

MATHS

BOOKS - CENGAGE PUBLICATION

INTRODUCTION TO VECTORS

Illustration 1

1. The vector
$$\overrightarrow{a} + \overrightarrow{b}$$
 bisects the angle between the vectors \widehat{a} and \widehat{b} if
(A) $|\overrightarrow{a}| + |\overrightarrow{b}| = 0$ (B) angle between \overrightarrow{a} and \overrightarrow{b} is zero (C)
 $|\overrightarrow{a}| = |\overrightarrow{b}| = 0$ (D) none of these

1. if $\overrightarrow{A}o + \overrightarrow{O}B = \overrightarrow{B}O + \overrightarrow{O}C$, than prove that B is the midpoint of AC.

Illustration 3

1.
$$ABCDE$$
 is pentagon, prove that $\overrightarrow{A}B + \overrightarrow{B}C + \overrightarrow{C}D + \overrightarrow{D}E + \overrightarrow{E}A = \overrightarrow{0}$
 $\overrightarrow{A}B + \overrightarrow{A}E + \overrightarrow{B}C + \overrightarrow{D}C + \overrightarrow{E}D + \overrightarrow{A}C = 3\overrightarrow{A}C$

Watch Video Solution

Illustration 4

1. Prove that the resultant of two forces acting at point O and represented by \overrightarrow{OB} and \overrightarrow{OC} is given by $2\overrightarrow{OD}$, where D is the midpoint of BC.

1. Prove that the sum of all vectors drawn from the centre of a regular

octagon to its vertices is the zero vector.

View Text Solution

Illustration 6

1. ABC is a triangle and P any point on BC. if $\overrightarrow{P}Q$ is the sum of $\overrightarrow{A}P + \overrightarrow{P}B$ + $\overrightarrow{P}C$, show that ABPQ is a parallelogram and Q, therefore, is a fixed point.

1. Two forces $\overrightarrow{A}B$ and $\overrightarrow{A}D$ are acting at vertex A of a quadrilateral ABCD and two forces $\overrightarrow{C}B$ and $\overrightarrow{C}D$ at C prove that their resultant is given by 4 $\overrightarrow{E}F$, where E and F are the midpoints of AC and BD, respectively.

Illustration 8

1. If $O(\overrightarrow{0})$ is the circumcentre and O' the orthocentre of a triangle ABC, then prove that i. $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \overrightarrow{OO'}$ ii. $\overrightarrow{O'A} + \overrightarrow{O'B} + \overrightarrow{O'C} = 2\overrightarrow{O'O}$ iii. $\overrightarrow{AO'} + \overrightarrow{O'B} + \overrightarrow{O'C} = 2\overrightarrow{AO} = \overrightarrow{AP}$

where AP is the diameter through A of the circumcircle.

1. A unit vector of modulus 2 is equally inclined to x - and y -axes angle at

an angle $\pi/3$. Find the length of projection of the vector on the z -axis.

1. Find a vector of magnitude 8 units in the direction of the vector $\Big(5\hat{i}-\hat{j}+2\hat{k}\Big).$

1. Find the unit vector in the direction of vector \overrightarrow{PQ} , where P and Q are the points (1, 2, 3) and (4, 5, 6), respectively.

Illustration 13

1. If
$$\overrightarrow{a} = \left(-\hat{i} + \hat{j} - \hat{k}\right)$$
 and $\overrightarrow{b} = \left(2\hat{i} - 2\hat{j} + 2\hat{k}\right)$ then find the unit vector in the direction of $\left(\overrightarrow{a} + \overrightarrow{b}\right)$.

View Text Solution

1. Show that the points A, B and C having position vectors $(3\hat{i} - 4\hat{j} - 4\hat{k}), (2\hat{i} - \hat{j} + \hat{k})$ and $(\hat{i} - 3\hat{j} - 5\hat{k})$ respectively, from the

vertices of a right-angled triangle.

View Text Solution

Illustration 15

1. If $2\overrightarrow{A}C = 3\overrightarrow{C}B$, then prove that $2\overrightarrow{O}A = 3\overrightarrow{C}B$ then prove that $2\overrightarrow{O}A + 3$ $\overrightarrow{O}B = 5\overrightarrow{O}C$ where O is the origin.

View Text Solution

Illustration 16

1. Prove that points $\hat{i}+2\hat{j}-3\hat{k}, 2\hat{i}-\hat{j}+\hat{k}$ and $2\hat{i}+5\hat{j}-\hat{k}$ form a

triangle in space.

Illustration 17

1. Find the position vector of a point R which divides the line joining the point $P(\hat{i} + 2\hat{j} - \hat{k})$ and $Q(-\hat{i} + \hat{j} + \hat{k})$ in the ratio 2:1, (i) internally and (ii) externally.

D View Text Solution

Illustration 18

1. If $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}, \overrightarrow{d}$ are the position vectors of points A, B, C and D, respectively referred to the same origin O such that no three of these points are collinear and $\overrightarrow{a} + \overrightarrow{c} = \overrightarrow{b} + \overrightarrow{d}$, then prove that quadrilateral ABCD is a parallelogram.

1. i. Show that the lines joining the vertices of a tetrahedron to the centroids of opposite faces are concurrent.

1. If in parallelogram ABCD, diagonal vectors are $\overrightarrow{AC} = 2\hat{i} + 3\hat{j} + 4\hat{k}$ and $\overrightarrow{BD} = -6\hat{i} + 7\hat{j} - 2\hat{k}$, then find the adjacent side vectors \overrightarrow{AB} and \overrightarrow{AD} .

Watch Video Solution

1. If two sides of a triangle are $\hat{i}+2\hat{j}$ and $\hat{i}+\hat{k}$, then find the length of

the third side.

Illustration 27

1. Three coinitial vectors of magnitudes a, 2a and 3a meet at a point and their directions are along the diagonals if three adjacent faces if a cube. Determined their resultant R. Also prove that the sum of the three vectors determinate by the diagonals of three adjacent faces of a cube passing through the same corner, the vectors being directed from the corner, is twice the vector determined by the diagonal of the cube.

View Text Solution

1. A stone is projectef from level ground such that its horizontal and vertical components of initial velocity are $u_x = 10 \frac{m}{s}$ and $u_y = 20 \frac{m}{s}$ respectively. Then the angle between velocity vector of stone one second before and one second after it attains maximum height is:

View Text Solution

Illustration 29

1. If the resultant of two forces is equal in magnitude to one of the components and perpendicular to it direction, find the other components using the vector method.

1. A man travelling towards east at 8km/h finds that the wind seems to blow directly from the north On doubling the speed, he finds that it appears to come from the north-east. Find the velocity of the wind.

Watch Video Solution

Illustration 31

1. OABCDE is a regular hexagon of side 2 units in the XY-plane in the first quadrant. O being the origin and OA taken along the x-axis. A point P is taken on a line parallel to the z-axis through the centre of the hexagon at a distance of 3 unit from O in the positive Z direction. Then find vector AP.

Illustration 35

1. Let \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} be three non-zero vectors which are positive noncollinear. If $\overrightarrow{a} + 3\overrightarrow{b}$ is collinear with \overrightarrow{c} and $\overrightarrow{b} + 2\overrightarrow{c}$ is collinear with \overrightarrow{a} then \overrightarrow{a} then $\overrightarrow{a} + 3\overrightarrow{b} + 6\overrightarrow{c}$ is:

View Text Solution

Illustration 36

1. i. Prove that the points $\overrightarrow{a} - 2\overrightarrow{b} + 3\overrightarrow{c}, 2\overrightarrow{a} + 3\overrightarrow{b} - 4\overrightarrow{c}$ and $-7\overrightarrow{b} + 10\overrightarrow{c}$ are collinear, where $\overrightarrow{a}, \overrightarrow{b}$ and \overrightarrow{c} are non-coplanar. ii. Prove that the points A(1, 2, 3), B(3, 4, 7) and C(-3, -2, -5)are collinear. Find the ratio in which point C divides AB.

Illustration 37

1. Check whether the given three vectors are coplnar or non- coplanar :

$$-2\hat{i}-2\hat{j}+4\hat{k},\ -2\hat{i}+4\hat{j}-2\hat{k},4\hat{i}-2\hat{j}-2\hat{k}.$$

Watch Video Solution

Illustration 38

1.	Prove	that	the	four		points
$6\hat{i}$ –	$7\hat{j}, 16\hat{i}-19\hat{j}-$	$4\hat{k},3\hat{j}-6\hat{k}$	and $2\hat{i} + 5\hat{j}$	$+ \ 10 \hat{k}$	form	а

tetrahedron in spacel.

1. If \overrightarrow{a} and \overrightarrow{b} are two non-collinear vectors, show that points $l_1\overrightarrow{a} + m_1\overrightarrow{b}, l_2\overrightarrow{a} + m_2\overrightarrow{b}$ and $l_3\overrightarrow{a} + m_3\overrightarrow{b}$ are collinear if $|l_1l_2l_3m_1m_2m_3111| = 0.$

View Text Solution

Illustration 40

1. The vectors \overrightarrow{a} and \overrightarrow{b} are non collinear. Find for what value of x the vectors $\overrightarrow{c} = (x-2)\overrightarrow{a} + \overrightarrow{b}$ and $\overrightarrow{d} = (2x+1)\overrightarrow{a} - \overrightarrow{b}$ are collinear.? View Text Solution

Illustration 41

1. The median AD of the triangle ABC is bisected at E and BE meets AC at F.

Find AF:FC.

