© ${ }^{\text {T doubtnut }}$

India's Number 1 Education App

PHYSICS

BOOKS - RESNICK AND HALLIDAY

PHYSICS (HINGLISH)

CURRENT AND RESISTANCE

Sample Problems

1. What flows through a garden hose at a
volume flow rate $\mathrm{dV} / \mathrm{dt}$ of $450 \mathrm{~cm}^{3} / \mathrm{s}$. What

- View Text Solution

2. (a) The current density in a cylindrical wire of radius $\mathrm{R}=2.0 \mathrm{~mm}$ is uniform across a cross section of the wire and is
$J=2.0 \times 10^{5} \mathrm{~A} / \mathrm{m}^{2}$. What is the current through the outer portion of the wire between radial distances $\mathrm{R} / 2$ and R ?
(b) Suppose, instead, the current density through a cross section varies with radial distance r as $J=a r^{2}, \quad$ in which $a=3.0 \times 10^{11} \mathrm{~A} / \mathrm{m}^{4}$ and r is in meters. What
now is the current through the same outer portion of the wire?

D View Text Solution

3. What is the drift speed of the conduction electrons in a copper wire with radius $r=900 \mu m$ when it has a uniform current
$I=17 m A$? Assume that each copper atom contributes one conduction electron to the
current and the current density is uniform
across the wire's cross section. The density of
copper is $9.0 \times 10^{3} \mathrm{kgm}^{-3}$ and its atomic mass is $63.5 u$.

- Watch Video Solution

4. A rectangular block of iron has dimension
$1.2 \mathrm{~cm} \times 1.2 \mathrm{~cm} \times 1.5 \mathrm{~cm} . \quad$ A potential
difference is to be applied to the block between parallel sides and in such a way that those sides are equipotential surfaces. What is
the resistance of the block if the two parallel
sides are (1) the square ends (with dimensions
$1.2 \mathrm{~cm} \times 1.2 \mathrm{~cm})$ and (2) two rectangular sides (with dimensions $1.2 \mathrm{~cm} \times 15 \mathrm{~cm}$)?

D Watch Video Solution

5. Figure 26-11 shows a swimmer at distance
$D=38.0$ m from a lightning strike to the water,
with current I=78kA. The water has resistivity
$30 \Omega . m$, the width of the swimmer along a radial from the strike is 0.70 m , and his resistance across that width is $4.00 k \Omega$.

Assume that the current spreads through the
water over a hemisphere centered on the strike point. What is the current through the swimmer?

Swimmer at a distance of 38 m from where lightning strikes water.
6. (a) What is the sum free time τ between collisions for the conduction electrons in copper?
(b) The mean free path λ of the conduction electrons in a particular conductor is the average distance traveled by an electron between collisions. What is λ for the conduction electrons in copper, assuming that their effective speed $v_{\text {eff }}$ is $1.6 \times 10^{6} \mathrm{~m} / \mathrm{s}$?
7. You are given a length of uniform heating wire made of nickel-chromium-iron alloy called

Nichrome, it has a resistance R of 72Ω. At what rate is energy dissipated in each of the following situations? (1) A potential difference of 120 V is applied across the full length of the wire (2) The wire is cut in half, and a potential difference of 120 V is applied across the length of each half.

D Watch Video Solution

1. The figure here shows a portion of a circuit.

What are the magnitude and direction of the current i in the lower right-hand wire

- Watch Video Solution

2. The figure shows conduction electrons moving leftward in a wire. Are the following
leftward or rightward. (a) the current I, (b) the current density \bar{J}, (c) the electric field \vec{E} in the wire?

D View Text Solution

3. The figure here shows three cylindrical copper conductors along with their faces areas and lengths. Rank them according to the current through them, greatest first, when the
same potential differnce V is placed across their lengths.

(a)

(b)

(c)

(Watch Video Solution

4. The following tables gives the current i (in amperes) through two devices for several values of potential difference V (in volts). From these data, determine which device does not

Ohm's

Device 1
 Device 2
 V
 $\begin{array}{llll}2.00 & 4.50 & 2.00 & 1.50\end{array}$
 $\begin{array}{llll}3.00 & 6.75 & 3.00 & 2.20\end{array}$
 $\begin{array}{llll}4.00 & 9.00 & 4.00 & 2.80\end{array}$

D Watch Video Solution

5. Can you see how the two wires having different conductivities connected in a circuit will have different values of the electric field
inside them? What will be the sign of excess
charge built up on the interface between two cylindrical conductors as shown in the figure?

D View Text Solution
6. A potential difference V is connected across
a device with resistance R, causing current I
through the device. Rank the following variations according to the change in the rate at which electrical energy is converted to thermal energy due to the following greatest change first. (a) V is doubles with R unchanged. (b) i doubled with R unchanged.
(c) R is doubled with V unchanged. (d) R is doubled with i unchanged.

1. A wire 8.00 m long and 6.00 mm in diameter
has a resistance of $30.0 \mathrm{~m} \Omega$. A potential difference of 23.0 V is applied between the ends. (a) What is the current in the wire?

What is the magnitude of the current density?
(c) Calculate the resistivity of the wire material.

