

MATHS

BOOKS - CENGAGE PUBLICATION

THREE DIMENSIONAL GEOMETRY

Others

1. Find the angle between the line whose direction cosines are given by

$$l + m + n = 0$$
and $l^2 + m^2 - n^2 = 0$.

Watch Video Solution

2. A line makes angles $\alpha, \beta, \gamma and \delta$ with the diagonals of a cube. Show

that
$$\cos^2lpha+\cos^2eta+\cos^2\gamma+\cos^2\delta=4/3.$$

3. *ABC* is a triangle and A=(2,3,5),B=(-1,3,2) and C= $(\lambda, 5, \mu)$. If the median through *A* is equally inclined to the axes, then find the value of λ and μ

 $\sin^2lpha+\sin^2eta+\sin^2\gamma$.

6. If the sum of the squares of the distance of a point from the three coordinate axes is 36, then find its distance from the origin.

7. If A(3,2,-4), B(5,4,-6) and C(9,8,-10) are three collinear

points, then find the ratio in which point C divides AB.

Watch Video Solution

8. Find the ratio in which the y-z plane divides the join of the points

$$(-2, 4, 7)$$
 and $(3, -5, 8)$.

Watch Video Solution

9. A line passes through the points (6, -7, -1) and (2, -3, 1). Find te direction cosines off the line if the line makes an acute angle with the


```
Watch Video Solution
```

11. Find the point where line which passes through point (1, 2, 3) and is parallel to line $\overrightarrow{r} = \hat{i} + \hat{j} + 2\hat{k} + \lambda(\hat{i} - 2\hat{j} + 3\hat{k})$ meets the xy-plane.

Watch Video Solution

12. Find the equation of the line passing through the points (1, 2, 3) and (-1, 0, 4).

14. The line joining the points (-2, 1, -8) and (a, b, c) is parallel to the line whose direction ratios are 6, 2, and 3. Find the values of a, b and c

Watch Video Solution

15. A parallelepiped is formed by planes drawn through the points P(6, 8, 10) and (3, 4, 8) parallel to the coordinate planes. Find the length of edges and diagonal of the parallelepiped.

16. Find the angle between any two diagonals of a cube.

18. Find the equation of the line passing through the intersection of $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ and $\frac{x-4}{5} = \frac{y-1}{2} = z$ and also through the point (2, 1, -2).

Watch Video Solution

19. The straight line $\frac{x-3}{3} = \frac{y-2}{1} = \frac{z-1}{0}$ is (a)Parallel to x-axis (b)Parallel to the y-axis (c)Parallel to the z-axis (d)Perpendicular to the z-

Watch Video Solution

21. Find the equation of the plane passing through the points
$$(1, 0, -1)$$
 and $(3, 2, 2)$ and parallel to the line $x - 1 = \frac{1 - y}{2} = \frac{z - 2}{3}$.

Watch Video Solution

22. Find the equation of the sphere described on the joint of points AandB having position vectors $2\hat{i} + 6\hat{j} - 7\hat{k}and - 2\hat{i} + 4\hat{j} - 3\hat{k}$,

axis

respectively, as the diameter. Find the center and the radius of the sphere.

23. Find the radius of the circular section in which the sphere $\left| \overrightarrow{r} \right| = 5$ is

cut by the plane
$$\overrightarrow{r}\cdot\left(\hat{i}+\hat{j}+\hat{k}
ight)=3\sqrt{3.}$$

Watch Video Solution

24. Find the equation of a sphere which passes through (1, 0, 0)(0, 1, 0)and(0, 0, 1), and has radius as small as possible.

Watch Video Solution

25. Find the locus of a point which moves such that the sum of the squares of its distance from the points A(1, 2, 3), B(2, -3, 5) and C(0, 7, 4) is 120.

26. Find the equation of the sphere which has centre at the origin and

touches the line 2(x + 1) = 2 - y = z + 3.

Watch Video Solution

27. Find the equation of the sphere which passes through (1, 0, 0), (0, 1, 0) and (0, 0, 1) and whose centre lies on the plane 3x - y + z = 2.

Watch Video Solution

28. Find the equation of a sphere whose centre is (3, 1, 2) radius is 5.

29. Find the equation of the sphere passing through (0, 0, 0), (1, 0, 0), (0, 1, 0) and (0, 0, 1).

Watch Video Solution

30. Find the image of the line $\frac{x-1}{9} = \frac{y-2}{-1} = \frac{z+3}{-3}$ in the plane 3x - 3y + 10z - 26 = 0. Watch Video Solution

31. Find the equations of the bisectors of the angles between the planes 2x - y + 2z + 3 = 0 and 3x - 2y + 6z + 8 = 0 and specify the plane which bisects the acute angle and the plane which bisects the obtuse angle.

32. If the x-coordinate of a point on the join of P(2, 2, 1) and Q(5, 1, -2) is 4, then find its z - coordinate.

33. A sphere of constant radius k passes through the origin and meets the axes at A, B and C. Prove that the centroid of triangle ABC lies on the sphere $9(x^2 + y^2 + z^2) = 4k^2$.

Watch Video Solution

34. A variable plane passes through a fixed point (a, b, c) and cuts the coordinate axes at points A, B, andC. Show that locus of the centre of the sphere $OABCis\frac{a}{x} + \frac{b}{y} + \frac{c}{z} = 2$.

35. Show that the plane 2x-2y+z+12=0 touches the sphere $x^2+y^2+z^2-2x-4y+2z-3=0.$

36. If O is the origin, OP = 3, with direction ratios -1, 2 and -2, then find the coordinates of P.

Watch Video Solution

37. If P(x, y, z) is a point on the line segment joining Q(2,2,4) and R(3,5,6) such that the projection of \overrightarrow{OP} on the axes are $\frac{13}{5}, \frac{19}{5}, \frac{26}{5}$ respectively, then P divides QR in the ratio:

38. If \overrightarrow{r} is a vector of magnitude 21 and has direction ratios 2, -3 and 6, then find \overrightarrow{r} .

39. Find the distance of the point P(a, b, c) from the x-axis.

Watch Video Solution

40. A line makes angles $lpha, eta and \gamma$ with the coordinate axes. If $lpha+eta=90^0,$ then find γ .

Watch Video Solution

41. If a line makes angles α , $\beta and\gamma$ with three-dimensional coordinate axes, respectively, then find the value of $\cos 2\alpha + \cos 2\beta + \cos 2\gamma$.

43. A ray of light passing through the point A(1,2,3) , strikews the plane xy+z=12atB and on reflection passes through point C(3,5,9). Find the coordinate so point B.

Watch Video Solution

44. The plane ax + by = 0 is rotated through an angle α about its line of intersection with the plane z = 0. Show that the equation to the plane in the new position is $ax + by \pm z\sqrt{a^2 + b^2} \tan \alpha = 0$.

45. Find the equation of a plane containing the line of intersection of the planes x + y + z - 6 = 0 and 2x + 3y + 4z + 5 = 0 passing through (1, 1, 1).

46. Find the locus of a point, the sum of squares of whose distance from

the planes x-z=0, x-2y+z=0 and x+y+z=0 is 36

Watch Video Solution

47. Find the length and the foot of the perpendicular from the point (7, 14, 5) to the plane 2x + 4y - z = 2. Also, the find image of the point *P* in the plane.

48. Find the angle between the lines $\overrightarrow{r} = \hat{i} + 2\hat{j} - \hat{k} + \lambda(\hat{i} - \hat{j} + \hat{k})$ and the plane \overrightarrow{r} . $3\hat{i} - \hat{j} + \hat{k} = 4$.

Watch Video Solution

50. Find the equation the plane which contain the line of intersection of the planes $\vec{r} \cdot \hat{i} + 2\hat{j} + 3\hat{k} - 4 = 0$ and $\vec{r} \cdot 2\hat{i} + \hat{j} - \hat{k} + 5 = 0$ and which is perpendicular to the plane $\vec{r} \left(5\hat{i} + 3\hat{j} - 6\hat{k}\right) + 8 = 0$.

51. Find the vector equation of the line passing through (1, 2, 3) and parallel to the planes \overrightarrow{r} . $(\hat{i} - \hat{j} + 2\hat{k}) = 5$ and \overrightarrow{r} . $(3\hat{i} + \hat{j} + \hat{k}) = 6$.

Watch Video Solution

52. Find the distance of the point P(3, 8, 2) from the line $\frac{1}{2}(x-1) = \frac{1}{4}(y-3) = \frac{1}{3}(z-2)$ measured parallel to the plane 3x + 2y - 2z + 15 = 0.

Watch Video Solution

53. Find the distance of the point (1, 0, -3) from the plane x - y - z = 9 measured parallel to the line $\frac{x-2}{2} = \frac{y+2}{2} = \frac{z-6}{-6}$.

54. Show that ax + by + r = 0, by + cz + p = 0 and cz + ax + q = 0 are perpendicular to x - y, y - z and z - x planes, respectively. Watch Video Solution

55. Reduce the equation of line x - y + 2z = 5 and 3x + y + z = 6 in symmetrical form.

59. A horizontal plane 4x - 3y + 7z = 0 is given. Find a line of greatest

slope passes through the point (2, 1, 1) in the plane 2x + y - 5z = 0.

60. Find the equation of the plane passing through the points (-1,1,1) and

(1,-1,1) and is perpendicular to the plane x+2y+2z=5.

61. Find ten equation of the plane passing through the point (0, 7, -7)and containing the line $\frac{x+1}{-3} = \frac{y-3}{2} = \frac{z+2}{1}$.

Watch Video Solution

62. If a plane meets the equations axes at A, BandC such that the centroid of the triangle is (1, 2, 4), then find the equation of the plane.

63. Find the equation of the plane which is parallel to the lines $\vec{r} = \hat{i} + \hat{j} + \lambda \left(2\hat{i} + \hat{j} + 4\hat{k}\right) and \frac{x+1}{-3} = \frac{y-3}{2} = \frac{z+2}{1}$ and is passing through the point (0, 1, -1).

64. Show that the plane whose vector equation is \overrightarrow{r} . $(\hat{i} + 2\hat{j} - \hat{k}) = 3$ contains the line $\overrightarrow{r} = (\hat{i} + \hat{j}) + \lambda (2\hat{i} + \hat{j} + 4\hat{k})$.

