©゙ doubtnut

India's Number 1 Education App

MATHS

BOOKS - CENGAGE PUBLICATION

SOLUTIONS AND PROPERTIES OF TRIANGLE

Single Correct Answer Type

1. In a triangle $\angle A=55^{\circ}, \angle B=15^{\circ}, \angle C=110^{\circ}$. Then $c^{2}-a^{2}$ is equal to
A. ab
B. $2 a b$
C. $-a b$
D. none of these

- Watch Video Solution

2. In a triangle ABC if $2 a=\sqrt{3} b+c$, then possible relation is
A. $c^{2}=a^{2}+b^{2}-a b$
B. $a^{2}=b^{2}+c^{2}$
C. $b^{2}=a^{2}+c^{2}-a c \sqrt{3}$
D. $a=b=c$

Answer: B

3. A circle of area 20 sq. units is centered at the point 0 . Suppose $\triangle A B C$ is inscribed in that circle and has area 8 sq. units. The central angles α, β and γ are as shown in the figure. The value of $(\sin \alpha+\sin \beta+\sin \gamma)$ is equal to
A. $\frac{4 \pi}{5}$
B. $\frac{3 \pi}{4}$
C. $\frac{2 \pi}{5}$
D. $\frac{\pi}{4}$

Answer: A

4. In $\triangle A B C, b c=2 b^{2} \cos A+2 c^{2} \cos A-4 b c \cos ^{2} A$, then $\triangle A B C$ is
A. isosceles but not necessarily equilateral
B. equilateral
C. right angled but not necessarily isosceles
D. right angled isosceles

Answer: A

- Watch Video Solution

5. Given a triangle $\triangle A B C$ such that $\sin ^{2} A+\sin ^{2} C=1001 \cdot \sin ^{2} B$. Then the value of $\frac{2(\tan A+\tan C) \cdot \tan ^{2} B}{\tan A+\tan B+\tan C}$ is
A. $\frac{1}{2000}$
B. $\frac{1}{1000}$
C. $\frac{1}{500}$
D. $\frac{1}{250}$

Answer: D

D Watch Video Solution

6. $\triangle A B C$ has different side lengths a,b,c. If a^{2}, b^{2}, c^{2} as sides form another $\triangle P Q R$, then $\triangle A B C$ will always be
A. acute angled triangle only
B. obtuse angled triangle only
C. sometimes acute or sometimes obtuse depending on values
of a, b nd c
D. none of these

- Watch Video Solution

7. In $\triangle A B C, \angle B=\frac{\pi}{4}, \angle C=\frac{\pi}{6}$. D is a point on BC which divides it in the ratio $1: 3, \angle D A B=\beta$, then
A. $\left(\sec \cdot \frac{\pi}{6}\right) A B+\cot \beta=\cot \left(\frac{\pi}{6}\right) A C+(\sqrt{3}-5)$
B. $\left(\sec \cdot \frac{\pi}{4} A B \cot \beta=\cot \left(\frac{\pi}{4}\right) A C(4 \sqrt{3}-5)\right.$
C. $\left(\sec \cdot \frac{\pi}{4}\right) A B+\cot \beta=\cot \left(\frac{\pi}{6}\right) A C+(4 \sqrt{3}+5)$
D. $\left(\sec \frac{\pi}{6}\right) A B \cot \beta=\cot \left(\frac{\pi}{4}\right) A C(\sqrt{3}+5)$

Answer: B

D Watch Video Solution

8. The acute angle of a rhombus whose side is a mean proportional between its diagonals is
A. 15°
B. 20°
C. 30°
D. 80°

Answer: C

- Watch Video Solution

9. Let side a, b and c of $\triangle A B C$ be related by the relation $\mathrm{a}: \mathrm{b}: \mathrm{c}=3$
: 5 : 4. Altitudes $A D, B E$ and $C F$ are dropped on $B C, C A$ and $A B$, respectively. If $P_{1} D+P_{2} E+P_{3} F=42$, then the value of $\mathrm{a}+\mathrm{b}+\mathrm{c}$ is
A. 1200
B. 120
C. 12
D. none of these

