© 'doubtnut

India's Number 1 Education App

MATHS

BOOKS - CENGAGE PUBLICATION

STRAIGHT LINES

Illustration

1. Find the equation of line passing through point $(2,3)$ which is
(i) parallel of the x-axis
(ii) parallel to the y -axis

- Watch Video Solution

2. Find the equation of line passing through point $(2,-5)$ which is
(i) parallel to the line $3 x+2 y-4=0$
(ii) perpendicular to the line $3 x+2 y-4=0$

- Watch Video Solution

3. Find the equation of the perpendicular bisector of the line segment joining the points $A(2,3)$ and $B(6,-5)$.

- Watch Video Solution

4. Find the locus of a point P which moves such that its distance from the line $y=\sqrt{3} x-7$ is the same as its distance from $(2 \sqrt{3},-1)$

- Watch Video Solution

5. Consider a triangle with vertices $A(1,2), B(3,1)$, and $C(-3,0)$.

Find the equation of altitude through vertex A the equation of median through vertex A the equation of internal angle bisector of $\angle A$
6. Find the coordinates of the foot of the perpendicular drawn from the point $P(1,-2)$ on the line $y=2 x+1$. Also, find the image of P in the line.

- Watch Video Solution

7. If the line $\left(\frac{x}{a}\right)+\left(\frac{y}{b}\right)=1$ moves in such a way that $\left(\frac{1}{a^{2}}\right)+\left(\frac{1}{b^{2}}\right)=\left(\frac{1}{c^{2}}\right)$, where c is a constant, prove that the foot of the perpendicular from the origin on the straight line describes the circle $x^{2}+y^{2}=c^{2}$.

- Watch Video Solution

8. In what ratio does the line joining the points $(2,3)$ and $(4,1)$ divide the segment joining the points $(1,2)$ and $(4,3)$?
9. $A B C D$ is a square whose vertices are $A(0,0), B(2,0), C(2,2)$, and $D(0,2)$. The square is rotated in the $X Y$ - plane through an angle 30° in the anticlockwise sense about an axis passing though A perpendicular to the $X Y$ - plane. Find the equation of the diagonal $B D$ of this rotated square.

- Watch Video Solution

10. In a triangle $A B C$, side $A B$ has equation $2 x+3 y=29$ and side $A C$ has equation $x+2 y=16$. If the midpoint of $B C$ is $(5,6)$, then find the equation of $B C$.

- Watch Video Solution

11. Two consecutive sides of a parallelogram are $4 x+5 y=0$ and $7 x+2 y=0$. If the equation of one diagonal is $11 x+7 y=9$, find the equation of the other diagonal.
12. If one of the sides of a square is $3 x-4 y-12=0$ and the center is $(0,0)$, then find the equations of the diagonals of the square.

- Watch Video Solution

13. A vertex of an equilateral triangle is 2,3 and the opposite side is $x+y=2$. Find the equations of other sides.

- Watch Video Solution

14. A line $4 x+y=1$ passes through the point $\mathrm{A}(2,-7)$ and meets line BC at B whose equation is $3 x-4 y+1=0$, the equation of line AC such that $A B=A C$ is (a) $52 \mathrm{x}+89 \mathrm{y}+519=0(\mathrm{~b}) 52 \mathrm{x}+89 \mathrm{y}-519=0$ c) 82 x $+52 y+519=0$ (d) $89 x+52 y-519=0$

- Watch Video Solution

15. A ray of light is sent along the line $x-2 y-3=0$ upon reaching the line $3 x-2 y-5=0$, the ray is reflected from it. Find the equation of the line containing the reflected ray.
A. (a) $2 x-29 y-30=0$
B. (b) $29 x-2 y-31=0$
C. (c) $3 x-39 y+37=0$
D. (d) $31 x-3 y+37=0$

Answer:

- Watch Video Solution

16. Find the equation of the line which intersects the y-axis at a distance of 2 units above the origin and makes an angle of 30° with the positive direction of the x-axis.
17. Find the equation of a straight line cutting off and intercept -1 from y axis and being equally inclined to the axes.

- Watch Video Solution

18. Find the equation of a line that has -y-intercept 4 and is a perpendicular to the line joining $(2,-3)$ and $(4,2)$.

- Watch Video Solution

19. Find equation of the line passing through the point $(2,2)$ and cutting off intercepts on the axes whose sum is 9 .

- Watch Video Solution

20. Find the equation of the straight line that (i)makes equal intercepts on the axes and passes through the point $(2 ; 3)$ (ii) passes through the
point $(-5 ; 4)$ and is such that the portion intercepted between the axes is devided by the point in the ratio $1: 2$

- Watch Video Solution

21. Line segment $A B$ of fixed length c slides between coordinate axes such that its ends A and B lie on the axes. If O is origin and rectangle OAPB is completed, then show that the locus of the foot of the perpendicular drawn from P to AB is $x^{\frac{2}{3}}+y^{\frac{2}{3}}=c^{\frac{2}{3}}$.

- Watch Video Solution

22. Reduce the line $2 x-3 y+5=0$ in slope-intercept, intercept, and normal forms.
23. Find the equation of the line which satisfy the given conditions :

Perpendicular distance from the origin is 5 units and the angle made by the perpendicular with the positive xaxis is 30°.

- Watch Video Solution

24. A straight line is drawn through the point $\mathrm{P}(2,3)$ and is inclined at an angle of 30° with the x-axis. Find the coordinates of two points on it at a distance 4 from point P.

- Watch Video Solution

25. The line joining two points $A(2,0)$ and $B(3,1)$ is rotated about A in anticlockwise direction through an angle of 15°. find the equation of line in the new position. If B goes to C in the new position what will be the coordinates of C .
26. A line through point $A(1,3)$ and parallel to the line $x-y+1=0$ meets the line $2 x-3 y+9=0$ at point P. Find distance AP without finding point P.

- Watch Video Solution

27. Two adjacent vertices of a square are $(1,2)$ and $(-2,6)$ Find the other vertices.

- Watch Video Solution

28. A Line through the variable point $A(1+k, 2 k)$ meets the lines
$7 x+y-16=0 ; 5 x-y-8=0$ and $x-5 y+8=0$ at $\mathrm{B}, \mathrm{C}, \mathrm{D}$ respectively. Prove that $A C ; A B$ and $A D$ are in $H P$.

- Watch Video Solution

29. if P is the length of perpendicular from origin to the line $\frac{x}{a}+\frac{y}{b}=1$ then prove that $\frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{1}{p^{2}}$

- Watch Video Solution

30. Find the coordinates of a point on $x+y+3=0$, whose distance from $x+2 y+2=0$ is $\sqrt{5}$.

- Watch Video Solution

31. Find the least and greatest values of the distance of the point $(\cos \theta, \sin \theta), \theta \in R$, from the line $3 x-4 y+10=0$.

- Watch Video Solution

32. Prove that the product of the lengths of the perpendiculars drawn from the points $\left(\sqrt{a^{2}-b^{2}}, 0\right)$ and $\left(-\sqrt{a^{2}-b^{2}}, 0\right)$ to the line $\frac{x}{a} \cos \theta$
$+\frac{y}{b} \sin \theta=1$ is b^{2}.

- Watch Video Solution

33. Find the least value of $(x-1)^{2}+(y-2)^{2}$ under the condition $3 x+4 y-2=0$.

- Watch Video Solution

34. $A B C$ is an equilateral triangle with $A(0,0)$ and $B(a, 0)$, ($\mathrm{a}>0$). L, M and N are the foot of the perpendiculars drawn from a point P to the side $A B, B C$, and $C A$, respectively. If P lies inside the triangle and satisfies the condition $P L^{2}=P M \dot{P} N$, then find the locus of P.

- Watch Video Solution

35. Line L has intercepts a and b on the coordinate axes. When the axes are rotated through a given angle keeping the origin fixed, the same line
L has intercepts p and q. Then (a) $a^{2}+b^{2}=p^{2}+q^{2}$
$\frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{1}{p^{2}}+\frac{1}{q^{2}}$ (c) $a^{2}+p^{2}=b^{2}+q^{2}$ (d) $\frac{1}{a^{2}}+\frac{1}{p^{2}}=\frac{1}{b^{2}}+\frac{1}{q^{2}}$
A. (a) $a^{2}+b^{2}=p^{2}+q^{2}$
B. (b) $\frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{1}{p^{2}}+\frac{1}{q^{2}}$
C. (c) $a^{2}+p^{2}=b^{2}+q^{2}$
D. (d) $\frac{1}{a^{2}}+\frac{1}{p^{2}}=\frac{1}{b^{2}}+\frac{1}{q^{2}}$

Answer:

- Watch Video Solution

36. Two sides of a square lie on the lines $x+y=1 a n d x+y+2=0$.

What is its area?

- Watch Video Solution

37. Find equation of the line which is equidistant from parallel lines $9 x+6 y-7=0$ and $3 x+2 y+6=0$.

- Watch Video Solution

38. If one side of the square is $2 x-y+6=0$, then one of the vertices is $(2,1)$. Find the other sides of the square.

- Watch Video Solution

39. Prove that the area of the parallelogram contained by the lines
$4 y-3 x-a=0,3 y-4 x+a=0,4 y-3 x-3 a=0$, and
$3 y-4 x+2 a=0$ is $\left(\frac{2}{7}\right) a^{2}$.

- Watch Video Solution

40. The equation of straight line passing through $(-2,7)$ and having an intercept of length 3 between the straight lines: $4 x+3 y=12,4 x+3 y=3$ are :
(A) $7 x+24 y+182=0$
(B) $7 x+24 y+18=0$
(C) $x+2=0$
(D) $x-2=0$

- Watch Video Solution

41. A line L is a drawn from $P(4,3)$ to meet the lines $L-1 a n d L_{2}$ given by $3 x+4 y+5=0$ and $3 x+4 y+15=0$ at points AandB , respectively. From A, a line perpendicular to L is drawn meeting the line L_{2} at A_{1}. Similarly, from point B_{1}. Thus, a parallelogram $\forall_{1} B B_{1}$ is formed. Then the equation of L so that the area of the parallelogram
$\forall_{1} B B_{1} \quad$ is \quad the least \quad is $\quad x-7 y+17=0 \quad 7 x+y+31=0$ $x-7 y-17=0 x+7 y-31=0$
42. Are the points $(3,4)$ and $(2,-6)$ on the same or opposite sides of the line $3 x-4 y=8$?

- Watch Video Solution

43. Find the set of positive values of b for which the origin and the point (1, 1) lie on the same side of the straight line, $a^{2} x+a b y+1=0, \forall a \in R, \mathrm{~b}>0$

- Watch Video Solution

44. If the point $\left(a^{2}, a+1\right)$ lies in the angle between the lines $3 x-y+1=0$ and $x+2 y-5=0$ containing the origin, then find the value of a.

- Watch Video Solution

45. If the point (a, a) is placed in between the lines $|x+y|=4$, then find the values of a.

- Watch Video Solution

46. The complete set of real values of 'a' such that the point lies triangle $p(a, \sin a)$ lies inside the triangle formed by the lines $x-2 y+2=0 ; x+y=0$ and $x-y-\pi=0$

- Watch Video Solution

47. Find α if $\left(\alpha, \alpha^{2}\right)$ lies inside the triangle having sides along the lines $2 x+3 y=1, x+2 y-3=0,6 y=5 x-1$.

- Watch Video Solution

48. Sketch the region in which the points satisfying the following inequality lie.
(i) $2 x-3 y-5>0$
(ii) $-3 x+4 y+7>0$
$(i i i) x>2$
(iv) $y>-3$

- Watch Video Solution

49. Sketch the origin in which the points satisfying the following inequalities lie.
$(i)|x+y|<2$
(ii) $|2 x-y|>3$
(iii) $|x|>|y|$

Watch Video Solution

50. Find the values of b for which the points $\left(2 b+3, b^{2}\right)$ lies above of the line $3 \mathrm{x}-4 \mathrm{y}-\mathrm{a}(\mathrm{a}-2)=0 \quad \forall a \in R$.

- Watch Video Solution

51. Plot the region of the points $\mathrm{P}(\mathrm{x}, \mathrm{y})$ satisfying $|x|+|y|<1$.
52. Plot the region of the points $\mathrm{P}(\mathrm{x}, \mathrm{y})$ satisfying $2>$ max.
$\{|x|,|y|\}$.

- Watch Video Solution

53. If one of the vertices of a square is (3,2) and one of the diagonalls is along the line $3 x+4 y+8=0$, then find the centre of the square and other vertices.

- Watch Video Solution

54. In $\triangle A B C$, vertex A is $(1,2)$. If the internal angle bisector of $\angle B$ is $2 x-y+10=0$ and the perpendicular bisector of AC is $\mathrm{y}=\mathrm{x}$, then find the equation of $B C$
55. Find the locus of image of the variable point $\left(\lambda^{2}, 2 \lambda\right)$ in the line mirror $\mathrm{x}-\mathrm{y}+1=0$, where λ is a parameter.

- Watch Video Solution

56. Lines $L_{1} \equiv a x+b y+c=0$ and $L_{2} \equiv l x+m y+n=0$ intersect at the point P and make an angle θ with each other. Find the equation of a line different from L_{2} which passes through P and makes the same angle θ with L_{1}.