Watch Video Solution

65. Find the vector equation of the following planes in Cartesian form:

$$\overrightarrow{r} = \hat{i} - \hat{j} + \lambda ig(\hat{i} + \hat{j} + \hat{k} ig) + \mu ig(\hat{i} - 2\hat{j} + 3\hat{k} ig) \cdot$$

Watch Video Solution

66. Show that the line of intersection of the planes $\vec{r} \cdot (\hat{i} + 2\hat{j} + 3\hat{k}) = 0$ and $\vec{r} \cdot (3\hat{i} + 2\hat{j} + \hat{k}) = 0$ is equally inclined to iandk. Also find the angle it makes with j.

67. Find the equation of the plane such that image of point (1, 2, 3) in it

 $\mathsf{is}(\,-1,\,0,\,1)\cdot$

68. The foot of the perpendicular drawn from the origin to a plane is (1, 2, -3). Find the equation of the plane. or If O is the origin and the coordinates of P is (1, 2, -3), then find the equation of the plane passing through P and perpendicular to OP.

Watch Video Solution

69. Find the angle between the planes `2x+y-2z+3=0a n d 6x-2y+3z=5

70. Find the equation of the plane passing through (3, 4, -1), which is parallel to the plane $\vec{r} 2\hat{i} - 3\hat{j} + 5\hat{k} + 7 = 0$.

Watch Video Solution

71. Find the distance of the point (-1, -5, -10) from the point of intersection of the line $\frac{x-2}{3} = \frac{y+1}{4} = \frac{z-2}{12}$ and plane x - y + z = 5.

Watch Video Solution

72. Find the equation of the plane passing through the point (-1, 3, 2)

and perpendicular to each of the planes x + 2y + 3z = 5and3x + 3y + z = 0.

75. The extremities of a diameter of a sphere lie on the positive y- and positive z-axes at distance 2 and 4, respectively. Show that the sphere passes through the origin and find the radius of the sphere.

76. A plane passes through a fixed point (a, b, c). Show that the locus of the foot of the perpendicular to it from the origin is the sphere $x^2 + y^2 + z^2 - ax - by - cz = 0.$

Watch Video Solution

77. Find the radius of the circular section of the sphere $\left| \overrightarrow{r} \right| = 5$ by the plane $\overrightarrow{r} \hat{i} + 2\hat{j} - \hat{k} = 4\sqrt{3}$.

Watch Video Solution

78. A point P(x, y, z) is such that 3PA = 2PB, where AandB are the point (1, 3, 4)and(1, -2, -1), irrespectivley. Find the equation to the locus of the point P and verify that the locus is a sphere.

79. Find the shortest distance between lines

$$\vec{r} = (\hat{i} + 2\hat{j} + \hat{k}) + \lambda(\hat{i} - \hat{j} + \hat{k}) and \vec{r} = 2\hat{i} - \hat{j} - \hat{k} + \mu(2\hat{i} + \hat{j} + 2\hat{k})$$
Watch Video Solution

80. Find the shortest distance between the lines

$$\frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} and \frac{x - 2}{3} = \frac{y - 4}{4} = \frac{z - 5}{5}.$$

Watch Video Solution

81. Determine whether the following pair of lines intersect or not. (1)

$$\vec{r} = \hat{i} - 5\hat{j} + \lambda \left(2\hat{i} + \hat{k}\right); \vec{r} = 2\hat{i} - \hat{j} + \mu \left(\hat{i} + \hat{j} - \hat{k}\right)$$

$$\vec{r} = \hat{i} + \hat{j} - \hat{k} + \lambda \left(3\hat{i} - \hat{j}\right); \vec{r} = 4\hat{i} - \hat{k} + \mu \left(2\hat{i} + 3\hat{k}\right)$$
(2)

82. Find the equation of plane which is at a distance $\frac{4}{\sqrt{14}}$ from the origin and is normal to vector $2\hat{i} + \hat{j} - 3\hat{k}$.

83. Find the unit vector perpendicular to the plane

$$\overrightarrow{r}.\left(2\hat{i}+\hat{j}+2\hat{k}
ight)=5.$$

Watch Video Solution

84. If the straight lines
$$x=1+s, y=-3-\lambda s, z=1+\lambda sand x=rac{t}{2}, y=1+t, z=2-t,$$

with parametters sandt, respectivley, are coplanar, then find λ .

85. Find the equation of a line which passes through the point (1, 1, 1)

86. Find the vector equation of a line passing through $3\hat{i} - 5\hat{j} + 7\hat{k}$ and perpendicular to the plane 3x - 4y + 5z = 8.

Watch Video Solution

87. Find the equation of the plane passing through the point (2, 3, 1)

having (5, 3, 2) as the direction ratio is of the normal to the plane.

88. Find the equation of the plane through the points (2, 3, 1) and (4, -5, 3) and parallel to the x-axis.

89. Find the equation of the image of the plane x - 2y + 2z - 3 = 0 in

plane x + y + z - 1 = 0.

Watch Video Solution

90. Find the equation of a plane which passes through the point (1, 2, 3)

and which is equally inclined to the planes

x - 2y + 2z - 3 = 0 and 8x - 4y + z - 7 = 0.

91. Find the equation of a plane which is parallel to the plane x - 2y + 2z = 5 and whose distance from the point (1, 2, 3) is 1.

Watch Video Solution

92. Find the image of the line $\frac{x-1}{2} = \frac{y+1}{-1} = \frac{z-3}{4}$ in the plane 3x - 3y + 10z - 26 = 0.

Watch Video Solution

93. Find the equation of the plane which passes through the point (1, 2, 3) and which is at the minimum distance from the point (-1, 0, 2).

94. Find the angle between the lines $\overrightarrow{r} = \hat{i} + 2\hat{j} - \hat{k} + \lambda(\hat{i} - \hat{j} + \hat{k})$ and the plane \overrightarrow{r} . $3\hat{i} - \hat{j} + \hat{k} = 4$.

Watch Video Solution

95. Find the equation of the plane passing through the line $\frac{x-1}{5} = \frac{y+2}{6} = \frac{z-3}{4}$ and point (4, 3, 7).

Watch Video Solution

96. Find the equation of the plane perpendicular to the line $\frac{x-1}{2} = \frac{y-3}{-1} = \frac{z-4}{2}$ and passing through the origin.

Watch Video Solution

97. Find the equation of the plane passing through the straight line $\frac{x-1}{2} = \frac{y+2}{-3} = \frac{z}{5}$ and perpendicular to the plane

$$x - y + z + 2 = 0.$$

98. Find the equation of the line drawn through the point (1, 0, 2) to meet at right angles to the line $\frac{x+1}{3} = \frac{y-2}{-2} = \frac{z+1}{-1}$.

Watch Video Solution

99. If
$$\overrightarrow{r} = \left(\hat{i} + 2\hat{j} + 3\hat{k}
ight) + \lambda \left(\hat{i} - \hat{j} + \hat{k}
ight)$$
 and

 $\overrightarrow{r}=\left(\hat{i}+2\hat{j}+3\hat{k}
ight)+\mu\Bigl(\hat{i}+\hat{j}-\hat{k}\Bigr)$ are two lines, then the equation

of acute angle bisector of two lines is

Watch Video Solution

100. Find the coordinates of a point on the $rac{x-1}{2}=rac{y+1}{-3}=z$ atg a distance $4\sqrt{14}$ from the point $(1,\ -1,0)$.

101. Line L_1 is parallel to vector $\overrightarrow{\alpha} = -3\hat{i} + 2\hat{j} + 4\hat{k}$ and passes through a point A(7, 6, 2) and line L_2 is parallel vector $\overrightarrow{\beta} = 2\hat{i} + \hat{j} + 3\hat{k}$ and point B(5, 3, 4). Now a line L_3 parallel to a vector $\overrightarrow{r} = 2\hat{i} - 2\hat{j} - \hat{k}$ intersects the lines L_1 and L_2 at points C and D, respectively, then find $\left| \overrightarrow{C} D \right|$.

Watch Video Solution

102. Find the values
$$p$$
 so that line $\frac{1-x}{3} = \frac{7y-14}{2p} = \frac{z-3}{2}$ and $\frac{7-7x}{3p} = \frac{y-5}{1} = \frac{6-z}{5}$ are at right angles.

Watch Video Solution

103. Find the angel between the following pair of lines: $\overrightarrow{r} = 2\hat{i} - 5\hat{j} + \hat{k} + \lambda \left(3\hat{i} + 2\hat{j} + 6\hat{k}\right) and \overrightarrow{r} = 7\hat{i} - 6\hat{k} + \mu \left(\hat{i} + 2\hat{j} + 2\hat{k}\right)$ $\frac{x}{2} = \frac{y}{2} = \frac{z}{1}and\frac{x-5}{4} = \frac{y-2}{1} = \frac{z-3}{8}$

line
$$\frac{4-x}{2} = \frac{y}{6} = \frac{1-z}{3}$$
.

107. Find the coordinates of the foot of the perpendicular drawn from point A(1, 0, 3) to the join of points B(4, 7, 1) and C(3, 5, 3).

108. Find the vector equation of the line passing through (1, 2, 3) and parallel to the planes \overrightarrow{r} . $(\hat{i} - \hat{j} + 2\hat{k}) = 5$ and \overrightarrow{r} . $(3\hat{i} + \hat{j} + \hat{k}) = 6$.

Watch Video Solution

109. The value of m for which the straight line 3x-2y+z+3 = 0=4x-3y+4z+1. is

parallel to the plane 2x-y+mz-2 = 0 is

110. Show that the lines
$$\frac{x-a+d}{\alpha-\delta} = \frac{y-a}{\alpha} = \frac{z-a-d}{\alpha+\delta}$$
 and $\frac{x-b+c}{\beta-\gamma} = \frac{y-b}{\beta} = \frac{z-b-c}{\beta+\gamma}$ are coplanar.

111. Find the equation of line x + y - z - 3 = 0 = 2x + 3y + z + 4 in symmetric form. Find the direction ratio of the line.

Watch Video Solution

112. Find the vector equation of line passing through the point (1, 2, -4) and perpendicular to the two lines: $\frac{x-8}{3} = \frac{y+19}{-16} = \frac{z-10}{7} and \frac{x-15}{3} = \frac{y-29}{8} = \frac{z-5}{-5}$ Watch Video Solution

113. Find the vector equation of line passing through A(3, 4-7) and B(1, -1, 6). Also find its Cartesian equations.
114. Find Cartesian and vector equation of the line which passes through the point (-2, 4, -5) and parallel to the line given by $\frac{x+3}{3} = \frac{y-4}{5} = \frac{z+8}{6}$.

