©゙" doubtnut

MATHS

BOOKS - CENGAGE PUBLICATION

PERMUTATION AND COMBINATION

Single Correct Answer

1. 116 people participated in a knockout tennis
tournament. The players are paired up in the first
round, the winners of the first round are paired up
in the second round, and so on till the final is played
between two players. If after any round, there is odd number of players, one player is given a by, i.e. he skips that round and plays the next round with the winners. The total number of matches played in the tournment is
A. A. 115
B. B. 53
C. C. 232
D. D. 116

Answer: A
2. The number of three-digit numbers having only two consecutive digits identical is
A. 153
B. 162
C. 180
D. 161

Answer: B
3. How many six-digit numbers are there in which no digit is repeated, even digits appear at even places, odd digits appear at odd places and the number is divisible by 4 ? (a)3600 (b)2700 (c)2160 (d)1440
A. 3600
B. 2700
C. 2160
D. 1440

Answer: D

4. The number of ordered pairs (m, n) where m, $n \in\{1,2,3, \ldots, 50\}$, such that $6^{m}+9^{n}$ is a multiple of 5 is
A. A. 1250
B. B. 2500
C. C. 625
D. D. 500

Answer: A
5. There are 10 different books in a shelf. The number of ways in which three books can be selected so that exactly two of them are consecutive is
A. A. 60
B. B. 54
C. C. 56
D. D. 36

Answer: C

6. The number of ways of arranging 6 players to throw the cricket ball so that oldest player may not throw first is
A. 120
B. 600
C. 720
D. 7156

Answer: B
7. Number of four digit positive integers if the product of their digits is divisible by 3 is.
A. 2700
B. 5464
C. 6628
D. 7704

Answer: D

- Watch Video Solution

8. The number of five-digit numbers which are divisible by 3 that can be formed by using the digits
$1,2,3,4,5,6,7,8$ and 9 , when repetition of digits is allowed, is (a) 3^{10} (b) 4.3^{8} (c) 5.3^{8} (d) 7.3^{8}
A. 3^{10}
B. 4.3^{8}
C. 5.3^{8}
D. 7.3^{8}

Answer: A

9. Statement-1: If N the number of positive integral solutions of $x_{1} x_{2} x_{3} x_{4}=770$, then N is divisible by 4 distinct prime numbers.

Statement-2: Prime numbers are $2,3,5,7,11,13, \ldots$ which of the statements are true?

- Watch Video Solution

10. I have tied my square bathroom wall with congruent square tiles. All the tiles are red, except
those along the two diagonals, which are all blue. If I
used 121 blue tiles, then the number of red tiles I
used are
A. A. 900
B. B. 1800
C. C. 3600
D. D. 7200

Answer: A

- Watch Video Solution

11. The number of ordered pairs of positive integers
(m, n) satisfying $m \leq 2 n \leq 60, n \leq 2 m \leq 60$ is
A. 240
B. 480
C. 960
D. none of these

Answer: B

- Watch Video Solution

12. The number of ways in which 6 different balls can be put in two boxes of different sizes so that no box remain empty is :
A. 31
B. 32
C. 63
D. 64

Answer: A

- Watch Video Solution

13. The number of four-digit numbers that can be formed by using the digits $1,2,3,4,5,6,7,8$ and 9 such that the least digit used is 4 , when repetition of digits is allowed is
A. A. 617
B. B. 671
C. C. 716
D. D. 761

Answer: B

D Watch Video Solution

14. A fair coin is tossed n times. Let a_{n} denotes the number of cases in which no two heads occur consecutively. Then which of the following is not true?
A. $a_{1}=2$
B. $a_{2}=3$
C. $a_{5}=13$
D. $a_{8}=55$

Answer: C

- Watch Video Solution

15. Five boys and three girls are sitting in a row of 8
seats. Number of ways in which they can be seated
so that not all the girls sit side by side is
A. A. 36000
B. B. 9080
C. C. 3960
D. D. 11600

Answer: A

D Watch Video Solution

16. Number of words that can be made with the
letters of the word GENIUS if each word neither begins with G nor ends in S is
A. A. 24
B. B. 240
C. C. 480
D. D. 504

Answer: D

- Watch Video Solution

17. The number of ways in which the letters of the word PESSIMISTIC can be arranged so that no two

S's are together, no of two I's are together and letters S and I are never together is
A. A. 8640
B. B. 4800
C. C. 2400
D. D. 5480

Answer: C

D Watch Video Solution

18. The number of different words that can be formed using all the letters of the word 'SHASHANK'
such that in any word the vowels are separated by atleast two consonants, is
A. 2700
B. 1800
C. 900
D. 600

Answer: A

D Watch Video Solution

19. The number of ways in which six boys and six girls can be seated at a round table so that no two girls sit together and two particular girls do not sit next to a particular boy is
A. $6!4!$
B. $2.5!4!$
C. $2.6!4!$
D. $5!4!$

Answer: C

- Watch Video Solution

20. Six cards are drawn one by one from a set of unlimited number of cards, each card is marked with numbers $-1,0$ or 1 . Number of different ways in which they can be drawn if the sum of the numbers shown by them vanishes is
A. 111
B. 121
C. 141
D. none of these

Answer: C

- Watch Video Solution

21. The number of positive six-digit integers which are divisible by 9 and four of its digits are $1,0,0,5$ is
A. 60
B. 120
C. 180
D. 210

Answer: C

- Watch Video Solution

22. Number of nine-lettered word that can be formed using all the letters of the word 'MEENANSHU' if alike letters are never adjacent is
A. 12×6 !
B. $11 \cdot 7$!
C. $13 \cdot 6$!
D. $12 \cdot 11 \cdot 6$!

Answer: B

- Watch Video Solution

23. If the number of ways in which the letters of the word $A B B C A B B C$ can be arranged such that the word

ABBC does not appear is any word is N, then the value of $\left(N^{1 / 2}-10\right)$ is
C. 361
D. 498

Answer: C

- Watch Video Solution

24. The number of 4 digit natural numbers such that
the product of their digits is 12 is
A. 24
B. 36
C. 42
D. 48

Answer: B

D Watch Video Solution

25. A class has tree teachers, Mr. X, Ms. Y and Mrs. Z
and six students $A, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}$ Number of ways in
which they can be seated in a line of 9 chairs, if
between any two teachers there are exactly two
students is
A. 18×6 !
B. 12×6 !
C. 24×6 !
D. 6×6 !