- Watch Video Solution

57. For the straight lines $4 x+3 y-6=0$ and $5 x+12 y+9=0$, find the equation of the bisector of the obtuse angle between them, bisector of the acute angle between them, and bisector of the angle which contains (1, 2)
58. The equations of bisectors of two lines $L_{1} \& L_{2}$ are $2 x-16 y-5=0$ and $64 x+8 y+35=0$. If the line L_{1} passes through $(-11,4)$, the equation of acute angle bisector of $L_{1} \& L_{2}$ is:

- Watch Video Solution

59. If $x+y=0$ is the angle bisector of the angle containing the point $(1,0)$, for the line $3 x+4 y+b=0 ; 4 x+3 y+b=0,4 x+3 y-b=0$ then find the range of b

- Watch Video Solution

60. Two equal sides of an isosceles triangle are given by $7 x-y+3=0$ and $x+y=3$, and its third side passes through the point $(1,-10)$. Find the equation of the third side.
61. The vertices BandC of a triangle $A B C$ lie on the lines $3 y=4 x a n d y=0$, respectively, and the side $B C$ passes through the point $\left(\frac{2}{3}, \frac{2}{3}\right)$. If $A B O C$ is a rhombus lying in the first quadrant, O being the origin, find the equation of the line $B C$.

- Watch Video Solution

62. Two sides of a rhombus lying in the first quadrant are given by $3 x-4 y=0 a n d 12 x-5 y=0$. If the length of the longer diagonal is 12, then find the equations of the other two sides of the rhombus.

- Watch Video Solution

63. If the line $a x+b y=1$ passes through the point of intersection of $y=x \tan \alpha+p \sec \alpha, y \sin \left(30^{\circ}-\alpha\right)-x \cos \left(30^{\circ}-\alpha\right)=p, \quad$ and \quad is inclined at 30° with $y=\tan \alpha x$, then prove that $a^{2}+b^{2}=\frac{3}{4 p^{2}}$.
64. Find the value of λ, if the line $3 x-4 y-13=0,8 x-11 y-33=0 \operatorname{and} 2 x-3 y+\lambda=0 \quad$ are concurrent.

- Watch Video Solution

65.

If
the
lines
$a_{1} x+b_{1} y+1=0, a_{2} x+b_{2} y+1=0$ and $a_{3} x+b_{3} y+1=0 \quad$ are concurrent, show that the point $\left(a_{1}, b_{1}\right),\left(a_{1}, b_{2}\right)$ and $\left(a_{3}, b_{3}\right)$ are collinear.

- Watch Video Solution

66. Show that the straight lines given by $x(a+2 b)+y(a+3 b)=a+b$ for different values of a and b pass through a fixed point.
67. Let $a x+b y+c=0$ be a variable straight line, whre a, $b a n d c$ are the 1st, 3rd, and 7th terms of an increasing AP, respectively. Then prove that the variable straight line always passes through a fixed point. Find that point.

- Watch Video Solution

68. Prove that all the lines having the sum of the interceps on the axes equal to half of the product of the intercepts pass through the point. Find the fixed point.

- Watch Video Solution

69. Find the straight line passing through the point of intersection of $2 x+3 y+5=0,5 x-2 y-16=0$, and through the point $(-1,3)$.

- Watch Video Solution

70. Consider a family of straight lines $(x+y)+\lambda(2 x-y+1)=0$. Find the equation of the straight line belonging to this family that is farthest from $(1,-3)$.

- Watch Video Solution

71. Let the sides of a parallelogram be $U=a, U=b, V=a$ and $V=b^{\prime}$, where $\mathrm{U}=\mathrm{I} \mathrm{x}+\mathrm{my}+\mathrm{n}, \mathrm{V}=\mid \mathrm{I} \mathrm{x}+\mathrm{m} \mathrm{y}+\mathrm{n}$ '. Show that the equation of the diagonal through the point of intersection of
$U=a, V=a^{\prime}$ and $U=b, V=b^{\prime}$ is given by $\left|\begin{array}{lll}U & V & 1 \\ a & a^{\prime} & 1 \\ b & b^{\prime} & 1\end{array}\right|=0$.

- Watch Video Solution

72. Find the values of non-negative real number $h_{1}, h_{2}, h_{3}, k_{1}, k_{2}, k_{3}$ such that the algebraic sum of the perpendiculars drawn from the points $\left.\left(2, k_{1}\right),\left(3, k_{2}\right), 7, k_{3}\right),\left(h_{1}, 4\right),\left(h_{2}, 5\right),\left(h_{3},-3\right)$ on a variable line passing through $(2,1)$ is zero.

Example

1. Show that the lines $4 x+y-9=0, x-2 y+3=0,5 x-y-6=0$ make equal intercepts on any line of slope 2.

- Watch Video Solution

2. The equations of two sides of a triangle are $3 y-x-2=0 a n d y+x-2=0$. The third side, which is variable, always passes through the point $(5,-1)$. Find the range of the values of the slope of the third side, so that the origin is an interior point of the triangle.
3. Find the locus of the circumcenter of a triangle whose two sides are along the coordinate axes and the third side passes through the point of intersection of the line $a x+b y+c=0$ and $l x+m y+n=0$.

- Watch Video Solution

4. Let $A B C$ be a triangle with $A B=A C$. If D is the midpoint of $B C, E$ is the foot of the perpendicular drawn from D to $A C$, $a n d F$ is the midpoint of $D E$, then prove that $A F$ is perpendicular to $B E$.

- Watch Video Solution

5. A diagonal of rhombus $A B C D$ is member of both the families of lines
$(x+y-1)+\lambda(2 x+3 y-2)=0$ and
$(x-y+2)+\lambda(2 x-3 y+5)=0$ and rhombus is (3, 2). If the area of the rhombus is $12 \sqrt{5}$ sq. units, then find the remaining vertices of the rhombus.
6. Let $A B C$ be a given isosceles triangle with $A B=A C$. Sides $A B a n d A C$ are extended up to EandF, respectively, such that $B E \cdot C F=A B^{2}$. Prove that the line $E F$ always passes through a fixed point.

- Watch Video Solution

7. Let $L_{1}=0 a n d L_{2}=0$ be two fixed lines. A variable line is drawn through the origin to cut the two lines at R and $S P$. is a point on the line $A B$ such that $\frac{(m+n)}{O P}=\frac{m}{O R}+\frac{n}{O S}$. Show that the locus of P is a straight line passing through the point of intersection of the given lines R, S, R are on the same side of O).

- Watch Video Solution

8. Let points A, B and C lie on lines $y-x=0,2 x-y=0$ and $y-3 x=0$, respectively. Also, $A B$ passes through fixed point $P(1,0)$ and $B C$ passes through fixed point $Q(0,-1)$. Then prove that $A C$ also passes through a fixed point and find that point.

- Watch Video Solution

9. Consider two lines L_{1} and L_{2} given by $x-y=0$ and $x+y=0$, respectively, and a moving point $P(x, y)$. Let $d\left(P, L_{1}\right), i=1,2$, represents the distance of point P from the line L_{i}. If point P moves in a certain region R in such a way that $2 \leq d\left(P, L_{1}\right)+d\left(P, L_{2}\right) \leq 4$, find the area of region R.

- Watch Video Solution

10. Let $O(0,0), A(2,0), \operatorname{and} B\left(1, \frac{1}{\sqrt{3}}\right)$ be the vertices of a triangle. Let R be the region consisting of all those points P inside $O A B$ which
satisfy $d(P, O A) \leq \min [d(P, O B), d(P, A B)]$, where d denotes the distance from the point to the corresponding line. Sketch the region R and find its area.

- Watch Video Solution

11. A line through $A(-5,-4)$ meets the lines $x+3 y+2=0,2 x+y+4=0$ and $x-y-5=0$
at the points B, C and D respectively. If $\left(\frac{15}{A B}\right)^{2}+\left(\frac{10}{A C}\right)^{2}=\left(\frac{6}{A D}\right)^{2}$ find the equation of the line.

- Watch Video Solution

12. A rectangle $P Q R S$ has its side $P Q$ parallel to the line $y=m x$ and vertices
P, Q and S on the lines $y=a, x=b$ and $x=-b$ respectively, Find the locus of the vertex R .

- Watch Video Solution

1. Find the equation of the right bisector of the line segment joining the points (3,4) and (-1,2).

- Watch Video Solution

2. What will be the tens digit of $1!+2!+3!+. . .+49!$?

- Watch Video Solution

3. If the coordinates of the vertices of triangle $A B C$ are $(-1,6),(-3,-9)$ and $(5,-8)$, respectively, then find the equation of the median through C.

- Watch Video Solution

4. Find the equation of the line perpendicular to the line $\frac{x}{a}-\frac{y}{b}=1$ and passing through a point at which it cuts the x -axis.

- Watch Video Solution

5. If the middle points of the sides $B C, C A$, and $A B$ of triangle $A B C$ are $(1,3),(5,7)$, and $(-5,7)$, respectively, then find the equation of the side $A B$.

- Watch Video Solution

6. Find the equations of the lines which pass through the origin and are inclined at an angle $\tan ^{-1} m$ to the line $y=m x+c$.

- Watch Video Solution

7. If $(-2,6)$ is the image of the point $(4,2)$ with respect to line $L=0$, then L is:
8. Find the area bounded by the curves $x+2|y|=1$ and $x=0$.

- Watch Video Solution

9. Find the equation of the straight line passing through the intersection of the lines $x-2 y=1$ and $x+3 y=2$ and parallel to $3 x+4 y=0$.

- Watch Video Solution

10. If the foot of the perpendicular from the origin to a straight line is at
$(3,-4)$, then find the equation of the line.

- Watch Video Solution

11. A straight line through the point $(2,2)$ intersects the lines $\sqrt{3} x+y=0$ and $\sqrt{3} x-y=0$ at the point A and B, respectively. Then find the equation of the line $A B$ so that triangle $O A B$ is equilateral.

- Watch Video Solution

12. The equation of the straight line passing through the point (4.3) and making intercepts on the co ordinate axes whose sum is -1 , is

- Watch Video Solution

13. A straight line through the point $A(3,4)$ is such that its intercept between the axes is bisected at A. Its equation is :

- Watch Video Solution

14. A straight line L is perpendicular to the line $5 x-y=1$. The area of the triangle formed by line L, and the coordinate axes is 5 . Find the equation of line L.

- Watch Video Solution

15. One side of a rectangle lies along the line $4 x+7 y+5=0$. Two of its vertices are $(-3,1)$ and $(1,1)$. Find the equations of the other three sides.

- Watch Video Solution

16. A line $L_{1}=3 y-2 x-6=0$ is rotated about its point of intersection with the y -axis in the clockwise direction to make it L_{2} such that the are formed by L_{1}, L_{2} the x-axis, and line $x=5$ is $\frac{49}{3}$ squinits if its point of intersection with $x=5$ lies below the x-axis. Find the equation of L_{2}.
17. The diagonals $A C$ and $B D$ of a rhombus intersect at $(5,6)$. If $A=(-3,2)$, then find the equation of diagonal $B D$.

- Watch Video Solution

18. Find the equation of the straight line which passes through the origin and makes angle 60° with the line $x+\sqrt{3} y+\sqrt{3}=0$.

- Watch Video Solution

19. A line intersects the straight lines $5 x-y-4=0$ and $3 x-4 y-4=0$ at A and B, respectively. If a point $P(1,5)$ on the line $A B$ is such that $A P: P B=2: 1$ (internally), find point A.

- Watch Video Solution

20. In the given figure, $P Q R$ is an equilateral triangle and OSPT is a square. If $O T=2 \sqrt{2}$ units find the equation of lines $O T, O S, S P, Q R, P R$, and $P Q$.

- Watch Video Solution

21. Two fixed point A and B are taken on the cordinate axes such that $O A=$ a and $O B=b$. Two variable points A^{\prime} and B^{\prime} are taken on the same axes such that $O A^{\prime}+O B^{\prime}=O A+O B$. Find the locus of the point of intersection of $A B^{\prime}$ and $A^{\prime} B$.

- Watch Video Solution

22. A regular polygon has two of its consecutive diagonals as the lines $\sqrt{3} x+y-\sqrt{3}$ and $2 y=\sqrt{3}$. Point $(1, c)$ is one of its vertices. Find the equation of the sides of the polygon and also find the coordinates of the vertices.
23. Find the direction in which a straight line must be drawn through the point $(1,2)$ so that its point of intersection with the line $x+y=4$ may be at a distance of 3 units from this point.

- Watch Video Solution

Concept Application Exercise 22

1. Two particles start from point ($2,-1$), one moving two units along the line $x+y=1$ and the other 5 units along the line $x-2 y=4$, If the particle move towards increasing y, then their new positions are:

- Watch Video Solution

2. The center of a square is at the origin and its one vertex is $A(2,1)$.

Find the coordinates of the other vertices of the square.
3. The straight line passing through $P\left(x_{1}, y_{1}\right)$ and making an angle α with x -axis intersects $A x+B y+C=0$ in Q then $P Q=$

- Watch Video Solution

4. The centroid of an equilateral triangle is (0,0). If two vertices of the triangle lie on $x+y=2 \sqrt{2}$, then one of them will have its coordinates

- Watch Video Solution

Concept Application Exercise 23

1. Find the points on y-ais whose perpendicular distance from the line $4 x-3 y-12=0$ is 3.
2. If p and q are the lengths of the perpendiculars from the origin to the straight lines $x \sec \alpha+y \operatorname{cosec} \alpha=a$ and $x \cos \alpha-y \sin \alpha=$ a $\cos 2 \alpha$, thenprovet $\hat{4} p^{2}+q^{2}=a^{2}$.

- Watch Video Solution

3. Prove that the lengths of the perpendiculars from the points $\left(m^{2}, 2 m\right),\left(m m^{\prime}, m+m^{\prime}\right), \quad$ and $\quad\left(m^{\prime 2}, 2 m^{\prime}\right) \quad$ to the line $x+y+1=0$ are in GP.