Watch Video Solution

Watch Video Solution

Watch Video Solution

115. Find the equation of a line which passes through the point (2, 3, 4) and which has equal intercepts on the axes.

117. A mirror and source of light are situated at the origin O and a point

on OX respectively. A ray of light from the source strikes the mirror and is

then DCs for the reflacted ray are :

vector and Cartesian forms.

122. Let l_1andl_2 be the two skew lines. If P, Q are two distinct points on l_1ndR, S are two distinct points on l_2 , then prove that PR cannot be parallel to QS.

124. Find the angle between the lines 2x = 3y = -z and 6x = -y = -4z

125. Find the length of the perpendicular drawn from the point (5, 4, -1) to the line $\overrightarrow{r} = \hat{i} + \lambda \left(2\hat{i} + 9\hat{j} + 5\hat{k}\right)$, wher λ is a parameter.

Watch Video Solution

126. The equations of motion of a rocket are x = 2t, y = -4tandz = 4t, where time *t* is given in seconds, and the coordinates of a moving points in kilometers. What is the path of the rocket? At what distance will be the rocket from the starting point O(0, 0, 0) in 10s?

127. Find the shortest distance between the lines

$$\overrightarrow{r} = (1-\lambda)\hat{i} + (\lambda-2)\hat{j} + (3-2\lambda)\hat{k}$$
 and
 $\overrightarrow{r} = (\mu+1)\hat{i} + (2\mu+1)\hat{k}$.

Watch Video Solution

128. Find the image of the point (1, 2, 3) in the line $\frac{x-6}{3} = \frac{y-7}{2} = \frac{z-7}{-2}$.

Watch Video Solution

129. If the lines
$$\frac{x-1}{2} = \frac{y+1}{3} = \frac{z-1}{4}$$
 and $\frac{x-3}{1} = \frac{y-k}{2} = \frac{z}{1}$

intersect, then find the value of k_{\cdot}

130. Find the shortest distance between the z-axis and the line, x+y+2z-3=0, 2x+3y+4z-4=0.

132. Distance of the point $P(\overrightarrow{p})$ from the line $\overrightarrow{r} = \overrightarrow{a} + \lambda \overrightarrow{b}$ is a. $\left| \left(\overrightarrow{a} - \overrightarrow{p} \right) + \frac{\left(\left(\overrightarrow{p} - \overrightarrow{a} \right) \overrightarrow{b} \right) \overrightarrow{b}}{\left| \overrightarrow{b} \right|^2} \right|$ b.

133. The direction ratios of a normal to the plane through (1, 0, 0)and(0, 1, 0), which makes and angle of $\frac{\pi}{4}$ with the plane x + y = 3, are a. $\langle 1, \sqrt{2}, 1 \rangle$ b. $\langle 1, 1, \sqrt{2} \rangle$ c. $\langle 1, 1, 2 \rangle$ d. $\langle \sqrt{2}, 1, 1 \rangle$

Watch Video Solution

134. The centre of the circle given by

$$\overrightarrow{r}$$
. $(\hat{i} + 2\hat{j} + 2\hat{k}) = 15$ and $\left|\overrightarrow{r}$. $(\hat{j} + 2\hat{k})\right| = 4$ is a. $(0, 1, 2)$ b. $(1, 3, 4)$
c. $(-1, 3, 4)$ d. none of these

135. Two systems of rectangular axes have the same origin. If a plane cuts

them at distance a, b, c and a', b', c' from the origin, then a.

$$\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} + \frac{1}{a^{'2}} + \frac{1}{b^{'2}} + \frac{1}{c^{'2}} = 0$$
 b.

$$\frac{1}{a^2} - \frac{1}{b^2} - \frac{1}{c^2} + \frac{1}{a^{'2}} - \frac{1}{b^{'2}} - \frac{1}{c^{'2}} = 0 \qquad \qquad \mathsf{c}.$$

$$\frac{\frac{1}{a^2}}{1} + \frac{\frac{1}{b^2}}{1} + \frac{\frac{1}{c^2}}{1} - \frac{\frac{1}{a^{'2}}}{1} - \frac{\frac{1}{b^{'2}}}{\frac{1}{c^{'2}}} - \frac{\frac{1}{c^{'2}}}{\frac{1}{c^{'2}}} = 0$$
d.

$$rac{1}{a^2}+rac{1}{b^2}+rac{1}{c^2}+rac{1}{a^{\,'2}}+rac{1}{b^{\,'2}}+rac{1}{c^{\,'2}}=0$$

Watch Video Solution

136. The plane, which passes throught the point (3,2,0) and line $\frac{x-3}{1} = \frac{y-6}{5} = \frac{z-4}{4}$ is

Watch Video Solution

137. The lines
$$\frac{x-2}{1} = \frac{y-3}{1} = \frac{z-4}{-k}$$
 and $\frac{x-1}{k} = \frac{y-4}{2} = \frac{z-5}{1}$

are coplaner if

138. The point of intersection of the lines $\frac{x-5}{3} = \frac{y-7}{-1} = \frac{z+2}{1}$ and $\frac{x+3}{-36} = \frac{y-3}{2} = \frac{z-6}{4}$ is (A) $\left(21, \frac{5}{3}, \frac{10}{3}\right)$ (B) (2, 10, 4) (C) (-3, 3, 6) (D) (5, 7, -2)

Watch Video Solution

139. A tetrahedron has vertices of O(0, 0, 0), A(1, 2, 1), B(2, 1, 3) and C(-1, 1, 2). Then, the angle between the faces OAB and ABC will be **Vatch Video Solution**

140. The radius of the circle in which the sphere
$$x^2 + y^2 + z^2 + 2x - 2y - 4z - 19 = 0$$
 is cut by the plane $x + 2y + 2z + 7 = 0$ is

141. A sphere of constant radius 2k passes through the origin and meets the axes in A, B, andC. The locus of a centroid of the tetrahedron OABC is a. $x^2 + y^2 + z^2 = 4k^2$ b. $x^2 + y^2 + z^2 = k^2$ c. $2(x^2 + y^2 + z)^2 = k^2$ d. none of these

Watch Video Solution

142. A plane passes through a fixed point (a,b,c). The locus of the foot of

the perpendicular to it from the origin is a sphere of radius

Watch Video Solution

143. Equation of the plane containing the straight line $\frac{x}{2} = \frac{y}{3} = \frac{z}{4}$ and perpendicular to the plane containing the straight lines $\frac{x}{3} = \frac{y}{4} = \frac{z}{2}$ and $\frac{x}{4} = \frac{y}{2} = \frac{z}{3}$ is

144. The equation of the plane through the intersection of the planes x + 2y + 3z - 4 = 0 and 4x + 3y + 2z + 1 = 0 and passing through the origin is (a) 17x + 14y + 11z = 0 (b) 7x + 4y + z = 0 (c) x + 14 + 11z = 0 (d) 17x + y + z = 0

Watch Video Solution

145. The plane 4x + 7y + 4z + 81 = 0 is rotated through a right angle about its line of intersection with the plane 5x + 3y + 10z = 25. The equation of the plane in its new position is a. x - 4y + 6z = 106 b. x - 8y + 13z = 103 c. x - 4y + 6z = 110 d. x - 8y + 13z = 105

Watch Video Solution

146. The vector equation of the plane passing through the origin and the line of intersection of the planes $\overrightarrow{r \ a} = \lambda and \overrightarrow{r \ b} = \mu$ is (a)

$$\vec{r} \lambda \vec{a} - \mu \vec{b} = 0 \quad \text{(b)} \quad \vec{r} \lambda \vec{b} - \mu \vec{a} = 0 \quad \text{(c)} \quad \vec{r} \lambda \vec{a} + \mu \vec{b} = 0 \quad \text{(d)}$$

$$\vec{r} \lambda \vec{b} + \mu \vec{a} = 0$$

Watch Video Solution

147. The lines
$$\overrightarrow{r} = \overrightarrow{a} + \lambda \left(\overrightarrow{b} \times \overrightarrow{c}\right) and \overrightarrow{r} = \overrightarrow{b} + \mu \left(\overrightarrow{c} \times \overrightarrow{a}\right)$$
 will intersect if a. $\overrightarrow{a} \times \overrightarrow{c} = \overrightarrow{b} \times \overrightarrow{c}$ b. $\overrightarrow{a} \overrightarrow{c} = \overrightarrow{b} \overrightarrow{c}$ c. $b \times \overrightarrow{a} = \overrightarrow{c} \times \overrightarrow{a}$ d.

none of these

Watch Video Solution

148. The projection of the line $rac{x+1}{-1}=rac{y}{2}=rac{z-1}{3}$ on the plane

x-2y+z=6 is the line of intersection of this plane with the plane

149. The direction cosines of a line satisfy the relations $\lambda(l+m) = n$ and mn + nl + lm = 0. The value of λ for which the two lines are perpendicular to each other, is

150. The intercepts made on the axes by the plane which bisects the line joining the point (1, 2, 3) and (-3, 4, 5) at right angles are :

Watch Video Solution

151. The pair of lines whose direction cosines are given by the equations

3l+m+5n=0 and 6mn-2nl+5lm=0 are a. parallel b. perpendicular c. inclined at $\cos^{-1}\left(rac{1}{6}
ight)$ d. none of these

152. If the distance of the point P(1, -2, 1) from the plane $x + 2y - 2z = \alpha$, where $\alpha > 0$, is 5, then the foot of the perpendicular from P to the plane is a. $\left(\frac{8}{3}, \frac{4}{3}, -\frac{7}{3}\right)$ b. $\left(\frac{4}{3}, -\frac{4}{3}, \frac{1}{3}\right)$ c. $\left(\frac{1}{3}, \frac{2}{3}, \frac{10}{3}\right)$ d. $\left(\frac{2}{3}, -\frac{1}{3}, -\frac{5}{3}\right)$

Watch Video Solution

153. A line with positive direction cosines passes through the point P(2, -1,

2) and makes equal angle with co-ordinate axes. The line meets the plane

2x + y + z = 9 at point Q. The length of the line segment PQ equals

Watch Video Solution

154. The value of
$$k$$
 such that $\frac{x-4}{1} = \frac{y-2}{1} = \frac{z-k}{2}$ lies in the plane

2x - 4y + z = 7 is a. 7 b. -7 c. no real value d. 4

155. The equation of the plane passing through lines $\frac{x-4}{1} = \frac{y-3}{1} = \frac{z-2}{2}$ and $\frac{x-3}{2} = \frac{y-2}{-4} = \frac{z}{5}$ is a. 11x - y - 3z = 35 b. 11x + y - 3z = 35 c. 11x - y + 3z = 35 d. none of these