Illustration 42

1. Prove that the necessary and sufficient condition for any four points in three-dimensional space to be coplanar is that there exists a liner relation connecting their position vectors such that the algebraic sum of the coefficients (not all zero) in it is zero.

View Text Solution

Illustration 43

1. i. If
$$\overrightarrow{a}, \overrightarrow{b}$$
 and \overrightarrow{c} are non-coplanar vectors, prove that vectors $3\overrightarrow{a} - 7\overrightarrow{b} - 4\overrightarrow{c}, 3\overrightarrow{a} - 2\overrightarrow{b} + \overrightarrow{c}$ and $\overrightarrow{a} + \overrightarrow{b} + 2\overrightarrow{c}$ are coplanar.

1. If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are non-coplanar vectors, prove that the four points $2\overrightarrow{a} + 3\overrightarrow{b} - \overrightarrow{c}$, $\overrightarrow{a} - 2\overrightarrow{b} + 3\overrightarrow{c}$, $3\overrightarrow{a} + 4\overrightarrow{b} - 2\overrightarrow{c}$ and $\overrightarrow{a} - 6\overrightarrow{b} + 6\overrightarrow{c}$

are coplanar.

Watch Video Solution

Illustration 45

1. let P an interioer point of a triangle ABC and AP, BP, CP meets the

sides BC, CA, AB in D, E, F, respectively, Show that $\frac{AP}{PD} = \frac{AF}{FB} + \frac{AE}{EC}$.

1. Points
$$A(\overrightarrow{a}), B(\overrightarrow{b}), C(\overrightarrow{c}) and D(\overrightarrow{d})$$
 are relates as $x\overrightarrow{a} + y\overrightarrow{b} + z\overrightarrow{c} + w\overrightarrow{d} = 0$ and

x + y + z + w = 0, where x, y, z, and w are scalars (sum of any two of x, y, znadw is not zero). Prove that if A, B, CandD are concylic, then $|xy| \left| \overrightarrow{a} - \overrightarrow{b} \right|^2 = |wz| \left| \overrightarrow{c} - \overrightarrow{d} \right|^2$.

View Text Solution

Concept Application Exercise 11

1. Find the unit vector in the direction of the vector $\overrightarrow{a} = \hat{i} + \hat{j} + 2\hat{k}.$

3. Find the direction cosines of the vector joining the points A(1, 2, -3) and B(-1, -2, 1) directed from A to B.

5. Given three points are A(-3, -2, 0), B(3, -3, 1) and C(5, 0, 2). Then find a vector having the same direction as that of $\overrightarrow{A}B$ and magnitude equal to $|\overrightarrow{A}C|$.

6. Find a vector of magnitude 5 units, and parallel to the resultant of the

vectors

$$\overrightarrow{a} = 2\hat{i} + 3\hat{j} - \hat{k} ext{ and } \overrightarrow{b} = \hat{i} - 2\hat{j} + \hat{k}.$$

Watch Video Solution

7. Show that the points A(1, -2, -8), B(5, 0, -2) and C(11, 3, 7)

are collinear, and find the ratio in which B divides AC.

Watch Video Solution

8. If ABCD is a rhombus whose diagonals cut at the origin O, then proved that $\overrightarrow{O}A + \overrightarrow{O}B + \overrightarrow{O}C + \overrightarrow{O}D + \overrightarrow{O}$.

9. Let D, EandF be the middle points of the sides BC, CAandAB, respectively of a triangle ABC. Then prove that $\overrightarrow{A}D + \overrightarrow{B}E + \overrightarrow{C}F = \overrightarrow{0}$.

Watch Video Solution

10. Let ABCD be a p[arallelogram whose diagonals intersect at P and let O be the origin. Then prove that $\overrightarrow{O}A + \overrightarrow{O}B + \overrightarrow{O}C + \overrightarrow{O}D = 4\overrightarrow{O}P$.

Watch Video Solution

11. If ABCD is quadrilateral and EandF are the mid-points of ACandBD respectively, prove that $\overrightarrow{A}B + \overrightarrow{A}D + \overrightarrow{C}B + \overrightarrow{C}D = 4\overrightarrow{E}F$.

12. If $\overrightarrow{A}O + \overrightarrow{O}B = \overrightarrow{B}O + \overrightarrow{O}C$, then A, BnadC are (where O is the origin) a. coplanar b. collinear c. non-collinear d. none of these

13. If the sides of an angle are given by vectors $\vec{a} = \hat{i} - 2\hat{j} + 2\hat{k}$ and $\vec{b} = 2\hat{i} + \hat{j} + 2\hat{k}$, then find the internal bisector of the angle.

View Text Solution

14. ABCD is a parallelogram. If LandM are the mid-points of BCandDC respectively, then express $\overrightarrow{A}Land\overrightarrow{A}M$ in terms of $\overrightarrow{A}Band\overrightarrow{A}D$. Also, prove that $\overrightarrow{A}L + \overrightarrow{A}M = \frac{3}{2}\overrightarrow{A}C$.

15. ABCD is a quadrilateral and E and the point intersection of the lines joining the middle points of opposite side. Show that the resultant of $\overrightarrow{O}A, \overrightarrow{O}B, \overrightarrow{O}Cand\overrightarrow{O}D$ is equal to $\overrightarrow{O}E$, where O is any point.

Watch Video Solution

16. What is the unit vector parallel to $\vec{a} = 3\hat{i} + 4\hat{j} - 2\hat{k}$? What vector should be added to \vec{a} so that the resultant is the unit vector \hat{i} ?

Watch Video Solution

17. The position vectors of points A and B w.r.t. the origin are $\vec{a} = \hat{i} + 3\hat{j} - 2\hat{k}$ and $\vec{b} = 3\hat{i} + \hat{j} - 2\hat{k}$, respectively. Determine vector \overrightarrow{OP} which bisects angle AOB, where P is a point on AB.

18. If $\overrightarrow{r}_1, \overrightarrow{r}_2, \overrightarrow{r}_3$ are the position vectors off thee collinear points and scalar *pandq* exist such that $\overrightarrow{r}_3 = p\overrightarrow{r}_1 + q\overrightarrow{r}_2$, then show that p+q=1.

Watch Video Solution

19. If \overrightarrow{a} and \overrightarrow{b} are two vectors of magnitude 1 inclined at 120° , then find the angle between \overrightarrow{b} and $\overrightarrow{b} - \overrightarrow{a}$.

View Text Solution

20. Find the vector of magnitude 3, bisecting the angle between the

vectors
$$\overrightarrow{a} = 2\hat{i} + \hat{j} - \hat{k} ext{ and } \overrightarrow{b} = \hat{i} - 2\hat{j} + \hat{k}.$$

Watch Video Solution

Concept Application Exercise 12

1. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} and \overrightarrow{d} are four vectors in three-dimensional space with the same initial point and such that $3\overrightarrow{a} + 2\overrightarrow{b} + \overrightarrow{c} - 2\overrightarrow{d} = 0$, Find the point at which ACandBD meet. Find the ratio in which P divides ACandBD.

3. Examine the following vectors for linear independence :

$$\begin{array}{l} \overrightarrow{i},\overrightarrow{i}+\overrightarrow{j}+\overrightarrow{k},2\overrightarrow{i}+\overrightarrow{j}-\overrightarrow{k},-\overrightarrow{i}-2\overrightarrow{j}+2\overrightarrow{k}\\ \overrightarrow{i},3\overrightarrow{i}+\overrightarrow{j}-\overrightarrow{k},2\overrightarrow{i}-\overrightarrow{j}+7\overrightarrow{k},7\overrightarrow{i}-\overrightarrow{j}+13\overrightarrow{k} \end{array}$$

4. If \overrightarrow{a} and \overrightarrow{b} are non-collinear vectors and $\overrightarrow{A} = (p+4q)\overrightarrow{a} + (2p+q+1)\overrightarrow{b}$ and $\overrightarrow{B} = (-2p+q+2)\overrightarrow{a} + (2p-3q)$, and if $3\overrightarrow{A} = 2\overrightarrow{B}$, then determine p and q.

View Text Solution

5. If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are any three non-coplanar vectors, then prove that points $l_1\overrightarrow{a} + m_1\overrightarrow{b} + n_1\overrightarrow{c}$, $l_2\overrightarrow{a} + m_2\overrightarrow{b} + n_2\overrightarrow{c}$, $l_3\overrightarrow{a} + m_3\overrightarrow{b} + n_3\overrightarrow{c}$, $l_4\overrightarrow{a} + m_4$ are coplanar if $\begin{vmatrix} l_1 & l_2 & l_3 & l_4 \\ m_1 & m_2 & m_3 & m_4 \\ n_1 & n_2 & n_3 & n_4 \\ 1 & 1 & 1 & 1 \end{vmatrix} = 0$

View Text Solution

6. If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are three non-zero, non-coplanar vectors, then find the linear relation between the following four vectors :

$$\overrightarrow{a} - 2\overrightarrow{b} + 3\overrightarrow{c}, 2\overrightarrow{a} - 3\overrightarrow{b} + 4\overrightarrow{c}, 3\overrightarrow{a} - 4\overrightarrow{b} + 5\overrightarrow{c}, 7\overrightarrow{a} - 11\overrightarrow{b} + 15\overrightarrow{c}$$

View Text Solution

7. Let a, b, c be distinct non-negative numbers and the vectors $a\hat{i} + a\hat{j} + c\hat{k}$, $\hat{i} + \hat{k}$, $c\hat{i} + c\hat{j} + b\hat{k}$ lie in a plane, and then prove that the quadratic equation $ax^2 + 2cx + b = 0$ has equal roots.