- Watch Video Solution

4. The ratio in which the line $3 x+4 y+2=0$ divides the distance between $3 x+4 y+5=0$ and $3 x+4 y-5=0$ is?

- Watch Video Solution

5. Find the incentre of a triangle formed by the lines $x \cos \frac{\pi}{9}+y \sin \frac{\pi}{9}=\pi, x \cos \frac{8 \pi}{9}+y \sin \frac{8 \pi}{9}=\pi$ and
$x \cos \frac{13 \pi}{9}+y \sin \left(\frac{13 \pi}{9}\right)=\pi$.

- Watch Video Solution

6. Find the equations of lines parallel to $3 x-4 y-5=0$ at a unit distance from it.

- Watch Video Solution

7. Find the equation of a straight line passing through the point ($-5,4$) and which cuts off an intercept of $\sqrt{2}$ units between the lines $x+y+1=0$ and $x+y-1=0$.

- Watch Video Solution

1. The point $(8,-9)$ with respect to the lines $2 x+3 y-4=0$ and $6 x+9 y+8=0$ lies on
A. (a) the same side of the lines
B. (b) the different sides of the line
C. (c) one of the line
D. (d) none of these

Answer: Both the lines lie on the same side of point ($8,-9$)

- Watch Video Solution

2. How the following pairs of points are placed w.r.t the line $3 x-8 y-7=0$?
$(i)(-3,-4)$ and $(1,2)$
(ii)($-1,-1$) and (3, 7)

- Watch Video Solution

3. Find the range of $(\alpha, 2+\alpha)$ and $\left(\frac{3 \alpha}{2}, a^{2}\right)$ lie on the opposite sides of the line $2 x+3 y=6$.

- Watch Video Solution

4. If the point $P\left(a^{2}, a\right)$ lies in the region corresponding to the acute angle between the lines $2 y=x$ and $4 y=x$, then find the values of a.

- Watch Video Solution

5. If $(a, 3 a)$ is a variable point lying above the straight line $2 x+y+4=0$ and below the line $x+4 y-8=0$, then find the values of a.

- Watch Video Solution

6. Find the values of α such that the variable point $(\alpha, \tan \alpha)$ lies inside the triangle whose sides are
$y=x+\sqrt{3}-\frac{\pi}{3}, x+y+\frac{1}{\sqrt{3}}+\frac{\pi}{6}=0$ and $x-\frac{\pi}{2}=0$

- Watch Video Solution

7. Find the area of the region in which points satisfy
$3 \leq|x|+|y| \leq 5$.

- Watch Video Solution

8. Find the area of the region formed by the points satisfying
$|x|+|y|+|x+y| \leq 2$.

- View Text Solution

Concept Application Exercise 25

1. Find the equation of the bisector of the obtuse angle between the lines
$3 x-4 y+7=0$ and $12 x+5 y-2=0$.
A. (a) $21 x+77 y-101=0$
B. (b) $99 x-27 y+81=0$
C. (c) $21 x-77 y+101=0$
D. (d) None of the above

Answer: 21x+77y-101=0

- Watch Video Solution

2. The incident ray is along the line $3 x-4 y-3=0$ and the reflected ray is along the line $24 x+7 y+5=0$. Find the equation of mirrors.

- Watch Video Solution

3. If the two sides of rhombus are $x+2 y+2=0$ and $2 x+y-3=0$, then find the slope of the longer diagonal.
4. In triangle $A B C$, the equation of the right bisectors of the sides $A B$ and $A C$ are $x+y=0$ and $y-x=0$, respectively. If $A \equiv(5,7)$, then find the equation of side $B C$.

- Watch Video Solution

5. Show that the reflection of the line $a x+b y+c=0$ on the line $x+y+1=0$ is the line $b x+a y+(a+b-c)=0$ where $a \neq b$.

- Watch Video Solution

6. The joint equation of two altitudes of an equilateral triangle is $(\sqrt{3} x-y+8-4 \sqrt{3})(-\sqrt{3} x-y+12+4 \sqrt{3})=0$. Find the third altitude equation.

- Watch Video Solution

A rod $A B$ is moving on a fixed circle of radius R with constant velocity v as shown in figure. P is the point of intersection of the rod and the circle. At an instant the rod is at a distance $x=\frac{3 R}{5}$ from centre of the circle. The velocity of the rod is perpendicular to the rod and the rod is always parallel to the diameter CD.
(i) Find the speed of point of intersection P.
(b) Find the angular speed of point of intersection P with respect to centre of the circle.

- Watch Video Solution

8. Two sides of a rhombus $A B C D$ are parallel to the lines $y=x+2$ and $y=$ $7 x+3$ If the diagonals of the rhombus intersect at the point $(1,2)$ and the vertex A is on the y-axis, then vertex A can be

- Watch Video Solution

Concept Application Exercise 26

1. If a and b are two arbitrary constants, then prove that the straight line $(a-2 b) x+(a+3 b) y+3 a+4 b=0$ will pass through a fixed point.

Find that point.

- Watch Video Solution

2. If a, b, c are in harmonic progression, then the straight line $\left(\frac{x}{a}\right)+\left(\frac{y}{b}\right)+\left(\frac{1}{c}\right)=0$ always passes through a fixed point. Find that point.

- Watch Video Solution

3. A variable line passes through a fixed point P. The algebraic sum of the perpendiculars drawn from the points $(2,0),(0,2)$ and $(1,1)$ on the line is zero. Find the coordinate of the point P.
4.

Consider
the
family
of
lines $5 x+3 y-2+\lambda_{1}(3 x-y-4)=0$ and $x-y+1+\lambda_{2}(2 x-y-2)=0$
.Find the equation of a straight line that belongs to both the families.

- Watch Video Solution

5. If the straight lines $x+y-2-0,2 x-y+1=0$ and $a x+b y-c=0$ are concurrent, then the family of lines $2 a x+3 b y+c=0(a, b, c$ are nonzero) is concurrent at (a) $(2,3)$ (b) $\left(\frac{1}{2}, \frac{1}{3}\right)$ (c) $\left(-\frac{1}{6},-\frac{5}{9}\right)$ (d) $\left(\frac{2}{3},-\frac{7}{5}\right)$

- Watch Video Solution

Exercise Single Correct Answer Type

1. Find the equations of the diagonals of the square formed by the lines
$x=o, y=0, x=1 a n d y=1$.
A. $y=x, y+x=1$
B. $y=x, x+y=2$
C. $2 y=x, y+x=1 / 3$
D. $y=2 x, y+2 x=1$

Answer: A

- Watch Video Solution

2. The coordinates of two consecutive vertices A and B of a regular hexagon ABCDEF are $(1,0)$ and $(2,0)$ respectively. The equation of the diagonal CE is:
A. $\sqrt{3} x+y=4$
B. $x+\sqrt{3} y+4=0$
C. $x+\sqrt{3} y=4$
D. none of these

Answer: C

- Watch Video Solution

3. If each of the points $\left(x_{1}, 4\right),\left(-2, y_{1}\right)$ lies on the line joining the points (2, -1$),(5,-3)$, then the points $P\left(x_{1}, y_{1}\right)$ lies on the line :
A. $6(x+y)-25=0$
B. $2 x+6 y+1=0$
C. $2 x+3 y-6=0$
D. $6(x+y)+25=0$

Answer: B

4. The equation to the straight line passing through the point $\left(a \cos ^{3} \theta, a \sin ^{3} \theta\right)$ and perpendicular to the line $x \sec \theta+y \operatorname{cosec} \theta=a$ is
A. $x \cos \theta-y \sin \theta=a \cos 2 \theta$
B. $x \cos \theta+y \sin \theta=a \cos 2 \theta$
C. $x \sin \theta+y \cos \theta=a \cos 2 \theta$
D. none of these

Answer: A

- Watch Video Solution

5. The line $P Q$ whose equation is $x-y=2$ cuts the x -axis at P, $a n d Q$ is $(4,2)$. The line $P Q$ is rotated about P through 45^{0} in the anticlockwise direction. The equation of the line $P Q$ in the new position is
A. $y=-\sqrt{2}$
B. $y=2$
C. $x=2$
D. $x=-2$

Answer: C

- Watch Video Solution

6. A line moves in such a way that the sum of the intercepts made by it on the axes is always c. The locus of the mid- point of its intercept between the axes is (A) $x+y=2 c$ (B) $x+y=c$ (C) $2(x+y)=c$ (D) None of these
A. $x+y=2 c$
B. $x+y=c$
C. $2(x+y)=c$
D. $2 x+y=c$

Answer: C

7. If the x intercept of the line $y=m x+2$ is greater than $\frac{1}{2}$ then the gradient of the line lies in the interval
A. $(-1,0)$
B. $\left(\frac{-1}{4}, 0\right)$
C. $(-\infty,-4)$
D. $(-4,0)$

Answer: D

- Watch Video Solution

8. The equation of a straight line on which the length of perpendicular from the origin is four units and the line makes an angle of 120° with the x -axis is (a) $x \sqrt{3}+y+8=0$
(b) $x \sqrt{3}-y=8$
(c) $x \sqrt{3}-y=8$
$x-\sqrt{3} y+8=0$
A. $x \sqrt{3}+y+8=0$
B. $x \sqrt{3}-y=8$
C. $x \sqrt{3}-y=8$
D. $x-\sqrt{3}+8=0$

Answer: A

- Watch Video Solution

9. $A B C D$ is a square $A \equiv(1,2), B \equiv(3,-4)$. If line $C D$ passes through $(3,8)$, then the midpoint of $C D$ is (a) $(2,6)$ (b) $(6,2)$ (c) $(2,5)$
(d) $\left(\frac{28}{5}, \frac{1}{5}\right)$
A. $(2,6)$
B. $(6,2)$
C. $(2,5)$
D. $(28 / 5,1 / 5)$

- Watch Video Solution

10. The equation of straight line which passes through the point $(-4,3)$ such that the portion of the line between the axes is divided by the point in ratio $5: 3$ is -
A. $9 x-20 y+96=0$
B. $9 x+20 y=24$
C. $20 x+9 y+53=0$
D. none of these

Answer: A

11. A square of side 'a' lies above the x-axis and has one vertex at the origin. The side passing through the origin makes an angle α ($0<\alpha^{\prime}<$ $\mathrm{pi}^{i} / 4$) with the positive direction of x -axis. Find the equation of diagonal not passing through the origin ?
A. $y(\cos \alpha+\sin \alpha)+x(\sin \alpha-\cos \alpha)=a$
B. $y(\cos \alpha+\sin \alpha)+x(\sin \alpha+\cos \alpha)=a$
C. $y(\cos \alpha+\sin \alpha)+x(\cos \alpha-\sin \alpha)=a$
D. $y(\cos \alpha-\sin \alpha)-x(\sin \alpha-\cos \alpha)=a$

Answer: C

- Watch Video Solution

12. Let $\mathrm{P}=(-1,0), \mathrm{Q}=(0,0)$ and $\mathrm{R}=(3,3 \sqrt{3})$ be three points. The equation of the bisector of the angle PQR
A. $(\sqrt{3} / 2) x+y=0$
B. $x+\sqrt{3} y=0$
C. $\sqrt{3} x+y=0$
D. $x+(\sqrt{3} / 2) y=0$

Answer: C

- Watch Video Solution

13. The equation of a line through the point $(1,2)$ whose distance from the point $(3,1)$ has the greatest value is (a) $y=2 x$ (b) $y=x+1$ (c) $x+2 y=5$ (d) $y=3 x-1$
A. $y=2 x$
B. $y=x+1$
C. $x+2 y=5$
D. $y=3 x-1$
14. One diagonal of a square is along the line $8 x-15 y=0$ and one of its vertex is (1, 2). Then the equations of the sides of the square passing through this vertex are $\quad(a) 23 x+7 y=9,7 x+23 y=53$ (b) $23 x-7 y+9=0,7 x+23 y+53=0$
(c) $23 x-7 y-9=0,7 x+23 y-53=0$ (d)none of these
A. $7 x-8 y+9=0,8 x+7 y-22=0$
B. $9 x-8 y+7=0.8 x+9 y-26=0$
C. $23 x-7 y-9=0,7 x+23 y-53=0$
D. none of these

Answer: C

- Watch Video Solution

15. Prove that the parallelogram formed by the lines $\frac{x}{a}+\frac{y}{b}=1, \frac{x}{b}+\frac{y}{a}=1, \frac{x}{a}+\frac{y}{b}=2$ and $\frac{x}{b}+\frac{y}{a}=2$ is a rhombus.