Answer: A

- Watch Video Solution

26. The number of words that can be formed using all the letters of the word REGULATIONS such that G must come after R, L must come after A, and S must come after N are
A. 11 !/ 8
B. 11 !
C. ${ }^{11} P_{6}$
D. none of these

Answer: A

D Watch Video Solution

27. The number of permutation of all the letters of
the word PERMUTATION such that any two
consecutive letters in the arrangement are neither
both vowels nor both identical is
A. $63 \times 6!\times 5!$
B. $57 \times 5!\times 5!$
C. $33 \times 6!\times 5!$
D. $7 \times 7!\times 5!$

Answer: B

- Watch Video Solution

28. A guard of 12 men is formed from a group of n soldiers. It is found that 2 particular soldiers A and
B are 3 times as often together on guard as 3 particular soldiers $C, D \& E$. Then n is equal to
B. 27
C. 32
D. 36

Answer: C

D Watch Video Solution

29. There are 10 stations on a circular path. A train has to stop at 3 stations such that no two stations are adjacent. The number of such selections must be: (A) 50 (B) 84 (C) 126 (D) 70
A. 50
B. 60
C. 70
D. 80

Answer: A

D Watch Video Solution

30. Find the number of ways of arranging 15
students $A_{1}, A_{2}, \ldots \ldots . A_{15}$ in a row such that (i)
A_{2}, must be seated after A_{1} and A_{3}, must come after A_{2} (ii) neither A_{2} nor A_{3} seated brfore A_{1}

$$
\text { A. } \frac{2!\times 15!}{3!}
$$

B. $\frac{15!}{3!}$
C. $2!15$!
D. None of these

Answer: A

D Watch Video Solution

31. There are 15 different apples and 10 different pears. How many ways are apple or a pear and then

Jill to pick an apple and a pear?
A. 23×150
B. 33×150
C. 43×150
D. 53×150

Answer: A

- Watch Video Solution

32. There are 12 pairs of shoes in a box. Then the possible number of ways of picking 7 shoes so that there are exactly two pairs of shoes are
A. 63360
B. 63300
C. 63260
D. 63060

Answer: A

- Watch Video Solution

33. There are two sets of parallel lines, their equations being $\quad x \cos \alpha+y \sin \alpha=p \quad$ and $x \sin \alpha-y \cos \alpha=p \quad, \quad p=1,2,3, \ldots n \quad$ and $\alpha \in(0, \pi / 2)$. If the number of rectangles formed by
these two sets of lines is 225 , then the value of n is equals to (a) 4 (b) 5 (c) 6 (d) 7
A. 4
B. 5
C. 6
D. 7

Answer: C

- Watch Video Solution

34. The number of rectangles that can be obtained by joining four of the twelves verties of a 12 -sides
regular polygon is -

A. 66

B. 30
C. 24
D. 15

Answer: D

- Watch Video Solution

35. The interior angles of a regular polygon measure
150° each. The number of diagonals of the polygon is
A. 35
B. 44
C. 54
D. 78

Answer: C

- Watch Video Solution

36. Number of ways in which 7 green bottles and 8
blue bottles can be arranged in a row if exactly 1 pair of green bottles is side by side, is (Assume all bottles to be alike except for the colour).
A. 84
B. 360
C. 504
D. none of these

Answer: C

D Watch Video Solution

37. Which of the following is not the number of ways
of selecting n objects from $2 n$ objects of which n
objects are identical
A. 2^{n}
B. $\left({ }^{2 n+1} C_{0}+{ }^{2 n+1} C_{1}+\ldots+{ }^{2 n+1} C_{n}\right)^{1 / 2}$
C. the number of possible subsets
$\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$
D. None of these

Answer: D

- View Text Solution

38. Find number of seven-digit number in the form of $\operatorname{abcdefg}(g, f, e$, tc. Are digits at units, tens hundreds place etc.) $w h e r e a\langle b\langle c\langle d\rangle e\rangle f\rangle g$.
A. 1980
B. 1116
C. 1560
D. 1476

Answer: C

- Watch Video Solution

39. Number of six-digit numbers such that any digit
that appears in the number appears at least twice, where the digits of each number are from the set
$\{1,2,3,4,5\}$, is (Example 225252 is valid but 222133 is not valid)
A. 1500
B. 1850
C. 1405
D. 1205

Answer: C

- Watch Video Solution

40. All the five digit numbers in which each successive digit exceeds its predecessor are
arranged in the increasing order of their magnitude.
The $97^{\text {th }}$ number in the list does not contain the digit
A. 4
B. 5
C. 7
D. 8

Answer: B

41. The number of n digit number formed by using digits $\{1,2,3\}$ such that if 1 appears, it appears even number of times, is
A. $2^{n}+1$
B. $\frac{1}{2}\left(3^{n}+1\right)$
C. $\frac{1}{2}\left(3^{n}-1\right)$
D. $\frac{1}{2}\left(2^{n}-1\right)$

Answer: B

42. A, B, C, D develop 18 items. Five items jointly by A and C, four items by A and D, four items by B and C and five items by B and D. The number of ways of selecting eight ites out of 18 so that the selected ones belong equally to A, B, C, D is
A. 5226
B. 5626
C. 4418
D. 4936

Answer: B

43. Find the number of pairs of parallel diagonals in a regular polygon of 10 sides.
A. 45
B. 35
C. 22
D. 64

Answer: A
44. Four letters, two ' a ' and two ' b ' are filled into

16 cells of a matrix as given. It is required that each cell contains atmost one letter and each row or column cannot contain same letters. Then the number of ways the matrix can be filled is

(A) 3600 (B) 5200 (C) 3960 (D) 4120
A. 3600
B. 5200
C. 3960
D. 4120

Answer: C

- Watch Video Solution

45. The number of increasing function from
$f: A \rightarrow B \quad$ where $\quad A \in\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right\}$,
$B \in\{1,2,3, \ldots, 9\}$ such that $a_{i+1}>a_{i} \forall I \in N$
and $a_{i} \neq i$ is (a) 30 (b) 28 (c) 24 (d) 42
A. 30
B. 28
C. 24
D. 42

Answer: B

D Watch Video Solution

46. How many ordered pairs of (m, n) integers satisfy

$$
\frac{m}{12}=\frac{12}{n} ?
$$

A. 30
B. 15
C. 12
D. 10

Answer: A

- Watch Video Solution

47. Product of all the even divisors of $N=1000$, is
A. $2^{20} \cdot 5^{20}$
B. $2^{24} \cdot 5^{24}$
C. $64 \cdot 10^{18}$

D. None of these

Answer: B

- Watch Video Solution

48. How many combinations can be made up of 3 hens, 4 ducks and 2 geese so that each combination has hens, ducks and geese ?
A. 305
B. 315
C. 320

D. 325

Answer: B

- Watch Video Solution

49. A positive integer n is of the form $n=2^{\alpha} 3^{\beta}$, where $\alpha \geq 1, \beta \geq 1$. If n has 12 positive divisors and
$2 n$ has 15 positive divisors, then the number of positive divisors of $3 n$ is
A. 15
B. 16
C. 18

Answer: B

- Watch Video Solution

50. Number of permutations of $1,2,3,4,5,6,7,8$, and 9 taken all at a time are such that digit 1 appearing somewhere to the left of 2 and digit 3 appearing to the left of 4 and digit 5 somewhere to the left of 6 , is
(e.g. 815723946 would be one such permutation)
A. 9.7!
B. 8 !
C. $5!4!$
D. $8!4$!