View Text Solution

Subjective

1. The position vectors of the vertices A, B and C of triangle are $\hat{i} + \hat{j}, \hat{j} + \hat{k}$ and $\hat{i} + \hat{k}$, respectively. Find the unit vectors \hat{r} lying in the plane of ABC and perpendicular to IA, where I is the incentre of the triangle.

2. A ship is sailing towards the north at a speed of 1.25 m/s. The current is taking it towards the east at the rate of 1 m/s and a sailor is climbing a vertical pole on the ship at the rate of 0.5 m/s. Find the velocity of the sailor in space.

Watch Video Solution

3. Given four points $P_1, P_2, P_3 and P_4$ on the coordinate plane with origin

O which satisfy the condition $\left(\overrightarrow{OP}\right)_{n-1} + \left(\overrightarrow{OP}\right)_{n+1} = \frac{3}{2}\overrightarrow{OP}_n$. If P1

and P2 lie on the curve xy=1, then prove that P3 does not lie on the curve

Watch Video Solution

4. ABCD is a tetrahedron and O is any point. If the lines joining O to the vertices meet the opposite faces at P, Q, RandS, prove that $\frac{OP}{AP} + \frac{OQ}{BQ} + \frac{OR}{CR} + \frac{OS}{DS} = 1.$

5. A pyramid with vertex at point P has a regular hexagonal base ABCDEF, Position vector of points A and B are \hat{i} and $\hat{i} + 2\hat{j}$ The centre of base has the position vector $\hat{i} + \hat{j} + \sqrt{3}\hat{k}$. Altitude drawn from P on the base meets the diagonal AD at point G. find the all possible position vectors of G. It is given that the volume of the pyramid is $6\sqrt{3}$ cubic units and AP is 5 units.

Watch Video Solution

6. A straight line L cuts the lines AB, ACandAD of a parallelogram

 $\begin{array}{ll} ABCD & \text{at} & \text{points} & B_1, C_1 and D_1, & \text{respectively.} & \text{If} \\ \left(\stackrel{\rightarrow}{A}B \right)_1, \lambda_1 \stackrel{\rightarrow}{A}B, \left(\stackrel{\rightarrow}{A}D \right)_1 = \lambda_2 \stackrel{\rightarrow}{A} Dand \left(\stackrel{\rightarrow}{A}C \right)_1 = \lambda_3 \stackrel{\rightarrow}{A}C, \text{ then prove} \\ \text{that} \ \frac{1}{\lambda_3} = \frac{1}{\lambda_1} + \frac{1}{\lambda_2} \ . \end{array}$

7. The position vectors of the points P and Q are $5\hat{i} + 7\hat{j} - 2\hat{k}$ and $-3\hat{i} + 3\hat{j} + 6\hat{k}$, respectively. Vector $\overrightarrow{A} = 3\hat{i} - \hat{j} + \hat{k}$ passes through point P and vector $\overrightarrow{B} = -3\hat{i} + 2\hat{j} + 4\hat{k}$ passes through point Q. A third vector $2\hat{i} + 7\hat{j} - 5\hat{k}$ intersects vectors A and B. Find the position vectors of points of intersection.

Watch Video Solution

8. Sow that
$$x_1\hat{i}+y_1\hat{j}+z_1\hat{k}, x_2\hat{i}+y_2\hat{j}+z_2\hat{k}, and x_3\hat{i}+y_3\hat{j}+z_3\hat{k},$$
 are

if

non-coplanar

$$|x_1|>|y_1|+|z_1|, |y_2|>|x_2|+|z_2| and |z_3|>|x_3|+|y_3|$$
 .

View Text Solution

9. If $\overrightarrow{A} n d\overrightarrow{B}$ are two vectors and k any scalar quantity greater than zero, then prove that $\left|\overrightarrow{A} + \overrightarrow{B}\right|^2 \leq (1+k)\left|\overrightarrow{A}\right|^2 + \left(1 + \frac{1}{k}\right)\left|\overrightarrow{B}\right|^2$.

10. Consider the vectors $\hat{i} + \cos(\beta - \alpha)\hat{j} + \cos(\gamma - \alpha)\hat{k}, \cos(\alpha - \beta)\hat{i} + \hat{j} + \cos(\gamma - \beta)\hat{k}$ and $\cos(\alpha - \gamma)\hat{i} + \cos(\beta - \gamma)\hat{k} + a\hat{k}$ where α, β , and γ are different angles. If these vectors are coplanar, show that a is independent of α, β and γ **Watch Video Solution**

11. In a triangle PQR, SandT are points on QRandPR, respectively, such that QS = 3SRandPT = 4TR. Let M be the point of intersection of PSandQT. Determine the ratio QM:MT using the vector method.

Watch Video Solution

12. A boat moves in still water with a velocity which is k times less than the river flow velocity. Find the angle to the stream direction at which the boat should be rowed to minimize drifting. **13.** If D, E and F are three points on the sides BC, CA and AB, respectively, of a triangle ABC show that the $\frac{BD}{CD} = \frac{CE}{AE} = \frac{AF}{BF} = -1$ View Text Solution

14. In a quadrilateral PQRS, $\overrightarrow{P}Q = \overrightarrow{a}$, $\overrightarrow{Q}R = \overrightarrow{b}$, $\overrightarrow{S}P = \overrightarrow{a} - \overrightarrow{b}$, M is the midpoint of $\overrightarrow{Q}RandX$ is a point on SM such that $SX = \frac{4}{5}SM$. Prove that P, XandR are collinear.

Watch Video Solution

Single Correct Answer Type

1. Four non zero vectors will always be a. linearly dependent b. linearly

independent c. either a or b d. none of these

A. linearly dependent

B. linearly independent

C. either a or b

D. none of these

Answer: A

Watch Video Solution

2. Let $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ be three unit vectors such that $3\overrightarrow{a} + 4\overrightarrow{b} + 5\overrightarrow{c} = \overrightarrow{0}$. Then which of the following statements is true? (A) \overrightarrow{a} is parallel to vecb (B)veca*isperpendic* $ar \rightarrow \overrightarrow{b}$ (C) \overrightarrow{a} is neither paralel nor perpendicular to \overrightarrow{b} (D) $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are copalanar

A. \overrightarrow{a} is parallel to \overrightarrow{b}

B. \overrightarrow{a} is perpendicular to \overrightarrow{b}

C. \overrightarrow{a} is neither parallel nor perpendicular to \overrightarrow{b}

D. none of these
Answer: D

3. Let ABC be a triangle the position vectors of whose vertices are respectively $\hat{i} + 2\hat{j} + 4\hat{k}$, $-2\hat{i} + 2\hat{j} + \hat{k}$ and $2\hat{i} + 4\hat{j} - 3\hat{k}$. Then the $\triangle ABC$ is (A) isosceles (B) equilateral (C) righat angled (D) none of these

A. isosceles

B. equilateral

C. right angled

D. none of these

Answer: C

Watch Video Solution

4. If $\left| \overrightarrow{a} + \overrightarrow{b} \right| < \left| \overrightarrow{a} - \overrightarrow{b} \right|$, then the angle between \overrightarrow{a} and \overrightarrow{b} can lie in

the interval

- A. $(\,-\pi\,/\,2,\,\pi\,/\,2)$ B. $(0,\,\pi)$
- C. $(\pi \, / \, 2, \, 3\pi \, / \, 2)$
- D. $(0, 2\pi)$

Answer: C

View Text Solution

5. A point *O* is the centre of a circle circumscribed about a triangle *ABC*. Then $\overrightarrow{O}A\sin 2A + \overrightarrow{O}B\sin 2B + \overrightarrow{O}C\sin 2C$ is equal to a. $\left(\overrightarrow{O}A + \overrightarrow{O}B + \overrightarrow{O}C\right)\sin 2A$ b. $3\overrightarrow{O}G$, where *G* is the centroid of triangle *ABC* c. \overrightarrow{O} d. none of these

A.
$$\left(\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}\right)\sin 2A$$

B. $3\overrightarrow{OG}$, where G is the centroid of triangle ABC

 $\mathsf{C}.\overrightarrow{0}$

D. none of these

Answer: C

Watch Video Solution

6. If G is the centroid of a triangle ABC, prove that $\overrightarrow{G}A + \overrightarrow{G}B + \overrightarrow{G}C = \overrightarrow{0}$. A. $\overrightarrow{0}$ B. $3\overrightarrow{GA}$ C. $3\overrightarrow{GB}$ D. $3\overrightarrow{GC}$

Answer: A

7. If \overrightarrow{a} is a non zero vecrtor iof modulus \overrightarrow{a} and m is a non zero scalar such that ma is a unit vector, then`

A.
$$m=\pm 1$$

B. $a=|m|$
C. $a=1/|m|$
D. $a=rac{1}{m}$

Answer: C

View Text Solution

8. ABCD parallelogram, and $A_1 and B_1$ are the midpoints of sides BCandCD, respectivley. If $\overrightarrow{A}A_1 + \overrightarrow{A}B_1 = \lambda \overrightarrow{A}C$, then λ is equal to a. $\frac{1}{2}$ b. 1 c. $\frac{3}{2}$ d. 2 e. $\frac{2}{3}$ A. $\frac{1}{2}$