- Watch Video Solution

16. A line with positive rational slope, passes through the point $A(6,0)$ and is at a distance of 5 units from $B(1,3)$. The slope of line is
A. $\frac{15}{8}$
B. $\frac{8}{15}$
C. $\frac{5}{8}$
D. $\frac{8}{5}$

Answer: B

- Watch Video Solution

17. A projectile A is projected from ground. An observer B running on ground with uniform velocity of magnitude v observes A to move along a straight line. The time of flight of A as measured by B is T. Then the range R of projectile on ground is
A. $3 x+3 y-1=0$
B. $x-3 y+2=0$
C. $5 x+5 y-3=0$
D. none of these

Answer: C

- View Text Solution

18. Given $A=(1,1)$ and $A B$ is any line through it cutting the x -axis at B. If $A C$ is perpendicular to $A B$ and meets the y-axis in C, then the equation of the locus of midpoint P of $B C$ is (a) $x+y=1$

$$
\begin{equation*}
x+y=2 \text { (c) } x+y=2 x y \text { (d) } 2 x+2 y=1 \tag{b}
\end{equation*}
$$

A. $x+y=1$
B. $x+y=2$
C. $x+y=2 x y$
D. $2 x+2 y=1$

Answer: A

D Watch Video Solution

19. The number of possible straight lines passing through point(2,3) and forming a triangle with coordiante axes whose area is 12 sq. unit is: a. one b. two c. three d. four
A. one
B. two
C. three
D. four

- Watch Video Solution

20. Two parallel lines lying in the same quadrant make intercepts a and b on x and y axes, respectively, between them. The distance between the
lines is (a) $\frac{a b}{\sqrt{a^{2}+b^{2}}}$
(b) $\sqrt{a^{2}+b^{2}}$
(c) $\frac{1}{\sqrt{a^{2}+b^{2}}}$
(d) $\frac{1}{a^{2}}+\frac{1}{b^{2}}$
A. $\sqrt{a^{2}+b^{2}}$
B. $\frac{a b}{\sqrt{a^{2}+b^{2}}}$
C. $\frac{1}{\sqrt{a^{2}+b^{2}}}$
D. $\frac{1}{a^{2}}+\frac{1}{b^{2}}$

Answer: B

21. The line $L_{1} \equiv 4 x+3 y-12=0$ intersects the x-and y-axies at $\operatorname{Aand} B$, respectively. A variable line perpendicular to L_{1} intersects the xand the y-axis at P and Q, respectively. Then the locus of the circumcenter of triangle $A B Q$ is
A. $3 x-4 y+2=0$
B. $4 x+3 y+7=0$
C. $6 x-8 y+7=0$
D. none of these

Answer: C

- Watch Video Solution

22. A beam of light is sent along the line $x-y=1$, which after refracting from the x-axis enters the opposite side by turning through 30^{0} towards the normal at the point of incidence on the x-axis. Then the equation of the refracted ray is (a) $(2-\sqrt{3}) x-y=2+\sqrt{3}$

$(2+\sqrt{3}) x-y=2+\sqrt{3}$
 (c) $(2-\sqrt{3}) x+y=(2+\sqrt{3})$
 $y=(2-\sqrt{3})(x-1)$

A. $(2-\sqrt{3}) x-y=2+\sqrt{3}$
B. $(2+\sqrt{3}) x-y=2+\sqrt{3}$
C. $(2-\sqrt{3}) x+y=(2+\sqrt{3})$
D. $y=(2+\sqrt{3})(x-1)$

Answer: D

- Watch Video Solution

23. The number of integral values of m for which the x-coordinate of the point of intersection of the lines $3 x+4 y=9$ and $y=m x+1$ is also an integer is 2 (b) 0 (c) 4 (d) 1
A. 2
B. 0
C. 4
D. 1

Answer: A

- Watch Video Solution

24. If the sum of the distances of a point from two perpendicular lines in a plane is 1 , then its locus is
(a)a square
(b) a circle (c) a straight line
(d) two intersecting lines
A. a square
B. a circle
C. a straight line
D. two intersecting lines

Answer: A

25. The equation of set of lines which are at a constant distance 2 units from the origin is
A. $x+y+2=0$
B. $x+y+4=0$
C. $x \cos \alpha+y \sin \alpha=2$
D. $x \cos \alpha+y \sin \alpha=\frac{1}{2}$

Answer: C

- Watch Video Solution

26. The lines $y=m_{1} x, y=m_{2} x a n d y=m_{3} x$ make equal intercepts on the line

$$
x+y=1
$$

$\left(1+m_{1}\right)\left(1+m_{3}\right)=\left(1+m_{2}\right)\left(1+m_{1}+m_{3}\right)$
$\left(1+m_{1}\right)\left(1+m_{2}\right)=\left(1+m_{3}\right)\left(2+m_{1}+m_{3}\right)$
$2\left(1+m_{1}\right)\left(1+m_{3}\right)=\left(1+m_{2}\right)\left(1+m_{1}+m_{3}\right)$
A. $2\left(1+m_{1}\right)\left(1+m_{3}\right)=\left(1+m_{2}\right)\left(2+m_{1}+m_{3}\right)$
B. $\left(1+m_{1}\right)\left(1+m_{3}\right)=\left(1+m_{2}\right)\left(1+m_{1}+m_{3}\right)$
C. $\left(1+m_{1}\right)\left(1+m_{2}\right)=\left(1+m_{3}\right)\left(2+m_{1}+m_{3}\right)$
D. $2\left(1+m_{1}\right)\left(1+m_{3}\right)=\left(1+m_{2}\right)\left(1+m_{1}+m_{3}\right)$

Answer: A

- View Text Solution

27. Find the condition in a, b such that the portion of the line $a x+b y=1$, intercepted between the lines $a x+y=0$ and $x+b y=0$ sustains a right angle at origin.
A. $\mathrm{a}=\mathrm{b}$
B. $a+b=0$
C. $a=2 b$
D. $2 a=b$

- Watch Video Solution

28. The area of the triangle formed by the lines $y=a x, x+y-a=0$, and $y-a x i s$ is equal to
A. $\frac{1}{2|1+a|}$
B. $\frac{a^{2}}{|1+a|}$
C. $\frac{1}{2} \frac{a}{|1+a|}$
D. $\frac{a^{2}}{2|1+a|}$

Answer: D

- Watch Video Solution

29. The line $\frac{x}{a}+\frac{y}{b}=1$ meets the x-axis at A, the y-axis at B, and the line $y=x$ at C such, that the area of $\operatorname{Delta} A O C$ is twice the area of

Delta $B O C$. Then the coordinates of C are $\left(\frac{b}{3}, \frac{b}{3}\right)$ (b) $\left(\frac{2 a}{3}, \frac{2 a}{3}\right)$
$\left(\frac{2 b}{3}, \frac{2 b}{3}\right)$ (d) none of these
A. $\left(\frac{b}{3}, \frac{b}{3}\right)$
B. $\left(\frac{2 a}{3}, \frac{2 a}{3}\right)$
C. $\left(\frac{2 b}{3}, \frac{2 b}{3}\right)$
D. none of these

Answer: C

- Watch Video Solution

30. The line $\frac{x}{3}+\frac{y}{4}=1$ meets the y-axis and x-axis at A and B respectively. A square $A B C D$ is constructed on the line segment $A B$ away from the origin. The coordinates of the vertex of the square farthest from the origin are
A. 7,3
B. 4,7
C. 6,4
D. 3,8

Answer: B

- Watch Video Solution

31. The area of a parallelogram formed by the lines $a x \pm b y \pm c=0$ is
A. $c^{2} /(a b)$
B. $2 c^{2} /(a b)$
C. $c^{2} / 2 a b$
D. none of these

Answer: B

32. One diagonal of a square is $3 x-4 y+8=0$ and one vertex is $(-1,1)$, then the area of square is
A. $\frac{1}{50}$ sq.unit
B. $\frac{1}{25}$ sq.unit
C. $\frac{3}{50}$ sq.unit
D. $\frac{2}{25}$ sq.unit

Answer: D

- Watch Video Solution

33. In an isoceles triangle $O A B$, O is the origin and $O A=O B=6$. The equation of the side $A B$ is $x-y+1=0$ Then the area of the triangle is
A. $2 \sqrt{21}$
B. $\sqrt{142}$
C. $\sqrt{\frac{142}{2}}$
D. $\sqrt{\frac{71}{2}}$

Answer: D

- Watch Video Solution

> 34. Find the sum of the series $1^{2}-2^{2}+3^{2}-4^{2}+\ldots-\{2008\}^{2}+\{2009\}^{2}$
A.
B.
C.
D.

Answer: B

Watch Video Solution
35. The coordinates of the foot of the perpendicular from the point $(2,3)$ on the line $-y+3 x+4=0$ are given by
A. $(37 / 10,-1 / 10)$
B. $(-1 / 10,37 / 10)$
C. $(10 / 37,-10)$
D. $(2 / 3,-1 / 3)$

Answer: B

- Watch Video Solution

36. The straight lines $7 x-2 y+10=0$ and $7 x+2 y-10=0$ form an isosceles triangle with the line $y=2$. The area of this triangle is equal to(a) $\frac{15}{7}$ squnits (b) $\frac{10}{7}$ squinits (c) $\frac{18}{7}$ squinits(d) none of these
A. $15 / 7$ sq. units
B. $10 / 7$ sq. units
C. 18/7 sq. units
D. none of these

Answer: C

- Watch Video Solution

37. The equations of the sided of a triangle are $x+y-5=0, x-y+1=0$, and $y-1=0$. Then the coordinates of the circumcentre are
A. 2,1
B. 1,2
C. 2,-2
D. 1,-2

Answer: A

38. The equations of the sided of a triangle are $x+y-5=0, x-y+1=0$, and $y-1=0$. Then the coordinates of the circumcentre are
A. $(-\infty,-4 / 3) \cup(4 / 3,+\infty)$
B. $(-4 / 3,4 / 3)$
C. (-3/4,4/3)
D. none of these

Answer: A

- Watch Video Solution

39. The range of values of θ in the interval $(0, \pi)$ such that the points
$(3,5)$ and $(\sin \theta, \cos \theta)$ lie on the same side of the line $x+y-1=0$, is
A. $0<\theta<\frac{\pi}{4}$
B. $0<\theta<\frac{\pi}{2}$
C. $0<\theta<\pi$
D. $\frac{\pi}{4}<\theta<\frac{3 \pi}{4}$

Answer: B

- Watch Video Solution

40. Distance of origin from the line $(1+\sqrt{3}) y+(1-\sqrt{3}) x=10$ along the line $y=\sqrt{3} x+k$ (1) $\frac{2}{\sqrt{5}}$ (2) $5 \sqrt{2}+k$ (3) 10 (4) 5
A. $\frac{5}{\sqrt{2}}$
B. $5 \mathrm{sqrt}(2)+\mathrm{k}$
C. 10
D. 5

Answer: D

41. Consider the points $A(0,1) \operatorname{and} B(2,0)$, and P be a point on the line $4 x+3 y+9=0$. The coordinates of P such that $|P A-P B|$ is maximum are (a) $\left(-\frac{24}{5}, \frac{17}{5}\right)$ (b) $\left(-\frac{84}{5}, \frac{13}{5}\right)$ (c) $\left(\frac{31}{7}, \frac{31}{7}\right)$ $(-3,0)$

- Watch Video Solution

42. Consider the point $A(3,4)$ and $B(7,13)$.If P be a point on the line $y=x$, the co-ordinate of point P if $\mathrm{PA}+\mathrm{PB}$ is minimum.
A. $(12 / 7,12 / 7)$
B. $(-24 / 5,17 / 5)$
C. $(31 / 7,31 / 7)$
D. $(0,0)$

Answer: C

43. The area enclosed by $2|x|+3|y| \leq 6$ is (a) 3 sq. units (b) 4 sq. units 12 sq. units (d) 24 sq. units
A. 3 sq. units
B. 4 sq. units
C. 12 sq. units
D. 24 sq. units

Answer: C

- Watch Video Solution

44. $A B C$ is a variable triangle such that A is (1, 2), and BandC on the line $y=x+\lambda$ (λ is a variable). Then the locus of the orthocentre of triangle $A B C$ is $x+y=0$ (b) $x-y=0 x^{2}+y^{2}=4$ (d) $x+y=3$

$$
\text { A. } x+y=0
$$

B. $x-y=0$
C. $x^{2}+y^{2}=4$
D. $x+y=3$

Answer: D

D Watch Video Solution

45. In $A B C$, the coordinates of the vertex A are $(4,-1)$, and lines $x-y-1=0$ and $2 x-y=3$ are the internal bisectors of angles $B a n d C$.Then, the radius of the encircle of triangle $A B C$ is (a) $\frac{4}{\sqrt{5}}$
$\frac{3}{\sqrt{5}}$ (c) $\frac{6}{\sqrt{5}}$ (d) $\frac{7}{\sqrt{5}}$
A. $4 / \sqrt{5}$
B. $3 / \sqrt{5}$
C. $6 / \sqrt{5}$
D. $7 / \sqrt{5}$

- Watch Video Solution

46. P is a point on the line $y+2 x=1$, and $\operatorname{Qand} R$ two points on the line $3 y+6 x=6$ such that triangle $P Q R$ is an equilateral triangle. The length of the side of the triangle is
A. $2 / \sqrt{15}$
B. $3 / \sqrt{5}$
C. $4 / \sqrt{5}$
D. none of these

Answer: A

47. If the equation of base of an equilateral triangle is $2 x-y=1$ and the vertex is $(-1,2)$, then the length of the sides of the triangle is
A. $\sqrt{20 / 3}$
B. $2 / \sqrt{15}$
C. $\sqrt{8 / 15}$
D. $\sqrt{15 / 2}$

Answer: A

- Watch Video Solution

48. The locus of a point that is equidistant from the lines

$$
\begin{align*}
& x+y-2 \sqrt{2}=0 \text { and } x+y-\sqrt{2}=0 \text { is (a) } x+y-5 \sqrt{2}=0 \tag{b}\\
& x+y-3 \sqrt{2}=0 \text { (c) } 2 x+2 y-3 \sqrt{2}=0 \text { (d) } 2 x+2 y-5 \sqrt{5}=0
\end{align*}
$$

A. $x+y-5 \sqrt{2}=0$
B. $x+y-3 \sqrt{2}=0$
C. $2 x+2 y-3 \sqrt{2}=0$
D. $2 x+2 y-5 \sqrt{2}=0$

Answer: C

- Watch Video Solution

49. If the quadrilateral formed by the lines $a x+b y+c=0, a^{\prime} x+b^{\prime} y+c^{\prime}=0$, $a x+b y+c^{\prime}=0, a^{\prime} x+b^{\prime} y+c=0$ have perpendicular diagonals, then :
A. $b^{2}+c^{2}=b^{2}+c^{\prime 2}$
B. $c^{2}+a^{2}=c^{\prime 2}+a^{\prime 2}$
C. $a^{2}+b^{2}=a^{\prime 2}+b^{\prime 2}$
D. none of these