Watch Video Solution

156. The line through
$$\hat{i} + 3\hat{j} + 2\hat{k}$$
 and \perp to the line
 $\overrightarrow{r} = (\hat{i} + 2\hat{j} - \hat{k}) + \lambda(2\hat{i} + \hat{j} + \hat{k})$ and
 $\overrightarrow{r} = (2\hat{i} + 6\hat{j} + \hat{k}) + \mu(\hat{i} + 2\hat{j} + 3\hat{k})$ is a.
 $\overrightarrow{r} = (\hat{i} + 2\hat{j} - \hat{k}) + \lambda(-\hat{i} + 5\hat{j} - 3\hat{k})$ b.
 $\overrightarrow{r} = \hat{i} + 3\hat{j} + 2\hat{k} + \lambda(\hat{i} - 5\hat{j} + 3\hat{k})$ c.
 $\overrightarrow{r} = \hat{i} + 3\hat{j} + 2\hat{k} + \lambda(\hat{i} + 5\hat{j} + 3\hat{k})$ d.
 $\overrightarrow{r} = \hat{i} + 3\hat{j} + 2\hat{k} + \lambda(-\hat{i} - 5\hat{j} - 3\hat{k})$

157. The equation of the plane through the line of intersection of the planes ax + by + cz + d = 0 and a'x + b'y + c'z + d' = 0 parallel to the line y = 0 and z = 0 is

158. The three planes 4y + 6z = 5, 2x + 3y + 5z = 5 and 6x + 5y + 9z = 10 (a) meet in a point (b) have a line in common (c) form a triangular prism (d) none of these

Watch Video Solution

Watch Video Solution

159. Given $\overrightarrow{\alpha} = 3\hat{i} + \hat{j} + 2\hat{k}$ and $\overrightarrow{\beta} = \hat{i} - 2\hat{j} - 4\hat{k}$ are the position vectors of the points A and B Then the distance of the point $-\hat{i} + \hat{j} + \hat{k}$ from the plane passing through B and perpendicular to AB is (a) 5 (b) 10 (c)15 (d) 20

160. Find the following are equations for the plane passing through the

points P(1, 1, -1), Q(3, 0, 2) and R(-2, 1, 0)?

162. $L_1 and L_2$ are two lines whose vector equations are $L_1: \overrightarrow{r} = \lambda \left(\left(\cos \theta + \sqrt{3} \right) \hat{i} + \left(\sqrt{2} \sin \theta \right) \hat{j} + \left(\cos \theta - \sqrt{3} \right) \hat{k} \right)$ $L_2: \overrightarrow{r} = \mu \left(a \hat{i} + b \hat{j} + c \hat{k} \right)$, where $\lambda and \mu$ are scalars and α is the acute angel between $L_1 and L_2$. If the angel α is independent of θ , then the value of α is a. $\frac{\pi}{6}$ b. $\frac{\pi}{4}$ c. $\frac{\pi}{3}$ d. $\frac{\pi}{2}$

163. Value of λ such that the line $\frac{x-1}{2} = \frac{y-1}{3} = \frac{z-1}{\lambda}$ is \perp to normal to the plane \overrightarrow{r} . $\left(2\overrightarrow{i} + 3\overrightarrow{j} + 4\overrightarrow{k}\right) = 0$ is a. $-\frac{13}{4}$ b. $-\frac{17}{4}$ c. 4

d. none of these

Watch Video Solution

164. Equation of the plane passing through the points (2, 2, 1)and(9, 3, 6), $and \perp$ to the plane 2x + 6y + 6z = 9 is a. 3x + 4y + 5z = 9 b. 3x + 4y - 5z = 9 c. 3x + 4y - 5z = 9 d. none of these

Watch Video Solution

165. The equation of a plane which passes through the point of intersection of lines $\frac{x-1}{3} = \frac{y-2}{1} = \frac{z-3}{2}$, and $\frac{x-3}{1} = \frac{y-1}{2} = \frac{z-2}{3}$ and at greatest distance from point (0,0,0) is

166. If the foot of the perpendicular from the origin to plane is P(a,b,c) ,

the equation of the plane is a. $rac{x}{a}=rac{y}{b}=rac{z}{c}=3$ b. ax+by+cz=3 c. $ax+by+cz=a^2+b^2+c^2$ d. ax+by+cz=a+b+c

Watch Video Solution

167. Equation of a line in the plane $\pi = 2x - y + z - 4 = 0$ which is perpendicular to the line l whose equation is $\frac{x-2}{1} = \frac{y-2}{-1} = \frac{z-3}{-2}$ and which passes through the point of intersection of l and π is (A) $\frac{x-2}{1} = \frac{y-1}{5} = \frac{z-1}{-1}$ (B) $\frac{x-1}{3} = \frac{y-3}{5} = \frac{z-5}{-1}$ (C) $\frac{x+2}{2} = \frac{y+1}{-1} = \frac{z+1}{1}$ (D) $\frac{x-2}{2} = \frac{y-1}{-1} = \frac{z-1}{1}$

168. The intercept made by the plane \overrightarrow{r} . $\overrightarrow{n} = q$ on the x-axis is a. $\frac{q}{\hat{i} \cdot \overrightarrow{n}}$ b.

$$rac{\hat{i}\overrightarrow{n}}{q}$$
 c. $rac{\hat{i}\overrightarrow{n}}{q}$ d. $rac{q}{\left|\overrightarrow{n}
ight|}$

Watch Video Solution

169. The coordinates of the foot of the perpendicular drawn from the origin to the line joining the point (-9, 4, 5) and (10, 0, -1) will be a. (-3, 2, 1) b. (1, 2, 2) c. (4, 5, 3) d. none of these

Watch Video Solution

170. The point on the line $\frac{x-2}{1} = \frac{y+3}{-2} = \frac{z+5}{-2}$ at a distance of 6 from the point (2, -3, -5) is a. (3, -5, -3) b. (4, -7, -9) c. (0, 2, -1) d. none of these

171. Let $A(\overrightarrow{a})andB(\overrightarrow{b})$ be points on two skew lines $\overrightarrow{r} = \overrightarrow{a} + \lambda \overrightarrow{p} and \overrightarrow{r} = \overrightarrow{b} + u \overrightarrow{q}$ and the shortest distance between the skew lines is 1, $where \overrightarrow{p} and \overrightarrow{q}$ are unit vectors forming adjacent sides of a parallelogram enclosing an area of 1/2 units. If angle between AB and the line of shortest distance is 60° , then $AB = a. \frac{1}{2}$ b. 2 c. 1 d. $\lambda R = \{10\}$

Watch Video Solution

172. Consider three planes $P_1: x - y + z = 1$, $P_2: x + y - z = -1$ and $P_3: x - 3y + 3z = 2$ Let L_1 , L_2 and L_3 be the lines of intersection of the planes P_2 and P_3 , P_3 and P_1 and P_1 and P_2 respectively. Statement 1: At least two of the lines L_1 , L_2 and L_3 are non-parallel. Statement 2:The three planes do not have a common point

A. Statement 1 is correct

B. Statement 2 is correct

C. Both are correct

D. None of these

Answer: null

Watch Video Solution

173. Consider the planes 3x - 6y - 2z - 15 = 0 and 2x + y - 2z - 5 = 0 Statement 1:The parametric equations of the line intersection of the given planes are x = 3 + 14t, y = 2t, z = 15t. Statement 2: The vector $14\hat{i} + 2\hat{j} + 15\hat{k}$ is parallel to the line of intersection of the given planes. which of the statement is true?

Watch Video Solution

174. The length of projection of the line segment joining the points (1, 0, -1) and (-1, 2, 2) on the plane x + 3y - 5z = 6 is equal to a. 2 b. $\sqrt{\frac{271}{53}}$ c. $\sqrt{\frac{472}{31}}$ d. $\sqrt{\frac{474}{35}}$ 175. If $P_1: \overrightarrow{r} \cdot \overrightarrow{n}_1 - d_1 = 0$ $P_2: \overrightarrow{r} \cdot \overrightarrow{n}_2 - d_2 = 0$ and $P_3: \overrightarrow{r} \cdot \overrightarrow{n}_3 - d_3 = 0$ are three planes and $\overrightarrow{n}_1, \overrightarrow{n}_2$ and \overrightarrow{n}_3 are three non-coplanar vectors, then three lines $P_1 = P_2 = 0$; $P_2 = P_3 = 0$; $P_3 = P_1 = 0$ are

- a. parallel lines
- b. coplanar lines
- c. coincident lines
- d. concurrent lines

Watch Video Solution

176. Perpendiculars are drawn from points on the line $\frac{x+2}{2} = \frac{y+1}{-1} = \frac{z}{3}$ to the plane x + y + z = 3 The feet of perpendiculars lie on the line (a) $\frac{x}{5} = \frac{y-1}{8} = \frac{z-2}{-13}$ (b) $\frac{x}{2} = \frac{y-1}{3} = \frac{z-2}{-5}$ (c) $\frac{x}{4} = \frac{y-1}{3} = \frac{z-2}{-7}$ (d) $\frac{x}{2} = \frac{y-1}{-7} = \frac{z-2}{5}$

177. The point P is the intersection of the straight line joining the points Q(2, 3, 5) and R(1, -1, 4) with the plane 5x - 4y - z = 1. If S is the foot of the perpendicular drawn from the point T(2, 1, 4) to QR, then the length of the line segment PS is (A) $\frac{1}{\sqrt{2}}$ (B) $\sqrt{2}$ (C) 2 (D) $2\sqrt{2}$

Watch Video Solution

178. A line l passing through the origin is perpendicular to the lines $l_1: (3+t)\hat{i} + (-1+2t)\hat{j} + (4+2t)\hat{k}, -\infty < t < \infty, l_2: (3+s)\hat{i} + (3-t)\hat{k}$ then the coordinates of the point on l_2 at a distance of $\sqrt{17}$ from the point of intersection of $l\&l_1$ is/are:

Watch Video Solution

179. Two lines $L_1: x = 5$, $\frac{y}{3-\alpha} = \frac{z}{-2}$ and $L_2: x = \alpha$, $\frac{y}{-1} = \frac{z}{2-\alpha}$ are coplanar. Then α can take value (s) a. 1 b. 5 c. 3 d. 4