Watch Video Solution

2. In Fig. 26-18a, a $9.00 \vee$ battery is connected
to a resistive strip that consists of three
sections with the same cross-sectional areas
but different conductivities. Figure $26-18 \mathrm{~h}$
gives the electric potential $\mathrm{V}(\mathrm{x})$ versus position
x along the strip. The horizontal scale is set by
$\mathrm{x}=8.00 \mathrm{~mm}$. Section 3 has conductivity
$4.00 \times 10^{7}(\Omega . m)^{-1}$. What is the conductivity of section (a) 1 and (b) 2 ?

a.

D Watch Video Solution

3. In Fig. 26.19, current is set up through a truncated right circular cone of resistivity
731Ω. m lelt radius $\mathrm{d}=1.70 \mathrm{~mm}$. right radius $\mathrm{b}=$ 2.30 mm , and length $\mathrm{L}=3.50 \mathrm{~cm}$. Assume that the current density is uniform across any cross section taken perpendicular to the length.

What is the resistance of the conc?

D Watch Video Solution

4. Kiting during a storm. The legend that Benjamin Franklin flew a kite as a storm approached is only a legend-he was neither
stupid nor suicidal. Suppose a kite string of
radius 2.00 mm extends directly upward by
1.80 km and is coated with a 0.500 mm layer of
water having resistivity $150 \Omega . m$. If the potential difference between the two ends of
the string is 213 MV , what is the current through the water layer? The danger is not this current but the chance that the string draws a lightning strike, which can have a current as large as 500000 A (way beyond just being lethal).

- Watch Video Solution

5. Earth's lower atmosphere contains negative
and positive ions that are produced by
radioactive elements in the soil and cosmic
rays from space. In a certain region, the atmospheric electric field strength is $120 \mathrm{~V} / \mathrm{m}$ and the field is directed vertically down. This
field causes singly charged positive ions, at a density of $640 \mathrm{~cm}^{-1}$ to drift downward and
singly charged negative ions, at a density of $550 \mathrm{~cm}^{-3}$. ? to drift upward (Fig. 26-20). The measured conductivity of the air in that region is $2.70 \times 10^{-14} W(\Omega . m)^{-1}$. Calculate (a) the magnitude of the current densily and (b) the
ion drift speed, assumed to be the same for positive and negative ions.

D Watch Video Solution

6. A potential difference of 6.00 nV is set up
across a 1.50 cm length of copper wire that
has a radius of 2.00 mm . How much charge drifts through a cross section in 4.70 ms ?

D Watch Video Solution

7. Figure $26-21$ shows wire section 1 of diameter $D_{1}=4.00 R$ and wire section 2 of
diameter $\quad D_{2}=1.75 R$, connected by a tapered section. The wire is Copper and carries
a current. Assume that the current is uniformly distributed across any crosssectional area through the wire's width. The
electric potential change V along the length $\mathrm{L}=$
2.00 m shown in section 2 is $10.0 \mu V$. The number of charge carners per unit volume is
$8.49 \times 10^{28} m^{-3}$. What is the drift speed of
the conduction electrons in section 1?

D View Text Solution

8. When 230 V is applied across a wire that is
14.1 m long and has a 0.30 mm radius, the magnitude of the current density is $198 \times 10^{8} \mathrm{~A} / \mathrm{m}^{2}$. Find the resistivity of the wire.

- Watch Video Solution

9. In Fig. 26-22a, a 15Ω resister is connected to
a battery. Figure $26-22 \mathrm{~b}$ shows the increase of thermal energy $E_{\text {th }}$ in the resistor as a
function of time t. The vertical scale is set by
$E_{t h . s}=2.50 \mathrm{~mJ}$, and the herizontal scale is
set by $t_{s}=4.0 s$. What is the electric potential across
the
battery?

$t(\mathrm{~s})$
(Watch Video Solution
10. Nichrome wire consists of a nickel-chromium-iron alloy, is commonly used in heating elements such as on a stove, and has conductivity $2.0 \times 10^{6}(\Omega . m)^{-1}$. If a

Nichrome wire with a cross-sectional area of
$2.3 \mathrm{~mm}^{2}$? carries a current of 5.5 A when a 1.4

V potential difference is applied between its ends, what is the wire's length?

- Watch Video Solution

11. A heater contains a Nichrome wire (resistivity $5.0 \times 10^{-7} \Omega . m$) of length 5.85 m, with an end-to-end potential difference of 112 V and with a dissipation power of 4000 W .
(a) What is the wire's cross-sectional area?

If 100 V is used to obtain the same dissipation rate, what should the length be?
12. An unknown resistor is connected between
the terminals of a 3.00 V battery. Energy is
dissipated in the resistor at the rate of 0.707
W. The same resistor is then connected between the terminals of a 12.0 V battery. At what rate is energy now dissipated?

D Watch Video Solution

13. In Fig. 26.23, a battery of potential differenc
$\mathrm{V}=12 \mathrm{~V}$ is connected to a resistive strip of
resistance $R=4.0 \Omega$. When an electron moves
through the strip from one end to the other,
(a) in which direction in the figure does the electron move, (b) how much work is done on the electron by the electric field in the strip, and (c) how much energy is transferred to the thermal energy of the strip by the electron?

14. Figure 26-24 gives the electric potential
$\mathrm{V}(\mathrm{x})$ along a copper wire carrying uniform
current, from a point of higher potential
$V=12.0 \mu V$ at $\mathrm{x}=0$ to a point of zero potential at $x=3.00 \mathrm{~m}$. The wire has a 0 radius of 2.20 mm . What is $\mathrm{x}(\mathrm{m})$ the current in the

- View Text Solution

15. A 890 W radiant heater is constructed to operate at 115 V . (a) What is the current in the heater when the unit is operating? (b) What is the resistance of the heating coil? (c) How much thermal energy is produced in 5.00 h ?