Answer: A

- Watch Video Solution

51. The number of arrangments of all digits of 12345
such that at least 3 digits will not come in its
position is
A. 89
B. 109
C. 78
D. 57

Answer: B

- Watch Video Solution

52. about to only mathematics

$$
\begin{aligned}
& \text { A. } \frac{(14)!}{2^{6} \cdot 6!} \\
& \text { B. } \frac{(15)!}{2^{7} \cdot 7!} \\
& \text { C. } \frac{(14)!}{2^{7} \cdot 6!}
\end{aligned}
$$

D. $\frac{(14)!}{2^{6} \cdot 7!}$

Answer: A

- Watch Video Solution

53. The number of homogenous products of degree

3 from 4 variables is equal to
A. 20
B. 16
C. 12
D. 4

Answer: A

- Watch Video Solution

54. The number of ways of distributing 3 identical physics books and 3 identical mathematics books among three students such that each student gets at least one books is
A. 45
B. 55
C. 64
D. 72

Answer: B

- Watch Video Solution

55. Four different movies are running in a town. Ten
students go to watch these four movies. The number of ways in which every movie is watched by atleast one student, is (Assume each way differs only by number of students watching a movie)
A. 68
B. 72
C. 84

Answer: C

- Watch Video Solution

56. Ten identical balls are distributed in 5 different boxes kept in a row and labeled A, B, C, D and E.

The number of ways in which the ball can be distributed in the boxes if no two adjacent boxes remains empty
A. 789
B. 875
C. 771
D. 692

Answer: C

D View Text Solution

57.5 different objects are to be distributed among 3
persons such that no two persons get the same number of objects. Number of ways this can be done is,
A. 60
B. 90
C. 120
D. 150

Answer: B

- Watch Video Solution

58. Find number of negative integral solution of equation $x+y+z=-12$
A. 44
B. 55
C. 66

D. none of these

Answer: B

- Watch Video Solution

59. The number of ways can five people be divided into three groups is
A. $(a) 20$
B. (b) 25
C. (c) 30
D. (d) 36

Answer: B

- Watch Video Solution

60. The number of ways of partitioning the set
$\{a, b, c, d\}$ into one or more non empty subsets is
A. 14
B. 15
C. 16
D. 17
61. Let y be an element of the set
$A=\{1,2,3,4,5,6,10,15,30\}$ and x_{1}, x_{2}, x_{3} be integers such that $x_{1} x_{2} x_{3}=y$, then the number of positive integral solutions of $x_{1} x_{2} x_{3}=y$ is
A. 81
B. 64
C. 72
D. 90

Multiple Correct Answer

1. A contest consists of ranking 10 songs of which 6 are Indian classic and 4 are westorn songs. Number of ways of ranking so that, There are exactly 3 indian classic songs in top 5 is $(5!)^{3}$.

- Watch Video Solution

2. $P=n\left(n^{2}-1\right)\left(n^{2}-4\right)\left(n^{2}-9\right) \ldots\left(n^{2}-100\right)$
is always divisible by,$(n \in I)$ (a) $2!3!4!5!6$!

$(5!)^{4}$ (c) $(10!)^{2}$ (d) $10!11!$

A. $2!3!4!5!6!$
B. $(5!)^{4}$
C. $(10!)^{2}$
D. $10!11$!

Answer: A::B::C::D

- Watch Video Solution

Comprehension

1. Given are six 0 's, five 1 's and four 2 ' s. Consider all possible permutations of all these numbers. [A permutations can have its leading digit 0].

How many permutations have the first 0 preceding the first 1 ?
(a) ${ }^{15} C_{4} \times{ }^{10} C_{5}$
(b) ${ }^{15} C_{5} \times{ }^{10} C_{4}$
(c) ${ }^{15} C_{6} \times{ }^{10}$
C_{5}
${ }^{15} C_{5} \times{ }^{10} C_{5}$
A. ${ }^{15} C_{4} \times{ }^{10} C_{5}$
B. ${ }^{15} C_{5} \times{ }^{10} C_{4}$
C. ${ }^{15} C_{6} \times{ }^{10} C_{5}$
D. ${ }^{15} C_{5} \times{ }^{10} C_{5}$

Answer: A

- Watch Video Solution

2. Given are six 0 's, five 1 's and four 2 ' s. Consider all possible permutations of all these numbers. [A permutations can have its leading digit 0 .

In how many permutations does the first 0 precede the first 1 and the first 1 precede first 2.
A. ${ }^{14} C_{5} \times{ }^{8} C_{6}$
B. ${ }^{14} C_{5} \times{ }^{8} C_{4}$
C. ${ }^{14} C_{6} \times{ }^{8} C_{4}$
D. ${ }^{14} C_{6} \times{ }^{8} C_{6}$

Answer: B

- Watch Video Solution

3. The are 8 events that can be schedules in a week,
then

The total number of ways in which the events can be scheduled is
A. 8^{7}
B. 7^{8}
C. 7 !

Answer: B

- Watch Video Solution

4. The are 8 events that can be schedules in a week,
then

The total number of ways that the schedule has at least one event in each days of the week is
A. 28×5040
B. 7 ! 8 !
C. $7!\times(15!)$

D. None of these

Answer: A

- Watch Video Solution

5. The are 8 events that can be schedules in a week, then

The total number of ways that these 8 event are scheduled on exactly 6 days of a week is
A. $210 \times 6!$
B. $7!\times 266$
C. 56×7 !

```
D. 210 }\times7
```


Answer: B

D View Text Solution

6. Let a_{1}, a_{2}, \ldots and b_{1}, b_{2}, \ldots be arithemetic progression such that $a_{1}=25, \quad b_{1}=75$ and $a_{100}+b_{100}=100$, then the sum of first hundred term of the progression $a_{1}+b_{1}, a_{2}+b_{2}$,.... is equal to
A. $(n-1) D_{n-1}+D_{n-2}$
B. $D_{n-1}+(n-1) D_{n-2}$

$$
\begin{aligned}
& \text { C. } n\left(D_{n-1}+D_{n-2}\right) \\
& \text { D. }(n-1)\left(D_{n-1}+D_{n-2}\right)
\end{aligned}
$$

Answer: D

- Watch Video Solution

7. Let $\theta=\left(a_{1}, a_{2}, a_{3}, \ldots, a_{n}\right)$ be a given arrangement of n distinct objects $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$.

A derangement of θ is an arrangment of these n objects in which none of the objects occupies its original position. Let D_{n} be the number of derangements of the permutations θ.