180. The projection of point
$$P(\overrightarrow{p})$$
 on the plane $\overrightarrow{r} \cdot \overrightarrow{n} = q$ is (\overrightarrow{s}) ,
then a. $\overrightarrow{s} = \frac{\left(q - \overrightarrow{p} \cdot \overrightarrow{n}\right)\overrightarrow{n}}{\left|\overrightarrow{n}\right|^2}$ b. $\overrightarrow{s} = p + \frac{\left(q - \overrightarrow{p} \cdot \overrightarrow{n}\right)\overrightarrow{n}}{\left|\overrightarrow{n}\right|^2}$ c.
 $\overrightarrow{s} = p - \frac{\left(\overrightarrow{p} \cdot \overrightarrow{n}\right)\overrightarrow{n}}{\left|\overrightarrow{n}\right|^2}$ d. $\overrightarrow{s} = p - \frac{\left(q - \overrightarrow{p} \cdot \overrightarrow{n}\right)\overrightarrow{n}}{\left|\overrightarrow{n}\right|^2}$

Watch Video Solution

181. The angle between i and line of the intersection of the plane \overrightarrow{r} . $(\hat{i} + 2\hat{j} + 3\hat{k}) = 0$ and \overrightarrow{r} . $(3\hat{i} + 3\hat{j} + \hat{k}) = 0$ is a. $\cos^{-1}\left(\frac{1}{3}\right)$ b. $\cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$ c. $\cos^{-1}\left(\frac{2}{\sqrt{3}}\right)$ d. none of these

Watch Video Solution

182. From the point P(a, b, c), let perpendicualars PLandPM be drawn

to YOZandZOX planes, respectively. Then the equation of the plane

OLM is

a.
$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 0$$
 b. $\frac{x}{a} + \frac{y}{b} - \frac{z}{c} = 0$ c. $\frac{x}{a} - \frac{y}{b} - \frac{z}{c} = 0$ d. $\frac{x}{a} - \frac{y}{b} + \frac{z}{c} = 0$

Watch Video Solution

183. The plane $\overrightarrow{r} \cdot \overrightarrow{n} = q$ will contain the line $\overrightarrow{r} = \overrightarrow{a} + \lambda \overrightarrow{b}$, if a. $b. n \neq 0, a. n \neq q$ b. $b. n = , a. n \neq q$ c. b. n = 0, a. n = q d. $b. n \neq 0, a. n = q$

Watch Video Solution

184. Consider triangle AOB in the x - y plane, where $A \equiv (1, 0, 0), B \equiv (0, 2, 0) and O \equiv (0, 0, 0)$. The new position of O, when triangle is rotated about side AB by 90^0 can be a. $\left(\frac{4}{5}, \frac{3}{5}, \frac{2}{\sqrt{5}}\right)$ b. $\left(\frac{-3}{5}, \frac{\sqrt{2}}{5}, \frac{2}{\sqrt{5}}\right)$ c. $\left(\frac{4}{5}, \frac{2}{5}, \frac{2}{\sqrt{5}}\right)$ d. $\left(\frac{4}{5}, \frac{2}{5}, \frac{1}{\sqrt{5}}\right)$

185. Let $\overrightarrow{a} = \hat{i} + \hat{j}$ and $\overrightarrow{b} = 2\hat{i} - \hat{k}$, then the point of intersection of the lines $\overrightarrow{r} \times \overrightarrow{a} = \overrightarrow{b} \times \overrightarrow{a}$ and $\overrightarrow{r} \times \overrightarrow{b} = \overrightarrow{a} \times \overrightarrow{b}$ is a. (3, -1, 1) b. (3, 1, -1) c. (-3, 1, 1) d. (-3, -1, -1)

Watch Video Solution

186. The line $\frac{x+6}{5} = \frac{y+10}{3} = \frac{z+14}{8}$ is the hypotenuse of an isosceles right-angled triangle whose opposite vertex is (7, 2, 4). Then which of the following in not the side of the triangle?

a.
$$\frac{x-7}{2} = \frac{y-2}{-3} = \frac{z-4}{6}$$

b. $\frac{x-7}{3} = \frac{y-2}{6} = \frac{z-4}{2}$
c. $\frac{x-7}{3} = \frac{y-2}{5} = \frac{z-4}{-1}$

d. none of these

187. The equation of the plane which passes through the line of intersection of planes \overrightarrow{r} . $\overrightarrow{n}_1 = , q_1, \overrightarrow{r}$. $\overrightarrow{n}_2 = q_2$ and the is parallel to

the line of intersection of planers \overrightarrow{r} . $\overrightarrow{n}_3 = q_3 and \overrightarrow{r}$. $\overrightarrow{n}_4 - q_4$ is

188. The coordinates of the point P on the line $\overrightarrow{r} = (\hat{i} + \hat{j} + \hat{k}) + \lambda (-\hat{i} + \hat{j} - \hat{k})$ which is nearest to the origin is a. $(\frac{2}{4}, \frac{4}{3}, \frac{2}{3})$ b. $(-\frac{2}{3}, -\frac{4}{3}, \frac{2}{3})$ c. $(\frac{2}{3}, -\frac{4}{3}, \frac{2}{3})$ d. none of these **Watch Video Solution**

189. The ratio in which the line segment joining the points whose position vectors are $2\hat{i} - 4\hat{j} - 7\hat{k}and - 3\hat{i} + 5\hat{j} - 8\hat{k}$ is divided by the plane whose equation is \hat{r} . $(\hat{i} - 2\hat{j} + 3\hat{k}) = 13$ is a. 13:12 internally b. 12:25 externally c. 13:25 internally d. 37:25 internally

190. The number of planes that are equidistant from four non-coplanar

points is

Watch Video Solution

191. In a three-dimensional coordinate system, P, Q, and R are images of a point A(a, b, c) in the x - y, y - z and z - x planes, respectively. If G is the centroid of triangle PQR, then area of triangle AOG is (O is the origin) (A) 0 (B) $a^2 + b^2 + c^2$ (C) $\frac{2}{3}(a^2 + b^2 + c^2)$ (D) none of these

Watch Video Solution

192. A plane passing through (1, 1, 1) cuts positive direction of coordinates axes at A, BandC, then the volume of tetrahedron OABC satisfies a. $V \leq \frac{9}{2}$ b. $V \geq \frac{9}{2}$ c. $V = \frac{9}{2}$ d. none of these

193. If lines $x = y = zandx = \frac{y}{2} = \frac{z}{3}$ and third line passing through (1, 1, 1) form a triangle of area $\sqrt{6}$ units, then the point of intersection of third line with the second line will be a. (1, 2, 3) b. 2, 4, 6 c. $\frac{4}{3}, \frac{6}{3}, \frac{12}{3}$ d. none of these

Watch Video Solution

194. The point of intersection of the line passing through (0, 0, 1) and intersecting the lines x + 2y + z = 1, -x + y - 2z = 2 and x + y = 2, x + z = 2 with xy plane is a. $\left(\frac{5}{3}, -\frac{1}{3}, 0\right)$ b. (1, 1, 0) c. $\left(\frac{2}{3}, \frac{1}{3}, 0\right)$ d. $\left(-\frac{5}{3}, \frac{1}{3}, 0\right)$

Watch Video Solution

195. Shortest distance between the lines $\frac{x-1}{1} = \frac{y-1}{1} = \frac{z-1}{1} and \frac{x-2}{1} = \frac{y-3}{1} = \frac{z-4}{1}$ is equal to a. $\sqrt{14}$ b. $\sqrt{7}$ c. $\sqrt{2}$ d. none of these

196. Distance of point $P(\overrightarrow{p})$ from the plane $\overrightarrow{r} \stackrel{\cdot}{\overrightarrow{n}} = 0$ is a. $\left|\overrightarrow{p} \stackrel{\cdot}{\overrightarrow{n}}\right|$ b.

$$\frac{\left|\overrightarrow{p}\times\overrightarrow{n}\right|}{\left|\overrightarrow{n}\right|} \text{ c. } \frac{\left|\overrightarrow{p}\overrightarrow{n}\right|}{\left|\overrightarrow{n}\right|} \text{ d. none of these}$$

Watch Video Solution

197. The reflection of the point \overrightarrow{a} in the plane $\overrightarrow{r} \overrightarrow{n} = q$ is a.

$$\vec{a} + \frac{\left(\vec{q} - \vec{a} \cdot \vec{n}\right)}{\left|\vec{n}\right|} \qquad \text{b.} \qquad \vec{a} + 2\left(\frac{\left(\vec{q} - \vec{a} \cdot \vec{n}\right)}{\left|\vec{n}\right|^2}\right) \vec{n} \qquad \text{c.}$$
$$\vec{a} + \frac{2\left(\vec{q} + \vec{a} \cdot \vec{n}\right)}{\left|\vec{n}\right|^2} \vec{n} \text{ d. none of these}$$

Watch Video Solution

198. Line $\overrightarrow{r} = \overrightarrow{a} + \lambda \overrightarrow{b}$ will not meet the plane $\overrightarrow{r} \overrightarrow{n} = q$, if a. $\overrightarrow{b} \overrightarrow{n} = 0, \overrightarrow{a} \overrightarrow{n} = q$ b. $\overrightarrow{b} \overrightarrow{n} \neq 0, \overrightarrow{a} \overrightarrow{n} \neq q$ c. $\overrightarrow{b} \overrightarrow{n} = 0, \overrightarrow{a} \overrightarrow{n} \neq q$ d.

$$\overrightarrow{b}\overset{\cdot}{\overrightarrow{n}}
eq 0,\,\overrightarrow{a}\overset{\cdot}{\overrightarrow{n}}=q$$

Watch Video Solution

199. If a line makes an angle of $\frac{\pi}{4}$ with the positive direction of each of xaxis and y-axis, then the angel that the line makes with the positive direction of the z-axis is a. $\frac{\pi}{3}$ b. $\frac{\pi}{4}$ c. $\frac{\pi}{2}$ d. $\frac{\pi}{6}$

Watch Video Solution

200. Find the equation of the plane containing the lines 2x-y+z-3=0,3x+y+z=5 and a t a distance of $\frac{1}{\sqrt{6}}$ from the point (2,1,-1).