D Watch Video Solution

16. Wire C and wire D are made from different materials and have length $L_{C}=L_{D}=1.0 \mathrm{~m}$.

The resistivity and radius of wire C are
$2.0 \times 10^{-6} . \Omega m$ and 1.00 mm , and those of
wire D are $1.0 \times 1.0^{-6} \Omega$. m. and 0.50 mm . The
wires are joined as shown in Fig. 26-25, and a current of 2.0 A is set up in them. What is the electric potential difference between a) points

1 and 2 and (b) points 2 and 3 ? What is the rate at which energy is dissipated between c)
points 1 and 2 and (d) points 2 and 3?

D View Text Solution

17. A small but measurable current of $1.2 \times 10^{-10} A$ exists in a copper wire whose diameter is 3.0 mm . The number of charge carriers per unit volume is $8.49 \times 10^{28} m^{-3} m$.

Assuming the current is uniform, calculate the
(a) current density and (b) electron drift speed.

D View Text Solution

18. The current through the battery and resistors 1 and 2 in Fig. 26-26a is 1.50 A. Energy
is transferred from the current to thermal energy $E_{t h}$ in both resistors. Curves 1 and 2 in

Fig. 26-26b give that thermal energy Ein for resistors 1 and 2, respectively, as a function of
time i. The vertical scale is set by
$E_{t h . s}=40.0 \mathrm{~mJ}$ and the horizotal scale is set by $t_{s}=5.00 \mathrm{~s}$. What is the power of the

battery?

D View Text Solution

19. A copper wire of cross-sectional area
$2.40 \times 10^{-6} \mathrm{~m}^{2}$ and length 4.00 m has a
current of 2.00 A uniformly distributed across
that area. (a) What is the magnitude of the electric field along the wire? (b) How much electrical energy is transferred to thermal energy in 30 min ?

D Watch Video Solution

20. For a current set up in wire for 28.0 d , a total of 1.36×10^{26} electrons pass through any cross section across the wire's width at a steady rate. What is the current?
21. The current-density magnitude in a certain
circular wire is $J=\left(2.75 \times 10^{10} A / m^{4}\right) r^{2}$, where r is the radial distance out to the wire's radius of 3.00 mm . The potential applied to the wire (end to end) is 80.0 V . How much energy is converted to thermal energy in 1.00 h?

D Watch Video Solution

22. A charged belt, 50 cm wide, travels at 30 m / s between a source of charge (electrons) and a sphere. The belt carries charge into the sphere at a rate corresponding to 76 A . (a)

Compute the surface charge density on the belt. (b) What is the number density (number per unit area) of the electrons on the belt?
23. A wire initially has length L_{0} and resistance
5.00Ω. The resistance is to be increased to
45.0Ω by stretching the wire. Assuming that the resistivity and density of the material are unaffected by the stretching, find the ratio of the new length to L_{0}.

- Watch Video Solution

24. A human being can be electrocuted if a
current as small as 50 mA passes near the
heail. An electrician working with sweaty hands makes good contact with the two conductors he is bolding one in each hand. If his resistance is 2100Ω. What might the fatal voltage be?

D Watch Video Solution

25. A 120 V potential difference is applied to a space heater that dissipates 1500W during operation. (a) What is the resistance during operation? (b) At what rate do electrons flow
through any cross section of the heater element?

D Watch Video Solution

26. A certain wire has a resistance R. What is
the resistance of a second wire, made of the same material, that is twice as long and has twice the diameter?
27. Figure 26-27 a shows a rod of resistive material. The resistance per unit length of the rod increases in the positive direction of the x axis. At any position x along the rod, the resistance $d R$ of a narrow (differential) section of width $d x$ is given by $d R=5.00 x d x$, where $d R$ is in ohms and x is in meters. Figure 26-27 shows such a narrow section. You are to slice off a length of the rod between $x=0$ and some position $x=L$ and then connect that length to a battery with potential difference $\mathrm{V}=8.0 \mathrm{~V}$ (Fig.

26-27c). You want the current in the length to
transfer energy to thermal energy at the rate of 180 W . At what position $x=L$ should you cut the rod?

D Watch Video Solution
28. A fuse in an electric circuit is a wire that is
designed to melt, and thereby open the circuit, if the current exceeds a predetermined value. Suppose that the material to be used in
fise melts whien the current derisity rises to
$440 \frac{A}{c} m^{2}$. What radius of cylindrical wire
should be used to make a haal will little current to 6.0A?

- Watch Video Solution

29. How long does it take electrons to get
from a car battery to the starting motor?

Assume the current is 285 A and the electrons travel through a copper wire with crosssectional area $0.17 \mathrm{~cm}^{2}$ and length 0.43 m . The number of charge carriers per unit volume is $8.49 \times 10^{28} m^{-3}$.

D Watch Video Solution
30. What is the current in a wire of radius $R=$ 2.67 mm if the magnitude of the current density is given by
$J_{n}=J_{0} r / R$ and $(b) J_{b}=J_{0}(1-r / R), \quad$ in
which r is the radial distance and
$J_{0}=5.50 \times 10^{4} A / m^{2} ?$
(c) Which function maximizes the current density near the wire's surface?