The relation between D_{n} and D_{n-1} is given by

$$
\begin{aligned}
& \text { A. } D_{n}-n D_{n-1}=(-1)^{n} \\
& \text { B. } D_{n}-(n-1) D_{n-1}=(-1)^{n-1} \\
& \text { C. } D_{n}-n D_{n-1}=(-1)^{n-1} \\
& \text { D. } D_{n}-D_{n-1}=(-1)^{n-1}
\end{aligned}
$$

Answer: A

D Watch Video Solution

8. There are 5 different colour balls and 5 boxes of colours same as those of the balls. The number of ways in which one can place the balls into the boxes,
one each in a box, so that no ball goes to a box of its own colour is
A. 40
B. 44
C. 45
D. 60

Answer: B

- Watch Video Solution

1. Compute: $\frac{24}{8}$!

- Watch Video Solution

2. Compute: $\frac{48}{8}$!

- Watch Video Solution

3. Evaluate: 11!-7!

-
 Watch Video Solution

4. Compute: $\frac{50}{10}$!
5. Evaluate: 4 ! +3 !

- Watch Video Solution

6. Evaluate: 4 ! + 5!

- Watch Video Solution

7. Evaluate: $2!+10$!
8. Evaluate: $10!+3$!

- Watch Video Solution

9. Evaluate: $9!+6$!

- Watch Video Solution

10. Evaluate: 7! - 4!

- Watch Video Solution

11. Compute: $\frac{88}{11}$!

- Watch Video Solution

12. Evaluate: 11! - 5!

- Watch Video Solution

13. Evaluate: 10! - 6 !

- Watch Video Solution

14. Find n, if $\frac{n}{5!}=\frac{3}{6!}+\frac{1}{4!}$
15. Find the total number of n-digit number
($n>1$) having property that no two consecutive digits are same.

- Watch Video Solution

16. Find n , if $\frac{n}{6!}=\frac{1}{5!}+\frac{1}{4!}$

- Watch Video Solution

17. Find the number of diagonals in the convex polygon of n sides.

- Watch Video Solution

18. Simplify: $\frac{(2 n+3)!}{(2 n)!}$

- Watch Video Solution

19. Find n, \quad if $\quad(n+1) \neq 12 \times(n-1)$.
20. Simplify: $\frac{(2 n-1)!}{(2 n)!}$

- Watch Video Solution

21. Prove that $(n!)^{2}<n^{n}(n!)<(2 n)$! for all positive integers n

- Watch Video Solution

22. Simplify: $\frac{(n+2)!}{(n)!}$

23. Find the exponent of 3 in 100 !

- Watch Video Solution

24. Find the number of zeros at the end of 130 .

- Watch Video Solution

25. Find the number of zeros at the end in product $5^{6} \cdot 6^{7} \cdot 7^{8} \cdot 8^{9} \cdot 9^{10} \cdot 30^{31}$.

26. If ${ }^{10} P_{r}=5040$ find the value of r.

- Watch Video Solution

27. If ${ }^{\wedge} 0 P_{5}+5{ }^{9} P_{4}={ }^{10} P_{r}$, find the value of r.

- Watch Video Solution

28. If ${ }^{2 n+1} P_{n-1}:{ }^{2 n-1} P_{n}=3: 5$, then find the value of n.

- Watch Video Solution

29. Simplify: $\frac{(n-3)!}{(n-1)!}$

- Watch Video Solution

30. Seven athletes are participating in a race. In how many ways can the first three athletes win the prizes
?

- Watch Video Solution

31. In how many ways can 6 persons stand in a queue?
32. Simplify: $\frac{(n+3)!}{(n)!}$

- Watch Video Solution

33. Simplify: $\frac{(n+1)!}{(n-1)!}$

- Watch Video Solution

34. If $A=\{x \mid x$ is prime number and $x<30\}$,
find the number of different rational numbers whose numerator and denominator belong to A.

- Watch Video Solution

35. Five different digits from the setoff numbers
$\{1,2,3,4,5,6,7\}$ are written in random order. How many numbers can be formed using 5 different digits from set $\{1,2,3,4,5,6,7\}$ if the number is divisible by 9 ?

- Watch Video Solution

36. Is $5!+4!=7$! ?
37. Is $3!+2!=4!?$

- Watch Video Solution

38. The letters of word ZENITH are written in all possible ways. If all these words are written out as in a dictionary, then find the rank of the word ZENITH.

- Watch Video Solution

39. Is $2!+4!=5!$?
40. If . ${ }^{n} C_{n-1}=15$, then find n .

- Watch Video Solution

41. Find the total number of nine-digit numbers that can be formed using the digits $2,2,3,3,5,5,8,8,8$ so that the odd digit occupy the even places.

- Watch Video Solution

42. Find the number of permutation of all the letters
of the word MATHEMATICS which starts with

consonants only.

- Watch Video Solution

43. If $.{ }^{n+1} C_{n}=11$, then find n .

- Watch Video Solution

44. Find the number of ways in which $5 A^{\prime} s$ and $6 B^{\prime} s$ can be arranged in a row which reads the same backwards and forwards.
45. Find the number of ways in which 5 girls and 5 boys can be arranged in row
(i) if no two boys are together.
(ii) if boys and girls are alternate.
(iii) all the girls sit together and all the boys sit together.
(iv) all the girls are never together.

- Watch Video Solution

46. Find the number of arrangements of the letters
of the word SALOON, if the two Os do not come together.

Watch Video Solution

47. If. ${ }^{n+1} C_{n}=17$, then find n .

- Watch Video Solution

48. If . ${ }^{n+1} C_{n}=16$, then find n .

- Watch Video Solution

49. If. ${ }^{n} C_{8}=.{ }^{n} C_{6}$, then find.${ }^{n} C_{2}$.
50. Find the value (s) of r satisfying the equation
${ }^{\wedge} 69 C_{3 r-1}-{ }^{69} C_{r^{2}}={ }^{69} C_{r^{2}-1}-{ }^{69} C_{3 r}$.

- Watch Video Solution

51. Compute: $\frac{8!}{6!}$

D Watch Video Solution

52. Compute: $\frac{9!}{5!}$
53. Compute: $\frac{10!}{7!}$

- Watch Video Solution

54. Compute: $\frac{11!}{3!}$

- Watch Video Solution

55. Compute: $\frac{15!}{9!}$

- Watch Video Solution

56. Evaluate: (5+3)!

- Watch Video Solution

57. There are n married couples at a party. Each person shakes hand with every person other than their spouse. The total number of hand-shakes must be:

- Watch Video Solution

58. Evaluate: (9+2)!
59. If . ${ }^{n} C_{n-1}=15$, then find n .

D Watch Video Solution

60. Evaluate: (12-6)!

- Watch Video Solution

61. Evaluate: (15-9)!

- Watch Video Solution

62. Find the maximum number of points of intersection of 6 circles.

D Watch Video Solution

63. There are 10 points on a plane of which no three points are collinear. If lines are formed joining these points, find the maximum points of intersection of these lines.

- Watch Video Solution

64. There are 10 points on a plane of which 5 points
are collinear. Also, no three of the remaining 5 points are collinear. Then find (i) the number of straight lines joining these points: (ii) the number of triangles, formed by joining these points.

- Watch Video Solution

65. Find the maximum number of points of intersection of 7 straight lines and 5 circles when 3
straight lines are parallel and 2 circles are concentric
66. A box contains 5 different res and 6 , different
whit balls. In how many ways can 6 balls be selected so that there are at least two balls off each color?