Watch Video Solution

201. A plane which prependicular totwo planes 2x - 2y + z = 0 and

x-y+2z=4 passes through the point $(1,\ -2,1)$ is:

202. Let P(3, 2, 6) be a point in space and Q be a point on line $\overrightarrow{r} = (\hat{i} - \hat{j} + 2\hat{k}) + \mu(-3\hat{i} + \hat{j} + 5\hat{k})$. Then the value of μ for which the vector $\overrightarrow{P}Q$ is parallel to the plane x - 4y + 3z = 1 is a. 1/4 b. -1/4 c. 1/8 d. -1/8

Watch Video Solution

203. If the lines
$$\frac{x-1}{2} = \frac{y+1}{3} = \frac{z-1}{4}$$
 and $\frac{x-3}{1} = \frac{y-k}{2} = \frac{z}{1}$ intersect, then k is equal to (1) -1 (2) $\frac{2}{9}$ (3) $\frac{9}{2}$ (4) 0

Watch Video Solution

204. Consider a set of point R in which is at a distance of 2 units from the

line $\frac{x}{1} = \frac{y-1}{-1} = \frac{z+2}{2}$ between the planes x - y + 2z - 3 = 0 and x - y + 2z - 2 = 0. (a) The volume of the bounded figure by points R and the planes is $\left(\frac{10}{3}\sqrt{3}\right)\pi$ cube units (b)

The area of the curved surface formed by the set of points R is $\left(\frac{20}{\sqrt{6}}\right)\pi$

sq. units (c)The volume of the bounded figure by the set of points R and

the planes is $\left(\frac{20}{\sqrt{6}}\right)\pi$ cubic units. (d) The area of the curved surface formed by the set of points R is $\left(\frac{10}{\sqrt{3}}\right)\pi$ sq. units

Watch Video Solution

205. Consider the lines
$$L_1: \frac{x-1}{2} = \frac{y}{-1} = \frac{z+3}{1}, L_2: \frac{x-4}{1} = \frac{y+3}{1} = \frac{z+3}{2}$$
 and the planes $P_1: 7x + y + 2z = 3, P_2: 3x + 5y - 6z = 4$. Let $ax + by + cz = d$ be the equation of the plane passing through the point match Column I with Column II. Column I, Column II $a =$, p. 13 $b =$, q. -3 $c =$, r. 1 $d =$, s. -2

206. Statement 1: A plane passes through the point A(2, 1, -3). If distance of this plane from origin is maximum, then its equation is 2x + y - 3z = 14.

Statement 2: If the plane passing through the point $A(\overrightarrow{a})$ is at maximum distance from origin, then normal to the plane is vector \overrightarrow{a} (a) Statement 1 is true, Statement 2 is true, Statement 2 is the correct explanation for Statement 1.

(b) Statement 1 is true, Statement 2 is true, Statement 2 is not the correct explanation for Statement 1.

(c) Statement 1 is true, Statement 2 is false.

(d) Statement 2 is true, Statement 1 is false.

207. Consider the following linear equations: ax + by + cz = 0bx + cy + az = 0 cx + ay + bz = 0 Match the expression/statements in column I with expression/statements in Column II. Column I, Column II $a + b + c \neq 0$ and $a^2 + b^2 + c^2 = ab + bc + ca$, p. the equations represent planes meeting only at a single point $a + b + c = 0anda^2 + b^2 + c^2 \neq ab + bc + ca$, q. the equations represent the line x = y = z $a + b + c \neq 0anda^2 + b^2 + c^2 \neq ab + bc + ca$, r. the equations represent identical planes $a + b + c \neq 0$ and $a^2 + b^2 + c^2 \neq ab + bc + ca$, s. the equations represent the whole of

the three dimensional space

Watch Video Solution

208. If the distance between the plane Ax - 2y + z = d. and the plane

containing the lies
$$\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$$
 and $\frac{x-2}{3} = \frac{4-3}{4} = \frac{z-4}{5}$ is $\sqrt{6}$, then $|d|$ is
209. Prove that the volume of tetrahedron bounded by the planes $\vec{r} \cdot n\hat{j} + n\hat{k} = 0, \vec{r} \cdot n\hat{k} + l\hat{i} = 0, \vec{r} \cdot l\hat{i} + m\hat{j} = 0, \vec{r} \cdot l\hat{i} + m\hat{j} + n\hat{k} = \pi s \frac{2p}{3lm}$

Watch Video Solution

210. If a variable plane forms a tetrahedron of constant volume $64k^3$ with the co-ordinate planes, then the locus of the centroid of the tetrahedron is:

Watch Video Solution

211. OA, OBandOC, withO as the origin, are three mutually perpendicular lines whose direction cosines are $l_rm_randn_r(r = 1, 2and3)$. If the projection of OAandOB on the plane z = 0 make angles $\varphi_1and\varphi_2$, respectively, with the x-axis, prove that $\tan(\varphi_1 - \varphi_2) = \pm n_3/n_1n_2$.

212. Prove that for all values of
$$\lambda$$
 and μ , the planes
$$\frac{2x}{a} + \frac{y}{b} + \frac{2z}{c} - 1 + \lambda \left(\frac{x}{a} - \frac{2y}{b} - \frac{z}{c} - 2\right) = 0 \quad \text{and} \quad \frac{4x}{a} - \frac{3y}{b} - 5 + \mu \left(\frac{5y}{b} + \frac{4z}{c} + 3\right) = 0 \text{ intersect on the same line.}$$

Watch Video Solution

213. If P is any point on the plane lx + my + nz = pandQ is a point on

the line OP such that OP. $OQ=p^2$, then find the locus of the point Q_{\cdot}

Watch Video Solution

214. find the equation of the plane with intercepts 2,3 and 4 on the x, y

and z-axis respectively.

215. A variable plane lx + my + nz = p(wherel, m, n are direction cosines of normal) intersects the coordinate axes at points A, BandC, respectively. Show that the foot of the normal on the plane from the origin is the orthocenter of triangle ABC and hence find the coordinate of the circumcentre of triangle ABC.

Watch Video Solution

216. If a line makes angles α , $\beta and\gamma$ with three-dimensional coordinate axes, respectively, then find the value of $\cos 2\alpha + \cos 2\beta + \cos 2\gamma$.

> Watch Video Solution

217. A plane which is perpendicular to two planes 2x - 2y + z = 0 and x - y + 2z = 4 passes through (1, -2, 1). The distance of the plane from the point (1, 2, 2) is

218. Let $x - y \sin \alpha - z \sin \beta = 0, x \sin \alpha + z \sin \gamma - y = 0$ and $x \sin \beta + y \sin \gamma - z = 0$ be the equations of the planes such that $\alpha + \beta + \gamma = \pi/2$ (where α, β and $\gamma \neq 0$). Then show that there is a common line of intersection of the three given planes.

Watch Video Solution

219. The position vectors of the four angular points of a tetrahedron OABC are (0, 0, 0); (0, 0, 2), (0, 4, 0) and (6, 0, 0) respectively. A point P inside the tetrahedron is at the same distance r from the four plane faces of the tetrahedron. Find the value of r

Watch Video Solution

220. Find the distance of the point (-2, 3, -4) from the line $\frac{x+2}{3} = \frac{2y+3}{4} = \frac{3z+4}{5}$ measured parallel to the plane 4x + 12y - 3z + 1 = 0.

221. The plane 4x + 7y + 4z + 81 = 0 is rotated through a right angle about its line of intersection with the plane 5x + 3y + 10z = 25. The equation of the plane in its new position is a. x - 4y + 6z = 106 b. x - 8y + 13z = 103 c. x - 4y + 6z = 110 d. x - 8y + 13z = 105

Watch Video Solution

222. If (a, b, c) is a point on the plane 3x + 2y + z = 7, then find the least value of 2($a^2 + b^2 + c^2$), using vector method.

Watch Video Solution

223. Let the equation of the plane containing the line x - y - z - 4 = 0 = x + y + 2z - 4 and is parallel to the line of intersection of the planes 2x + 3y + z = 1 and x + 3y + 2z = 2 be x + Ay + Bz + C = 0 Compute the value of |A + B + C|.

224. Let a_1, a_2, a_3, \dots be in A. P. and h_1, h_2, h_3, \dots in H. P. If

 $a_1=2=h_1, \; ext{ and } \; a_{30}=25=h_{30} ext{ then } a_7h_{24}+a_{14}+a_{17}=$

225. If the angle between the plane x - 3y + 2z = 1 and the line $\frac{x-1}{2} = \frac{y-1}{1} = \frac{z-1}{-3}is$, θ then the find the value of $\cos ec\theta$.

Watch Video Solution

226. The length of projection of the line segment joining the points (1, 0, -1)and(-1, 2, 2) on the plane x + 3y - 5z = 6 is equal to a. 2 b. $\sqrt{\frac{271}{53}}$ c. $\sqrt{\frac{472}{31}}$ d. $\sqrt{\frac{474}{35}}$

227. Find the equation of a plane passing through (1, 1, 1) and parallel to the lines L_1 and L_2 direction ratios (1, 0,-1) and (1,-1, 0) respectively. Find the volume of the tetrahedron formed by origin and the points where this plane intersects the coordinate axes.

228. Find the equation of the plane passing through the points (2, 1, 0), (5, 0, 1) and (4, 1, 1) If P is the point (2, 1, 6) then find point Q such that PQ is perpendicular to the above plane and the mid point of PQ lies on it.