C.
$$\frac{3}{2}$$

 $\mathsf{D.}\,2$

Answer: C

Watch Video Solution

9. The position vectors of the points P and Q with respect to the origin O are $\vec{a} = \hat{i} + 3\hat{j} - 2\hat{k}$ and $\vec{b} = 3\hat{i} - \hat{j} - 2\hat{k}$, respectively. If M is a point on PQ, such that OM is the bisector of POQ, then \overrightarrow{OM} is

$$egin{aligned} \mathsf{A.} & 2 \Big(\hat{i} - \hat{j} + \hat{k} \Big) \ \mathsf{B.} & 2 \hat{i} + \hat{j} - 2 \hat{k} \ \mathsf{C.} & 2 \Big(- \hat{i} + \hat{j} - \hat{k} \Big) \ \mathsf{D.} & 2 \Big(\hat{i} + \hat{j} + \hat{k} \Big) \end{aligned}$$

Answer: B

10. ABCD is a quadrilateral. E is the point of intersection of the line joining the midpoints of the opposite sides. If O is any point and $\overrightarrow{O}A + \overrightarrow{O}B + \overrightarrow{O}C + \overrightarrow{O}D = x\overrightarrow{O}E$, then x is equal to a. 3 b. 9 c. 7 d. 4

A. 3

B. 9

C. 7

D. 4

Answer: D

Watch Video Solution

11. The vector $\overrightarrow{AB} = 3\hat{i} + 4\hat{k}$ and $\overrightarrow{AC} = 5\hat{i} - 2\hat{j} + 4\hat{k}$ are sides of a triangle ABC. The length of the median through A is (A) $\sqrt{18}$ (B) $\sqrt{72}$ (C) $\sqrt{33}$ (D) $\sqrt{288}$

A. $\sqrt{14}$

B. $\sqrt{18}$

C. $\sqrt{29}$

 $\mathsf{D.}\,5$

Answer: B

Watch Video Solution

12. A, B, C and D have position vectors $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ and \overrightarrow{d} , repectively, such that $\overrightarrow{a} - \overrightarrow{b} = 2\left(\overrightarrow{d} - \overrightarrow{c}\right)$. Then

A. AB and CD bisect each other

B. BD and AC bisect each other

C. AB and CD trisect each other

D. BD and AC trisect each other

Answer: D

13. If \overrightarrow{a} and \overrightarrow{b} are two unit vectors and θ is the angle between them, then the unit vector along the angular bisector of \overrightarrow{a} and \overrightarrow{b} will be given by

A.
$$\frac{\overrightarrow{a} - \overrightarrow{b}}{2\cos(\theta/2)}$$

B.
$$\frac{\overrightarrow{a} + \overrightarrow{b}}{2\cos(\theta/2)}$$

C.
$$\frac{\overrightarrow{a} - \overrightarrow{b}}{\cos(\theta/2)}$$

D. none of these

Answer: B

Watch Video Solution

14. let us define , the length of a vector as |a|+|b|+|c|. this definition coincides with the usual definition of the length of a vector $a\hat{i}+b\hat{j}+c\hat{k}$

A.
$$a=b=c=0$$

B. any two of a, b and c are zero

C. any one of a, b and c is zero

D. a + b + c = 0

Answer: B

Watch Video Solution

15. Given three vectors $\overrightarrow{a} = 6\hat{i} - 3\hat{j}, \ \overrightarrow{b} = 2\hat{i} - 6\hat{j} \ \text{and} \ \overrightarrow{c} = -2\hat{i} + 21\hat{j}$ such that $\overrightarrow{\alpha} = \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$. Then the resolution of te vector $\overrightarrow{\alpha}$ into components with respect to \overrightarrow{a} and \overrightarrow{b} is given by (A) $3\overrightarrow{a} - 2\overrightarrow{b}$ (B) $2\overrightarrow{a} - 3\overrightarrow{b}$ (C) $3\overrightarrow{b} - 2\overrightarrow{a}$ (D) none of these

A. $3\overrightarrow{a} - 2\overrightarrow{b}$ B. $3\overrightarrow{b} - 2\overrightarrow{a}$

$$C. 2\overrightarrow{a} - 3\overrightarrow{b} \\ D. \overrightarrow{a} - 2\overrightarrow{b}$$

Answer: C

View Text Solution

16. If
$$\overrightarrow{\alpha} + \overrightarrow{\beta} + \overrightarrow{\gamma} = a \overrightarrow{\delta} and \overrightarrow{\beta} + \overrightarrow{\gamma} + \overrightarrow{\delta} = b \overrightarrow{\alpha}, \overrightarrow{\alpha} and \overrightarrow{\delta}$$
 are non-
colliner, then $\overrightarrow{\alpha} + \overrightarrow{\beta} + \overrightarrow{\gamma} + \overrightarrow{\delta}$ equals a. $a \overrightarrow{\alpha}$ b. $b \overrightarrow{\delta}$ c. 0 d. $(a + b) \overrightarrow{\gamma}$

A.
$$a\overrightarrow{\alpha}$$

B. $b\overrightarrow{\delta}$

C. 0

 $\mathsf{D}.\,(a+b)\overrightarrow{\gamma}$

Answer: C

Watch Video Solution

17. In triangle ABC, $\angle A = 30^{\circ}$, H is the orthocenter and D is the midpoint of BC. Segment HD is produced to T such that HD = DT. The length AT is equal to a. 2BC b. 3BC c. $\frac{4}{2}BC$ d. none of these

A. 2 BC

B. 3 BC

C.
$$\frac{4}{3}BC$$

D. none of these

Answer: A

18. Let $\overrightarrow{r}_1, \overrightarrow{r}_2, \overrightarrow{r}_3, \overrightarrow{r}_n$ be the position vectors of points P_1, P_2, P_3, P_n relative to the origin O. If the vector equation $a_1 \overrightarrow{r}_1 + a_2 \overrightarrow{r}_2 + + a_n \overrightarrow{r}_n = 0$ hold, then a similar equation will also hold w.r.t. to any other origin provided a. $a_1 + a_2 + a_n = n$ b. $a_1 + a_2 + a_n = 1$ c. $a_1 + a_2 + a_n = 0$ d. $a_1 = a_2 = a_3 + a_n = 0$

A.
$$a_1 + a_2 + \ldots + a_n = n$$

B. $a_1 + a_2 + \ldots + a_n = 1$
C. $a_1 + a_2 + \ldots + a_n = 0$
D. $a_1 = a_2 = a_3 = \ldots = a_n = 0$

Answer: C

Watch Video Solution

19. Given three non-zero, non-coplanar vectors $\overrightarrow{a}, \overrightarrow{b}$ and \overrightarrow{c} . $\overrightarrow{r}_1 = p\overrightarrow{a} + q\overrightarrow{b} + \overrightarrow{c}$ and $\overrightarrow{r}_2 = \overrightarrow{a} + p\overrightarrow{b} + q\overrightarrow{c}$. If the vectors $\overrightarrow{r}_1 + 2\overrightarrow{r}_2$ and $2\overrightarrow{r}_1 + \overrightarrow{r}_2$ are collinear, then (p,q) is

A. (0, 0)

B. (1, -1)

C.(-1,1)

D.(1,1)

Answer: D

20. If the vectors \overrightarrow{a} and \overrightarrow{b} are linearly independent and satisfying $(\sqrt{3}\tan\theta + 1)\overrightarrow{a} + (\sqrt{3}\sec\theta - 2)\overrightarrow{b} = \overrightarrow{0}$, then the most general values of θ are:

A.
$$n\pi - rac{\pi}{6}, n \in Z$$

B. $2n\pi \pm rac{11\pi}{6}, n \in Z$
C. $n\pi \pm rac{\pi}{6}, n \in Z$
D. $2n\pi + rac{11\pi}{6}, n \in Z$

Answer: D

View Text Solution

21. In a trapezium ABCD the vector $\overrightarrow{BC} = \alpha \overrightarrow{AD}$. If $\overrightarrow{p} = \overrightarrow{AC} + \overrightarrow{BD}$ is coillinear with \overrightarrow{AD} such that $\overrightarrow{p} = \mu \overrightarrow{AD}$, then

A. $\mu=lpha+2$ B. $\mu+lpha=1$

 $\mathsf{C}.\, \alpha = \mu + 1$

D. $\mu = lpha + 1$

Answer: D

View Text Solution

22. Vectors $\overrightarrow{a} = \hat{i} + 2\hat{j} + 3\hat{k}$, $\overrightarrow{b} = 2\hat{i} - \hat{j} + \hat{k}$ and $\overrightarrow{c} = 3\hat{i} + \hat{j} + 4\hat{k}$ are so placed that the end point of one vector is the starting point of the next vector. Then the vectors are