- Watch Video Solution

67. If . ${ }^{n} C_{7}=.{ }^{n} C_{2}$, then find.${ }^{n} C_{2}$.

D Watch Video Solution

68. The number of pairs of diagonals of a regular polygon of 10 sides that are parallel are

15 !
 69. Compute:
 12 !

- Watch Video Solution

70. Compute: $\frac{10!}{5!}$

D Watch Video Solution

71. If. ${ }^{n} C_{3}=.{ }^{n} C_{2}$, then find.${ }^{n} C_{2}$.
72. If. ${ }^{n} C_{5}=.{ }^{n} C_{3}$, then find.${ }^{n} C_{4}$.

- Watch Video Solution

73. A regular polygon of 10 sides is constructed. In how many way can 3 vertices be selected so that no two vertices are consecutive?

- Watch Video Solution

74. In how many of the permutations of n thing
taken r at a time will three given things occur?
75. Out of 10 consonants and 4 vowels, how many words can be formed each containing 3 consonants and 2 vowels ?

D Watch Video Solution

76. Number of different words that can be formed using all the letters of the word 'DEEPMALA' if two vowels are together and the other two are also together but separated from the fist two is
77. Find the value of . ${ }^{9} P_{4}$

- Watch Video Solution

78. Find the value of . ${ }^{7} P_{4}$

- Watch Video Solution

79. Evaluate $\frac{n!}{((n-r)!\}}$ when $\mathrm{n}=5, \mathrm{r}=3$
80. Evaluate $\frac{n!}{((n-r)!\}}$ when $\mathrm{n}=9, \mathrm{r}=7$

- Watch Video Solution

81. Evaluate $\frac{n!}{((n-r)!\}}$ when $\mathrm{n}=8, \mathrm{r}=5$

- Watch Video Solution

82. If. ${ }^{n} C_{4}=.{ }^{n} C_{2}$, then find. ${ }^{n} C_{3}$.

- Watch Video Solution

83. Evaluate $\frac{n!}{((n-r)!\}}$ when $\mathrm{n}=6, \mathrm{r}=3$

84. If. ${ }^{n} C_{5}=.{ }^{n} C_{4}$, then find. ${ }^{n} C_{7}$.

- Watch Video Solution

85. Evaluate $\frac{n!}{((n-r)!\}}$ when $\mathrm{n}=7, \mathrm{r}=2$

D Watch Video Solution
86. Evaluate $\frac{n!}{((n-r)!\}}$ when $\mathrm{n}=7, \mathrm{r}=5$

87. Find the value of.${ }^{9} C_{6}$

- Watch Video Solution

88. Find the value of . ${ }^{11} C_{10}$

-
 Watch Video Solution

89. Find the value of . ${ }^{10} C_{4}$

- Watch Video Solution

90. Find the value of . ${ }^{10} C_{2}$

- Watch Video Solution

91. If . ${ }^{n} C_{4}=.{ }^{n} C_{6}$, then find.${ }^{n} C_{9}$.

- Watch Video Solution

92. Find the value of . ${ }^{7} C_{5}$

- Watch Video Solution

93. Find the factorials of $6 \times 7 \times 8 \times 9 \times 5$

94. Find the factorials of $3 \times 8 \times 5$

- Watch Video Solution

95. Find the factorials of $15 \times 8 \times 6$

D Watch Video Solution

96. Find the factorials of $6 \times 20 \times 8 \times 42$

97. Find the factorials of $10 \times 12 \times 6$

D Watch Video Solution

98. If. ${ }^{15} C_{r+1}={ }^{15} C_{r+2}$, find r .

- Watch Video Solution

99. If . ${ }^{n} C_{14}={ }^{n} C_{2}$, then find n .

- Watch Video Solution

100. If . ${ }^{13} C_{r}={ }^{13} C_{r+5}$, find r.

D Watch Video Solution

101. If . ${ }^{n} C_{6}={ }^{n} C_{13}$, then find n .

- Watch Video Solution

102. Write in terms of factorials: $6 \times 7 \times 12 \times 10$

- Watch Video Solution

103. Write in terms of factorials: $3 \times 6 \times 9 \times 12 \times 15$

D Watch Video Solution

104. Write in terms of factorials: $5 \times 10 \times 15 \times 20$

- Watch Video Solution

105. Write in terms of factorials: $6 \times 8 \times 7 \times 9$

- Watch Video Solution

106. Find the value of . ${ }^{9} C_{3}$

- Watch Video Solution

107. If . ${ }^{n} C_{12}={ }^{n} C_{11}$, then find n .

- Watch Video Solution

108. Find the value of. ${ }^{6} C_{3}$

- Watch Video Solution

109. Find the value of. ${ }^{8} C_{4}$

D Watch Video Solution
110. Find the value of . ${ }^{9} C_{2}$

- Watch Video Solution

111. Find the value of . ${ }^{12} C_{2}$

- Watch Video Solution

112. Find the value of. ${ }^{7} C_{4}$
113. Find the value of. ${ }^{5} C_{2}$

- Watch Video Solution

114. If. ${ }^{n} C_{22}={ }^{n} C_{7}$, then find n .

- Watch Video Solution

115. Find the number of non-negative integral solutions of $x+y+z+w \leq 20$.
116. If . ${ }^{n} C_{8}={ }^{n} C_{7}$, then find n.

- Watch Video Solution

117. In an experiment, n six-faced normal dice are thrown. Find the number of sets of observations which are indistinguishable among themselves.

- Watch Video Solution

118. Find the total number of positive integral
solutions for (x, y, z) such that $x y z=24$. Also find out the total number of integral solutions.
119.

Consider
the
equation
$\frac{2}{x}+\frac{5}{y}=\frac{1}{3} w h e r e x, y \in N$. Find the number of solutions of the equation.

- Watch Video Solution

120. In how many ways can 10 persons take seats in a row of 24 fixed seats so that no two persons take consecutive seats.
121. In how many ways te sum of upper faces of four distinct dices can be six.

- Watch Video Solution

122. In how many different ways can 3 persons A, B, C having 6 one-rupee coin 7 one-rupee coin, 8 onerupee coin, respectively, donate 10 one-rupee coin collectively?
123. In an examination, the maximum mark for each of the three papers is 50 and the maximum mark for the fourth paper is 100 . Find the number of ways in which the candidate can score 605 marks in aggregate.

- Watch Video Solution

124. Find the number of non-negative intergral
solutions of $x_{1}+x_{2}+x_{3}+x_{4}=20$.
125. In how many ways can we get a sum of at most

17 by throwing six distinct dice ? In how many ways
can we get a sum greater than 17 ?

- Watch Video Solution

126. In how many ways can 14 identical toys be distributed among three boys so that each one gets at least one toy and no two boys get equal number of toys.
127. Find the numbers of positive integers from 1 to 1000 , which are divisible by at least 2,3 , or 5 .

- Watch Video Solution

128. Find the number of ways in which two

Americans, two British, one Chinese, one Dutuch, and one Egyptian can sit on a round table so that persons of the same nationality are separated.
129. Find the number of permutations of letters
a, n, c, d, e, f, g taken all together if neither begn or cad pattern appear.