230. The value of m for which straight lein 3x - 2y + z + 3 = 0 = 4x - 3y + 4z + 1 is parallel to the plane 2x - y + mz - 2 = 0 is a. -2 b. 8 c. -18 d. 11

231. Let the equations of a line and plane be $\frac{x+3}{2} = \frac{y-4}{3} = \frac{z+5}{2}$ and 4x - 2y - z = 1, respectively, then a. the

line is parallel to the plane b. the line is perpendicular to the plane c. the line lies in the plane d. none of these

Watch Video Solution

232. The length of the perpendicular form the origin to the plane passing through the point a and containing the line $\overrightarrow{r} = \overrightarrow{b} + \lambda \overrightarrow{c}$ is a.

$$\frac{\left[\overrightarrow{a}\overrightarrow{b}\overrightarrow{c}\right]}{\left|\overrightarrow{a}\times\overrightarrow{b}+\overrightarrow{b}\times\overrightarrow{c}+\overrightarrow{c}\times\overrightarrow{a}\right|} \qquad b. \qquad \frac{\left[\overrightarrow{a}\overrightarrow{b}\overrightarrow{c}\right]}{\left|\overrightarrow{a}\times\overrightarrow{b}+\overrightarrow{b}\times\overrightarrow{c}\right|} \qquad c.$$

$$\frac{\left[\overrightarrow{a}\overrightarrow{b}\overrightarrow{c}\right]}{\left|\overrightarrow{b}\times\overrightarrow{c}+\overrightarrow{c}\times\overrightarrow{a}\right|} d. \frac{\left[\overrightarrow{a}\overrightarrow{b}\overrightarrow{c}\right]}{\left|\overrightarrow{c}\times\overrightarrow{a}+\overrightarrow{a}\times\overrightarrow{b}\right|}$$

Watch Video Solution

233. In a three-dimensional xyz space, the equation $x^2 - 5x + 6 = 0$ represents

Watch Video Solution

234. The line
$$\frac{x-2}{3} = \frac{y+1}{2} = \frac{z-1}{-1}$$
 intersects the curve $xy = c^2, z = 0$ if c is equal to a. ± 1 b. $\pm \frac{1}{3}$ c. $\pm \sqrt{5}$ d. none of these

235. A unit vector parallel to the intersection of the planes

$$\overrightarrow{r}$$
. $(\hat{i} - \hat{j} + \hat{k}) = 5$ and \overrightarrow{r} . $(2\hat{i} + \hat{j} - 3\hat{k}) = 4$ a. $\frac{2\hat{i} + 5\hat{j} - 3\hat{k}}{\sqrt{38}}$ b.
 $\frac{-2\hat{i} + 5\hat{j} - 3\hat{k}}{\sqrt{38}}$ c. $\frac{2\hat{i} + 5\hat{j} - 3\hat{k}}{\sqrt{38}}$ d. $\frac{-2\hat{i} - 5\hat{j} - 3\hat{k}}{\sqrt{38}}$

Watch Video Solution

236. Let L_1 be the line $\overrightarrow{r}_1 = 2\hat{i} + \hat{j} - \hat{k} + \lambda(\hat{i} + 2\hat{k})$ and let L_2 be the line $\overrightarrow{r}_2 = 3\hat{i} + \hat{j} + \mu(\hat{i} + \hat{j} - \hat{k})$. Let π be the plane which contains the line L_1 and is parallel to L_2 . The distance of the plane π from the origin is a. $\sqrt{6}$ b. 1/7 c. $\sqrt{2/7}$ d. none of these

Watch Video Solution

237. The distance of point A(-2,3,1) from the line PQ through P(-3,5,2), which makes equal angles with the axes is a. $2/\sqrt{3}$ b. $\sqrt{14/3} \, {
m c.}\, 16/\sqrt{3} \, {
m d.}\, 5/\sqrt{3}$

238. The Cartesian equation of the plane $\overrightarrow{r} = (1 + \lambda - \mu)\hat{i} + (2 - \lambda)\hat{j} + (3 - 2\lambda + 2\mu)\hat{k}$ is a. 2x + y = 5 b. 2x - y = 5 c. 2x + z = 5 d. 2x - z = 5

239. Find the angle between the lines

$$\vec{r} = 3\hat{i} + 2\hat{j} - 4\hat{k} + \lambda(\hat{i} + 2\hat{j} + 2\hat{k})$$
 and $\vec{r} = (5\hat{j} - 2\hat{k}) + \mu(3\hat{i} + 2\hat{j} + 2\hat{k})$
Watch Video Solution

240. Column I, Column II The coordinates of a point on the line x = 4y + 5, z = 3y - 6 at a distance 3 from the point (5, 3, -6) is/are, p. (-1, -2, 0) The plane containing the lines $\frac{x-2}{3} = \frac{y+2}{5} = \frac{z+5}{7}$ and parallel to $\hat{i} + 4\hat{j} + 7\hat{k}$ has the point, q. (5, 0, -6) A line passes through two points A(2-3, -1)andB(8, -1, 2). The coordinates of a point on this line

nearer to the origin and at a distance of 14 units from A is/are, r. (2, 5, 7)The coordinates of the foot of the perpendicular from the point (3, -1, 11) on the line $\frac{x}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ is/are, s. (14, 15)

Watch Video Solution

241. The distance between the line

$$\overrightarrow{r} = \left(2\hat{i} - 2\hat{j} + 3\hat{k}\right) + \lambda\left(\hat{i} - \hat{j} + 4\hat{k}\right)$$
 and plane
 $\overrightarrow{r}\left(\hat{i} + 5\hat{j} + \hat{k}\right) = 5.$

Watch Video Solution

242. Find the angle between the line $\frac{x-1}{3} = \frac{y-1}{2} = \frac{z-1}{4}$ and the

plane 2x + y - 3z + 4 = 0.

243. Find the equation of a line which passes through the point (2, 3, 4)

and which has equal intercepts on the axes.

244. Statement 1: There exist two points on the $\frac{x-1}{1} = \frac{y}{-1} = \frac{z+2}{2}$ which are at a distance of 2 units from point (1, 2, -4). Statement 2: Perpendicular distance of point (1, 2, -4) form the line $\frac{x-1}{1} = \frac{y}{-1} = \frac{z+2}{2}$ is 1 unit.

Watch Video Solution

245. Statement 1: The shortest distance between the lines $\frac{x}{-3} = \frac{y-1}{1} = \frac{z+1}{-1} and \frac{x-2}{1} = \frac{y-3}{2} = \left(\frac{z+(13/7)}{-1}\right)$ is zero.

Statement 2: The given lines are perpendicular.

A. Statement 1 is correct

B. Statement 2 is correct

248. A line with direction cosines proportional to 1, -5, and -2 meets

lines x = y + 5 = z + 11andx + 5 = 3y = 2z. The coordinates of each

of the points of the intersection are given by a. (2, -3, 1) b. (1, 2, 3) c.

(0, 5/3, 5/2) d. (3, -2, 2)

249. If the planes
$$\overrightarrow{r}\left(\hat{i}+\hat{j}+\hat{k}
ight)=q_{1}, \overrightarrow{r}\left(\hat{i}+2a\hat{j}+\hat{k}
ight)=q_{2}and\overrightarrow{r}\left(a\hat{i}+a^{2}\hat{j}+\hat{k}
ight)=q_{3}$$

intersect in a line, then the value of a is a. 1 b. 1/2 c. 2 d. 0

Watch Video Solution

250. The equation of a line passing through the point \overrightarrow{a} parallel to the plane $\overrightarrow{r} \cdot \overrightarrow{n} = q$ and perpendicular to the line $\overrightarrow{r} = \overrightarrow{b} + t\overrightarrow{c}$ is a. $\overrightarrow{r} = \overrightarrow{a} + \lambda \left(\overrightarrow{n} \times \overrightarrow{c}\right)$ b. $\left(\overrightarrow{r} - \overrightarrow{a}\right) \times \left(\overrightarrow{n} \times \overrightarrow{c}\right)$ c. $\overrightarrow{r} = \overrightarrow{b} + \lambda \left(\overrightarrow{n} \times \overrightarrow{c}\right)$ d. none of these

251. A straight line L on the xy-plane bisects the angle between OXandOY. What are the direction cosines of L? a. $((1/\sqrt{2}), (1/\sqrt{2}), 0)$ b. $((1/2), (\sqrt{3}/2), 0)$ c. (0, 0, 1) d. (2/3, 2/3, 2/3)

Watch Video Solution

252. Statement 1: Vector $\overrightarrow{c} = -5\hat{i} + 7\hat{j} + 2\hat{k}$ is along the bisector of angel between $\overrightarrow{a} = \hat{i} + 2\hat{j} + 2\hat{k}and\overrightarrow{b} = 8\hat{i} + \hat{j} - 4\hat{k}$. Statement 2: \overrightarrow{c} is equally inclined to $\overrightarrow{a}and\overrightarrow{b}$.

Watch Video Solution

253. The equation of the line x + y + z - 1 = 0, 4x + y - 2z + 2 = 0

written in the symmetrical form is

254. The equation of two straight lines are $\frac{x-1}{2} = \frac{y+3}{1} = \frac{z-2}{-3} and \frac{x-2}{1} = \frac{y-1}{3} = \frac{z+3}{2}$. Statement 1: the given lines are coplanar. Statement 2: The equations 2r - s = 1, r + 3s = 4and3r + 2s = 5 are consistent.

Watch Video Solution

255. Statement 1: Lines

$$\overrightarrow{r} = \hat{i} + \hat{j} - \hat{k} + \lambda (3\hat{i} - \hat{j}) and \overrightarrow{r} = 4\hat{i} - \hat{k} + \mu (2\hat{i} + 3\hat{k})$$
 intersect.
Statement 2: $\overrightarrow{b} \times \overrightarrow{d} = 0$, then lines $\overrightarrow{r} = \overrightarrow{a} + \lambda \overrightarrow{b} and \overrightarrow{r} = \overrightarrow{c} + \lambda \overrightarrow{d}$
do not intersect.

Watch Video Solution

256. What is the equation of the plane which passes through the z-axis and is perpendicular to the line $\frac{x-a}{\cos\theta} = \frac{y+2}{\sin\theta} = \frac{z-3}{0}$? (A) $x + y \tan\theta = 0$ (B) $y + x \tan\theta = 0$ (C) $x \cos\theta - y \sin\theta = 0$ (D) $x \sin\theta - y \cos\theta = 0$ **257.** Statement 1: let $A\left(\overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}\right) and B\left(\overrightarrow{i} - \overrightarrow{j} + \overrightarrow{k}\right)$ be two points. Then point $P\left(2\overrightarrow{i} + 3\overrightarrow{j} + \overrightarrow{k}\right)$ lies exterior to the sphere with AB as its diameter. Statement 2: If AandB are any two points and P is a point in space such that $\overrightarrow{P} A\overrightarrow{P} B > 0$, then point P lies exterior to the sphere to the sphere with AB as its diameter.

Watch Video Solution

258. Statement 1: Let θ be the angle between the line $\frac{x-2}{2} = \frac{y-1}{-3} = \frac{z+2}{-2}$ and the plane x + y - z = 5. Then $\theta = \sin^{-1}(1/\sqrt{51})$. Statement 2: The angle between a straight line and a plane is the complement of the angle between the line and the normal to the plane. Which of the following statements is/are correct ?