A. not coplanar

B. coplanar but cannot form a triangle

C. coplanar and form a triangle

D. coplanar and can form a right-angled triangle

Answer: B

Watch Video Solution

23. Vectors $\overrightarrow{a} = -4\hat{i} + 3\hat{k}$; $\overrightarrow{b} = 14\hat{i} + 2\hat{j} - 5\hat{k}$ are laid off from one point. Vector \hat{d} , which is being laid of from the same point dividing the angle between vectors $\overrightarrow{a} and \overrightarrow{b}$ in equal halves and having the magnitude $\sqrt{6}$, is a. $\hat{i} + \hat{j} + 2\hat{k}$ b. $\hat{i} - \hat{j} + 2\hat{k}$ c. $\hat{i} + \hat{j} - 2\hat{k}$ d. $2\hat{i} - \hat{j} - 2\hat{k}$

A. $\hat{i}+\hat{j}+2\hat{k}$ B. $\hat{i}-\hat{j}+2\hat{k}$ C. $\hat{i}+\hat{j}-2\hat{k}$ D. $2\hat{i}-\hat{j}-2\hat{k}$

Answer: A

24. If $\hat{i} - 3\hat{j} + 5\hat{k}$ bisects the angle between \hat{a} and $-\hat{i} + 2\hat{j} + 2\hat{k}$, where \hat{a} is a unit vector, then

$$\begin{array}{l} \mathsf{A.}\,\widehat{a} = \frac{1}{150} \Big(41 \hat{i} + 88 \hat{j} - 40 \hat{k} \Big) \\ \mathsf{B.}\,\widehat{a} = \frac{1}{105} \Big(41 \hat{i} + 88 \hat{j} + 40 \hat{k} \Big) \\ \mathsf{C.}\,\widehat{a} = \frac{1}{105} \Big(-41 \hat{i} + 88 \hat{j} - 40 \hat{k} \Big) \\ \mathsf{D.}\,\widehat{a} = \frac{1}{105} \Big(41 \hat{i} - 88 \hat{j} - 40 \hat{k} \Big) \end{array}$$

Answer: D

25. If $4\hat{i} + 7\hat{j} + 8\hat{k}, 2\hat{i} + 3\hat{j} + 4\hat{k}$ and $2\hat{i} + 5\hat{j} + 7\hat{k}$ are the position

vectors of the vertices A, B and C, respectively, of triangle ABC, then the

position vector of the point where the bisector of angle A meets BC is

A.
$$rac{2}{3}\Big(-6\hat{i}-8\hat{j}-6\hat{k}\Big)$$

B. $rac{2}{3}\Big(6\hat{i}+8\hat{j}+6\hat{k}\Big)$
C. $rac{1}{3}\Big(6\hat{i}+13\hat{j}+18\hat{k}\Big)$
D. $rac{1}{3}\Big(5\hat{j}+12\hat{k}\Big)$

Answer: C

Watch Video Solution

26. If \overrightarrow{b} is a vector whose initial point divides the join of $5\hat{i}and5\hat{j}$ in the ratio k:1 and whose terminal point is the origin and $\left|\overrightarrow{b}\right| \leq \sqrt{37}$, thenk lies in the interval

A.
$$[\,-6,\ -1/16]$$

B. $(\,-\infty,\ -6]\cup[\,-1/6,\infty)$
C. $[0,6]$

D. none of these

Answer: B

Watch Video Solution

27. The value of the λ so that P, Q, R, S on the sides OA, OB, OC and AB of a regular tetrahedron are coplanar. When $\frac{OP}{OA} = \frac{1}{3}$; $\frac{OQ}{OB} = \frac{1}{2}$ and $\frac{OS}{AB} = \lambda$ is (A) $\lambda = \frac{1}{2}$ (B) $\lambda = -1$ (C) $\lambda = 0$ (D) $\lambda = 2$ A. $\lambda = \frac{1}{2}$ B. $\lambda = -1$ C. $\lambda = 0$ D. for no value of λ

Answer: B

Watch Video Solution

28. 'I' is the incentre of triangle
$$ABC$$
 whose corresponding sides are
 a, b, c , rspectively. $a\overrightarrow{I}A + b\overrightarrow{I}B + c\overrightarrow{I}C$ is always equal to $a. \overrightarrow{0} b.$
 $(a + b + c)\overrightarrow{B}Cc.(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c})\overrightarrow{A}Cd.(a + b + c)\overrightarrow{A}B$
A. $\overrightarrow{0}$
B. $(a + b + c)\overrightarrow{BC}$
C. $(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c})\overrightarrow{AC}$
D. $(a + b + c)\overrightarrow{AB}$

Answer: A

> Watch Video Solution

29. Let $x^2 + 3y^2 = 3$ be the equation of an ellipse in the x - y plane. AandB are two points whose position vectors are $-\sqrt{3}\hat{i}and - \sqrt{3}\hat{i} + 2\hat{k}$. Then the position vector of a point P on the ellipse such that $\angle APB = \pi/4$ is a. $\pm \hat{j}$ b. $\pm (\hat{i} + \hat{j})$ c. $\pm \hat{i}$ d. none of these A. $\pm \, \hat{j}$

 $\mathsf{B.}\pm\left(\hat{i}+\hat{j}
ight)$

 $\mathsf{C}.\pm\hat{i}$

D. none of these

Answer: A

Watch Video Solution

30. Locus of the point P, for which \overrightarrow{OP} represents a vector with direction cosine $\cos \alpha = \frac{1}{2}$ (where O is the origin) is

A. a circle parallel to the y-z plane with centre on the x-axis

B. a conic concentric with the positive x-axis having vertex at the

origin and slant height equal to the magnitude of the vector

C. a ray emanating from the origin and making an angle of 60° with

D. a dise parallel to the y-z plane with centre on the x-axis and radius

equal to $\left| \overrightarrow{OP} \right| \sin 60^{\circ}$.

Answer: B

Watch Video Solution

31. If \overrightarrow{x} and \overrightarrow{y} are two non-collinear vectors and ABC is a triangle with side lengths a, b, andc satisfying $(20a - 15b)\overrightarrow{x} + (15b - 12c)\overrightarrow{y} + (12c - 20a)(\overrightarrow{x} \times \overrightarrow{y}) = 0$, then triangle ABC is a. an acute-angled triangle b. an obtuse-angled triangle c. a right-angled triangle d. an isosceles triangle

A. an acute-angled triangle

B. an obtuse-angled triangle

C. a right-angled triangle

D. an isosceles triangle

Answer: C

32. A uni-modular tangent vector on the curve

$$x = t^2 + 2, y = 4t - 5, z = 2t^2 - 6t = 2$$
 is a. $\frac{1}{3}(2\hat{i} + 2\hat{j} + \hat{k})$ b.
 $\frac{1}{3}(\hat{i} - \hat{j} - \hat{k})$ c. $\frac{1}{6}(2\hat{i} + \hat{j} + \hat{k})$ d. $\frac{2}{3}(\hat{i} + \hat{j} + \hat{k})$
A. $\frac{1}{3}(2\hat{i} + 2\hat{j} + \hat{k})$
B. $\frac{1}{3}(\hat{i} - \hat{j} - \hat{k})$
C. $\frac{1}{6}(2\hat{i} + \hat{j} + \hat{k})$
D. $\frac{2}{3}(\hat{i} + \hat{j} + \hat{k})$

Answer: A

Watch Video Solution

33. If \overrightarrow{x} and \overrightarrow{y} are two non-collinear vectors and a, b, and c represent the sides of a ABC satisfying $(a-b)\overrightarrow{x} + (b-c)\overrightarrow{y} + (c-a)(\overrightarrow{x}\times\overrightarrow{y}) = 0$, then ABC is (where

 \overrightarrow{x} \overrightarrow{y} is perpendicular to the plane of xandy) a. an acute-angled triangle b. an obtuse-angled triangle c. a right-angled triangle d. a scalene triangle

A. an acute-angled triangle

B. an obtuse-angled triangle

C. a right-angled triangle

D. a scalene triangle

Answer: A

Watch Video Solution

34. \overrightarrow{A} is a vector with direction cosines $\cos \alpha$, $\cos \beta$ and $\cos \gamma$. Assuming the y - z plane as a mirror, the directin cosines of the reflected image of \overrightarrow{A} in the plane are a. $\cos \alpha$, $\cos \beta$, $\cos \gamma$ b. $\cos \alpha$, $-\cos \beta$, $\cos \gamma$ c. $-\cos \alpha$, $\cos \beta$, $\cos \gamma$ d. $-\cos \alpha$, $-\cos \beta$, $-\cos \gamma$

A. $\cos \alpha$, $\cos \beta$, $\cos \gamma$

B. $\cos \alpha$, $-\cos \beta$, $\cos \gamma$

$$\mathsf{C}.-\coslpha,\coseta,\cos\gamma$$

$$extsf{D.}-\coslpha,\ -\coseta,\ -\cos\gamma$$

Answer: C

Watch Video Solution

35. The points with position vectors $60\hat{i} + 3\hat{j}, 40\hat{i} - 8\hat{j}, a\hat{i} - 52\hat{j}$ are

collinear if (A) a = -40 (B) a = 40 (C) a = 20 (D) none of these

A. a = -40

B. a = 40

C. a = 20

D. none of these

Answer: A

Watch Video Solution

36. Let a, b and c be distinct non-negative numbers. If vectos $a\hat{i} + a\hat{j} + c\hat{k}, \hat{i} + \hat{k}$ and $c\hat{i} + c\hat{j} + b\hat{k}$ are coplanar, then c is

A. the arithmetic mean of a and b

B. the geometric mean of a and b

C. the harmonic mean of a and b

D. equal to zero

Answer: B

Watch Video Solution

A. some values of x

B. some values of y

C. no values of x and y

D. for all values of x and y

Answer: D

Watch Video Solution

38. Let α , β and γ be distinct real numbers. The points whose position vector's are $\alpha \hat{i} + \beta \hat{j} + \gamma \hat{k}$; $\beta \hat{i} + \gamma \hat{j} + \alpha \hat{k}$ and $\gamma \hat{i} + \alpha \hat{j} + \beta \hat{k}$ a. are collinear. b. forms an equilateral triangle. c. forms a scalene triangle. d. forms a right angled triangle.