Answer: A

- Watch Video Solution

10. Triangle $A B C$ is right angle at A. The points P and Q are on hypotenuse $B C$ such that $B P=P Q=Q C$.if $A P=3$ and $A Q=4$, then length BC is equal to
A. $3 \sqrt{5}$
B. $5 \sqrt{3}$
C. $4 \sqrt{5}$
D. 7

Answer: A

- Watch Video Solution

11. $A B C$ is a right angled triangle of which A is the right angle, $B D$ is drawn perpendicular to $B C$ meets $C A$ produced in D. If $A B=12, A C=$ $16, B C=20$, then $B D=$
A. 15
B. 25
C. 10
D. 225

Answer: A

12. In a $\triangle A B C$, the median AD is perpendicular to AC . If $\mathrm{b}=5$ and c $=11$, then $\mathrm{a}=$
A. 10
B. 12
C. 14
D. $\sqrt{221}$

Answer: C

- Watch Video Solution

13. $A B C$ is an equilateral triangle where $A B=a$ and P is any point in
its plane such that $\mathrm{PA}=\mathrm{PB}+\mathrm{PC}$. Then $\frac{P A^{2}+P B^{2}+P C^{2}}{a^{2}}$ is
A. 3
B. $\frac{\sqrt{3}}{4}$
C. $\frac{3}{4}$
D. 2

Answer: D

- Watch Video Solution

14. In $\triangle A B C$ if $\tan \left(\frac{A}{2}\right) \tan \left(\frac{B}{2}\right)+\tan \left(\frac{B}{2}\right) \tan \left(\frac{C}{2}\right)=\frac{2}{3}$ then $a+c$
A. 3b
B. 2 b
C. $3 \mathrm{~b} / 2$
D. 4 b
15. In a triangle $A B C$ if $\tan . \frac{A}{2} \tan \cdot \frac{B}{2}=\frac{1}{3}$ and $a b=4$, then the value of c can be
A. 1
B. 1.5
C. 2.5
D. none of these

Answer: C

- Watch Video Solution

16.

In
a
triangle
$A B C$
if
$\cot \left(\frac{A}{2}\right) \cot \left(\frac{B}{2}\right)=c, \cot \left(\frac{B}{2}\right) \cot \left(\frac{C}{2}\right)=a$
$\cot \left(\frac{C}{2}\right) \cot \left(\frac{A}{2}\right)=b$ then $\frac{1}{s-a}+\frac{1}{s-b}+\frac{1}{s-c}=$
A. -1
B. 0
C. 1
D. 2

Answer: D

- Watch Video Solution

17. The perimeter of a triangle $A B C$ right angled at C is 70 and the inradius is 6 , then $|a-b|=$
A. 1
B. 2
C. 8
D. 9

Answer: A

- Watch Video Solution

18. The diagonals of a parallelogram are inclined to each other at an angle of 45°, while its sides a and $b(a>0)$ are inclined to each other at an angle of 30°, then the value of $\frac{a}{b}$ is
A. $\frac{3}{2}$
B. $\frac{3+\sqrt{5}}{2}$
C. $\frac{3+\sqrt{5}}{4}$
D. $\frac{\sqrt{5}+1}{2}$

Answer: D

19. In a triangle ABC if $2 \Delta^{2}=\frac{a^{2} b^{2} c^{2}}{a^{2}+b^{2}+c^{2}}$, then it is
A. equilateral
B. isosceles but not right angled
C. isosceles right angled
D. right angled

Answer: D

- Watch Video Solution

20. If in any triangle, the area $\Delta A B C \leq \frac{b^{2}+c^{2}}{\lambda}$, then the largest possible numerical value of λ is
A. 1
B. 2
C. 3
D. 4

Answer: D

- Watch Video Solution

21. In any triangle ABC , if $2 \Delta a-b^{2} c=c^{3}$, (where Δ is the area of triangle), then which of the following is possible?
A. B is obtuse
B. A is obtuse
C. C is obtuse
D. B is right angle

- Watch Video Solution

22. In $\Delta A B C, a^{2}(s-a)+b^{2}(s-b)+c^{2}(s-c)=$
A. $4 R \Delta(\cos A+\sin B+\cos C)$
B. $4 R \Delta(\sin A+\sin B+\sin C)$
C. $4 R \Delta\left(1+4 \sin . \frac{A}{2} \sin . \frac{B}{2} \sin . \frac{C}{2}\right)$
D. none of these