259. If the volume of tetrahedron ABCD is 1 cubic units, where A(0, 1, 2), B(-1, 2, 1) and C(1, 2, 1), then the locus of point D is a. x + y - z = 3 b. y + z = 6 c. y + z = 0 d. y + z = -3

260. A rod of length 2 units whose one ends is (1, 0, -1) and other end touches the plane x - 2y + 2z + 4 = 0, then which statement is false

Watch Video Solution

261. The equation of the plane which is equally inclined to the lines $\frac{x-1}{2} = \frac{y}{-2} = \frac{z+2}{-1}$ and $\frac{x+3}{8} = \frac{y-4}{1} = \frac{z}{-4}$ and passing through the origin is/are a. 14x - 5y - 7z = 0 b. 2x + 7y - z = 0 c. 3x - 4y - z = 0 d. x + 2y - 5z = 0

262. Which of the following lines lie on the plane x + 2y - z + 4 = 0? a. $\frac{x-1}{1} = \frac{y}{-1} = \frac{z-5}{1}$ b. x - y + z = 2x + y - z = 0 c. $\hat{r} = 2\hat{i} - \hat{j} + 4\hat{k} + \lambda \left(3\hat{i} + \hat{j} + 5\hat{k}\right)$ d. none of these

Watch Video Solution

263. The equations of the plane which passes through (0, 0, 0) and which

is equally inclined to the planes x-y+z-3=0 and x+y+z+4=0 is/are a. y=0 b. x=0 c.

$$x+y=0$$
 d. $x+z=0$

Watch Video Solution

264. The x-y plane is rotated about its line of intersection with the y-z plane by 45^0 , then the equation of the new plane is/are a. z + x = 0 b. z - y = 0 c. x + y + z = 0 d. z - x = 0

265. Consider the planes 3x - 6y + 2z + 5 = 0 and 4x - 12y + 3z = 3. The plane 67x - 162y + 47z + 44 = 0 bisects the angle between the given planes which a contains origin b. is acute c. is obtuse d. none of these

Watch Video Solution

266. A variable plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ at a unit distance from origin cuts the coordinate axes at A, B and C. Centroid (x, y, z) satisfies the equation $\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2} = K$. The value of K is (A) 9 (B) 3 (C) $\frac{1}{9}$ (D) $\frac{1}{3}$ Watch Video Solution

267. Let P = 0 be the equation of a plane passing through the line of intersection of the planes 2x - y = 0 and 3z - y = 0 and perpendicular to the plane 4x + 5y - 3z = 8. Then the points which lie on the plane P = 0 is/are a. (0, 9, 17) b. (1/7, 21/9) c. (1, 3, -4) d. (1/2, 1, 1/3)

268. about to only mathematics

Watch Video Solution

269. A point P moves on a plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$. A plane through P and perpendicular to OP meets the coordinate axes at A, BandC. If the planes through A, BandC parallel to the planes x = 0, y = 0andz = 0, respectively, intersect at Q, find the locus of Q.

Watch Video Solution

270. If x = cy + bz, y = az + cx, z = bx + ay, where. x, y, z are not all

zeros, then find the value of $a^2 + b^2 + c^2 + 2abc$

271. Find the equation of the plane passing through the points (1, 0, -1) and (3, 2, 2) and parallel to the line $x - 1 = \frac{1 - y}{2} = \frac{z - 2}{3}$.

Watch Video Solution

272. A variable plane passes through a fixed point (α, β, γ) and meets the axes at A, B, andC show that the locus of the point of intersection of the planes through A, BandC parallel to the coordinate planes is $\alpha x^{-1} + \beta y^{-1} + \gamma z^{-1} = 1.$

Watch Video Solution

273. Show that the straight lines whose direction cosines are given by the equations al + bm + cn = 0 and $ul^2 + vm^2 + wn^2 = 0$ are parallel or perpendicular as $\frac{a^2}{u} + \frac{b^2}{v} + \frac{c^2}{w} = 0$ or $a^2(v+w) + b^2(w+u) + c^2(u+v) = 0$

274. The perpendicular distance of a corner of unit cube from a diagonal

not passing through it is

Watch Video Solution

275. If the direction cosines of a variable line in two adjacent points be $l, m, n \text{ and } l + \delta l, m + \delta m, n + \delta n$ the small angle $\delta \theta$ as between the two positions is given by

Watch Video Solution

276. the image of the point (-1, 3, 4) in the plane x - 2y = 0 a. $\left(-\frac{17}{3}, \frac{19}{3}, 4\right)$ b.(15, 11, 4) c. $\left(-\frac{17}{3}, \frac{19}{3}, 1\right)$ d. $\left(\frac{9}{5}, -\frac{13}{5}, 4\right)$

277. The ratio in which the plane $\overrightarrow{r} \cdot \left(\overrightarrow{i} - 2\overrightarrow{j} + 3\overrightarrow{k}\right)$ =17 divides the line joining the points $-2\overrightarrow{i} + 4\overrightarrow{j} + 7\overrightarrow{k}$ and $3\overrightarrow{i} - 5\overrightarrow{j} + 8\overrightarrow{k}$ is a. 1:5 b. 1: 10 c. 3: 5 d. 3: 10

Watch Video Solution

278. Column I, Column II $Atx = 1, f(x) = \{\log x, x < 12x - x^2, x \ge 1,$ p. is increasing At $x = 2, f(x) = \{x - 1, x < 20, x = 2 \sin x, x > 2,$ q. is decreasing At $x = 0, f(x) = \{2x + 3, x < 05, x = 0x^2 + 7, x > 0,$ r. has point of maxima At $x = 0, f(x) = \{e^{-x}x < 00, x = 0 - \cos x, x > 0,$ s. has point of minima

$$\overrightarrow{r} \Big(\hat{i} + 5 \hat{j} + \hat{k} \Big) = 5.$$

Watch Video Solution

280. If angle θ bertween the line $\frac{x+1}{1} = \frac{y-1}{2} = \frac{z-2}{2}$ and the plane $2x - y + \sqrt{\lambda}z + 4 = 0$ is such that $\sin \theta = 1/3$, the value of λ is a. $-\frac{3}{5}$ b. $\frac{5}{3}$ c. $-\frac{4}{3}$ d. $\frac{3}{4}$

Watch Video Solution

281. The length of the perpendicular drawn from (1, 2, 3) to the line $\frac{x-6}{3} = \frac{y-7}{2} = \frac{z-7}{-2}$ is a. 4 b. 5 c. 6 d. 7

Watch Video Solution

282. A plane makes intercepts *OA*, *OBandOC* whose measurements are

a, b and c on the OX, OY and OZ axes. The area of triangle ABC is

a.
$$rac{1}{2}(ab+bc+ca)$$
 b. $rac{1}{2}abc(a+b+c)$ c. $rac{1}{2}(a^2b^2+b^2c^2+c^2a^2)^{1/2}$ d. $rac{1}{2}(a+b+c)^2$

Watch Video Solution

284. The shortest distance from the plane 12x + 4y + 3z = 327 to the sphere $x^2 + y^2 + z^2 + 4x - 2y - 6z = 155$ is a. 39 b. 26 c. $41 - \frac{4}{13}$ d. 13

285. A line makes an angel θ with each of the x-and z-axes. If the angel β , which it makes with the y-axis, is such that $\sin^2 \beta = 3 \sin^2 \theta$, then $\cos^2 \theta$ equals a. $\frac{2}{3}$ b. $\frac{1}{5}$ c. $\frac{3}{5}$ d. $\frac{2}{5}$

Watch Video Solution

286. Find the equation of a straight line in the plane $\overrightarrow{r} \cdot \overrightarrow{n} = d$ which is parallel to $\overrightarrow{r} = \overrightarrow{a} + \lambda \overrightarrow{b}$ and passes through the foot of the perpendicular drawn from point $P(\overrightarrow{a}) \rightarrow \overrightarrow{r} \overrightarrow{n} = d\left(where \overrightarrow{n} \overrightarrow{b} = 0\right)$. $\overrightarrow{r} = \overrightarrow{a} + \left(\frac{d - \overrightarrow{a} \cdot \overrightarrow{n}}{n^2}\right)n + \lambda \overrightarrow{b}$ b.

$$\overrightarrow{r} = \overrightarrow{a} + \left(\overrightarrow{\frac{d - \overrightarrow{a} \cdot \overrightarrow{n}}{n}} \right) n + \lambda \overrightarrow{b}$$
 c.

$$\overrightarrow{r} = \overrightarrow{a} + \left(\frac{\overrightarrow{a} \cdot \overrightarrow{n} - d}{n^2}\right)n + \lambda \overrightarrow{b}$$
 d.
 $\overrightarrow{r} = \overrightarrow{a} + \left(\frac{\overrightarrow{a} \cdot \overrightarrow{n} - d}{n}\right)n + \lambda \overrightarrow{b}$

287. What is the nature of the intersection of the set of planes x + ay + (b + c)z + d = 0, x + by + (c + a)z + d = 0 and x + cy + (a + b) and x + cy + (a + b) (a). they meet at a point (b). they form a triangular prism (c). they pass through a line (d). they are at equal distance from the origin

Watch Video Solution

288. Let P_1 denote the equation of a plane to which the vector $(\hat{i} + \hat{j})$ is normal and which contains the line whose equation is $\vec{r} = \hat{i} + \hat{j} + \hat{k} + \lambda (\hat{i} - \hat{j} - \hat{k}) and P_2$ denote the equation of the plane containing the line L and a point with position vector \hat{j} . Which of the following holds good?

- a. The equation of P_1 is x + y = 2.
- b. The equation of P_2 is $\overrightarrow{r} \cdot (i-2j+k) = 2$
- c. The acute angle between P_1 and P_2 is $\cot^{-1}\sqrt{3}$

d. The angle between plane P_2 and the line L is $an^{-1}\sqrt{3}$

289. Let PM be the perpendicular from the point P(1, 2, 3) to the x - yplane. If $\overrightarrow{O}P$ makes an angle θ with the positive direction of the z – axis and $\overrightarrow{O}M$ makes an angle ϕ with the positive direction of x – axis, where O is the origin and $\theta and \phi$ are acute angels, then a. $\cos \theta \cos \phi = 1/\sqrt{14}$ b. $\sin \theta \sin \phi = 2/\sqrt{14}$ c. $\tan \phi = 2$ d. $\tan \theta = \sqrt{5}/3$

Watch Video Solution

290. If the plane $\frac{x}{2} + \frac{y}{3} + \frac{z}{6} = 1$ cuts the axes of coordinates at points, A, B, andC, then find the area of the triangle ABC a. 18sq unit b. 36sq unit c. $3\sqrt{14}sq$ unit d. $2\sqrt{14}sq$ unit

Watch Video Solution

291. For what value (s) of a will the two points (1, a, 1) and (-3, 0, a)

lie on opposite sides of the plane 3x + 4y - 12z + 13 = 0?