A. are collinear

B. form an equilateral triangle

C. form a scalene triangle

D. form a right-angled triangle

Answer: B

39. The number of distinct values of λ , for which the vectors $-\lambda^2 \hat{i} + \hat{j} + \hat{k}$, $\hat{i} - \lambda^2 \hat{j} + \hat{k}$ and $\hat{i} + \hat{j} - \lambda^2 \hat{k}$ are coplanar, is

A. zero

B. one

C. two

D. three

Answer: C

Watch Video Solution

40. If
$$\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}$$
, $\overrightarrow{b} = 4\hat{i} + 3\hat{j} + 4\hat{k}$ and $\overrightarrow{c} = \hat{i} + \alpha\hat{j} + \beta\hat{k}$

are linearly dependent vectors and $\left| \stackrel{
ightarrow}{c}
ight| = \sqrt{3}$ then:

A.
$$lpha = 1, \, eta = -1$$

B. $lpha = 1, \, eta = \pm 1$
C. $lpha = -1, \, eta = \pm 1$
D. $lpha = \pm 1, \, eta = 1$

Answer: D

Watch Video Solution

Multiple Correct Answer Type

1.

The

vectors

 $x\hat{i} + (x+1)\hat{j} + (x+2)\hat{k}, (x+3)\hat{i} + (x+4)\hat{j} + (x+5)\hat{k} ext{ and } (x+6)\hat{i}$

are coplanar if x is equal to

A. 1

B. -3

C. 4

Answer: A::B::C::D

Watch Video Solution

2. The sides of a parallelogram are $2\hat{i} + 4\hat{j} - 5\hat{k}$ and $\hat{i} + 2\hat{j} + 3\hat{k}$. The unit vector parallel to one of the diagonals is

A.
$$rac{1}{7} \Big(3 \hat{i} + 6 \hat{j} - 2 \hat{k} \Big)$$

B. $rac{1}{7} \Big(3 \hat{i} - 6 \hat{j} - 2 \hat{k} \Big)$
C. $rac{1}{\sqrt{69}} \Big(\hat{i} + 2 \hat{j} + 8 \hat{k} \Big)$
D. $rac{1}{\sqrt{69}} \Big(- \hat{i} - 2 \hat{j} + 8 \hat{k} \Big)$

Answer: A::D

Watch Video Solution

3. The vector \overrightarrow{a} has the components 2p and 1 w.r.t. a rectangular Cartesian system. This system is rotated through a certain angle about the origin in the counterclockwise sense. If, with respect to a new system, \overrightarrow{a} has components (p+1)and1, then p is equal to a. -4 b. -1/3 c. 1 d. 2

 $\mathsf{A.}-1$

B. - 1/3

C. 1

 $\mathsf{D}.2$

Answer: B::C

Watch Video Solution

4. If points $\hat{i}+\hat{j},\,\hat{i}-\hat{j}\,\, ext{and}\,\,p\hat{i}+q\hat{j}+r\hat{k}$ are collinear, then

A. p=1

 $\mathsf{B.}\,r=0$

 $\mathsf{C}.\,q\in R$

D. q
eq 1

Answer: A::B::D

Watch Video Solution

5. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are non coplanar vectors and λ is a real number, then the vectors $\overrightarrow{a} + 2\overrightarrow{b} + 3\overrightarrow{c}$, $\lambda\overrightarrow{b} + 4$ and $(2\lambda - 1)\overrightarrow{c}$ are non coplanar for

A.
$$\mu \in R$$

B.
$$\lambda = rac{1}{2}$$

 $\mathsf{C}.\,\lambda=0$

D. no value of λ

Answer: A::B::C

Watch Video Solution

6. If the resultant of three forces $\vec{F}_1 = p\hat{i} + 3\hat{j} - \hat{k}, \vec{F}_2 = 6\hat{i} - \hat{k} \text{ and } \vec{F}_3 = -5\hat{i} + \hat{j} + 2\hat{k} \text{ acting on}$

a particle has a magnitude equal to 5 units, then the value of p is

- **A**. − 6
- $\mathsf{B.}-4$
- C. 2
- D. 4

Answer: B::C

Watch Video Solution

7. If the vectors $\hat{i} - \hat{j}, \hat{j} + \hat{k}$ and \overrightarrow{a} form a triangle then \overrightarrow{a} may be (A) $-\hat{i} - \hat{k}$ (B) $\hat{i} - 2\hat{j} - \hat{k}$ (C) $2\hat{i} + \hat{j} + \hat{j}k$ (D) $\hat{i} + \hat{k}$

A. $-\,\hat{i}\,-\,\hat{k}$

B.
$$\hat{i} - 2\hat{j} - \hat{k}$$

C. $2\hat{i} + \hat{j} + \hat{k}$
D. $\hat{i} + \hat{k}$

Answer: A::B::D

View Text Solution

8. The vector $\hat{i} + x\hat{j} + 3\hat{k}$ is rotated through an angle θ and doubled in magnitude, then it becomes $4\hat{i} + (4x - 2)\hat{j} + 2\hat{k}$. Then values of x are (A) $-\frac{2}{3}$ (B) $\frac{1}{3}$ (C) $\frac{2}{3}$ (D) 2

A. 1

B. -2/3

C. 2

D. 4/3

Answer: B::C

9. \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are three coplanar vectors such that $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0$. If three vectors \overrightarrow{p} , \overrightarrow{q} and \overrightarrow{r} are parallel to \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} , respectively, and have integral but different magnitudes, then among the following options, $\left|\overrightarrow{p} + \overrightarrow{q} + \overrightarrow{r}\right|$ can take a value equal to

A. 1

B.0

C. $\sqrt{3}$

D. 2

Answer: C::D

View Text Solution

10. If non-zero vectors a annd b are equally inclined to coplanar vector c,

then c can be

Answer: B::D

Watch Video Solution

11. If A(-4, 0, 3)andB(14, 2, -5), then which one of the following points lie on the bisector of the angle between $\overrightarrow{O}Aand\overrightarrow{O}B(O)$ is the origin of reference)? a. (2, 2, 4) b. (2, 11, 5) c. (-3, -3, -6) d. (1, 1, 2)

A. (2, 2, 4)

B. (2, 11, 5)

C. (-3, -3, -6)

D.(1, 1, 2)

Answer: A::C::D

Watch Video Solution

12. In a four-dimensional space where unit vectors along the axes are $\hat{i}, \hat{j}, \hat{k}$ and $\hat{l},$ and $\overrightarrow{a}_1, \overrightarrow{a}_2, \overrightarrow{a}_3, \overrightarrow{a}_4$ are four non-zero vectors such that no vector can be expressed as a linear combination of others and $(\lambda - 1)(\overrightarrow{a}_1 - \overrightarrow{a}_2) + \mu(\overrightarrow{a}_2 + \overrightarrow{a}_3) + \gamma(\overrightarrow{a}_3 + \overrightarrow{a}_4 - 2\overrightarrow{a}_2) + \overrightarrow{a}_3 + \delta\overrightarrow{a}$.

then

A. $\lambda=1$ B. $\mu=-2/3$ C. $\gamma=2/3$ D. $\delta=1/3$
Answer: A::B::D

13. Let ABC be a triangle, the position vectors of whose vertices are respectively

 $7\hat{j} + 10\hat{k}, \ - \hat{i} + 6\hat{j} + 6\hat{k} \ ext{ and } \ - 4\hat{i} + 9\hat{j} + 6\hat{k}. \ ext{ Then, } \ \Delta ABC$ is

A. isosceles

B. equilateral

C. right angled

D. none of these

Answer: A::C

Watch Video Solution

Reasoning Type

1. A vector has components p and 1 with respect to a rectangular Cartesian system. The axes are rotated through an angle α about the origin in the anticlockwise sense.

Statement 1: If the vector has component p+2 and 1 with respect to the new system, then $p=\ -1.$

Statement 2: Magnitude of the original vector and new vector remains the same.

A. Both the statements are true, and Statement 2 is the correct explanation for Statement 1.

B. Both the statements are true, but Statement 2 is not the correct

explanation for Statement 1.

C. Statement 1 is true and Statement 2 is false.

D. Statement 1 is false and Statement 2 is true.

Answer: A

View Text Solution

2. Statement 1: if three points P, QandR have position vectors $\overrightarrow{a}, \overrightarrow{b}, and \overrightarrow{c}$, respectively, and $2\overrightarrow{a} + 3\overrightarrow{b} - 5\overrightarrow{c} = 0$, then the points P, Q, andR must be collinear. Statement 2: If for three points $A, B, andC, \overrightarrow{A}B = \lambda \overrightarrow{A}C$, then points A, B, andC must be collinear.

A. Both the statements are true, and Statement 2 is the correct explanation for Statement 1.

B. Both the statements are true, but Statement 2 is not the correct

explanation for Statement 1.