Answer: C

- Watch Video Solution

50. A line of fixed length 2 units moves so that its ends are on the positive x-axis and that part of the line $x+y=0$ which lies in the second quadrant. Then the locus of the midpoint of the line has equation.
A. $x^{2}+5 y^{2}+4 x y-1=0$
B. $x^{2}+5 y^{2}+4 x y+1=0$
C. $x^{2}+5 y^{2}-4 x y-1=0$
D. $x^{2}+5 y^{2}-4 x y-1=0$

Answer: A

- Watch Video Solution

51. If the extremities of the base of an isosceles triangle are the points $(2 a, 0)$ and $(0, \mathrm{a})$, and the equation of one of the side is $x=2 a$, then the area of the triangle is
A. $5 a^{2}$ sq. units
B. $5 a^{2} / 2$ sq. units
C. $25 a^{2} / 2$ sq. units
D. none of these

Answer: B

- Watch Video Solution

52. $A \equiv(-4,0), B \equiv(4,0) \dot{M a n d} N$ are the variable points of the $y-$ axis such that M lies below $\operatorname{NandMN}=4$. Lines $A M a n d B N$ intersect at P. The locus of P is
A. $2 x y-16-x^{2}=0$
B. $2 x y+16-x^{2}=0$
C. $2 x y+16+x^{2}=0$
D. $2 x y-16+x^{2}=0$
53. The number of triangles that the four lines $y=x+3, y=2 x+3, y=3 x+2$, and $y+x=3$ form is (a) 4 (b) 2 (c) 3 (d) 1
A. 4
B. 2
C. 3
D. 1

Answer: C

- Watch Video Solution

54. A variable line $\frac{x}{a}+\frac{y}{b}=1$ moves in such a way that the harmonic mean of a and b is 8 . Then the least area of triangle made by the line with
the coordinate axes is (1) 8 sq. unit (2) 16 sq. unit (3) 32 sq. unit (4) 64 sq. unit
A. 8 sq. unit
B. 16 sq. unit
C. 32 sq. unit
D. 64 sq. unit

Answer: C

- Watch Video Solution

55. Given $A(0,0)$ and $B(x, y)$ with $x \varepsilon(0,1)$ and $y>0$. Let the slope of the line AB equals m_{1} Point C lies on the line $x=1$ such that the slope of BC equals m_{2} where $0<m_{2}<m_{1}$ If the area of the triangle ABC can expressed as $\left(m_{1}-m_{2}\right) f(x)$, then largest possible value of $f(x)$ is:
A. 1
B. $1 / 2$
C. $1 / 4$
D. $1 / 8$

Answer: D

- Watch Video Solution

56. A triangle is formed by the lines $x+y=0, x-y=0$, and $l x+m y=1$. If landm vary subject to the condition $l^{2}+m^{2}=1$, then the locus of its circumcenter is (a) $\left(x^{2}-y^{2}\right)^{2}=x^{2}+y^{2}$
$\left(x^{2}+y^{2}\right)^{2}=\left(x^{2}-y^{2}\right)$
(c)
$\left(x^{2}+y^{2}\right)^{2}=4 x^{2} y^{2}$
$\left(x^{2}-y^{2}\right)^{2}=\left(x^{2}+y^{2}\right)^{2}$
A. $\left(x^{2}-y^{2}\right)^{2}=x^{2}+y^{2}$
B. $\left(x^{2}-y^{2}\right)^{2}=\left(x^{2}-y^{2}\right)$
C. $\left(x^{2}-y^{2}\right)=4 x^{2} y^{2}$
D. $\left(x^{2}-y^{2}\right)^{2}=\left(x^{2}+y^{2}\right)^{2}$

- Watch Video Solution

57. Let P be $(5,3)$ and a point R on $y=x$ and Q on the x -axis be such that $P Q+Q R+R P$ is minimum. Then the coordinates of Q are $\left(\frac{17}{4}, 0\right)$ (b) $(17,0)\left(\frac{17}{2}, 0\right)$ (d) none of these
A. $(17 / 4,0)$
B. $(17,0)$
C. $(17 / 2,0)$
D. none of these

Answer: A

- Watch Video Solution

58. If a pair of perpendicular straight lines drawn through the origin forms an isosceles triangle with the line $2 x+3 y=6$, then area of the triangle so formed is
A. $\frac{36}{13}$ sq. unit
B. $\frac{12}{17}$ sq. unit
C. $\frac{13}{5}$ sq. unit
D. $\frac{17}{13}$ sq. unit

Answer: A

- Watch Video Solution

59. A point $P(x, y)$ moves that the sum of its distance from the lines $2 x-y-$ $3=0$ and $x+3 y+4=0$ is 7 . The area bounded by locus P is (in sq. unit)
A. 70
B. $70 \sqrt{2}$
C. $35 \sqrt{2}$
D. 140

Answer: B

- Watch Video Solution

60. If AD, BE and CF are the altitudes of $\triangle A B C$ whose vertex A is $(-4,5)$.

The coordinates of points E and F are (4,1) and ($-1,4$), respectively. Equation of $B C$ is
A. $3 x-4 y+28=0$
B. $4 x+3 y+28=0$
C. $3 x-4 y-28=0$
D. $x+2 y+7=0$

Answer: C

61. The vertex A of $\triangle A B C$ is (3,-1). The equation of median BE and angle bisector CF are $x-4 y+10=0$ and $6 x+10 y-59=0$, respectively. Equation of $A C$ is
A. $5 x+18 y=37$
B. $15 x+8 y=37$
C. $15 x-8 y=37$
D. $15 x+8 y+37=0$

Answer: B

- Watch Video Solution

62. Suppose A, B are two points on $2 x-y+3=0$ and $P(1,2)$ is such that $P A=P B$. Then the mid point of $A B$ is
A. $\left(\frac{-1}{5}, \frac{13}{5}\right)$
B. $\left(\frac{-7}{5}, \frac{9}{5}\right)$
C. $\left(\frac{7}{5}, \frac{-9}{5}\right)$
D. $\left(\frac{-7}{5}, \frac{-9}{5}\right)$

Answer: A

- Watch Video Solution

63. Triangle formed by variable lines $(a+b) x+(a-b) y-2 a b=0$ and $(a-b) x+$ $(\mathrm{a}+\mathrm{b}) \mathrm{y}-2 \mathrm{ab}=0$ and $\mathrm{x}+\mathrm{y}=0$ is (where $\mathrm{a}, b \in R$)
A. (a) equilateral
B. (b) Isoceles
C. (c) scalene
D. (d) none of these

Answer: D

64. A light ray coming along the line $3 x+4 y=5$ gets reflected from the line $a x+b y=1$ and goes along the line $5 x-12 y=10$. Then,
A. $a=\frac{14}{15}, b=\frac{112}{15}$
B. $a=\frac{14}{15}, b=-\frac{18}{115}$
C. $a=\frac{64}{115}, b=-\frac{8}{115}$
D. $a=\frac{64}{15}, b=\frac{14}{15}$

Answer: C

- Watch Video Solution

65. The point $(2,1)$, translated parallel to the line $x-y=3$ by the distance of 4 units. If this new position A^{\prime} is in the third quadrant, then the coordinates of A^{\prime} are-
A. $(2+2 \sqrt{2}, 1+2 \sqrt{2})$
B. $(-2+\sqrt{2},-1-2 \sqrt{2})$
C. $(2-2 \sqrt{2}, 1-2 \sqrt{2})$
D. none of these

Answer: C

- Watch Video Solution

66. If one diagonal of square is the portion of the line $\frac{x}{a}+\frac{y}{b}=1$ intercepted by the axes, then the extremities of the other diagonal of the square are :
A. $(5,5),(-1,1)$
B. $(0,0),(4,6)$
C. (0,0),(-1,1)
D. $(5,5),(4,6)$

Answer: A

67. The point $\mathrm{P}(2,1)$ is shifted through a distance $3 \sqrt{2}$ units measured parallel to the line $x+y=1$ in the direction of decreasing ordinates, to reach at Q. The image of Q with respect to given line is
A. (3,-4)
B. $(-3,2)$
C. ($0,-1$)
D. none of these

Answer: A

- Watch Video Solution

68. Let O be the origin. If $A(1,0) \operatorname{andB}(0,1) \operatorname{and} P(x, y)$ are points such that $x y>0$ and $x+y<1$, then P
A. P lies either inside the triangle $O A B$ or in the third quadrant
B. P cannot lie inside the triangle OAB
C. P lies inside the triangle $O A B$
D. P lies in the first quadrant only

Answer: A

- Watch Video Solution

69. In a triangle $A B C$, the bisectors of angles BandC lies along the lines $x=$ yand $y=0$. If A is $(1,2)$, then the equation of line $B C$ is
A. $2 x+y=1$
B. $3 x-y=5$
C. $x-2 y=3$
D. $x+3 y=1$

Answer: B

70. Line $a x+b y+p=0$ makes angle $\frac{\pi}{4}$ with $x \cos \alpha+y \sin \alpha=p, p \in R^{+}$. If these lines and the line $x \sin \alpha-y \cos \alpha=0$ are concurrent, then
A. $a^{2}+b^{2}=1$
B. $a^{2}+b^{2}=2$
C. $2\left(a^{2}+b^{2}\right)=1$
D. none of these

Answer: B

- Watch Video Solution

71. The equation of the line AB is $y=x$. If A and B lie on the same side of the line mirror $2 x-y=1$, then the equation of the image of $A B$ is
A. $x+y=2$
B. $8 x+y=9$
C. $7 x-y=6$
D. none of these

Answer: C

- Watch Video Solution

72. The equation of the bisector of the acute angle between the lines
$2 x-y+4=0$ and $x-2 y=1$ is
A. $x+y+5=0$
B. $x-y+1=0$
C. $x-y=5$
D. none of these

Answer: B

73. The straight lines $4 a x+3 b y+c=0$ passes through which point?, where $a+b+c=0$ (a)(4,3)(b) $\left(\frac{1}{4}, \frac{1}{3}\right)$ (c) $\left(\frac{1}{2}, \frac{1}{3}\right)$ (d) none of these A. $(4,3)$
B. $(1 / 4,1 / 3)$
C. $(1 / 2,1 / 3)$
D. none of these

Answer: B

- Watch Video Solution

74. If the lines $a x+y+1=0, x+b y+1=0, x+y+c=0,(a, b, c$ are distinct and not equal to 1), are concurrent, then find the value of $\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}$
B. 1
C. $1 /(a+b+c)$
D. none of these

Answer: B

- Watch Video Solution

75. If lines $x+2 y-1=0, a x+y+3=0$, and $b x-y+2=0$ are concurrent, and S is the curve denoting the locus of (a, b), then the least distance of S from the origin is
A. $5 / \sqrt{57}$
B. $5 / \sqrt{51}$
C. $5 / \sqrt{58}$
D. $5 / \sqrt{59}$
76. The straight lines $x+2 y-9=0,3 x+5 y-5=0$, and $a x+b y-1=0$ are concurrent, if the straight line $35 x-22 y+1=0$ passes through the point (a) (a, b) (b) $(b, a)(c)(-a,-b)$ (d) none of these
A. (a, b)
B. (b,a)
C. (-a,-b)
D. none of these

Answer: A

- Watch Video Solution

77.

the straight lines
$2 x+3 y-1=0, x+2 y-1=0$, and $a x+b y-1=0$ form
triangle with the origin as orthocentre, then (a, b) is given by
A. $(6,4)$
B. $(-3,3)$
C. $(-8,8)$
D. $(0,7)$

Answer: C

- Watch Video Solution

78. If $\frac{a}{\sqrt{b c}}-2=\sqrt{\frac{b}{c}}+\sqrt{\frac{c}{b}}$, where $a, b, c>0$, then the family of lines $\sqrt{a} x+\sqrt{b} y+\sqrt{c}=0$ passes though the fixed point given by (a) $(1,1)$ (b) $(1,-2)(c)(-1,2)(d)(-1,1)$
A. $(1,1)$
B. $(1,-2)$
C. $(-1,2)$

D. $(-1,1)$

Answer: D

- Watch Video Solution

79. If it is possible to draw a line which belongs to all the given family of lines
$y-2 x+1+\lambda_{1}(2 y-x-1)=0,3 y-x-6+\lambda_{2}(y-3 x+6)=0$,
$a x+y-2+\lambda_{3}(6 x+a y-a)=0$, then
(a) $a=4$ (b) $a=3$ (c) $a=-2$ (d) $a=2$
A. $a=4$
B. $a=3$
C. $a=-2$
D. $a=2$

Answer: A

80. If two members of family $(2+\lambda) x+(1+2 \lambda) y-3(1+\lambda)=0$ and line $x+y=0$ make an equilateral triangle, the the incentre of triangle so formed is
A. $\left(\frac{1}{3}, \frac{1}{3}\right)$
B. $\left(\frac{7}{6},-\frac{5}{6}\right)$
C. $\left(\frac{5}{6}, \frac{5}{6}\right)$
D. $\left(-\frac{3}{2},-\frac{3}{2}\right)$

Answer: A

- Watch Video Solution

81. The set of lines $x \tan ^{-1} a+y \sin ^{-1}\left(\frac{1}{\sqrt{1+a^{2}}}\right)+2=0$ where $a \in(0,1)$ are concurrent at (a) $\left(\frac{1}{\pi}, \frac{1}{\pi}\right)$ (b) $\left(-\frac{4}{\pi},-\frac{4}{\pi}\right)$ (c) (π, π)
(d) none of these
82. If $\sin (\alpha+\beta) \sin (\alpha-\beta)=\sin \gamma(2 \sin \beta+\sin \gamma)$, where ${ }^{\circ} 0$
A. $(1,1)$
B. $(-1,1)$
C. $(1,-1)$
D. none of these