Watch Video Solution

31. A certain cylindrical wire carries current. We draw a circle of radius r around its central axis in Fig. 26-28a to determine the current i within
the circle. Figure $26-28 \mathrm{~b}$ shows current i as a
function of r^{2}. The vertical scale is set by
$i_{s}=4.0 \mathrm{~mA}$, and the horizontal scale is set by $r_{s}^{2}=8.0 \mathrm{~mm}^{2}$. (a) Is the current density uniform? (b) If so, what is its magnitude? (c)

What is the current between $r=0$ and $r=2.0$

C\&y:re そ. 26 Problem 31 .
mm ?

D Watch Video Solution

32. Figure 26-29a gives the magnitude $E(x)$ of the electric fields that have been set up by a battery along a resistive rod of length 9.00 mm (Fig. 26-296). The vertical scale is set by
$E_{s}=8.00 \times 10^{3} \mathrm{~V} / \mathrm{m}$. The rod consists of
three sections of the same material but with different radii. (The schematic diagram of Fig. 26.29b does not indicate the differencet radii).

The radius of section 3 is 1.70 mm . What is the radius of (a) section 1 and (b) section 2?

33. Two conductors are made of the same material and have the same length. Conductor
A is a solid wire of radius 1.0 mm . Conductor B is a hollow tube of outside radius 2.2 mm and inside radius 1.0 mm . What is the resistance rate R_{A} / R_{B} measured between their ends?

D Watch Video Solution

34. Near Earth the density of protons in the solar wind (a stream of particles from the Sun)
can be $4.63 \mathrm{~cm}^{-3}$ and their suced can be 391
km / s. (a) Find the current density of these protons. (b) If Earth's magnetic field did not deflect the protons, what total current would Earth receive?

D Watch Video Solution

35. An isolated conducting sphere has a 20 cm
radius. One wire carries a current of 1.000002

0 A into it. Another wire carries a current of 1.0000000 A out of it. How long would it take
for the sphere to increase in potential by 1000

V?

D Watch Video Solution

36. The magnitude of the current density in a certain lab wire with a circular cross section of radius $\mathrm{R}=2.50 \mathrm{~mm}$ is given by
$J=\left(3.00 \times 10^{8}\right) r^{2}$, with J in amperes per square meter and radial distance rin meters.

What is the current through the outer section bounded by $r=0.900 \mathrm{R}$ and $\mathrm{r}=\mathrm{R}$?

Practice Questions Single Corret Choice Type

1. The following figure shows current in a part of electric circuit, then current I is

A. 1.7A
B. 3.7 A
C. 1.3 A
D. 1A

Answer: A

- Watch Video Solution

2. A wire of length I is drawn such that its diameter is reduced to half of its original diameler. If the initial resistance of the wire were 10Ω. its resistance would become
A. 40Ω
B. 60Ω
C. 120Ω
D. 160Ω

Answer: D

D Watch Video Solution

3. A wire of resistance 1Ω is elongated by 10%.

The resistance of the elongated wire is
A. 1.1Ω
B. 11.1Ω
C. 1.21Ω
D. 12.1Ω

Answer: C

D Watch Video Solution

4. A $5^{\circ} C$ rise in the temperature is observed in a conductor by passing some current. When
the current is doubled, then rise in

temperature will be equal to

A. $5^{\circ} C$
B. $20^{\circ} \mathrm{C}$
C. $15^{\circ} \mathrm{C}$
D. $25^{\circ} \mathrm{C}$

Answer: B
(Watch Video Solution
5. The masses of the three wires of copper are in the ratio 5:3:1 and their lengths are in the ratio $1: 3: 5$. The ratio of their electrical resistances is
A. $1: 3: 5$
B. 5:3:1
C. $1: 15: 125$
D. $125: 15: 1$

Answer: C
6. In a copper voltmeter, mass deposite in 30 seconds is ' m ' gram. If the time-current graph is as shown in figure. $E C E$ of copper is

A. $m / 2$
B. 2 m
C. 0.5 m
D. 0.7 m

Answer: A

- Watch Video Solution

7. The resistivity of a wire
A. Varies with its length
B. Varies with its mass
C. Varies with it cross section

D. Is independent of length, cross section

and mass of the wire

Answer: D

D Watch Video Solution

8. When a current flows in a conductor, the order of magnitude of drift velocity of electrons through it is :
A. $10^{-7} \mathrm{~cm} / \mathrm{s}$
B. $10^{-2} \mathrm{~cm} / \mathrm{s}$
C. $10^{4} \mathrm{~cm} / \mathrm{s}$
D. $10^{10} \mathrm{~cm} / \mathrm{s}$

Answer: B

- Watch Video Solution

9. Assume that each atom of copper contributes one free electron. Density of Cu is
$9 \mathrm{~g} / \mathrm{cm}^{3}$ and atomic weight is 63 g . If current
flowing through a Cu wire of 1 mm diameter is

11 A, drift velocity of clectrons will be
A. $0.1 \mathrm{~mm} / \mathrm{s}$
B. $0.2 \mathrm{~mm} / \mathrm{s}$
C. $0.3 \mathrm{~mm} / \mathrm{s}$
D. $0.5 \mathrm{~mm} / \mathrm{s}$

Answer: A

D Watch Video Solution
10. In an electrical cable there is a single wire of radius 9 mm of copper. Its resistance is 5Ω.

The cable is replaced by 6 different insulated copper, wires the radius of each wire is 3 mm .