Answer: C

- Watch Video Solution

23. Let $A B C$ be an equilateral triangle, let KLMN be a rectangle with K , L on BC, M on AC and N on AB . Suppose $A N / N B=2$ and the area of triangle $B K N$ is 6 . The area of the triangle $A B C$ is -
A. 54
B. 108
C. 48
D. none of these

Answer: B

- Watch Video Solution

24. $A B C$ is an acute angled triangle with circumcenter O and orthocentre H . If $\mathrm{AO}=\mathrm{AH}$, then find the angle A .
A. $\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer: C

- Watch Video Solution

25. In a triangle ABC if $\angle A B C=60^{\circ}$, then $\left(\frac{A B-B C+C A}{r}\right)^{2}=$
A. 10
B. 11
C. 12
D. 14

Answer: C

- Watch Video Solution

26. The area of an acute triangle $A B C$ is Δ, the area of its pedal triangle is ' p ' , where $\cos B=\frac{2 p}{\Delta}$ and $\sin B=\frac{2 \sqrt{3} p}{\Delta}$. The value of $8\left(\cos ^{2} A \cos B+\cos ^{2} C\right)$ is
A. 1
B. 2
C. 3
D. none of these

Answer: C

- Watch Video Solution

27. In a triangle $A B C, D$ is a point on $B C$ such that $A D$ is the internal bisector of $\angle A$. Let $\angle B=2 \angle C$ and $\mathrm{CD}=\mathrm{AB}$. Then $\angle A$ is
B. 36°
C. 54°
D. 72°

Answer: D

- Watch Video Solution

28. In $\triangle A B C$, circumrdius is 3 inradius is 1.5 units. The value of a $a \cot ^{2} A+b^{2} \cot ^{3} B+c^{3} \cot ^{4} C$ is
A. $13 \sqrt{3}$
B. $11 \sqrt{6}$
C. 21
D. none of these
29. $\mathrm{AD}, \mathrm{BE}, \mathrm{CF}$ are internal angular bisectors of $\triangle A B C$ and I is the incentre.
$a(b+c)$ sec. $\frac{A}{2} I D+b(a+c)$ sec. $\frac{B}{2} I E+c(a+b)$ sec. $\frac{C}{2} I F=k a b c$, then the value of k is (a) 1 (b) 2 (c) 3 (d) 4
A. 1
B. 2
C. 3
D. 4

Answer: B

- Watch Video Solution

30. In $\triangle A B C$ it is given distance between the circumcentre (O) and orthocentre (H) is $R \sqrt{1-8 \cos A \cos B \cos C}$. If Q is the midopoint of $O H$, then $A Q$ is
A. $\frac{R}{2} \sqrt{1+8 \cos A \sin B \sin C}$
B. $R \sqrt{1+8 \cos A \sin B \sin C}$
C. $2 R \sqrt{1+8 \cos A \sin B \sin C}$
D. $\frac{R}{2} \sqrt{1+8 \sin A \cos B \cos C}$

Answer: A

(D) Watch Video Solution

31. In any $\triangle A B C$ line joiningcircumcentre (O) and incentre (I) is parallel to $A C$, then OI is equal to

$$
\text { A. } R\left|\tan \left(\frac{A-C}{2}\right)\right|
$$

B. $R|\tan (A-C)|$
C. $R\left|\sec \left(\frac{A-C}{2}\right)\right|$
D. $R|\sec (A-C)|$

Answer: A

- Watch Video Solution

32. Let the incircle of a $\triangle A B C$ touches sides BC, CA and AB at D, E and F, respectively. Let area of $\Delta A B C$ be Δ and thatof DEF be Δ^{\prime}. If a, b and c are side of Detla $A B C$, then the value of $a b c(a+b+c) \frac{\Delta^{\prime}}{\Delta^{3}}$ is (a) 1 (b) 2 (c) 3 (d) 4
A. 1
B. 2
C. 3
D. 4

Answer: D

- Watch Video Solution

33. Let H be the orthocentre of triangle $A B C$. Then angle subtended by side BC at the centre of incircle of $\triangle C H B$ is
A. $\frac{A}{2}+90^{\circ}$
B. $\frac{B+C}{2}+90^{\circ}$
C. $\frac{B-C}{2}+90^{\circ}$
D. none of these

