be 60° ?

A.
$$120ig(\sqrt{3}+1ig)m$$

B.
$$120 \left(\sqrt{3}-1\right) m$$

C. $120\sqrt{3}m$

D. 120m

Answer:

3. A tower of height b subtends an angle at a point 0 on the ground level through the foot of the tower and at a distance a from the foot of the tower. A pole mounted on the top of

the tower also subtends an equal angle at 0.

The height of the pole is

A.
$$a\left(rac{a^2-b^2}{a^2+b^2}
ight)$$

B. $a\left(rac{a^2+b^2}{a^2-b^2}
ight)$
C. $b\left(rac{a^2-b^2}{a^2+b^2}
ight)$
D. $b\left(rac{a^2+b^2}{a^2-b^2}
ight)$

Answer: option 4

4. A ladder rest against a wall making an angle α with the horizontal. The foot of the ladder is pulled away from the wall through a distance x, so that it slides a distance y down the wall making an angle β with the horizontal. Prove that $x=yrac{ an(lpha+eta)}{2}.$ A. $y = x an rac{lpha + eta}{2}$ $\mathsf{B.}\, x = y \tan \frac{\alpha + \beta}{2}$ $\mathsf{C}.\, x = y \tan{(\alpha + \beta)}$ D. $y = x \tan{(\alpha + \beta)}$

Answer:

5. Two flagstaffs stand on a horizontal plane. A and B are two points on the line joining their feet and between them. The angles of elevation of the tops of the flagstaffs as seen from A are 30° and 60° and as seen from B are 60° and 45° . If AB is 30 m, then the distance between the flagstaffs is

A.
$$30+15\sqrt{3}$$

- B. $45 + 15\sqrt{3}$
- $\mathsf{C.}\,60-15\sqrt{3}$
- D. $60+15\sqrt{3}$

Answer: D

6. A bird is sitting on the top of a vertical pole 20 m high and its elevations from a point O on the ground is 45° . It flies off horizontally

straight away from the point O. After one second, the elevation of the bird from O is reduced to 30° . Then the speed (in m/s)of the bird is

A. 14.64m//s

B. 17.71m//s

C. 12m//s

D. None of these

Answer: A

Watch Video Solution

7. For a man , the angle of elevation of the highest point of a tower situated west to him is 60° . On walking 240 meters to north , the angle of elevation reduces to 30° . The height of the tower is

A. $50\sqrt{3}m$

B. $30\sqrt{6}m$

C. $60\sqrt{6}m$

D. 60m

Answer:

8. A flagstaff stands in the centre of a rectangular field whose diagonal is 120 m. It subtends angles of 15° and 45° at the midpoints of the sides of the field. The height of the flagstaff is

A. 20m

B.
$$30\sqrt{2+\sqrt{3}}m$$

C. $30\sqrt{2-\sqrt{3}m}$

D. 40m

Answer:

9. AB is a vertical pole resting at the end A on the level ground. P is a point on the level ground such that AP = 3AB and C Is the midpoint of AB. If AC and CB subtend angles α and β , respectively, at P, then the value of aneta

A.
$$\frac{18}{19}$$

B. $\frac{3}{19}$
C. $\frac{1}{6}$
D. $\frac{1}{3}$

Answer:

Watch Video Solution

10. From the bottom of a pole of height h, the angle of elevation of the top of a tower is α . The pole subtends an angle β at the top of the tower. find the height of the tower.

A.
$$\frac{h \cot(\alpha - \beta)}{\cot(\alpha - \beta) - \cot \alpha}$$

B.
$$\frac{h \tan(\alpha - \beta)}{\tan(\alpha - \beta) - \tan \alpha}$$

C.
$$\frac{\cot(\alpha - \beta)}{\cot(\alpha - \beta) - \cot \alpha}$$

D. None of these

11. A tower subtends an angle α at a point on the same level as the root of the tower and at a second point, b meters above the first, the angle of depression of the foot of the tower is β . The height of the tower is

A. b cot α tan β

B. $b \tan \alpha \tan \beta$

 $\mathsf{C}.\,b\tan\alpha\cot\beta$

D. $b \cot \alpha \cot \beta$

Answer:

12. A man standing on a level plane observes the elevation of the top of a pole to be θ . He then walks a distance equal to double the height of the pole and then finds that the elevation is now 2θ . The value of $\cot \theta$ is

A.
$$\sqrt{2}+1$$

B. $2-\frac{\sqrt{3}}{2}$

C. $\sqrt{2-1}$

D. $2 + \sqrt{3}$

Answer:

13. 5 m high pole stands on a building of height 25 m. The pole and the building subtend equal angles at an antenna placed at a height of 30 m. The distanceo f the antenna from the top of the pole is

Answer:

14. A vertical tower stands on a declivity which isinclined at 15° to the horizon. From the foot of the tower a man ascends the declivity from

80 feet and then finds that the tower subtends an angle of 30° . The height of the tower is

A. $40(\sqrt{6}+\sqrt{2})$ B. $20(\sqrt{6}-\sqrt{2})$ C. $40(\sqrt{6}-\sqrt{2})$ D. $80(\sqrt{6}-\sqrt{2})$

15. The length of the shadow of a pole inclined at 10° to the vertical towards the sun is 2.05 metres, when theelevation of the sun is 38° . Then, find the length of the pole.

A.
$$\frac{2.05 \sin 42^{\circ}}{\sin 38^{\circ}}$$
B.
$$\frac{2.05 \sin 42^{\circ}}{\cos 42^{\circ}}$$
C.
$$\frac{2.05 \sin 38^{\circ}}{\sin 42^{\circ}}$$
D.
$$\frac{2.05 \sin 42^{\circ}}{\sin 38^{\circ}}$$

16. A tower subtends angles α , 2α , 3α respectively, at point A, B, and C all lying on a horizontal line through the foot of the tower. Prove that $rac{AB}{RC} = 1 + 2\cos 2lpha \cdot$ A. $\frac{3\sin\alpha}{\sin 2\alpha}$ $\mathsf{B}.\,1+2\cos^2\alpha$ $C.2 + \cos^3 lpha$ D. $\frac{\sin 2\alpha}{\sin \alpha}$

17. A harbour lies in a direction 60° south west from a fort and at a distance 30 km from it .A ship sets from the habour at noon and sails due east at 10 km / hour .The ship will be 70 km from the fort at

A. 7 p.m

B. 8 p.m

C. 5 p.m

D. 10 p.m

Answer:

Watch Video Solution

18. A tower AB leans towards west making an angle α with the vertical . The anlgular elevation of B , the topmost point of the tower is β as obsreved from a point C due east of A at distance d from A.If the angular elevation of

B from a pont D at a distance 2d due east of C

is γ , then prove that 2 tan lpha = cot γ -3cot eta

A.
$$2 anlpha=2\coteta-\cot\gamma$$

- B. $2 \tan \alpha = 3 \cot \beta \cot \gamma$
- C. $an lpha = \cot eta \cot \gamma$
- D. None of these

1. A bird is sitting on the top of a vertical pole 20 m high and its elevation from a point O on the ground is 45o . It flies off horizontally straight away from the point O. After one second, the elevation of the bird from O is reduced to 30o. Then the speed (in m/s) of the bird is (1) $40(\sqrt{2}-1)$ (2) $40(\sqrt{3}-2)$ (3) $20\sqrt{2}$ (4) $20(\sqrt{3}-1)$

A.
$$40ig(\sqrt{2}-1ig)$$

B. $40\sqrt{(3)-\sqrt{2}}$

Answer:

2. If the angles of elevation of the top of a tower from three collinear points A, B and C, on a line leading to the foot of the tower, are 30^0 , 45^0 and 60^0 respectively, then the ratio,

AB : BC, is : (1) $\sqrt{3}$: 1 (2) $\sqrt{3}$: $\sqrt{2}$ (3) $1:\sqrt{3}$ (4)

2:3

A. $\sqrt{3}:1$

$$\mathsf{B}.\sqrt{3}:\sqrt{2}$$

- C. 1: $\sqrt{3}$
- D. 2:3

3. PQR is a triangular park with PQ=PR=200m . A T.V tower stands at the mid-point of QR. If the angles of elevation of the top of the tower at P , Q and R respectively 45° , 30° and 30° then the height of the tower in m is

A. $50\sqrt{2}$

B. 100

C. 50

D. $100\sqrt{3}$

Answer: B