- Watch Video Solution

130. Number of words formed using all the letters of the word 'EXAMINATION' if alike letters are never adjacent.

- Watch Video Solution

131. Find the number of ways in which 5 distinct balls
can be distributed in three different boxes if no box remains empty. Or If $n(A)=5 \operatorname{andn}(B)=3$, then find the number of onto functions from A to B.

- Watch Video Solution

132. There are four balls of different colours and four boxes of colours, same as those of the balls. The number of ways in which the balls, one in each box, could be placed such thast a ball does not go to a box of its own colour is: (A) $\lfloor 4-1$ (B) 9 (C) $\lfloor 3+1$ (D) none of these

- Watch Video Solution

133. Seven people leave their bags outside al temple and returning after worshiping picked one bag each at random. In how many ways at least one and at most three of them get their correct bags?

D Watch Video Solution

134. Find the number of ways of dividing 6 couples in

3 groups if each group has exactly one couple and each group has 2 males and 2 females.

Solved Examples

1. Prove that combinatorial argument that
${ }^{\wedge} n+1 C_{r}={ }^{n} C_{r}+{ }^{n} C_{r-1}$.

- Watch Video Solution

2. If $n_{1} a n d n_{2}$ are five-digit numbers, find the total number of ways of forming $n_{1} a n d n_{2}$ so that these numbers can be added without carrying at any stage.
3. $n_{1} a n d n_{2}$ are four-digit numbers, find the total number of ways of forming $n_{1} a n d n_{2}$ so that n_{2} can be subtracted from n_{1} without borrowing at any stage.

- Watch Video Solution

4. How many five-digit numbers can be made having exactly two identical digits?
5. An ordinary cubical dice having six faces marked with alphabets $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}$, and F is thrown n times and ht list of n alphabets showing p are noted. Find the total number of ways in which among the alphabets A, B, C D, E and F only three of them appear in the list.

- Watch Video Solution

6. Find the number of three-digit numbers from 100
to 999 including all numbers which have any one digit that is the average of the other two.
7. The members of a chess club took part in a round robin competition in which each player plays with other once. All members scored the same number of points, except four juniors whose total score ere 17.5. How many members were there in the club?

Assume that for each win a player scores 1 point, $1 / 2$ for a draw, and zero for losing.

D Watch Video Solution

8. There are $2 n$ guests at a dinner party. Supposing
that eh master and mistress of the house have fixed
seats opposite one another and that there are two specified guests who must not be placed next to one another, show that the number of ways in which the company can be placed is
$(2 n-2!) \times\left(4 n^{2}-6 n+4\right)$.

- Watch Video Solution

9. In how many ways can two distinct subsets of the set A of $k(k \geq 2)$ elements be selected so that they haves exactly two common elements?
10. There are n straight lines in a plane in which no two are parallel and no three pass through the same point. Their points of intersection are joined. Show that the number of fresh lines thus introduced is $\frac{1}{8} n(n-1)(n-2)(n-3)$

- Watch Video Solution

11. The streets of a city are arranged like the like the
lines of a chess board. There are m streets running
from north to south and n streets from east to west.

Find the number of ways in which a man can travel
from north-west to south-east corner, covering shortest possible distance.
12. A bats man scores exactly a century lb hitting
fours and sixes in 20 consecutive balls. In how many
different ways can e do it if some balls may not yield
runs and the order of boundaries and over boundaries are taken into account?

- Watch Video Solution

13. In how many ways can $2 t+1$ identical balls be
placed in three distinct boxes so that any two boxes
together will contain more balls than the third?

Exercise 71

1. If . ${ }^{22} C_{r+4}={ }^{22} C_{r+2}$, find r .

D Watch Video Solution

2. Find the total number of ways of answering five objective type questions, each question having four choices
3. A variable name in certain computer language must be either an alphabet or an alphabet followed by a decimal digit. The total number of different variable names that can exist in that language is equal to a. 280 b. 390 c. 386 d. 296

- Watch Video Solution

4. In how many ways five persons can stand in a row
5. In how many ways first and second rank in mathematics, first and second rank in physics, first rank in chemistry, and first rank in English be given away to a class of 30 students.

D Watch Video Solution

6. Five persons entered the lift cabin on the ground
floor of an 8-floor house. Suppose each of them can
leave the cabin independently at any floor beginning
with the first. Find the total number of ways in which
each of the five persons can leave the cabin (i) at any one of the 7 floors (ii) at different floors.

- Watch Video Solution

7. If there are six straight lines in a plane, no two of which are parallel and no three of which pass through the same point, then find the number of points in which these lines intersect.

- Watch Video Solution

> 8. Find the number ordered pairs
> (x, y) if $x, y \in\{0,1,2,3,, 10\}$ and if $|x-y|>5$.
9. Find the number of ways in which two small squares can be selected on the normal chessboard if they are not in same row or same column.

- Watch Video Solution

10. Find the number of natural numbers which are
less than 2×10^{8} and which can be written by means of the digit 1 and 2.

- Watch Video Solution

11. Number of non-empty subsets of $\{1,2,3, . ., 12\}$ having the property that sum of the largest and smallest element is 13 .

D Watch Video Solution

12. Find the number of three-digit number in which repetition is allowed and sum of digits is even.

- Watch Video Solution

13. An n-digit number is a positive number with exactly n digits. Nine hundred distinct n-digit
numbers are to be formed using only the three digits 2,5 , and 7 . The smallest value of n for which this is possible is a. 6 b .7 c .8 d .9

- Watch Video Solution

14. A 5-digit number divisible by 3 is to be formed using the number $0,1,2,3,4$ and 5 without repetiition.

Find total of ways in whiich this can be done.

- Watch Video Solution

1. Prove that: $\frac{(2 n)!}{n!}=\{1.3 .5(2 n-1)\} 2^{n}$.

- Watch Video Solution

2. Show that $1!+2!+3!++n$! cannot be a perfect square for any $n \in N, n \geq 4$.

- Watch Video Solution

3. Prove that $(n!+1)$ is not divisible by any natural number between $2 a n d n$.
4. Find the remainder when
$1!+2!+3!+4!++n!$ is divided by 15 , if $n \geq 5$.

- Watch Video Solution

5. Find the exponent of 80 in 200 !.

- Watch Video Solution

1. Prove that ${ }^{\wedge}(n-1) P_{r}+r .{ }^{n-1} P_{r-1}=.{ }^{n} P_{r}$

- Watch Video Solution

2. If . ${ }^{n} P_{5}=20 .{ }^{n} P_{3}$, find the value of n.

- Watch Video Solution

3. How many 4-letter words, with or without meaning, can be formed out of the letters in the word LOGARITHMS, if repetition of letters is not allowed?
4. (a) If . ${ }^{22} P_{r+1}:{ }^{20} P_{r+2}=11: 52$, find r.
(b) If $.{ }^{56} P_{r+6}:{ }^{54} P_{r+3}=30800: 1$, find r.