Answer: B

34. If in a triangle $A B C, r_{1}+r_{2}+r_{3}=9 r$, then the triangle is necessarily
A. right angled
B. equilateral
C. obtuse angled
D. none of these

Answer: B

- Watch Video Solution

35. In triangle $A B C, r=\frac{R}{6}$ and $r_{1}=7 r$. Then the measure of angle $\mathrm{A}=$
A. $\frac{\pi}{12}$
B. $\frac{\pi}{6}$
C. $\frac{\pi}{4}$
D. $\frac{\pi}{3}$

Answer: D

- Watch Video Solution

36. $\left(r_{2}+r_{3}\right) \sqrt{\frac{r r_{1}}{r_{2} r_{3}}}=$
A. a
B. b
C. c
D. bc

Answer: A
37. In $\Delta A B C$, right angled at $\mathrm{A}, \cos ^{-1}\left(\frac{R}{r_{2}+r_{3}}\right)$ is
A. 30°
B. 60°
C. 90°
D. 45°

Answer: B

- Watch Video Solution

38. In $\triangle A B C$ if $r_{1}=2 r_{2}=3 r_{3}$ and D is the mid point of $B C$ then
$\cos \angle A D C$ is (a) $\frac{7}{25}$ (b) $-\frac{7}{25}$ (c) $\frac{24}{25}$ (d) $-\frac{24}{25}$
A. $\frac{7}{25}$
B. $-\frac{7}{25}$
C. $\frac{24}{25}$
D. $-\frac{24}{25}$

Answer: D

- Watch Video Solution

39. In the ambiguous case if the remaining angles of a triangle with given $\mathrm{a}, \mathrm{b}, \mathrm{A}$ and $B_{1}, B_{2}, C_{1}, C_{2}$ then $\frac{\sin C_{1}}{\sin B_{1}}+\frac{\sin C_{2}}{\sin B_{2}}=$
A. $2 \cos A$
B. $2 \sin B$
C. $2 \tan \mathrm{~A}$
D. $2 \cot \mathrm{~A}$

Answer: A
40. Two sides of a triangle are of lengths $\sqrt{6}$ and 4 and the angle opposite to smaller side is 30 . How many such triangles are possible? Find the length of their third side and area.
A. 0
B. 1
C. 2
D. infinite

Answer: C

- View Text Solution

41. If circumradius of triangle is 2 , then the maximum value of $\frac{a b c}{a+b+c}$ is
A. 1
B. 2
C. 3
D. 4

Answer: D

- Watch Video Solution

42. Let $A B C$ and $A B^{\prime} C$ be two non-congruent triangles with sides $\mathrm{BC}=\mathrm{B}^{\prime} \mathrm{C}=5, \mathrm{AC}=6$, and $\angle A$ is fixed. If A_{1} and A_{2} are the area of the two triangles $A B C$ and $A B^{\prime} C$, then the value of $\frac{A_{1}^{2}+A_{2}^{2}-2 A_{1} A_{2} \cos 2 A}{\left(A_{1}+A_{2}\right)^{2}}$ is
A. $9 / 36$
B. $25 / 36$
C. $25 / 16$
D. $16 / 25$

Answer: B

- Watch Video Solution

Multiple Correct Answers Type

1. Let a, b, c be the sides of a triangle $A B C, a=2 c, \cos (A-C)+\cos B=1$.
then the value of C is
A. $\pi / 6$
B. $\pi / 3$
C. $2 \pi / 3$
D. $5 \pi / 6$

- Watch Video Solution

2. If A, B, C are the angles of a triangle such that $\sin ^{2} A+\sin ^{2} B=\sin ^{2} C$, then
A. $\sin A+\sin B>1$
B. $\tan A \tan B=1$
C. $\sin A+\sin B=1$
D. $\tan \mathrm{A} \cdot \tan \mathrm{B}<1$

Answer: A::B

- Watch Video Solution

3. In $\triangle A B C, \angle C=2 \angle A$ and $\mathrm{AC}=2 \mathrm{BC}$. Then which of the following is/are True?
A. Angles A, B, C are in arithmetic progression
B. Angles A,C,B are in arithmetic progression
C. $\triangle A B C$ is a right angled isosceles triangle
D. $B C^{2}+C A^{2}+A B^{2}=8 R^{2}$, where R is the circum-radius of