Now the total resistance of the cable will be
A. 7.5Ω
B. 45Ω
C. 90Ω
D. 270Ω
11. If $\mathrm{n}, \mathrm{e}, \tau, \mathrm{m}$, are representing electron density charge, relaxation time and mass of an electron respectively then the resistance of wire of length 1 and cross sectional area A is given by
A. $\frac{m l}{\mathrm{ne}^{2} \tau A}$
B. $\frac{2 m \tau A}{\mathrm{ne}^{2} l}$
C. $\frac{\mathrm{ne}^{2} \tau A}{2 m} \quad \frac{l}{B}$
D. $\frac{\mathrm{ne}^{2} m}{2 \tau} \frac{l}{A}$

Answer: A

D Watch Video Solution

12. In which one of the following situations does a conventional electric current flow due north?
A. Protons in a beam are moving due south
B. A water molecule is moving due north
C. Electrons in a beam are moving due south
D. Electrons a wire connected to a battery
are moving from south to north

Answer: C

D Watch Video Solution

13. A conducting ring of radius R has charge Q distributed unevenly over it. If it rotates with
an angular velocity ω, the equivalent current

will be

A. Zero
B. $Q \omega$
C. $\frac{Q \omega}{2 \pi}$
D. $\frac{Q \omega}{2 \pi R}$

Answer: C

D Watch Video Solution

14. A long conductor having charge q , with charge density λ is moving with a velocity 2 v parallel to its own axis. The convectional current I due to motion of conductor is

$$
\text { A. } I=\lambda v / 2
$$

B. $I=2 \lambda v$
C. $I=\lambda v$

$$
\text { D. } I=3 \lambda v
$$

Answer: B
15. In an ionic solution, sodium ions $\left(N a^{+}\right)$ are moving to the right and chlorine ions
$\left(C I^{-}\right)$are moving to the left. In which direction is the current due to the motion of
(1) the sodium ions and (2) the chlorine ions?
A. Both are to the right
B. Current due to $N a^{+}$is to the left,
current due to Cl^{-}is to the right
C. Current due to $N a^{+}$is to the right, current due to Cl^{-}is to the left D. Both are to the left

Answer: A

D Watch Video Solution

16. When you flip a switch to turn on a light, the delay before the light turns on is determined by:
A. The speed of the electric field moving in
the wire
B. The density of electrons in the wire
C. The drift speed of the electrons in the wire
D. The number of election collisions per
second

Answer: C

17. The following ligure shows the cross section of a wire. Which of the following statement(s) about current (I) and drift velocity (v) is true?

A. $I_{A}=I_{B}=I_{C}$ and $v_{A}=v_{C}>v_{B}$
B. $I_{A}=I_{B}=I_{C}$ and $v_{A}>v_{C}>v_{B}$
C. $I_{A}=I_{B}<l_{C}$ and $v_{A}=v_{C}=v_{B}$

$$
\text { D. } I_{A}=I_{B}=l_{C} \text { and } v_{A}<v_{C}<v_{B}
$$

Answer: D

D View Text Solution

18. A hollow copper tube of 5 m length has got external diameter equal to 10 cm and its walls
are 5 mm thick. The specific resistance of
copper is $1.7 \times 10^{-8} \Omega \mathrm{~m}$. The resistance of
the copper tube, approximately

$$
\text { A. } 5.4 \times 10^{-3} \Omega
$$

B. $5.4 \times 10^{-9} \Omega$
C. $5.4 \times 10^{-5} \Omega$
D. $5.4 \times 10^{-7} \Omega$

Answer: C

D View Text Solution

19. A copper wire is fabricated that has a gradually increasing diameter along its length as shown in the following figure. If an electric
current is moving through the wire, which
quantities vary along the length of the wire?
A. Current
B. Current and current density
C. Current density
D. Resistivity and current

Answer: C

20. The magnitude of the electric field within a conducting wire depends on which of the following quantities?
A. Potential difference, wire diameter, wire
length, and wire conductivity

B. Potential ditorence and wire

conductivity only
C. Potential difference, wire length, and
wire conductivity only
D. Wire diameter, wire length, and wire conductivity only

Answer: C

D Watch Video Solution

21. Which one of the following statements
concerning the electric field inside a
conductor is true if electrons are moving from right to left in a conducting wire?
A. The electric field must be zero in this
case
B. The electric field is directed
perpendicular to the direction the
electrons are moving
C. The electric field is directed toward the
left
D. The electric field is directed toward the
right

- Watch Video Solution

22. Wires A and B are identical except that each is made from a different material. The one end of wire A is connected to one end of wire B. The two remaining ends are connected across a battery and current flows through the two wires. Which one of the following statements concerning this situation is true?
A. The potential difference across the two
wires is the same, but the current
through each wire is different
B. The potential difference across the two
wires is the same, and the current
through each wire is the same
C. The potential difference across the two
wires is different, but the current
through each wire is the same
D. Both the potential difference across the
two wires. and the current through each
wire is different

Answer: C

- Watch Video Solution

23. A conductor of area of cross-section. A
having charge carries, each having a charge q
is subjected to a polential difference V . The number density of charge carries in the conductor is an und the charge carries (along
with Their random) are moving with a velocity.
If s is the conductivity of the conductor and ris
the average relaxation

$$
\begin{aligned}
& \text { A. } \tau=\frac{m}{n q^{2} \sigma} \\
& \text { B. } \tau=\frac{m \sigma}{n q^{2}} \\
& \text { C. } \tau=\frac{2 m \sigma}{n q^{2}} \\
& \text { D. } \tau=\frac{m \sigma}{2 n q^{2}}
\end{aligned}
$$