D View Text Solution

5. How many numbers can be formed from the digits
$1,2,3,4$ when repetition is not allowed?

- Watch Video Solution

6. Find the three-digit odd numbers that can be formed by using the digits $1,2,3,4,5,6$ when the repetition is allowed.

- Watch Video Solution

7. If the 11 letters $A, B, \ldots . K$ denote an arbitrary permutation of the integers $(1,2 \ldots .11)$, then $(A-1)(B-2)(C-3) \ldots .(K-11)$ will be

- Watch Video Solution

8. Find the number of positive integers, which can be formed by using any number of digits from $0,1,2,3$, 4, 5 but using each digit not more than once in each number. How many of these integers are greater than 3000 ? What happened when repetition is allowed?

- Watch Video Solution

9. Eight chairs are numbered 1 to 8 . Two women and
three men wish to occupy one chair each. First, the
women choose the chairs from amongst the chairs
marked 1 to 4 , and then the men select th chairs
from amongst the remaining. The number of possible arrangements is a. ${ }^{\wedge} 6 C_{3} \times{ }^{4} C_{2} \quad$ b. ${ }^{\wedge} 4 P_{2} \times{ }^{4} P_{3}$ c. ${ }^{\wedge} 4 C_{2} \times{ }^{4} P_{3}$ d. none of these

- Watch Video Solution

10. How many automobile license plates can be made, if each plate contains two different letters followed by three different digits ?
11. How many six-digit odd numbers, greater than $6,00,000$, can be formed from the digits $5,6,7,8,9$, and 0 if repetition of digits is allowed repetition of digits is not allowed.

- Watch Video Solution

Exercise 74

1. The number of six-digit numbers all digits of which are odd, is
2. How many new words can be formed using all the letters of the word 'MEDITERRANEAN', if vowels and consonants occupy the same relative positions?

D Watch Video Solution

3. Find the number of words which can be formed using all the letters of the word 'INSTITUTION' which start with consonant.
4. A library has a copies of one book, b copies each of two books, c copies each of three books, a single copy of d books. The total number of ways in which these books can be arranged in a shelf is equal to a.

$$
\begin{align*}
& \frac{(a+2 b+3 c+d)!}{a!(b!)^{2}(c!)^{3}} \quad \text { b. } \quad \frac{(a+2 b+3 c+d)!}{a!(2 b!)^{c!} \wedge^{\wedge} 3} \tag{c.}\\
& \frac{(a+b+3 c+d)!}{(c!)^{3}} \text { d. } \frac{(a+2 b+3 c+d)!}{a!(2 b!)^{c!\wedge}}
\end{align*}
$$

. Watch Video Solution

5. The number of ways in which we can get a score of

11 by throwing three dice is a. 18 b. 27 c. 45 d. 56

Exercise 75

1. If the best and the worst paper never appear together, find in how many ways six examination papers can be arranged.

D Watch Video Solution

2. There are six teachers. Out of them two are primary teacher, two are middle teachers, and two are secondary teachers. They are to stand in a row,
so as the primary teachers, middle teacher, and
secondary teachers are always in a set. Find the number of ways in which they can do so.

- Watch Video Solution

3. In how many ways can 5 boys and 3 girls sit in a row so that no two girls are sit together?

- Watch Video Solution

4. Find the number of words that can be made out
of the letters of the word MOBILE when consonants always occupy odd places.
5. m men and n women ae to be seated in a row so that no two women sit together. If $m>n$ then show that the number of ways n which they fan be seated as $\frac{m!(m+1)!}{(m-n+1)!}$.

D Watch Video Solution

Exercise 76

1. If ${ }^{15} C_{3 r}={ }^{15} C_{r+3}$, find r.
2. If ${ }^{\wedge} n+2 C_{8}:{ }^{n-2} P_{4}: 57: 16$, find n.

D Watch Video Solution

3. Find the ratio of ${ }^{\wedge} 20 C_{r} a n d^{25} C_{r}$ when each of them has the greatest possible value.

- Watch Video Solution

4. On the occasion if Deepawali festival, each student in a class sends greeting cards to other. If
there are 20 students in the class, find the total number of greeting cards exchanged by the students?

D Watch Video Solution

5. A committee of 6 is chosen from 10 men and 7
women so as to contain at least 3 men and 2
women. In how many ways can this be done if two
particular women refuse to serve on the same committee? a. 850 b. 8700 c. 7800 d. none of these
6. A bag contains 50 tickets numbered $1,, 23, \ldots 50$

Find the number of set of five tickets ` $\times 1$

- Watch Video Solution

7. Four visitors A, B, C, D arrived at a town that has 5 hotels. In how many ways, can they disperse themselves among 5 hotels.

- Watch Video Solution

8. Out of 15 balls, of which some are white and the rest are black, how many should be white so that the
number of ways in which the balls can be arranged in a row may be the greatest possible? It is assumed that the balls of same color are alike?

- Watch Video Solution

9. In how many shortest ways can we reach from the point $(0,0,0)$ to point $(3,7,11)$ in space where the movement is possible only along het x-axis, y-axis, and z-axis or parallel to them and change of axes is permitted only at integral points. (An integral point is one, which has its coordinate as integer.)
10. For examination, a candidate has to select 7 subjects from 3 different groups A, B, C which contain 4, 5, 6 subjects, respectively. The number of different way in which a candidate can make his selection if he has to select at least 2 subjects form each group is 25 b. 260 c. 2700 d. 2800

- Watch Video Solution

11. A question paper on mathematics consists of 12 questions divided in to 3 pars A, B and C, each containing 4 questions. In how many ways can an
examinee answer questions selecting at least one from each part.

- Watch Video Solution

12. Find the number of all three elements subsets of the set $\left\{a_{1}, a_{2}, a_{3}, a_{n}\right\}$ which contain a_{3}.

- Watch Video Solution

13. There are five boys A, B, C, D and E. The order of their height is $A<B<C<D<E$. Number of ways in which they have to be arranged in four seats
in increasing order of their height such that C and E are never adjacent.

- Watch Video Solution

14. Find the number of ways in which 3 distinct numbers can be selected from the set $\left\{3^{1}, 3^{2}, 3^{3}, \ldots, 3^{100}, 3^{101}\right\}$ so that they form a G.P.

- Watch Video Solution

15. 7 relative of a man comprises 4 ladies and 3 gentleman, his wife has also 7 relatives. 3 of them
are ladies and 4 gentlemen. In how ways can they invite a dinner party of 3 ladies and 3 gentlemen so that there are 3 of man's relative and 3 of the wife's relatives.

- Watch Video Solution

16. The sides $A B, B C, C A$ of a triangle $A B C$ have 3,4
and 5 triangles that can be constructed by using
these points as vertices, is
17. An examination consists of 10 multiple choice questions, where each question has 4 options, only one of which is correct. In every question, a candidate earns 3 marks for choosing the correct opion, and -1 for choosing a wrong option. Assume that a candidate answers all questions by choosing exactly one option for each. Then find the number of distinct combinations of anwers which can earn the candidate a score from the set $\{15,16,17,18,19,20\}$.