C. Statement 1 is true and Statement 2 is false.

D. Statement 1 is false and Statement 2 is true.

Answer: A

3. Statement 1: If \overrightarrow{u} and \overrightarrow{v} are unit vectors inclined at an angle α and \overrightarrow{x} is a unit vector bisecting the angle between them, then $\overrightarrow{x} = \left(\overrightarrow{u} + \overrightarrow{v}\right) / (2\sin(\alpha/2))$. Statement 2: If Delta*ABC* is an isosceles triangle with AB = AC = 1, then the vector representing the bisector of angel A is given by $\overrightarrow{A}D = \left(\overrightarrow{A}B + \overrightarrow{A}C\right)/2$.

A. Both the statements are true, and Statement 2 is the correct explanation for Statement 1.

B. Both the statements are true, but Statement 2 is not the correct explanation for Statement 1.

C. Statement 1 is true and Statement 2 is false.

D. Statement 1 is false and Statement 2 is true.

Answer: D

View Text Solution

4. Statement 1: If $\cos \alpha$, $\cos \beta$, and $\cos \gamma$ are the direction cosines of any line segment, then $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$. Statement 2: If $\cos \alpha$, $\cos \beta$, and $\cos \gamma$ are the direction cosines of any line segment, then $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$.

A. Both the statements are true, and Statement 2 is the correct explanation for Statement 1.

B. Both the statements are true, but Statement 2 is not the correct

explanation for Statement 1.

C. Statement 1 is true and Statement 2 is false.

D. Statement 1 is false and Statement 2 is true.

Answer: B

5. Statement 1: The direction cosines of one of the angular bisectors of two intersecting line having direction cosines as $l_1, m_1, n_1 and l_2, m_2, n_2$ are proportional to $l_1 + l_2, m_1 + m_2, n_1 + n_2$. Statement 2: The angle between the two intersection lines having direction cosines as $l_1, m_1, n_1 and l_2, m_2, n_2$ is given by $\cos \theta = l_1 l_2 + m_1 m_2 + n_1 n_2$.

A. Both the statements are true, and Statement 2 is the correct explanation for Statement 1.

B. Both the statements are true, but Statement 2 is not the correct explanation for Statement 1.

C. Statement 1 is true and Statement 2 is false.

D. Statement 1 is false and Statement 2 is true.

Answer: B

6. Statement 1: In DeltaABC, $\overrightarrow{A}B + \overrightarrow{A}B + \overrightarrow{C}A = 0$ Statement 2: If $\overrightarrow{O}A = \overrightarrow{a}$, $\overrightarrow{O}B = \overrightarrow{b}$, $then\overrightarrow{A}B = \overrightarrow{a} + \overrightarrow{b}$

A. Both the statements are true, and Statement 2 is the correct explanation for Statement 1.

B. Both the statements are true, but Statement 2 is not the correct

explanation for Statement 1.

- C. Statement 1 is true and Statement 2 is false.
- D. Statement 1 is false and Statement 2 is true.

Answer: C

Watch Video Solution

7. Statement 1: $\overrightarrow{a} = 3\overrightarrow{i} + p\overrightarrow{j} + 3\overrightarrow{k}$ and $\overrightarrow{b} = 2\overrightarrow{i} + 3\overrightarrow{j} + q\overrightarrow{k}$ are parallel vectors if p = 9/2 and q = 2.

Statement

:

lf

$$\overrightarrow{a} = a_1 \overrightarrow{i} + a_2 \overrightarrow{j} + a_3 \overrightarrow{k}$$
 and $\overrightarrow{b} = b_1 \overrightarrow{i} + b_2 \overrightarrow{j} + b_3 \overrightarrow{k}$ are parallel,
then $\frac{a_1}{b_1} = \frac{a_2}{b_2} = \frac{a_3}{b_3}$.

A. Both the statements are true, and Statement 2 is the correct explanation for Statement 1.

B. Both the statements are true, but Statement 2 is not the correct

explanation for Statement 1.

C. Statement 1 is true and Statement 2 is false.

D. Statement 1 is false and Statement 2 is true.

Answer: A

Watch Video Solution

8. Statement 1 : If
$$\left| \overrightarrow{a} + \overrightarrow{b} \right| = \left| \overrightarrow{a} - \overrightarrow{b} \right|$$
, then \overrightarrow{a} and \overrightarrow{b} are

perpendicular to each other.

Statement 2 : If the diagonals of a parallelogram are equal in magnitude, then the parallelogram is a rectangle. A. Both the statements are true, and Statement 2 is the correct

explanation for Statement 1.

B. Both the statements are true, but Statement 2 is not the correct

explanation for Statement 1.

- C. Statement 1 is true and Statement 2 is false.
- D. Statement 1 is false and Statement 2 is true.

Answer: A

View Text Solution

9. Statement 1 : Let $A(\overrightarrow{a}), B(\overrightarrow{b})$ and $C(\overrightarrow{c})$ be three points such that $\overrightarrow{a} = 2\hat{i} + \hat{k}, \overrightarrow{b} = 3\hat{i} - \hat{j} + 3\hat{k}$ and $\overrightarrow{c} = -\hat{i} + 7\hat{j} - 5\hat{k}$. Then OABC is tetrahedron.

Statement 2 : Let $A(\overrightarrow{a}), B(\overrightarrow{b})$ and $C(\overrightarrow{c})$ be three points such that vectors $\overrightarrow{a}, \overrightarrow{b}$ and \overrightarrow{c} are non-coplanar. Then OABC is a tetrahedron, where O is the origin.

A. Both the statements are true, and Statement 2 is the correct

explanation for Statement 1.

B. Both the statements are true, but Statement 2 is not the correct

explanation for Statement 1.

- C. Statement 1 is true and Statement 2 is false.
- D. Statement 1 is false and Statement 2 is true.

Answer: A

View Text Solution

10. Statement 1: Let $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c} and \overrightarrow{d}$ be the position vectors of four points A, B, CandD and $3\overrightarrow{a} - 2\overrightarrow{b} + 5\overrightarrow{c} - 6\overrightarrow{d} = 0$. Then points A, B, C, andD are coplanar. Statement 2: Three non-zero, linearly dependent coinitial vector $\left(\overrightarrow{P}Q, \overrightarrow{P}Rand\overrightarrow{P}S\right)$ are coplanar. Then $\overrightarrow{P}Q = \lambda \overrightarrow{P}R + \mu \overrightarrow{P}S$, where $\lambda and \mu$ are scalars. A. Both the statements are true, and Statement 2 is the correct

explanation for Statement 1.

B. Both the statements are true, but Statement 2 is not the correct

explanation for Statement 1.

- C. Statement 1 is true and Statement 2 is false.
- D. Statement 1 is false and Statement 2 is true.

Answer: A

View Text Solution

11. Statement 1 : If
$$\left|\overrightarrow{a}\right| = 3$$
, $\left|\overrightarrow{b}\right| = 4$ and $\left|\overrightarrow{a} + \overrightarrow{b}\right| = 5$, then $\left|\overrightarrow{a} - \overrightarrow{b}\right| = 5$.

Statement 2 : The length of the diagonals of a rectangle is the same.

A. Both the statements are true, and Statement 2 is the correct

explanation for Statement 1.

B. Both the statements are true, but Statement 2 is not the correct

explanation for Statement 1.

C. Statement 1 is true and Statement 2 is false.

D. Statement 1 is false and Statement 2 is true.

Answer: A

View Text Solution

Linked Comprehension Type

1. ABCD is a parallelogram. L is a point on BC which divides BC in the ratio

1:2. AL intersects BD at P.M is a point on DC which divides DC in the ratio

1:2 and AM intersects BD in Q.

Point P divides AL in the ratio

A. 1:2

B. 1:3

C.3:1

D. 2:1

Answer: C

View Text Solution

2. ABCD is a parallelogram. L is a point on BC which divides BC in the ratio

1:2. AL intersects BD at P.M is a point on DC which divides DC in the ratio

 $1\!:\!2$ and AM intersects BD in Q.

Point Q divides DB in the ratio

A. 1:2

 $B.\,1:3$

C.3:1

 $\mathsf{D}.\,2\!:\!1$

Answer: B

3. ABCD is a parallelogramm. L is a point on BC which divides BC in the ratio 1:2 AL intersects BD at P.M is a point onn DC which divides DC in the ratio 1:2 and AM intersects BD in Q.

Q. PQ: DB is equal to

A. 2/3

- B. 1/3
- C.1/2
- D. 3/4

Answer: C

View Text Solution

4. Let OABCD be a pentagon in which the sides OA and CB are parallel and the sides OD and AB are parallel as shown in figure. Also, OA:CB=2:1 and

OD:AB=1:3. if the diagonals OC and AD meet at x, find OX:OC.

A. 3/4

B. 1/3

C.2/5

D. 1/2

Answer: C

View Text Solution

5. Let OABCD be a pentagon in which the sides OA and CB are parallel and the sides OD and AB are parallel as shown in figure. Also, OA:CB=2:1 and OD:AB=1:3. if the diagonals OC and AD meet at x, find OX:OC.