Answer: B

D View Text Solution

24. How does the resistivity of a metal wire change if either the number of electrons per
unit volume increases or the mean free time increases?
A. In both cases, the resistivity will increase
B. In both cases, the resistivity will
decrease
C. Increasing the number of electrons will
increase the resistivity, but it will
decrease if the mean free time
D. Increasing the number of electrons will
decrease the resistivity, but it will

increase if the mean free time increases

Answer: B

D Watch Video Solution

25. The given figure represents a portion of a
wire in a circuit. A current is flowing in the wire
in the direcnon shown. Under the convention
that is positive charge that flows, the electric
field point field in the direction of the charge rent. There will be some charge
accumulation at the bend to change the direction of the electric field. What is the direction of the electric field due to charges at the bend?
A.

Answer: D

D View Text Solution

26. Lengths and cross-sectional areas of four pieces of nichrome wire are (L,A), (2L, A), (L, 2A) and $(2 L, 2 A)$, respectively. If the same voltage difference V is applied across their lengths, which of the wires will get the hottest in steady state?
A. Wire (L,A)
B. Wire (2L,A)
C. Wire ($\mathrm{L}, 2 \mathrm{~A}$)

D. Wire (2L,2A)

Answer: C

D Watch Video Solution

27. The insulated wiring in a house can safely
carry a maximum current of 18 A . The electrical
outlets in the house provide an alternating voltage of 120 V . A space heater when plugged
into the ouilet opsates at an average power of

1500 W. How many space heaters can safely. be
plugged into a single electrical outlet and turned on for an extended period of time?
A. Zero
B. One
C. Two

D. Three

Answer: B

D View Text Solution
28. If the current in an electric bulb decreases
by 0.5%, the power in the bulb decreases by approximately
A. 0.005
B. 0.01
C. 0.02
D. 0.002

Answer: B

D Watch Video Solution
29. When a $500-W$ electric and a $500-W$
heater operate at their rates voltages, the
filament of the bulb reaches a much higher temperature than the filament of the heater.

The most important reason for this that
A. Their resistances are not equal
B. They are made of different materials
C. Their dimensions are very different
D. The emissivity of their surface is different

Answer: C

D Watch Video Solution

30. The charge flowing in a conductor varies
with times as $Q=a t-b t^{2}$. Then, the current
A. Decreases linearly with time
B. Reaches a maximum and then decreases
C. Falls to vero after time $t=a / 2 b$
D. Changes at the rate of $-2 b$

Answer: A::C::D

- Watch Video Solution

31. E denotes electric field in a uniform conductor, I corresponding current through
it, v_{d} velocity of electrons and P denotes
thermal power produced in the conductor, then which of the following graph is correct?

Answer: A::B::D

D Watch Video Solution
32. A voltmeter and an ammeter are joined, in series to an ideal cell, giving reading V and A respectively. If a resistance equal to the resistance of the ammeter is now joined in parallel to the ammeter then :
A. V will not change.
B. V will increase slightly.
C. A will become exactly half of its initial
value.

D. A will become slightly more than half of

its initial value.

Answer: B::D

D Watch Video Solution

33. A current passes through a wire of nonuniform cross-section. Which of the following quantites are independent of the cross section?
A. Free electron density
B. Current density
C. Drift speed
D. The charge crossing in a given time interval

Answer: A::D
(D) Watch Video Solution
34. A uniform wire of resistance R is slaped into a regular n-sided polygon (n is seven). The equivalent resistance between any two corners can have :
A. The maximum value $\mathrm{R} / 4$
B. The maximum value R / n
C. The minimum value $\mathrm{R} \frac{n-1}{n^{2}}$
D. The minimum value R / n

Answer: A:C
35. A copper strip $A B$ and an iron strip $A C$ are joined at A. The junction A is maintained at $0^{\circ} C$ and the free ends B and C are maintained at $100^{\circ} \mathrm{C}$. There is a potential difference between
A. The free ends B and C
B. The two ends of copper strip
C. The two ends of iron strip
D. The junction of copper end and iron end

D Watch Video Solution

36. When no current is passed through a conductor,
A. The free electrons do not move
B. The average speed of a free electron
over a large period of time is zero
C. The average thermal velocity of a free
electromover large period of time is zero
D. The average of thermal velocity of all the
free electrons at an istant is zero

Answer: C::D

D Watch Video Solution

37. Which of the following statements is/are correct?
A. Resistivity of electrolytes decreases on
increasing temperature
B. Resistance of mercury falls on
decreasing its temperature
C. When joined in series, a 40 W bulb glows
more than a 60 W bulb
D. Resistance of a 40 W bulb is less than
the resistance of a 60 W bulb

Answer: A::B::C

38. Which one of the following statements is false?
A. The electrons in a wire carrying an
electrical current normally move very
slowly $(<1 m / s)$
B. A battery supplies the same current to
any object to which it is connected
C. The electric current leaving the positive terminal of a battery is the same as the
current returning to the negative
terminal
D. A conductor in which an electric current
is flowing has an electric field in its
interior

Answer: A::B

- Watch Video Solution

39. Which of the following statements are true for a metallic conductor ?
A. The electrical conductivity depends on
the mass of atoms
B. The electrical conductivity decreases
with rise in temperature
C. The current density depends upon the
drift velocity of electronis

D. The electrical conductivity increases with

 increase in voltage across it
Answer: A::B::C

D Watch Video Solution

Practice Questions Linked Comprehension

1. The alternate discs of iron and carbon,
having same area of cross-section are cemented together to make a cylinder whose
temperature coefficient of resistivity is zero.