- Watch Video Solution

18. There are n points in a plane in which no large no
three are in a straight line except m which are all i
straight line. Find the number of (i) different
straight lines, (ii) different triangles, (iii) different quadrilaterals that can be formed with the given points as vertices.

- Watch Video Solution

Exercise 77

1. The number of permutation of all the letters of
the word PERMUTATION such that any two
consecutive letters in the arrangement are neither both vowels nor both identical is

- Watch Video Solution

2. The number 916238457 is an example of a ninedigit number which contains each of the digit 1 to 9 exactly once. It also has the property that the digits

1 to 5 occur in their natural order, while the digits 1 to 6 do not. Find the number of such numbers.
3. If $x, 2 y, 3 z$ are in A.P., where the distinct numbers x, y, z are in G.P, then the common ratio of the G.P. is a. 3 b. $\frac{1}{3}$ c. 2 d. $\frac{1}{2}$

- Watch Video Solution

4. Find the number of permutations of n distinct things taken r together, in which 3 particular things must occur together.
5. Find the number of three-digit numbers formed by using digits $1,2,3,4,6,7,8,9$ without repetition such that sum of digits of the numbers formed is even.

D Watch Video Solution

6. Out of 8 sailors on a boat, 3 can work only on one particular side and 2 only on the other side. Find the number of ways in which the ways in which the sailors can be arranged on the boat.
7. In how many ways the letters of the word COMBINATORICS can be arranged if all vowel and all consonants are alphabetically ordered.

- Watch Video Solution

8. Find the number of ways in which all the letters of the word 'COCONUT' be arranged such that at least one 'C' comes at odd place.
9. Find the number of ways in which the letters of word 'MEDICAL' be arranged if A and E are together but all the vowels never come together.

D View Text Solution

10. about to only mathematics

- Watch Video Solution

1. In how many ways can 3 ladies and 3 gentlemen be seated around a round table so that any two and only two of the ladies sit together?

D Watch Video Solution

2. In how many ways can 15 members of a council sit along a circular table, when the secretary is to sit on one side of the chairman and the deputy secretary on the other side?

Watch Video Solution

3. The number of ways in which 6 men and 5 women

 can dine at a round table if no two women are to sit together is given by.
- Watch Video Solution

4. Find number of ways that 8 beads o different colors be strung as a necklace.

- Watch Video Solution

5. Find the number of ways in which 8 different
flowered can be strung to form a garland so that
four particular flowers are never separated.

D Watch Video Solution

Exercise 79

1. In a n election, the number of candidates exceeds the number to be elected y 2. A man can vote in 56 ways. Find the number of candidates.
2. There are 5 historical monuments, 6 gardens, and

7 shopping malls in a city. In how many ways a tourist can visit the city if he visits at least one shopping mall.

D Watch Video Solution

3. Out of 10 white, 9 black, and 7 red balls, find the number of ways in which selection of one more balls can be made (balls of the same color are identical).
4. Find the number f divisors of 720 . How many of these are even? Also find the sum of divisors.

- Watch Video Solution

5. Find the number of odd proper divisors of $3^{p} \times 6^{m} \times 21^{n}$.

- Watch Video Solution

6. In how many ways the number 7056 can be resolved as a product of 2 factors.
7. Find the number of ways in which India can win the series of 11 matches (If no match is drawn and all matches are played).

- Watch Video Solution

8. Statement 1: Number of ways of selecting 10 objects from 42 objects of which 21 objects are identical and remaining objects are distinct is 2^{20}.

Statement

$$
\wedge 42 C_{0}+{ }^{42} C_{1}+{ }^{42} C_{2}++{ }^{42} C_{21}=2^{41}
$$

Exercise 710

1. Find the number of ways in which four distinct balls can be kept into two identical boxes so that no box remains empty.

- Watch Video Solution

2. Find the number of ways in which 22 different
books can be given to 5 students, so that two
students get 5 books each and all the remaining students get 4 books each.

D Watch Video Solution

3. Find the number of ways in which 16 constables
can be assigned to patrol villages, 2 for each.

- View Text Solution

4. In how many ways can 10 different prizes be given
to 5 students if one particular boy must get 4 prizes
and rest of the students can get any number of prizes?

- Watch Video Solution

5. Find the number of ways in which the birthday of six different persons will fall in exactly two calendar months.

D Watch Video Solution

6. A double-decker bus carry $(u+e)$ passengers, u in the upper deck and e in the lower deck. Find the
number of ways in which the $u+e$ passengers can
be distributed in the two decks, if $r(\leq e)$ particular
passengers refuse to go in the upper deck and $s(\leq u)$ refuse to sit in the lower deck.

- Watch Video Solution

7. In how any different ways can a set A of $3 n$ elements be partitioned into 3 subsets of equal number of elements? The subsets P, Q, R form a partition

$$
P \cup Q \cup R=A, P \cap R=\varphi, Q \cap R=\varphi, R \cap P=\varphi
$$

8. Roorkee University has to send 10 professors to 5

 centers for its entrance examination, 2 to each center. Two of the enters are in Roorkee and the others are outside. Two of the professors prefer to work in Roorkee while three prefer to work outside.In how many ways can this be made if the preferences are to be satisfied?

- Watch Video Solution

Exercise 711

1. In how many ways can Rs. 16 be divided into 4 persons when none of them gets less than Rs. 3?

- Watch Video Solution

2. Find the number of ways of selecting 10 balls out of an unlimited number of identical white, red, and blue balls.

- Watch Video Solution

3. If x, y, z, t are odd natural numbers such that
$x+y+z+t=20$ then find the number of values
of ordered quadruplet (x, y, z, t).

- Watch Video Solution

4. In how many ways, two different natural numbers can be selected, which less than or equal to 100 and differ by almost 10 .

- Watch Video Solution

5. Find the number of positive integral solutions of
$x y z=21600$.
6. Find the number of positive integral solutions satisfying the equation $\left(x_{1}+x_{2}+x_{3}\right)\left(y_{1}+y_{2}\right)=77$.

- Watch Video Solution

7. In how many ways 3 boys and 15 girls can sits together in a row such that between any 2 boys at least 2 girls sit.

8. In how many ways can 30 marks be allotted to 8

 question if each question carries at least 2 marks?
- Watch Video Solution

9. If $x, 2 y, 3 z$ are in A.P., where the distinct numbers x, y, z are in G.P, then the common ratio of the G.P.
is a. 3 b. $\frac{1}{3}$ c. 2 d. $\frac{1}{2}$

- Watch Video Solution

10. Find the number of integers between 1 and

100000 having the sum of the digits 18.

Exercise 712

1. Find the number of n digit numbers, which contain the digits 2 and 7 , but not the digits $0,1,8,9$.

D Watch Video Solution

2. Let $f: A \rightarrow A$ be an invertible function where
$A=\{1,2,3,4,5,6\}$ The number of these functions in which at least three elements have self image is
3. The number of arrangments of all digits of 12345 such that at least 3 digits will not come in its position is