Answer: C

- Watch Video Solution

Exercise Multiple Correct Answers Type

1. If P is a point (x, y) on the line $y=-3 x$ such that P and the point
$(3,4)$ are on the opposite sides of the line $3 x-4 y=8$, then $x>\frac{8}{15}$
(b) $x>\frac{8}{5} y<-\frac{8}{5}$ (d) $y<-\frac{8}{15}$
A. $x>8 / 15$
B. $x>8 / 5$
C. $x<-8 / 5$
D. $y<-8 / 15$

Answer: A: C

D Watch Video Solution

2. If (x, y) is a variable point on the line $y=2 x$ lying between the lines $2(x+1)+y=0$ and $x+3(y-1)=0$, then $x \in\left(-\frac{1}{2}, \frac{6}{7}\right)$
$x \in\left(-\frac{1}{2}, \frac{3}{7}\right) y \in\left(-1, \frac{3}{7}\right)$ (d) $y \in\left(-1, \frac{6}{7}\right)$
A. $x \in(-1 / 2,6 / 7)$
B. $x \in(-1 / 2,3 / 7)$
C. $y \in(-1,3 / 7)$
D. $y \in(-1,6 / 7)$

- Watch Video Solution

3. Let $P(\sin \theta, \cos \theta)(0 \leq \theta \leq 2 \pi)$ be a point and let OAB be a triangle with vertices $(0,0),\left(\sqrt{\frac{3}{2}}, 0\right)$ and $\left(0, \sqrt{\frac{3}{2}}\right)$ Find θ if P lies inside $\triangle O A B$
A. $0<0<\pi / 12$
B. $5 \pi / 2<\theta<\pi / 2$
C. $0<\theta<5 \pi / 2$
D. $5 \pi / 2<\theta<\pi$

Answer: A::B

- Watch Video Solution

4. Three lines $x+2 y+3=0, x+2 y-7=0$, and $2 x-y-4=0$ form the three sides of two squares. The equation of the four side of the each square is
A. $2 x-y+6=0$
B. $2 x-y+8=0$
C. $2 x-y-10=0$
D. $2 x-y-14=0$

Answer: A:D

- Watch Video Solution

5. Angle made with the x-axis by a straight line drawn through $(1,2)$ so that it intersects $x+y=4$ at a distance $\frac{\sqrt{6}}{3}$ from $(1,2)$ is (a) 105^{0} 75^{0} (c) 60° (d) 15^{0}
A. 105°
B. 75°
C. 60°
D. 15°

Answer: B::D

- Watch Video Solution

6.

Three
straight
lines
$2 x+11 y-5=0,24 x+7 y-20=0$ and $4 x-3 y-2=0$
A. they from a triangle
B. they are concurrent
C. one line bisects the angle between the other two
D. two of them are parallel

Answer: C

7. A triangle is formed by the lines whose equations are $A B: x+y-5=0, B C$: $x+7 y-7=0$ and $C A: 7 x+y+14=0$.

Then
A. angle at A is acute
B. angle at C is acute
C. internal angle bisector at angle B is $3 x+6 y-16=0$
D. external angle bisector at angle C is $8 x+8 y+7=0$

Answer: A,C,D

- View Text Solution

8. If the points $\left(\frac{a^{3}}{(a-1)}\right),\left(\frac{\left(a^{2}-3\right)}{(a-1)}\right),\left(\frac{b^{3}}{b-1}\right),\left(\left(\frac{b^{2}-3}{(b-1)}\right)\right.$, and $\left(\frac{\left(c^{2}-3\right)}{(c-1)}\right)$, where a, b, c are different from 1 , lie on the $l x+m y+n=0$, then
A. (1) $a+b+c=-\frac{m}{l}$
B. (2) $a b+b c+c a=\frac{n}{l}$
C. (3) $a b c=\frac{(m+n)}{l}$
D. $(4) a b c-(b c+c a+a b)+3(a+b+c)=0$

Answer: A::B::D

- Watch Video Solution

9. Two sides of a rhombus OABC (lying entirely in first quadrant or fourth quadrant) of area equal to 2 sq. units, are $y=\frac{x}{\sqrt{3}}, y=\sqrt{3} x$ Then possible coordinates of B is / are (' O ' being the origin)
A. $(1+\sqrt{3}, 1+\sqrt{3})$
B. $(-1-\sqrt{3},-1-\sqrt{3})$
C. $(3+\sqrt{3}, 3+\sqrt{3})$
D. $(\sqrt{3}-1, \sqrt{3}-1)$

- Watch Video Solution

10. If $\left(\frac{x}{a}\right)+\left(\frac{y}{b}\right)=1$ and $\left(\frac{x}{c}\right)+\left(\frac{y}{d}\right)=1$ intersect the axes at four concylic points and $a^{2}+c^{2}=b^{2}+d^{2}$, then these lines can intersect at, $(a, b, c, d>0)^{\text {` }}$
A. $(1,1)$
B. $(1,-1)$
C. $(2,-2)$
D. $(3,3)$

Answer: A, B, C and D

11. The straight line $3 x+4 y-12=0$ meets the coordinate axes at AandB. An equilateral triangle $A B C$ is constructed. The possible coordinates of vertex C
A. $\left(2\left(1-\frac{3 \sqrt{3}}{4}\right), \frac{3}{2}\left(1-\frac{4}{\sqrt{3}}\right)\right)$
B. $\left(-2(1+\sqrt{3}), \frac{3}{2}(1-\sqrt{3})\right)$
C. $\left(2(1+\sqrt{3}), \frac{3}{2}(1+\sqrt{3})\right)$
D. $\left(2\left(1+\frac{3 \sqrt{3}}{4}\right), \frac{3}{2}\left(1+\frac{4}{\sqrt{3}}\right)\right)$

Answer: A:D

- Watch Video Solution

12. The equation of the lines passing through the point $(1,0)$ and at a distance $\frac{\sqrt{3}}{2}$ from the origin is (a) $\sqrt{3} x+y-\sqrt{3}=0$
$x+\sqrt{3} y-\sqrt{3}=0$ (c) $\sqrt{3} x-y-\sqrt{3}=0$ (d) $x-\sqrt{3} y-\sqrt{3}=0$
A. $\sqrt{3} x+y-\sqrt{3}=0$
B. $x+\sqrt{3} y-\sqrt{3}=0$
C. $\sqrt{3} x-y-\sqrt{3}=0$
D. $x-\sqrt{3} y-\sqrt{3}=0$

Answer: A:C

- Watch Video Solution

13. The sides of a triangle are the straight lines $x+y=1,7 y=x$, and $\sqrt{3} y+x=0$. Then which of the following is an interior point of the triangle? Circumcenter (b) Centroid Incenter (d) Orthocenter
A. Circumcenter
B. Centroid
C. Incenter
D. Orthocenter
14. If the straight line $a x+c y=2 b$, where $a, b, c>0$, makes a triangle of area 2 sq. units with the coordinate axes, then (a) a, b, c are in GP (b) a, $-\mathrm{b}, \mathrm{c}$ are in GP (c) $a, 2 b, c$ are in GP (d) $a,-2 b, c$ are in GP
A. a,b,c are in GP
B. a,-b, c are in GP
C. a,2b,c are in GP
D. $\mathrm{a},-2 \mathrm{~b}, \mathrm{c}$ are in GP

Answer: A::B

- Watch Video Solution

15. Consider the equation $y-y_{1}=m\left(x-x_{1}\right)$. If mand x_{1} are fixed and different lines are drawn for different values of y_{1}, then (a) the lines will pass through a fixed point (b) there will be a set of parallel lines (c) all
the lines intersect the line $x=x_{1}$ (d)all the lines will be parallel to the line $y=x_{1}$
A. the lines will pass through a fixed point
B. there will be a set of parallel lines
C. all the lines intersect the line $x=x_{1}$
D. all the lines will be parallel to the line $y=x_{1}$

Answer: B::C

- Watch Video Solution

16. Equation(s) of the straight line(s), inclined at 30^{0} to the x-axis such that the length of its (each of their) line segment(s) between the coordinate axes is 10 units, is (are) $x+\sqrt{3} y+5 \sqrt{3}=0$

$$
x-\sqrt{3} y+5 \sqrt{3}=0 x+\sqrt{3} y-5 \sqrt{3}=0 x-\sqrt{3} y-5 \sqrt{3}=0
$$

A. $x+\sqrt{3} y+5 \sqrt{3}=0$
B. $x-\sqrt{3} y+5 \sqrt{3}=0$
C. $x+\sqrt{3} y-5 \sqrt{3}=0$
D. $x-\sqrt{3} y-5 \sqrt{3}=0$

Answer: B::D

- Watch Video Solution

17. The lines $x+y-1=0,(m-1) x+\left(m^{2}-7\right) y-5=0$, and $(m-2) x+(2 m-5) y=0$ are a.) concurrent for three values of m b.) concurrent for no value of $m \mathrm{c}$.) parallel for one value of $m \mathrm{~d}$.) parallel for two value of m

- Watch Video Solution

18. The equation of a straight line passing through the point $(2,3)$ and inclined at an angle of $\tan ^{-1}\left(\frac{1}{2}\right)$ with the line $y+2 x=5$, so the equation of the line is/ are: (a) $y=3$ (b) $x=23 x+4 y-18=0$ (d) $4 x+3 y-17=0$
A. $y=3$
B. $x=2$
C. $3 x+4 y-18=0$
D. $4 x+3 y-17=0$

Answer: B::C

D Watch Video Solution

19. Find the equation of a straight line on which the perpendicular from the origin makes an angle of 30° with $x-a \xi s$ and which forms a triangle of area $\frac{50}{\sqrt{3}}$ with the axes.
A. $\sqrt{3} x+y-10=0$
B. $\sqrt{3} x+y+10=0$
C. $x+\sqrt{3} y-10=0$
D. $x-\sqrt{3} y-10=0$

- Watch Video Solution

20. A line is drawn perpendicular to line $y=5 x$, meeting the coordinate axes at AandB. If the area of triangle $O A B$ is 10 sq. units, where O is the origin, then the equation of drawn line is (a) $3 x-y-9$
$x+5 y=10 x+4 y=10$ (d) $x-4 y=10$
A. 12
B. -12
C. 10
D. -10

Answer: A: B

21. If $x-2 y+4=0 a n d 2 x+y-5=0$ are the sides of an isosceles triangle having area 10 squinits, the equation of the third side is (a) $3 x-y=-9$ (b) $3 x-y+11=0$ (c) $x-3 y=19$ (d) $3 x-y+15=0$
A. $x+3 y=-1$
B. $x+3 y=19$
C. $3 x-y=-9$
D. $3 x-y=11$

Answer: $\mathrm{A}: \mathrm{B}: \mathrm{:}$: $\mathrm{C}: \mathrm{D}$

- Watch Video Solution

22. Find the value of a for which the lines $2 x+y-1=0$, $a x+3 y-3=0,3 x+2 y-2=0$ are concurrent.
A. -3
B. -1
C. 1
D. infinite value

Answer: infinite

- Watch Video Solution

23. The lines $p x+q y+r=0, q x+r y+p=0, r x+p y+q=0$, are concurrant then
A. $p+q+r=0$
B. $p^{2}+q^{2}+r^{2}=p r+r p+p q$
C. $p^{3}+q^{3}+r^{3}=3 p q r$
D. none of these

Answer: A::B::C

- Watch Video Solution

24. θ_{1} and θ_{2} are the inclination of lines L_{1} and L_{2} with the x-axis. If L_{1} and L_{2} pass through $P\left(x_{1}, y_{1}\right)$, then the equation of one of the angle bisector of these lines is
A. $\frac{x-x_{1}}{\cos \left(\frac{\theta_{1}+\theta_{2}}{2}\right)}=\frac{y-y_{1}}{\sin \left(\frac{\theta_{1}+\theta_{2}}{2}\right)}$
B. $\frac{x-x_{1}}{-\sin \left(\frac{\theta_{1}-\theta_{2}}{2}\right)}=\frac{y-y_{1}}{\cos \left(\frac{\theta_{1}-\theta_{2}}{2}\right)}$
C. $\frac{x-x_{1}}{\sin \left(\frac{\theta_{1}+\theta_{2}}{2}\right)}=\frac{y-y_{1}}{\cos \left(\frac{\theta_{1}+\theta_{2}}{2}\right)}$
D. $\frac{x-x_{1}}{-\sin \left(\frac{\theta_{1}+\theta_{2}}{2}\right)}=\frac{y-y_{1}}{\cos \left(\frac{\theta_{1}+\theta_{2}}{2}\right)}$

Answer: A::D

- Watch Video Solution

25.

Consider
the
lines
$L_{1} \equiv 3 x-4 y+2=0$ and $L_{2} \equiv 3 y-4 x-5=0$. Now, choose the correct statement(s).
A. The line $\mathrm{x}+\mathrm{y}=0$ bisects the acute angle between L_{1} and L_{2} containing the origin.
B. The line $\mathrm{x}-\mathrm{y}+1=0$ bisects the obtuse angle between L_{1} and L_{2} not containing the origin.
C. The line $\mathrm{x}+\mathrm{y}+3=0$ bisects the obtuse angle between L_{1} and L_{2} containing the origin.
D. The line $\mathrm{x}-\mathrm{y}+1=0$ bisects the acute angle between L_{1} and L_{2} not containing the origin.