$\triangle A B C$

Answer: B::D

D Watch Video Solution

4. $\triangle A B C$ is isosceles with $A B=A C=7 \mathrm{~cm}$ and $B C=9 \mathrm{~cm}$. The height $A D$ from A to $B C$, is 6 cm . Find the area of $\triangle A B C$. What will be the height from C to $A B$ i.e., $C E$?
5. If in a triangle $A B C, \theta$ is the angle determined by $\cos \theta=(a-b) / c$, then
A. $\frac{(a+b) \sin \theta}{2 \sqrt{a b}}=\frac{\cos (A-B)}{2}$
B. $\frac{(a+b) \sin \theta}{2 \sqrt{a b}}=\frac{\cos (A+B)}{2}$
c. $\frac{c \sin \theta}{2 \sqrt{a b}}=\frac{\cos (A-B)}{2}$
D. $\frac{c \sin \theta}{2 \sqrt{a b}}=\frac{\cos (A+B)}{2}$

Answer: A::D

D Watch Video Solution

6. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be the sides $\mathrm{BC}, \mathrm{CA}, \mathrm{AB}$ of $\triangle A B C$ on xy plane. If abscissa and ordinate of vertices of the triangle are integers and R is the
circumradius, then $2 R$ can be equal to
A. $\frac{8}{9} a b c$
B. $a b c$
C. $\frac{9}{8} a b c$
D. $\frac{a b c}{2}$

Answer: A::B::D

- Watch Video Solution

7. In a $\Delta A B C$, if $\tan \frac{A}{2}=\frac{5}{6}, \tan \cdot \frac{B}{2}=\frac{20}{37}$, then which of the following is/are correct ?
A. $\angle B>\angle C$
B. $\angle B<\angle C$
C. $a>b>c$
D. $a<b<c$

Answer: A::C

- Watch Video Solution

8. If area of $\Delta A B C(\Delta)$ and angle C are given and if c opposite to given angle is minimum, then
A. $a=\sqrt{\frac{2 \Delta}{\sin C}}$
B. $b=\sqrt{\frac{2 \Delta}{\sin C}}$
C. $a=\frac{4 \Delta}{\sin C}$
D. $b=\frac{4 \Delta}{\sin ^{2} C}$

Answer: A::B

9. Let 'P' be an interior point of $\triangle A B C$. If $\angle A=45^{\circ}, \angle B=60^{\circ}$ and $\angle C=75^{\circ}$. If $\mathrm{X}=$ area of $\triangle P B C, Y=$ area of $\triangle P A C$ and $\mathrm{Z}=$ area of $\Delta P A B$, then which of the following ratios is/are true?
A. If P is the centroid, then $X: Y: Z$ is $1: 1: 1$
B. If P is the incentre, then $X: Y: Z$ is $2: \sqrt{6}:(\sqrt{3}+1)$
C. If P the orthocentre, then $X: Y: Z$ is $1: \sqrt{3}:(2+\sqrt{3})$
D. If P is the circumcentre, then $X: Y: Z$ is $2: \sqrt{3}: 1$

Answer: A::B::C::D

- Watch Video Solution

10. Let 'l' is the length of median from the vertex A to the side $B C$ of a $\triangle A B C$. Then
A. $4 l^{2}=2 b^{2}+2 c^{2}-a^{2}$
B. $4 l^{2}=b^{2}+c^{2}+2 b c \cos A$
C. $4 l^{2}=a^{2}+4 b c \cos A$
D. $4 l^{2}=(2 s-a)^{2} \sin ^{2} \frac{A}{2}$

Answer: A::B::C::D

- Watch Video Solution

11. A circle having centre as O^{\prime} and radius r^{\prime} touches the incircle of $\Delta A B C$ externally at. F , where F is on BC and also touches its circumcircle internally at G . It O is the circumcentre of $\Delta A B C$ and I is its incentre, then
A. $00 '=R-r '$
B. Perpendicular distance from O to line joining $I \mathrm{O}^{\prime}$ is $\left|\frac{b-c}{2}\right|$
C. Projection of OO' on line joining $I O^{\prime}=r '+R \cos A$
D. $r^{\prime}=\frac{\Delta}{a} \tan ^{2} A$

