©゙’ doubtnut

India's Number 1 Education App

MATHS

BOOKS - CENGAGE PUBLICATION

MATHMETICAL REASONING

Illustration

1. Form the truth table of $p \vee q$ and $p \vee \sim q$
2. Find the truth values of
(i) $\sim(P \vee \sim q)$
(ii) $\sim(\sim p \wedge \sim q)$

D Watch Video Solution

3. Find the truth values of the following compound statements :
(i) $p \wedge(q \wedge r)$
$(i i)(p \vee q) \vee r$
(iii) $p \wedge(q \vee r)$
$(i v)(p \wedge q) \vee r$

D Watch Video Solution

4. Find the truth values of

$$
(i) \sim p \rightarrow q \quad(i i) \sim(p \rightarrow q)
$$

D Watch Video Solution

5. Find the truth values of

(i) $\sim p \leftrightarrow q$
$(i i) \sim(p \leftrightarrow q)$

D Watch Video Solution

6. Show that the compound statements
$(p \vee q) \wedge \sim p$ and $\sim p \wedge q$ are logically equivalent.

(D) Watch Video Solution

7. Show that $(p \vee q) \rightarrow r \equiv(p \rightarrow r) \wedge(q \rightarrow r)$

D Watch Video Solution

8. For the the statements "If two angles are congurent, then they have the same measure", write the converse, inverse and contrapositive statements.

9. Show that

(i) $p \rightarrow(p \vee q)$ is a tautology
$(i i)(p \vee q) \wedge(\sim p \wedge \sim q)$ is a contradiction

D Watch Video Solution

10. Show that $[(p \vee q) \vee r] \leftrightarrow[p \vee(q \vee r)]$ is a tautology
11. Write the negation of statements " $2+3=5$ and $8<10 "$

D Watch Video Solution

12. Prove that $q \wedge \sim p \equiv \sim(q \rightarrow p)$

(D) Watch Video Solution

13. Write the negation of the compound propostion. "If the examination is difficult, then I shall pass if I study hard".

(D) Watch Video Solution

Concept Application

1. Write down the truth table for the compound statements :
$(\sim p \vee q) \wedge(\sim p \wedge \sim q)$

D Watch Video Solution

2. Find the truth values of the following compound statements :

$$
(a)(p \vee \sim r) \wedge(q \vee \sim r) \quad(b) \sim(p \vee \sim q) \wedge(\sim p \vee r)
$$

D Watch Video Solution

3. Find the truth values of
(a) $\sim p \rightarrow(q \rightarrow p)$
$(b)(p \rightarrow q) \rightarrow(p \wedge q)$

D Watch Video Solution

4. Find the truth values of
(a)
$(p \leftrightarrow \sim q) \leftrightarrow(q \rightarrow p)$
$(b)(p \rightarrow q) \vee \sim(p \leftrightarrow \sim q)$
5. Construct the truth table for the followings statements :
(a) $(p \wedge q) \rightarrow \sim p$
$(b)(p \wedge q) \rightarrow(p \vee q)$
(c) $(p \wedge q) \rightarrow r$
$(d)[p \wedge(\sim r)] \rightarrow(q \vee r)$

D Watch Video Solution

6. Prove that the statement
$\sim(p \leftrightarrow q) \leftrightarrow\{(p \wedge \sim q) \vee(\sim p \wedge q)\} \quad$ is
a
tautology.

Watch Video Solution

7. Are the following statements equivalent :
'If the trades do not reduce the price then the government will take action against them '. 'it is not true that the traders do not reduce the prices and government does not take action against them'.
8. For the statement: "If a quadrilateral is a rectangle, then it has two pairs of parallel sides", write the converse, inverse and contrapositive statements.

D Watch Video Solution

9. Show that $(p \wedge q) \vee(\sim p) \vee(p \wedge \sim q)$ is a tautology

D Watch Video Solution
10. Show that $[(p \rightarrow q) \wedge(q \rightarrow r)] \rightarrow(p \rightarrow r)$ is a tautology

(D) Watch Video Solution

11. Prove that $\sim((\sim p) \wedge q) \equiv p \vee(\sim q)$.

D Watch Video Solution

12. prove that $(p \wedge q) \wedge \sim(p \vee q)$ is a contradiction.
13. Prove that $\sim(\sim p \rightarrow \sim q) \equiv \sim p \wedge q$

D Watch Video Solution

Single Correct Answer Type

1. Which of the following is not a statement.
A. 2 is an odd number
B. 10 is less than 8
C. the number 13 is prime

D. please do me a favour

Answer: D

D Watch Video Solution

2. If p : 'Ram is tall' and q : 'Ram is intelligent', then the statement $\sim p \vee q$ is
A. Ram is not tall or he is intelligent.
B. Ram is tall or he is intelligent
C. Ram is not tall and he is intelligent