Answer: A: B

- Watch Video Solution

26. The sides of a rhombus are parallel to the lines $x+y-1=0$ and
$7 x-y-5=0$. It is given that the diagonals of the rhombus intersect at $(1,3)$ and one vertex, A of the rhombus lies on the line $y=2 x$. Then
the coordinates of vertex A are $\left(\frac{8}{5}, \frac{16}{5}\right)$
(b) $\left(\frac{7}{15}, \frac{14}{15}\right)\left(\frac{6}{5}, \frac{12}{5}\right)$ $\left(\frac{4}{15}, \frac{8}{15}\right)$
A. $(8 / 5,16 / 5)$
B. $(7 / 15,14 / 15)$
C. $(6 / 5,12 / 5)$
D. $(4 / 15,8 / 15)$

Answer: A::C

- Watch Video Solution

27. Two straight lines $u=0 a n d v=0$ pass through the origin and the angle between them is $\tan ^{-1}\left(\frac{7}{9}\right)$. If the ratio of the slope of $v=0$ and $u=0$ is $\frac{9}{2}$, then their equations are
A. $y+3 x=0$ and $3 y+2 x=0$
B. $2 y+3 x=0$ and $3 y+x=0$
C. $2 y=3 x$ and $3 y=0$
D. $y=3 x$ and $3 y=2 x$

Answer: A::B::C::D

- Watch Video Solution

28. Let $u=a x+b y+a^{3} \sqrt{b}=0, v=b x-a y+b^{3} \sqrt{a}=0, a, b \in R$, be two straight lines. The equations of the bisectors of the angle formed by $k_{1} u-k_{2} v=0$ and $k_{1} u+k_{2} v=0$, for nonzero and real k_{1} and k_{2} are
A. $u=0$
B. $k_{2} u+k_{1} v=0$
C. $k_{2} u-k_{1} v=0$
D. $\mathrm{v}=0$

Answer: A,D

29. Two sides of a triangle are parallel to the coordinate axes. If the slopes of the medians through the acute angles of the triangle are 2 and m, then m is (a) $\frac{1}{2}$ (b) 2 (c) 4 (d) 8
A. a. $1 / 2$
B.b. 2
C. c. 4
D. d. 8

Answer: A: D

- Watch Video Solution

30. A line which makes an acute angle θ with the positive direction of the x -axis is drawn through the point $P(3,4)$ to meet the line $x=6$ at R and $y=8$ at S. Then,
A. $P R=3 \sec \theta$
B. $P S=4 \operatorname{cosec} \theta$
C. $P R+P S=\frac{2(3 \sin \theta+4 \cos \theta)}{\sin 2 \theta}$
D. $\frac{9}{(P R)^{2}}+\frac{16}{(P S)^{2}}=1$

Answer: A::B::C::D

D Watch Video Solution

Exercise Linked Comprehension Type

1. Let l be the line belonging to the family of straight lines $(a+2 b) x+(a-3 b) y+a-8 b=0, a, b \in R$, which is farthest from the point $(2,2)$, then area enclosed by the line L and the coordinate axes is
A. $x+4 y+7=0$
B. $2 x+3 y+4=0$
C. $4 x-y-6=0$
D. none of these

Answer: A

- Watch Video Solution

2. Let L be the line belonging to the family of straight lines $(a+2 b) x+(a-$ $3 b) y+a-8 b=0, a, b \in R$, which is the farthest from the point $(2,2)$.

The equation of line L is
A. $4 / 3$ sq. units
B. $9 / 2$ sq. units
C. $49 / 8$ sq. units
D. none of these

Answer: C

3. Let L be the line belonging to the family of straight lines $(a+2 b) x+(a-$ $3 b) y+a-8 b=0, a, b \in R$, which is the farthest from the point $(2,2)$. If L is concurrent with the lines $\mathrm{x}-2 \mathrm{y}+1=0$ and $3 x-4 y+\lambda=0$, then the value of λ is
A. 2
B. 1
C. -4
D. 5

Answer: D

- Watch Video Solution

4. The equation of an altitude of an equilateral triangle is $\sqrt{3} x+y=2 \sqrt{3}$ and one of its vertices is $(3, \sqrt{3})$ then the possible number of triangles is
A. 1
B. 2
C. 3
D. 4

Answer: B

- Watch Video Solution

5. The equation of an altitude of an equilateral triangle is $\sqrt{3} x+y=2 \sqrt{3}$ and one of its vertices is $(3, \sqrt{3})$ then the possible number of triangles is
A. 1
B. 2
C. 3
D. 4

- Watch Video Solution

6. The equation of an altitude of an equilateral triangle is $\sqrt{3} x+y=2 \sqrt{3}$, and one of the vertices is $(3, \sqrt{3})$.

Which of the following is not one of the possible vertices of the triangle?
A. $a \cdot \sqrt{3}$
B. b. $\sqrt{3}$
C. c. 2
D. d. none of these

Answer: A

7. A variable line L is drawn through $O(0,0)$ to meet the lines $L 1$ $: y-x-10=0$ and $L 2: y-x-20=0$ at the points A and B respectively. A point P is taken on L such that $O P 2=O A 1+O B 1$ and P, A, B lies on same side of origin O . The locus of P is
A. $3 x+3 y=40$
B. $3 x+3 y+40=0$
C. $3 x-3 y=40$
D. $3 y-3 x=40$

Answer: D

- Watch Video Solution

8. A variable line L is drawn through $\mathrm{O}(0,0)$ to meet the line L_{1} and L_{2} given by $y-x-10=0$ and $y-x-20=0$ at Points A and B, respectively. Locus of P , if $O P^{2}=O A \times O B$, is a. $(y+x)^{2}=50 \mathrm{~b} .(y-x)^{2}=200 \mathrm{c}$. $(y-x)^{2}=100 \mathrm{~d}$. none of these
A. $(y-x)^{2}=100$
B. $(y+x)^{2}=50$
C. $(y-x)^{2}=200$
D. none of these

Answer: C

- Watch Video Solution

9. A variable line L is drawn through $\mathrm{O}(0,0)$ to meet the line L_{1} and L_{2} given by $y-x-10=0$ and $y-x-20=0$ at Points A and B, respectively. Locus of P , if $O P^{2}=O A \times O B$, is a. $(y+x)^{2}=50 \mathrm{~b} .(y-x)^{2}=200 \mathrm{c}$. $(y-x)^{2}=100 \mathrm{~d}$. none of these
A. $(y-x)^{2}=80$
B. $(y-x)^{2}=100$
C. $(y-x)^{2}=64$
D. none of these

- Watch Video Solution

10. The line $6 x+8 y=48$ intersects the coordinates axes at A and B, respecively. A line L bisects the area and the perimeter of triangle $O A B$, where O is the origin.

The number of such lines possible is a. 1 b. 2 c. 3 d. 4
A. 1
B. 2
C. 3
D. more than 3

Answer: A

- Watch Video Solution

11. if a line has direction ratio $2,-1,-2$,determine its direction cosine

- Watch Video Solution

12. The line $6 x+8 y=48$ intersects the coordinates axes at A and B, respecively. A line L bisects the area and the perimeter of triangle OAB, where O is the origin.

The number of such lines possible is a. 1 b. 2 c. 3 d. 4
A. does not intersect $A B$
B. does not intersect $O B$
C. does not intersect OA
D. can intersect all the sides

Answer: C

13. $A(1,3)$ and $C(-2, / 5,-2 / 5)$ are the vertices of a triangle $A B C$ and the equation of the internal angle bisector of $\angle A B C$ is $x+y=2$. The coordinates of vertex B are
A. $7 x+3 y-4=0$
B. $7 x+3 y+4=0$
C. $7 x-3 y+4=0$
D. $7 x-3 y-4=0$

Answer: B

- Watch Video Solution

14. $A(1,3)$ and $c\left(-\frac{2}{5},-\frac{2}{5}\right)$ are the vertices of a $\triangle A B C$ and the equation of the angle bisector of $\angle A B C$ is $x+y=2$. Then the value of B is. (A) $(3 / 10,17 / 10)$ (B) $(17 / 10,3 / 10)(C)(-5 / 2,9 / 2)$ (D) $(-1,1)$
A. (A) $(3 / 10,17 / 10)$
B. (B) $(17 / 10,3 / 10)$
C. (C) $(-5 / 2,9 / 2)$
D. (D) $(-1,1)$

Answer: C

- Watch Video Solution

15. $A(1,3)$ and $C(-2, / 5,-2 / 5)$ are the vertices of a triangle $A B C$ and the equation of the internal angle bisector of $\angle A B C$ is $x+y=2$.

The equation of side $B C$ is
A. $7 x+3 y+4=0$
B. $3 x+7 y+24=0$
C. $13 x+7 y+8=0$
D. $13 x-7 y+8=0$

Answer: A

16. Let $A B C D$ be a parallelogram the equation of whose diagonals are $A C: x+2 y=3 ; B D: 2 x+y=3$. If length of diagonal $A C=4$ units and area of $A B C D=8$ sq. units. Then find the length of the other diagonal
A. $10 / 3$
B. 2
C. $20 / 3$
D. none of these

Answer: C

- Watch Video Solution

17. Let $A B C D$ be a parallelogram the equation of whose diagonals are $A C: x+2 y=3 ; B D: 2 x+y=3$. If length of diagonal $A C=4$ units
and area of $A B C D=8 \mathrm{sq}$. units. Then find the length of the other diagonal
A. $\sqrt{232} / 3$
B. $4 \sqrt{58} / 9$
C. $3 \sqrt{58} / 9$
D. $4 \sqrt{58} / 9$

Answer: A

- Watch Video Solution

18. Let $A B C D$ be a parallelogram the equation of whose diagonals are $A C: x+2 y=3 ; B D: 2 x+y=3$. If length of diagonal $A C=4$ units and area of $A B C D=8$ sq. units. Then find the length of the other diagonal
19. Consider a triangle $P Q R$ with coordinates of its vertices as $P(-8,5)$, $Q(-15,-19)$, and $R(1,-7)$. The bisector of the interior angle of P has the equation which can be written in the form $a x+2 y+c=0$.

The distance between the orthocenter and the circumcenter of triangle PQR is
A. $25 / 2$
B. $29 / 2$
C. $37 / 2$
D. $51 / 2$

Answer: A

- Watch Video Solution

20. Consider a triangle $P Q R$ with coordinates of its vertices as $P(-8,5)$, $Q(-15,-19)$, and $R(1,-7)$. The bisector of the interior angle of P has the equation which can be written in the form $a x+2 y+c=0$.

The distance between the orthocenter and the circumcenter of triangle PQR is
A. 4
B. 5
C. 6
D. 8

Answer: B

- Watch Video Solution

21. Consider a triangle $P Q R$ with coordinates of its vertices as $P(-8,5)$, $Q(-15,-19)$, and $R(1,-7)$. The bisector of the interior angle of P has the equation which can be written in the form $a x+2 y+c=0$. triangle $P Q R$ is The sum $a+c$ is
A. 129
B. 78
C. 89
D. none of these

Answer: C

- Watch Video Solution

22. The base of an isosceles triangle measures 4 units base angle is equal to 45°. A straight line cuts the extension of the base at a point M at the angle θ and bisects the lateral side of the triangle which is nearest to M . The area of quadrilateral which the straight line cuts off from the given triangle is
A. $\frac{3+\tan \theta}{1+\tan \theta}$
B. $\frac{3+5 \tan \theta}{1+\tan \theta}$
C. $\frac{3+\tan \theta}{1-\tan \theta}$
D. $\frac{3+2 \tan \theta}{1+\tan \theta}$

D Watch Video Solution

23. The base of an isosceles triangle measures 4 units base angle is equal to 45°. A straight line cuts the extension of the base at a point M at the angle θ and bisects the lateral side of the triangle which is nearest to M . The possible range of values in which area of quadrilateral which straight line cuts off from the given triangle lie in
A. $\left(\frac{5}{2}, \frac{7}{2}\right)$
B. $(4,3)$
C. $(4,5)$
D. $(3,4)$

Answer: D

24. The base of an isosceles triangle measures 4 units base angle is equal to 45°. A straight line cuts the extension of the base at a point M at the angle θ and bisects the lateral side of the triangle which is nearest to M. The area of quadrilateral which the straight line cuts off from the given triangle is
A. $(2,4)$
B. $\left(\frac{3}{2}, \sqrt{3}\right)$
C. $(\sqrt{2}, 2)$
D. $(\sqrt{2}, \sqrt{3})$

Answer: C

- Watch Video Solution

25. Consider point $A(6,30)$, point $B(24,6)$ and line $A B: 4 x+3 y=114$.

Point $P(0, \lambda)$ is a point on y-axis such that
$0<\lambda<38$ and point $Q(0, \lambda)$ is a point on y-axis such that $\lambda>38$.
For all positions of pont P , angle APB is maximum when point P is
A. $(0,12)$
B. $(0,15)$
C. $(0,18)$
D. $(0,21)$

Answer: C

- Watch Video Solution

26. Consider point $A(6,30)$, point $B(24,6)$ and line $A B: 4 x+3 y=114$.

Point $P(0, \lambda)$ is a point on y-axis such that $0<\lambda<38$ and point $Q(0, \lambda)$ is a point on y-axis such that $\lambda>38$. The maximum value of angle APB is
A. $\frac{\pi}{3}$
B. $\frac{\pi}{2}$
C. $\frac{2 \pi}{3}$
D. $\frac{3 \pi}{3}$

Answer: B

- Watch Video Solution

27. Consider point $A(6,30)$, point $B(24,6)$ and line $A B: 4 x+3 y=114$.

Point $P(0, \lambda)$ is a point on y-axis such that $0<\lambda<38$ and point $Q(0, \lambda)$ is a point on y -axis such that $\lambda>38$. For all positions of pont P , angle APB is maximum when point P is
A. $(0,54)$
B. $(0,58)$
C. $(0,60)$
D. $(0,1)$

Answer: B

Exercise Matrix Match Type

1. Match the following lists:

List I	List II
a. Four lines $x+3 y-10=0, x+3 y-$	
$20=0,3 x-y+5=0$, and $3 x-y-5-5$	
$=0$ form a figure which is	

which is neither

a parallelogram

nor a trapezium\end{array}\right\}\)