A. 5/2

 $\mathsf{B.}\,6$

C.7/3

Answer: B

6. If ABCDEF is regular hexagon, then AD+EB+FC is

A. 2 \overrightarrow{AB}

B. 3 \overrightarrow{AB}

C. 4 \overrightarrow{AB}

D. none of these

Answer: C

View Text Solution

7. Consider the regular hexagon ABCDEF with centre at O (origin).

Q. Five forces AB,AC,AD,AE,AF act at the vertex A of a regular hexagon ABCDEF. Then, their resultant is (a)3AO (b)2AO (c)4AO (d)6AO

D. $\overrightarrow{6AO}$

Answer: D

View Text Solution

8. Let A,B,C,D,E represent vertices of a regular pentangon ABCDE. Given the position vector of these vertices be a,a+b,b, λa and λb respectively.

Q. AD divides EC in the ratio

A.
$$1-\cosrac{3\pi}{5}$$
 : $\cosrac{3\pi}{5}$

B.
$$1 + 2\cos\frac{2\pi}{5}: \cos\frac{\pi}{5}$$

C. $1 + 2\cos\frac{\pi}{5}: 2\cos\frac{\pi}{5}$

D. None of these

Answer: C

View Text Solution

9. Let A,B,C,D,E represent vertices of a regular pentangon ABCDE. Given the position vector of these vertices be a,a+b,b, λa and λb respectively.

Q. AD divides EC in the ratio

A.
$$\cos \frac{2\pi}{5}: 1$$

B. $\cos \frac{3\pi}{5}: 1$
C. $1: 2 \cos \frac{2\pi}{5}$
D. $1: 2$

Answer: C

10. In a parallelogram OABC vectors a,b,c respectively, THE POSITION VECTORS OF VERTICES A,B,C with reference to O as origin. A point E is taken on the side BC which divides it in the ratio of 2:1 also, the line segment AE intersects the line bisecting the angle $\angle AOC$ internally at point P. if CP when extended meets AB in points F, then

Q. The position vector of point P is

D. None of these

Answer: B

11. In a parallelogram OABC vectors a,b,c respectively, THE POSITION VECTORS OF VERTICES A,B,C with reference to O as origin. A point E is taken on the side BC which divides it in the ratio of 2:1 also, the line segment AE intersects the line bisecting the angle $\angle AOC$ internally at point P. if CP when extended meets AB in points F, then

Q. The position vector of point P is

Answer: D

View Text Solution

Matrix Match Type

1. Refer to the following diagram :

	Column I		Column II
a.	Collinear vectors	p.	\overrightarrow{a}
b.	Coinitial vectors	q.	\overrightarrow{b}
с.	Equal vectors	r.	\overrightarrow{c}
d.	Unlike vectors (same initial point)	s.	\overrightarrow{d}

View Text Solution

2. a and b form the consecutive sides of a regular hexagon ABCDEF.

	Column I		Column II
a.	If $\mathbf{C}\mathbf{D} = x\mathbf{a} + y\mathbf{b}$, then	p.	<i>x</i> = -2
b.	If $CE = xa + yb$, then	q.	x = -1
c.	If $\mathbf{AE} = x\mathbf{a} + y\mathbf{b}$, then	r.	<i>y</i> = 1
d.	If $\mathbf{A}\mathbf{D} = -x\mathbf{b}$, then	s.	<i>y</i> = 2

View Text Solution

Integer Type

3. 🔛

1. Let ABC be a triangle whose centroid is G, orthocentre is H and circumcentre is the origin 'O'. If D is any point in the plane of the triangle such that no three of O,A,C and D are collinear satisfying the relation. AD+BD+CH+3HB= λHD , then what is the value of the scalar Δ .

2. If the resultant of three forces $\overrightarrow{F}_1 = p\hat{i} + 3\hat{j} - \hat{k}, \overrightarrow{F}_2 = -5\hat{i} + \hat{j} + 2\hat{k}$ and $\overrightarrow{F}_3 = 6\hat{i} - \hat{k}$ acting on a particle has a magnitude equal to 5 units, then what is difference in the values of p?

3. Let \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} be unit vector such that $\overrightarrow{a} + \overrightarrow{b} - \overrightarrow{c} = 0$. If the area of triangle formed by vectors \overrightarrow{a} and \overrightarrow{b} is A, then what is the value of $4A^2$?

Watch Video Solution

4. Find the least positive integral value of x for which the angle between

vectors $\overrightarrow{a} = x\hat{i} - 3\hat{j} - \hat{k}$ and $\overrightarrow{b} = 2x\hat{i} + x\hat{j} - \hat{k}$ is acute.

Watch Video Solution

5. Vectors along the adjacent sides of parallelogram are $\vec{a} = 2\hat{i} + 4\hat{j} - 5\hat{k}$ and $\vec{b} = \hat{i} + 2\hat{j} + 3\hat{k}$. Find the length of the longer diagonal of the parallelogram.

6. If vectors
$$\overrightarrow{a} = \hat{i} + 2\hat{j} - \hat{k}$$
, $\overrightarrow{b} = 2\hat{i} - \hat{j} + \hat{k}$ and $\overrightarrow{c} = \lambda\hat{i} + \hat{j} + 2\hat{k}$

are coplanar, then find the value of λ .

7. Consider the set of eight vector
$$V = \left\{a\hat{i} + b\hat{j} + c\hat{k}; a, bc \in \{-1, 1\}\right\}$$
. Three non-coplanar vectors can be chosen from V is 2^p ways. Then p is_____.

8. Suppose that \overrightarrow{p} , \overrightarrow{q} and \overrightarrow{r} are three non- coplaner in R^3 , Let the components of a vector \overrightarrow{s} along \overrightarrow{p} , \overrightarrow{q} and \overrightarrow{r} be 4,3, and 5, respectively, if the components this vector \overrightarrow{s} along $(-\overrightarrow{p} + \overrightarrow{q} + \overrightarrow{r}), (\overrightarrow{p} - \overrightarrow{q} + \overrightarrow{r})$ and $(-\overrightarrow{p} - \overrightarrow{q} + \overrightarrow{r})$ are x, y

and z , respectively , then the value of 2x+y+z is

1. Find the all the values of lamda such that $(x, y, z) \neq (0, 0, 0)$ and $x(\hat{i} + \hat{j} + 3\hat{k}) + y(3\hat{i} - 3\hat{j} + \hat{k}) + z(-4\hat{i} + 5\hat{j}) = \lambda(x\hat{i} + y\hat{j} + z\hat{k})$

Watch Video Solution

2. A vector a has components a_1, a_2 and a_3 in a right handed rectangular cartesian system OXYZ. The coordinate system is rotated about Z-axis through angle $\frac{\pi}{2}$. Find components of a in the new system.

Watch Video Solution

3. The position vectors of the points A,B, C and D are $3\hat{i} - 2\hat{j} - \hat{k}, 2\hat{i} + 3\hat{j} - 34\hat{k}, -\hat{i} + \hat{j} + 2\hat{k}$ and $4\hat{i} + 5\hat{j} + \lambda\hat{k}$ respectively. If the points A, B ,C and D lie on a plane, find the value of λ .

4. Let OACB be a parallelogram with O at the origin and OC a diagonal. Let D be the mid-point of OA. Using vector methods prove that BD and CO intersects in the same ratio. Determine this ratio.

```
Watch Video Solution
```

5. In a triangle ABC, DandE are points on BCandAC, respectivley, such that BD = 2DCandAE = 3EC. Let P be the point of intersection of ADandBE. Find BP/PE using the vector method.

6. Prove, by vector method or otherwise, that the point of intersection of the diagonals of a trapezium lies on the line passing through the midpoint of the parallel sides (you may assume that the trapezium is not a parallelogram).

7. about to only mathematics

8.

Let

 $\overrightarrow{A}(t) = f_1(t)\hat{i} + f_2(t)\hat{j}$ and $\overrightarrow{B}(t) = g(t)\hat{i} + g_2(t)\hat{j}, t \in [0, 1], f_1, f_2, g_1g_2$ are continuous functions. If $\overrightarrow{A}(t)$ and $\overrightarrow{B}(t)$ are non-zero vectors for all t and $\overrightarrow{A}(0) = 2\hat{i} + 3\hat{j}, \overrightarrow{A}(1) = 6\hat{i} + 2\hat{j}, \overrightarrow{B}(0) = 3\hat{i} + 2\hat{i}$ and $\overrightarrow{B}(1) = 2\hat{i}$ Then,show that $\overrightarrow{A}(t)$ and $\overrightarrow{B}(t)$ are parallel for some t.

Watch Video Solution

9. about to only mathematics

Fill In The Blanks

1. If a,b, and c are all different and if

 $\begin{vmatrix} a & a^2 & 1 + a^3 \\ b & b^2 & 1 + b^3 \\ c & c^2 & 1 + c^3 \end{vmatrix} = 0$ Prove that abc =-1.

Watch Video Solution

2. If the vectors
$$a\hat{i} + \hat{j} + \hat{k}$$
, $\hat{i} + b\hat{j} + \hat{k}$, $\hat{i} + \hat{j} + c\hat{k}$ ($a \neq 1, b \neq 1, c \neq 1$)
are coplanar then the value of $\frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c}$ is (A) 0 (B) 1 (C)
-1 (D) 2

Watch Video Solution

True Or False

1. The points with position vectors $\overrightarrow{x} + \overrightarrow{y}, \overrightarrow{x} - \overrightarrow{y}$ and $\overrightarrow{x} + \lambda \overrightarrow{y}$ are

collinear for all real values of λ .