The change in temperature in two alternate discs is same. The ratio of their thickness and ratio of heat produced in them is found out.

The resistivity of iron and carbon at $20^{\circ} C$ are 1×10^{-7} and $3 \times 10^{-5} \Omega m$ and their temperature coefficient of resistance are $5 \times 10^{-3 \circ} C$ and $-7.5 \times 10^{-4 \circ} C$,
respectively, Thermal expansion is neglected.

Here,
$\triangle R_{1}+$
$\triangle R_{2}=0$
(where
$\triangle R_{1}$, and $\triangle R_{2}$, are the increase in resistances of iron and carbon, respectively, with the rise in temperature) because
combined temperature coefficient of resistivity
is given as zero.

Ratio of their thickness is
A. 54
B. 45
C. 35
D. 21

Answer: B

D View Text Solution
2. The alternate discs of iron and carbon, having same area of cross-section are cemented together to make a cylinder whose temperature coefficient of resistivity is zero.

The change in temperature in two alternate discs is same. The ratio of their thickness and ratio of heat produced in them is found out.

The resistivity of iron and carbon at
$20^{\circ} C$ are 1×10^{-7} and $3 \times 10^{-5} \Omega m$ and
their temperature coefficient of resistance are
$5 \times 10^{-3 \circ} C$ and $-7.5 \times 10^{-4 \circ} C$,
respectively, Thermal expansion is neglected.

Here,
$\triangle R_{1}$, and $\triangle R_{2}$, are the increase in resistances of iron and carbon, respectively, with the rise in temperature) because combined temperature coefficient of resistivity is given as zero. Ratio of heat produced in them is
A. 0.51
B. 1
C. 0.15
D. 2

Answer: C

D View Text Solution

3. The alternate discs of iron and carbon,
having same area of cross-section are cemented together to make a cylinder whose temperature coefficient of resistivity is zero.

The change in temperature in two alternate discs is same. The ratio of their thickness and ratio of heat produced in them is found out.

The resistivity of iron and carbon at
$20^{\circ} C$ are 1×10^{-7} and $3 \times 10^{-5} \Omega m$ and
their temperature coefficient of resistance are
$5 \times 10^{-3 \circ} C$ and $-7.5 \times 10^{-4 \circ} C$,
respectively, Thermal expansion is neglected.

Here,
$\triangle R_{1}+\triangle R_{2}=0$
(where
$\triangle R_{1}$, and $\triangle R_{2}$, are the increase in resistances of iron and carbon, respectively,
with the rise in temperature) because combined temperature coefficient of resistivity is given as zero.

A copper wire is stretched to make it 1%
longer. The percentage change in its resistance is Electrical resistance of certain
materials, known as super conductors changes
abruptly from a non zero value to zero as their temperture is lowered below a critical temperature $T_{c}(0)$ An interesting property of superconductors is that their critical temperature becomes smaller than $T_{c}(0)$ if they are placed in a magnetic field, that is, the critical temperature $T_{c}(B)$ is a function of the magnetic field strength B. The dependence of
$T_{c}(P)$ on magnetic field is shown in the below figure.

A. 0.002

B. 0.01
C. 0.015
D. 0.025

Answer: A

D View Text Solution

4. Electrical resistance of certain materials, known as superconductors, changes abruptly from a nonzero value of zero as their temperature is lowered below a critical
temperature $T_{C}(0)$. An interesting property of super conductors is that their critical temperature becomes smaller than $T_{C}(0)$ if they are placed in a magnetic field, i.e., the critical temperature $T_{C}(B)$ is a function of the magnetic field strength B. The dependence of $T_{C}(B)$ on B is shown in the figure.

In the graphs below, the resistance R of a
superconductor is shown as a function of its
temperature T for two different magnetic
fields B_{1} (solid line) and B_{2} (dashed line). If B_{2}
is larget than B_{1} which of the following graphs shows the correct variation of R with T in these fields?

B.

C.

Answer: A

- Watch Video Solution

5. Electrical resistance of certain materials, known as superconductors, changes abruptly
from a non-zero value to zero as their temperature is lowered below a critical temperature $T_{c}(0)$ An interesting property of
superconductors is that their critical
temperature becomes smaller than $T_{c}(0)$ if they are placed in a magnetic field, that is, the critical temperature $T_{c}(B)$ is a function of the magnetic field strength B. The dependence of
$T_{c}(B)$ on magnetic field is shown in the below figure .