- Watch Video Solution

2. Match the following lists:

List I	List II
a. The lines $\boldsymbol{y}=0 ; y=1 ; x-6 y+4=0$, and $\boldsymbol{x}+\mathbf{6 y}-\mathbf{9}=\mathbf{0}$ constitute a figure which is	p. a cyclic quadrilateral
b. The points $A(a, 0), B(0, b), C(c, 0)$, and $D(0, d)$ are such that $a c=b d$ and a, b, c, d are all posi- tive. The points A, B, C, and D always constitute	q. a rhombus
c. The figure formed by the four lines $a x$ $\pm \boldsymbol{b y} \pm \boldsymbol{c}=\mathbf{0}, \boldsymbol{a} \neq b$, is	r. a square
d. The line pairs $\boldsymbol{x}^{2}-8 \boldsymbol{x}+12=0$ and $y^{2}-14 y+$	s. a trape- zium
$\mathbf{4 5}=\mathbf{0}$ constitue a figure which is	

- Watch Video Solution

3. Match the following lists:

List I	List II
a. If lines $3 x+y-4=0, x-2 y-6=0$, and $\lambda x+$ $4 y+\lambda^{2}=0$ are concurrent, then the value of λ is	p. -4
b. If the points $(\lambda+1,1),(2 \lambda+1,3)$, and $(2 \lambda+2$, $2 \lambda)$ are collinear, then the value of λ is	q. $-1 / 2$
c. If the line $x+y-1-\|\lambda / 2\|=0$, passing through the intersection of $x-y+1=0$ and $3 x+y-5$ $=0$, is perpendicular to one of them, then the value of λ is	r. 4
d. If the line $y-x-1+\lambda=0$ is equidistant from the points $(1,-2)$ and $(3,4)$, then λ is	s. 2

4. Match the following lists:

List I	List II
a. If lines $3 x+y-4=0, x-2 y-6=0$, and $\lambda x+$ $4 y+\lambda^{2}=0$ are concurrent, then the value of λ is	p. -4
b. If the points $(\lambda+1,1),(2 \lambda+1,3)$, and $(2 \lambda+2$, $2 \lambda)$ are collinear, then the value of λ is	q. $-1 / 2$
c. If the line $x+y-1-\|\lambda / 2\|=0$, passing through the intersection of $x-y+1=0$ and $3 x+y-5$ $=0$, is perpendicular to one of them, then the value of λ is	r. 4
d. If the line $y-x-1+\lambda=0$ is equidistant from the points $(1,-2)$ and $(3,4)$, then λ is	s. 2

- Watch Video Solution

5. Consider the lines represented by equation
$\left(x^{2}+x y-x\right) \times(x-y)=0$ forming a triangle. Then match the

following lists:

List I	List II
a. Orthocenter of triangle	p. $(1 / 6,1 / 2)$
b. Circumcenter	q. $(1 /(2+2 \sqrt{2}), 1 / 2)$
c. Centroid	r. $(0,1 / 2)$
d. Incenter	s. $(1 / 2,1 / 2)$

- Watch Video Solution

6. Match the following lists:

List I	List II
a. If $L=\lim _{x \rightarrow-1} \frac{\sqrt[3]{(7-x)}-2}{(x+1)}$, then $12 L=$	p. -2
b. If $L=\lim _{x \rightarrow \pi / 4} \frac{\tan ^{3} x-\tan x}{\cos \left(x+\frac{\pi}{4}\right)}$, then $-L / 4=$	q. 2
c. If $L=\lim _{x \rightarrow 1} \frac{(2 x-3)(\sqrt{x}-1)}{2 x^{2}+x-3}$, then $20 L=$	r. 1
d. If $L=\lim _{x \rightarrow \infty} \frac{\log x^{n}-[x]}{[x]}$, where $n \in N$,	s. -1
$([x]$ denotes greatest integer less than or	
equal to $x)$, then $-2 L=$	

7. Consider the lines given by
$L_{1}: x+3 y-5=0$
$L_{2}: 3 x-k y-1=0$
$L_{3}: 5 x+2 y-12=0$
Match the following lists.

List I	List II
a. L_{1}, L_{2}, L_{3} are concurrent if	p. $k=-9$
b. One of L_{1}, L_{2}, L_{3} is parallel to at least one of the other two if	q. $k=-6 / 5$
c. L_{1}, L_{2}, L_{3} form a triangle if	r. $k=5 / 6$
d. L_{1}, L_{2}, L_{3} do not form a triangle if	s. $k=5$

- Watch Video Solution

8. Consider a $\triangle A B C$ in which sides AB and AC are perpendicular to $\mathrm{x}-\mathrm{y}$ $4=0$ and $2 x-y-5=0$, repectively. Vertex A is $(-2,3)$ and the circumcenter of $\triangle A B C$ is $(3 / 2,5 / 2)$.

The equation of the line in List I is of the form $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$, where
$a, b, c \in I$. Match it with the corresponding value of c in list II and then choose the correct code.

List I	List II
a. Equation of the perpendicular bisector of side $A B$	p. -1
b. Equation of the perpendicular bisector of side $A C$.	q. 1
c. Equation of side $A C$	r. -16
d. Equation of the median through A	s. -4

Codes :

a	b	c	d
r	s	p	q
s	r	q	p
q	p	s	r
r	p	s	q

- Watch Video Solution

Exercise Numerical Value Type

1. Find the number of permutations of the set $\{1,2,3,4\}$ in which no two adjacent positions are filled by consecutive integers (increasing orders).
2. The number of values of k for which the lines $(k+1) x+8 y=4 k a n d k x+(k+3) y=3 k-1$ are coincident is

- Watch Video Solution

3. What is the minimum value of $2 x+3 y$, when $x y=6$?

- Watch Video Solution

4. The absolute value of the sum of the abscissas of all the points on the line $x+y=4$ that lie at a unit distance from the line $4 x+3 y-10=0$ is \qquad

- Watch Video Solution

5. Two sides of a rectangle are $3 x+4 y+5=0,4 x-3 y+15=0$ and one of its vertices is $(0,0)$. The area of rectangle is \qquad .

- Watch Video Solution

6. Find the length of the subtangent to the curve $x^{2} y^{2}=a^{4}$ at $(-a, a)$.

- Watch Video Solution

7. For all real values of a and b lines
$(2 a+b) x+(a+3 b) y+(b-3 a)=0$ and $\mathrm{mx}+2 \mathrm{y}+6=0$ are concurrent, then m is equal to
8. The line $3 x+2 y=24$ meets the y -axis at A and the x -axis at B. The perpendicular bisector of $A B$ meets the line through $(0,-1)$ parallel to the x-axis at C. If the area of triangle $A B C$ is A, then the value of $\frac{A}{13}$ is \qquad

- Watch Video Solution

9. If y is function of x and $\log (x+y)=2 x y$, then find the value of $y^{\prime}(0)$.

- Watch Video Solution

10. Triangle $A B C$ with $A B=13, B C=5$, and $A C=12$ slides on the coordinates axes with $A a n d B$ on the positive x-axis and positive y-axis respectively. The locus of vertex C is a line $12 x-k y=0$. Then the value of k is \qquad

- Watch Video Solution

11. The line $y=\frac{3 x}{4}$ meets the lines $x-y+1=0$ and $2 x-y=5$ at A and B respectively. Find Coordinates of P on $y=\frac{3 x}{4}$ such that $P A \cdot P B=25$.

- Watch Video Solution

12. In a plane there are two families of lines $y=x+r, y=-x+r$, where $r \in\{0,1,2,3,4\}$. Find the number of squares of diagonals of length 2 formed by the lines

- Watch Video Solution

13. If $5 a+4 b+20 c=t, t h e n$ the value of t for which the line $a x+b y+c-1=0$ always passes through a fixed point is

- Watch Video Solution

1. The line L given by $\frac{x}{5}+\frac{y}{b}=1$ passes through the point (13,32).the line K is parallel to L and has the equation $\frac{x}{c}+\frac{y}{3}=1$ then the distance between L and K is
A. $\frac{23}{\sqrt{17}}$
B. $\frac{23}{\sqrt{15}}$
C. $\sqrt{17}$
D. $\frac{17}{\sqrt{15}}$

Answer: A

- Watch Video Solution

2. The lines $L_{1}: \mathrm{y}-\mathrm{x}=0$ and $L_{2}: 2 \mathrm{x}+\mathrm{y}=0$ intersect the line $L_{3}: \mathrm{y}+2=0$ at P and Q respectively. The bisector of the acute angle between L_{1} and L_{2} intersects L_{3} at R

Statement 1 : The ratio PR : PQ equals $2 \sqrt{2}: \sqrt{5}$

Statement - 2 : In any triangle, bisector of an angle divides the triangle into two similar triangle
A. Statement 1 is true, statement 2 is false.
B. Statement 1 is true, statement 2 is true, statement 2 is the correct explanation of statement1.
C. Statement 1 is true, statement 2 is true, statement 2 is not the correct explanation of statement 1.
D. Statement 1 is false, statement 2 is true.

Answer: A

- Watch Video Solution

3. A line is drawn through the point $(1,2)$ to meet the coordinate axes at P and Q such that it forms a triangle $O P Q$, where O is the origin. If the area of the triangle OPQ is least, then the slope of the line PQ is
A. $-\frac{1}{4}$
B. -4
C. -2
D. $-\frac{1}{2}$

Answer: C

- Watch Video Solution

4. The x-coordinate of the incentre of the triangle that has the coordinates of mid points of its sides as $(0,1),(1,1)$ and $(1,0)$ is
A. $2+\sqrt{2}$
B. $2-\sqrt{2}$
C. $1+\sqrt{2}$
D. $1-\sqrt{2}$

Answer: B

5. A ray of light along $x+\sqrt{3} y=\sqrt{3}$ gets reflected upon reaching x-axis , the equation of the reflected ray is
A. $y=x+\sqrt{3}$
B. $\sqrt{3} y=x-\sqrt{3}$
C. $y=\sqrt{3} x-\sqrt{3}$
D. $\sqrt{3} y=x-1$

Answer: B

- Watch Video Solution

6. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d be non-zero numbers. If the point of intersection of the lines $4 a x+2 a y+c=0$ and $5 b x+2 b y+d=0$ lies in the fourth quadrant and is equidistant from the two axes, then
A. $2 b c-3 a d=0$
B. $2 b c+3 a d=0$
C. $3 \mathrm{bc}-2 \mathrm{ad}=0$
D. $3 b c+2 a d=0$

Answer: C

- Watch Video Solution

7. Let PS be the median of the triangle with vertices $P(2,2), Q(6,-1)$ and $R(7,3)$. The equation of the line passing through $(1,-1)$ and parallel to PS is (1) $4 x-7 y-11=0$
$2 x+9 y+7=0(3) 4 x+7 y+3=0(4) 2 x-9 y-11=0$
A. $4 x-7 y-1=0$
B. $2 x+9 y+7=0$
C. $4 x+7 y+3=0$
D. $2 x-9 y-11=0$

- Watch Video Solution

8. Locus of the image of the point $(2,3)$ in the line $(2 x-3 y+4)+k(x-2 y+3)=0, k \varepsilon R$, is a :
(1) straight line parallel to x-axis. (2) straight line parallel to y-axis (3) circle of radius $\sqrt{2}(4)$ circle of radius $\sqrt{3}$
A. Straight line parallel to x-axis
B. straight line parallel to y-axis
C. circle of radius $\sqrt{2}$
D. circle of radius 3

Answer: C

9. Two sides of a rhombus are along the lines, $x-y+1=0$ and $7 x-y-5=0$. If its diagonals intersect at $(-1,-2)$, then which one of the following is a vertex of this rhombus ? (1) $(-3,-9)$ (2) $(-3,-8)(3)\left(\frac{1}{3},-\frac{8}{3}\right)(4)\left(-\frac{10}{3},-\frac{7}{3}\right)$
A. $(-3,-8)$
B. $\left(\frac{1}{3},-\frac{8}{3}\right)$
C. $\left(\left(-\frac{10}{3},-\frac{7}{3}\right)\right.$
D. $(-3,-9)$

Answer: B

- Watch Video Solution

Archives Jee Advanced

1. The locus of the orthocentre of the triangle formed by the lines
$(1+p) x-p y+p(1+p)=0,(1+q) x-q y+q(1+q)=0$ and $\mathrm{y}=0$,
where $p \neq \cdot q$, is (A) a hyperbola (B) a parabola (C) an ellipse (D) a straight line
A. a hyperbola
B. a parabola
C. an ellipse
D. a straight line

Answer: D

- Watch Video Solution

2. A straight lines L through the point (3,2) is inclined at an angle 60° to the line $\sqrt{3} x+y=1$. If L also intersects the x -axis, then the equation of L is
A. $y+\sqrt{3} x+2-3 \sqrt{3}=0$
B. $y-\sqrt{3} x+2+3 \sqrt{3}=0$
C. $\sqrt{3} y-x+3+2 \sqrt{3}=0$
D. $\sqrt{3} y+x-3+2 \sqrt{3}=0$

Answer: B

- Watch Video Solution

3. For $a>b>c>0$, the distance between (1,1) and the point of intersection of the lines $a x+b y+c=0$ and $b x+a y+c=0$ is less than $2 \sqrt{2}$
, then
A. $a+b-c>0$
B. $a-b+c<0$
C. $a-b+c>0$
D. $a+b-c<0$

Answer: A

1. For a point P in the plane, let $d_{1}(P) \operatorname{and}_{2}(P)$ be the distances of the point P from the lines $x-y=0 a n d x+y=0$ respectively. The area of the region R consisting of all points P lying in the first quadrant of the plane and satisfying $2 \leq d_{1}(P)+d_{2}(P) \leq 4$, is