Answer: A::B::C::D

- Watch Video Solution

12. In triangle ABC , if $r_{1}+r_{2}=3 R$ and $r_{2}+r_{3}=2 R$, then
A. $\angle A=90^{\circ}$
B. $\angle B=45^{\circ}$
C. $\angle C=60^{\circ}$
D. triangle $A B C$ is right angled isosceles

Answer: A::C

- Watch Video Solution

13. The radii r_{1}, r_{2}, r_{3} of the escribed circles of the triangle $A B C$ are in H.P. If the area of the triangle is $24 \mathrm{~cm}^{2}$ and its perimeter is 24 cm , then the length of its largest side is 10 (b) 9 (c) 8 (d) none of these
A. The length of longest side of triangle $A B C$ is equal to 10
B. The radius of circle inscribed in triangle $A B C$ is equal to 4 .
C. The circumradius of triangle $A B C$ is equal to 5 .
D. The sides of triangle $A B C$ are in A.P.

Answer: A::C::D

- Watch Video Solution

1. Let $A B C$ be a triangle in which the line joining the circumecentre and incentre is parallel to base BC of the triangle. Then answer the following questions:

Then range of $\angle A$ is
A. $\left[\frac{\pi}{6}, \frac{\pi}{3}\right]$
B. $\left[\frac{\pi}{3}, \frac{\pi}{2}\right)$
C. $\left[\frac{\pi}{3}, \frac{2 \pi}{3}\right]=\left\{\frac{\pi}{3}\right\}$
D. $\left[0, \frac{\pi}{2}\right]$

Answer: B

- Watch Video Solution

2. Let $A B C$ be a triangle in which the line joining the circumecentre and incentre is parallel to base BC of the triangle. Then answer the

following questions :

If ODEI is a square where O and I stands for circumcentre and incentre, respectively and D and E are the point of perpendicular from O and I on the base $B C$, then
A. $\frac{r}{R}=\frac{3}{8}$
B. $\frac{r}{R}=2-\sqrt{3}$
C. $\frac{r}{R}=\sqrt{2}-1$
D. $\frac{r}{R}=\frac{1}{4}$

Answer: C

D Watch Video Solution

3. Let $A B C$ be a triangle in which the line joining the circumecentre and incentre is parallel to base BC of the triangle. Then answer the
following questions:
If $\angle A=60^{\circ}$, then $\triangle A B C$ is
A. isoceles
B. right angled
C. right angled isosceles
D. equilateral

Answer: D

- Watch Video Solution

4. Incircle of $\triangle A B C$ touches $\mathrm{AB}, \mathrm{BC}, \mathrm{CA}$ at $\mathrm{R}, \mathrm{P}, \mathrm{Q}$, respectively. If
$\frac{2}{A R}+\frac{5}{B P}+\frac{5}{C Q}=\frac{6}{r}$ and the perimeter of the triangle is the smallest integer, then answer the following questions :
$\triangle A B C$ is
A. A. scalene
B. B.isosceles
C. C. equilateral
D. D.right angled

Answer: B

- Watch Video Solution

5. Incircle of $\Delta A B C$ touches $\mathrm{AB}, \mathrm{BC}, \mathrm{CA}$ at $\mathrm{R}, \mathrm{P}, \mathrm{Q}$, respectively. If $\frac{2}{A R}+\frac{5}{B P}+\frac{5}{C Q}=\frac{6}{r}$ and the perimeter of the triangle is the smallest integer, then answer the following questions:

The inradius of incircle of $\triangle A B C$ is
A. 4
B. 3
C. 2
D. 1

Answer: C

- Watch Video Solution

6. Incircle of $\triangle A B C$ touches $\mathrm{AB}, \mathrm{BC}, \mathrm{CA}$ at $\mathrm{R}, \mathrm{P}, \mathrm{Q}$, respectively. If
$\frac{2}{A R}+\frac{5}{B P}+\frac{5}{C Q}=\frac{6}{r}$ and the perimeter of the triangle is the smallest integer, then answer the following questions :

The area of $\triangle A B C$ is
A. 15 sq. units
B. 21 sq. units
C. 24 sq. units
D. 27 sq. units
(Watch Video Solution