D. Ram is not all then he is intelligent

Answer: A

D Watch Video Solution

3. Consider the statement p: 'New Delhi is a city'.

Which of the following is not negation of p ?
A. New delhi is not a city
B. it is false that new delhi is a city
C. it is not case that New delhi is a city

D. None of these

Answer: D

D Watch Video Solution

4. Which of the following is the inverse of the proposition 'If a number is a prime then it is odd' ?
A. IF a number is not odd then it is not a
B. if a number is a prime then it is odd
C. If a number of is not odd then it is a prime
D. IF a number is not a prime then it is not odd.

Answer: D

D Watch Video Solution

5. Consider the following statements :
p : It rains today
q : I go to school
r : I Shall meet any friends
s: I shall go for a movie

Then which of the following proposition represents 'If it does not rain or if I do not go to school, then I shall meet my friend and go for a movie.'?

$$
\begin{aligned}
& \text { A. } \sim(p \wedge q) \rightarrow(r \wedge s) \\
& \text { B. } \sim(p \wedge \sim q) \rightarrow(r \wedge s) \\
& \text { C. } \sim(p \wedge q) \rightarrow(r \vee s)
\end{aligned}
$$

D. None of these
6. Negation of 'Paris is in France and London is in England' is
A. Paris is in England and London is in France
B. Paris is not in France or london is not in

England
C. Paris Is in england or london is in France
D. None of these

- Watch Video Solution

7. Which of the following is not a proposition ?
A. 3 is a prime
B. $\sqrt{2}$ is irrational
C. Mathematics is interesting
D. 5 is an even integer

Answer: C

8. $\sim((\sim(\sim p)) \wedge q)$ is equal to

A. A. $\sim p \wedge q$
B. B. $\sim p \vee \sim q$
C. C. $p \wedge \sim q$
D. D. $\sim p \wedge \sim q$

Answer: B

D Watch Video Solution

9. $\sim(p \vee(\sim q))$ is equal to
A. $\sim p \vee q$
B. $(\sim p) \wedge q$
C. $\sim p \vee \sim q$
D. $\sim p \wedge \sim q$

Answer: B

D Watch Video Solution

10. Which of the following is logically equivalent

$$
\text { to } \sim(\sim p \rightarrow q) ?
$$

A. a. $p \wedge q$

B. b. $p \wedge \sim q$
C. c. $\sim p \wedge q$
D. d. $\sim p \wedge \sim q$

Answer: D

D Watch Video Solution

11. If p, q and r are simple propositions with truth
values T, F and T , respectively, then the truth
value of $(\sim p \vee q) \wedge \sim r \rightarrow p$ is

A. a.True

B. b.False
C. c.true if r is false

D. d.true if q is true

Answer: A

D Watch Video Solution

12. If the statements $(p \wedge \sim r) \rightarrow(q \vee r)$, q and r are all false, then p
A. a.is true
B. b.is false
C. c.may be true or false
D. d.data is insufficient

Answer: A

D Watch Video Solution

13. If p, q and r are simple propositions such that
$(p \wedge q) \wedge(q \wedge r)$ is true, then
A. p, q and r are all false
B. p, q and r are all true
C. p, q are true and r is false
D. p is true and q, r are false

Answer: B

D Watch Video Solution

14. $\sim(p \vee(\sim p \vee q))$ is equal to
A. $\sim p \wedge(p \wedge \sim q)$.
B. $(p \vee \sim q) v \sim p$

C. none of these

D.

Answer: A

(D) Watch Video Solution

15. $(\sim(p \vee q)) \vee(\sim p \wedge q)$ is logically equivalent to
A. p
B. $\sim p$

C. q

D. $\sim q$

Answer: B

D Watch Video Solution

16. If the inverse of implication $p \rightarrow q$ is defined as $\sim p \rightarrow \sim q$, then the inverse of the proposition
$(p \wedge \sim q) \rightarrow r$ is
A. $\sim r \rightarrow(\sim p \vee q)$

$$
\text { B. } r \rightarrow(p \wedge \sim q)
$$

C. $\sim q \vee(p \wedge r)$
D. none of these

Answer: C

(D) Watch Video Solution

17. The negation of $q \vee(p \wedge r)$ is----
A. $\sim q \wedge(-p \wedge-r)$
B. $\sim q \wedge(p \wedge r)$

$$
\text { C. } \sim q \vee(p \wedge r)
$$

D. none of these

Answer: A

D Watch Video Solution

18. The contrapositive of $(p \vee q) \rightarrow r$ is
A. $r \rightarrow(p \vee q)$
B. $\sim r \rightarrow(p \vee q)$
C. $\sim r \rightarrow(\sim p \wedge \sim q)$
D. $p \rightarrow(q \vee r)$