A superconductor has $T_{c}(0)=100 K$. When a magnetic field of 7.5 T is applied, its T_{c}
decreases to 75 K . For this material, one can definetly say that when

$$
\begin{aligned}
& \text { А. } B=5 T, T_{C}(B)=80 K \\
& \text { В. } B=5 T, 75 K<T_{c}(B)<100 K \\
& \text { С. } B=10 T, 75 K<T_{c}<100 K \\
& \text { D. } B=10 T, T_{c}=70 K
\end{aligned}
$$

Answer: B

- View Text Solution

Column I

Column II

(a) A conductor of larger length is connected across the battery instead of conductor of shorter length, made of same material
(h) The temperature of the connected conductor does not change whon connected to the battery
(c) The graph between V and l is a straight line passing through the length of the origin
(d) A conductor of variable area of cross-scction is connected across a battery of voltage V
(p) A constant curtent flows through the conductor
(q) The current density is not same throughout conductor
(r) The conductor is a conductor but does not be an ohmic resistor
(s) The resistivity of the conductor does not change

Column I
(a) emf
(b) current
(c) Superconductor
(d) Resistance

Column II

(p) Motion of electrons in a closed path
(q) Motion of electrons through a conductor without any collision
(r) Motion of electrons in a definite direction
(s) The collision of electrons while moving through the conductor

- Watch Video Solution

3.

Match
the

Column I	Column II
(a) The fuse wire (p) of nickel-chromium alloy (b) The heating wire (q) of tin-lead alloy (c) The best connecting wire (r) of silver metal (d) The standard (s) of copper manganese-nickel resistance coil alloy	

4. There are mainly two types of combinations of resistors in a circuit, series and parallel. In the given table, Column I shows voltages of different arrangements of resistors, Column II shows different arrangement of resistors and

Column III shows currents of different arrangements of resistors.

What are the conditions when resistor is in

the parallel network?

A. (I) (ii) (J)
B. (IV) (ii) (M)
C. (II) (ii) (J)
D. (I) (iii) (J)

- Watch Video Solution

5. There are mainly two types of combinations
of resistors in a circuit, series and parallel. In
the given table, Column I shows voltages of different arrangements of resistors, Column II shows different arrangement of resistors and

Column III shows currents of different arrangements of resistors.

What are the conditions when resistors are in mixed combination, that is, parallel and series

combination respectively?

A. (IV) (iv) (K)

B. (III) (iv) (M)

C. (II) (iii) (L)
D. (I) (i) (M)

D View Text Solution

6. There are mainly two types of combinations of resistors in a circuit, series and parallel. In the given table, Column I shows voltages of different arrangements of resistors, Column II shows different arrangement of resistors and

Column III shows currents of different arrangements of resistors.

What are the conditions when resistors are in mixed combination, that is series and parallel

combination respectively?

A. (III) (i) (L)
B. (I) (i) (J)
C. (IV) (i) (L)
D. (II) (iii) (M)

Answer: C

D View Text Solution

7. Electrical current is the flow of charged

particles. The electric current flows through a

wire the same way as how water moves in a
river. The electricity is nothing but the flow of
electrons.

Column I	Column II	Column III
(I) Direct Current	(i) based on Kirchoff's current law.	(J) $\sum V_{a b d a}=0$
(II) Loop Current	(ii) electric charge changes the direction periodically	(K) $\sum_{i} I_{1}=0=I_{1}+I_{2}+I_{3}$
(III) Alternating Current	(iii) unidirectional flow ofelectric charge	(L) produced by the sources such as batteries
(IV) Node Voltage	(iv) based on Kirchoff's voltage law.	(M) produced by alternator

What does the graph signify?

A. (II) (iv) (J)
B. (IV) (i) (M)
C. (I) (ii) (L)
D. (III) (iv) (K)

Answer: D

8. Electrical current is the flow of charged

 particles. The electric current flows through a wire the same way as how water moves in a river. The electricity is nothing but the flow of electrons.| Column I | Column II | Column III |
| :---: | :---: | :---: |
| (I) Direct Current | (i) based on Kirchoff's current law. | (J) $\sum V_{a b d a}=0$ |
| (II) Loop Current | (ii) electric charge changes the direction periodically | (K) $\sum_{i} I_{1}=0=I_{1}+I_{2}+I_{3}$ |
| (III) Alternating Current | (iii) unidirectional flow of electric charge | (L) produced by the sources such as batteries |
| (IV) Node Voltage | (iv) based on Kirchoff's voltage law. | (M) produced by alternator |

What does the circuit diagram signify?

A. (III) (i) (K)
B. (IV) (i) (J)
C. (III) (iii) (M)
D. (III) (ii) (M)

Answer: A
9. Electrical current is the flow of charged
particles. The electric current flows through a
wire the same way as how water moves in a
river. The electricity is nothing but the flow of electrons.

Column I	Column II	Column III
(I) Direct Current	(i) based on Kirchoff's current law.	(J) $\sum V_{\text {abda }}=0$
(II) Loop Current	(ii) electric charge changes the direction periodically	(K) $\sum_{i} I_{i}=0=I_{1}+I_{2}+I_{3}$
(III) Alternating Current	(iii) unidirectional flowofelectric charge	(L) produced by the sources such as batteries
(IV) Node Voltage	(iv) based on Kirchoff's voltage law.	(M) produced by alternator

What does the graph signify?

D View Text Solution

Practice Questions Integer Type

1. The length of a potentiometer wire is 10 cm .

A cell of emf E is balanced at a length $10 / 3 \mathrm{~cm}$
from the positive end of the wire. If the length
of the wire is increased by 5 cm , at what distance (in cm) from positive end will the same cell give a balance point?

D Watch Video Solution

2. The following figure shows a part of complete circuit. The current in various
branches in steady state are shown in the
figure. What is the energy stored in capacitor
unit

D Watch Video Solution
3. A spherical drop of capacitane $2 \mu F$ is broken into eight drops of equal radius. Then
the capacitance of each small drop is (in μF)

- Watch Video Solution