Answer: C

D Watch Video Solution

19. If $p \rightarrow(q \vee r)$ is false, then the truth values of p, q, and r are, respectively.
A. T,T,F
B. F,F,F
C. F,T,T

D. T,F,F

Answer: D

D Watch Video Solution

20. $(p \wedge \sim q) \wedge(\sim p \wedge q)$ is
A. a tautology
B. a contradiction
C. neither a tautology nor a contradiction
D. None of these

Answer: B

D Watch Video Solution

21. The properties $(p \rightarrow \sim q) \wedge(\sim p \rightarrow p)$ is a
A. tautology and contradiction
B. neither tautology nor contradiction
C. contradiction
D. tautology

Answer: C
22. The false statement among the following is
A. $p \wedge(\sim p)$ is a contradiction
B. $(p \rightarrow q) \leftrightarrow(\sim q \rightarrow \sim p)$ is a contradiction
C. $p \vee(\sim p)$ is a tautology
D.

Answer: B

D Watch Video Solution

23. Which of the following is logically equivalent

$$
\text { to } \sim(\sim p \rightarrow q) ?
$$

A. $p \wedge q$
B. $p \wedge \sim q$
C. $\sim p \wedge q$
D. $\sim p \wedge \sim q$

Answer: D
24. If $p \rightarrow(\sim p \vee q)$ is false, the truth values of p and q are , respectively
A. F,T
B. F,F
C. T, T
D. T,F

Answer: D

25. The conditional statement $(p \wedge q) \rightarrow p$ is

A. a tautology
B. a fallacy
C. neither tautology nor fallacy
D. None of these

Answer: A

D Watch Video Solution

26. $(p \wedge \sim q) \wedge(\sim p \wedge q)$ is

A. a contradiction

B. a tautology
C. either (1) or (2)
D. neither (1) nor (2)

Answer: A

D Watch Video Solution

27. The proposition $p \rightarrow \sim(p \wedge \sim q)$ is equivalent to
A. $\sim p \vee q$
B. q
C. $(\sim p) \wedge q$
D. $(\sim p) \vee(\sim q)$

Answer: D

D Watch Video Solution

28. $(p \wedge \sim q) \wedge(\sim p \wedge q)$ is
A. a contradiction

B. a tautology

C. either (1) or (2)
D. neither (1) nor (2)

Answer: A

D Watch Video Solution

29. In the truth table for the statements
$(p \rightarrow q) \leftrightarrow(\sim p \vee q)$, the last column has the truth value in the following order
A. (a) TTTT

B. (b) FTFT

C. (c) TTFF

D. (d) FFFF

Answer: A

D Watch Video Solution

30. In each of the statements $p \rightarrow \sim q \sim r \rightarrow q$ and p is true, then
A. q is false

B. r is true

C. $r \rightarrow q$ is false

D. $r \wedge \sim q$ is false

Answer: D

D Watch Video Solution

31. Which of the following is true?
A. $p \wedge \sim p \equiv t$
B. $p \vee \sim p \equiv f$
C. $p \rightarrow q \equiv q \rightarrow p$

$$
\text { D. } p \rightarrow q \equiv \sim q \rightarrow \sim p
$$

Answer: D

D Watch Video Solution

32. If p is true and q is false, then which of the following statements is NOT true ?
A. $p \vee q$
B. $p \wedge(\sim q)$
C. $q \rightarrow p$
D. $p \rightarrow q$

Answer: D

D Watch Video Solution

33. If $p \rightarrow(q \vee r)$ is false, then the truth values of p, q, and r are, respectively.
A. T,T,T
B. T,F,T

C. T,F,F

D. F,T,T

Answer: C

D Watch Video Solution

34. Statements $(p \rightarrow q) \leftrightarrow(q \rightarrow p)$

A. is contradiction
B. is tautology
C. is neither contradiction not tautology

D. None of these

Answer: B

D Watch Video Solution

35. The contrapositive of inverse of $p \rightarrow \sim q$ is
A. 1. $p \rightarrow q$
B. 2. $\sim q \rightarrow p$
C. $3 . q \rightarrow p$
D. 4. $\sim q \rightarrow \sim p$

Answer: B

D Watch Video Solution

36. Consider the following statements :
p : He is intelligent
q: He is strong
Then symbolic form of statements 'it is wrong that he is intelligent or strong's
A. 1. $\sim p v \sim q$
B. 2. $\sim p v q$

C. $3 . \sim p^{\wedge} \sim q$

D. $4 . p^{\wedge} \sim q$

Answer: C

D Watch Video Solution

37. $(\sim(p \vee q)) \vee(\sim p \wedge q)$ is logically equivalent to
A. q
B. p
C. $\sim p$
D. $\sim q$

Answer: C

(Watch Video Solution

38. If $p \rightarrow(q \vee r)$ is false, then the truth values of p, q, and r are, respectively.
A. a. F,T,T
B. b.T,T,F

C. c.T,F,F

D. d.F,F,F

Answer: C

D Watch Video Solution

Archives

1. Statements $-1: \sim(p \leftrightarrow \sim q)$ is equivalent to
$p \leftrightarrow q$

Statement-2: $\sim(p \leftrightarrow \sim q)$ is a tautology.
A. Statement- 1 is true, statement 2 is true,
statement 2 is a correct explanation for
statement 1
B. Statement 1 is true, statement-2 is true,
statement 2 is not a correct explanation
for statement 1
C. Statement 1 is true, statement 2 is false,
D. statement 1 is false, statement 2 is true

Answer: C
2. If S be a non - empty subset of R. Consider the following statement p . There is a rational number $x \in S$ such that $x>0$.Write the negation of the statement p .
A. $x \in S$ and $x \leq 0 \Rightarrow x$ is not rational
B. There is rational number $x \in S$ such that
$x \leq 0$.
C. There is no rational number $x \in S$ such
that $x \leq 0$.
D. Every rational number $x \in S$ satisfies

$$
x \leq 0
$$

Answer: D

D Watch Video Solution

3. Consider the following statements

P: Suman is brilliant

Q: Suman is rich

R: Suman is honest

The negation of the statement "Suman is
brilliant and dishonest if and only if Suman is rich" can be expressed as

$$
\text { A. } \sim(p \wedge R) \leftrightarrow Q
$$

B. $\sim p \wedge(Q \leftrightarrow \sim R)$
C. $\sim(Q \leftrightarrow(P \wedge \sim R))$
D. $\sim Q \leftrightarrow \sim P \wedge R$

Answer: C

D Watch Video Solution
4. The negation of the statement "If I become teacher, then I will open a school" is
A. a.l will become a teacher and I will not open a school.
B. b.Either I will not becomes a teacher or I
will not open a school.
C. c.Neither I will becomes a teacher nor I will
open a school
D. d.I will not becomes a teacher or I will
open a school.

Answer: A

- Watch Video Solution

5. Statement I : $(p \wedge \sim q) \wedge(\sim p \wedge q)$ is a fallacy.

Statement II : $(p \rightarrow q) \leftrightarrow(\sim q \rightarrow \sim p)$ is a tautology.
A. Statement- 1 is true, statement 2 is true,
statement 2 is a correct explanation for
statement 1
B. Statement 1 is true, statement-2 is true,
statement 2 is not a correct explanation
for statement 1
C. Statement 1 is true, statement 2 is false,

D. statement 1 is false, statement 2 is true

Answer: B

D Watch Video Solution

6. The statement $\sim(p \leftrightarrow \sim q)$ is
A. equivalent to $p \leftrightarrow q$
B. equivalent to $\sim p \leftrightarrow q$
C. a tautology
D. a fallacy

Answer: A

D Watch Video Solution

7. The negation of $\sim s \vee(\sim r \wedge s)$ is equivalent to
A. $s \wedge \sim r$
B. $s \wedge(r \wedge \sim s)$
C. $s \vee(r \vee \sim s)$
D. $s \wedge r$

Answer: D

(D) Watch Video Solution

8.

The
Boolean
Expression
$(p \wedge \sim q) \vee q \vee(\sim p \wedge q)$ is equivalent to :
$\sim p \wedge q(2) p \wedge q(3) p \vee q(4) p \vee \sim q$
A. $p \wedge q$
B. $p \vee q$
C. $p \vee \sim p$
D. $\sim p \wedge q$

Answer: B

(D) Watch Video Solution

$$
\begin{aligned}
& \text { 9. The following } \begin{array}{l}
\text { statement } \\
(p \rightarrow q) \rightarrow[(\sim p \rightarrow q) \rightarrow q] \text { is }
\end{array}
\end{aligned}
$$

A. a fallacy

B. a tautology

C. equivalent to $\sim p \rightarrow q$
D. equivalent to $p \rightarrow \sim q$

Answer: B

D Watch Video Solution

10. The Boolean expression $(p \wedge r) \rightarrow(p \vee r)$ is equivalent to
A. $\sim p$

B. $\sim q$

C. U (universal set)

D. 0 (null set)

Answer: B

- Watch Video Solution

