



# MATHS

# **BOOKS - CENGAGE PUBLICATION**

**VECTOR ALGEBRA** 

#### Others

**1.** In a trapezium ABCD, BC AD and AD = 4 cm. the two diagonals AC and BD intersect at the point O in such a way that AO/OC = DO/OB = 1/2. Calculate the length of BC.



2. If the vectors  $\vec{a}and\vec{b}$  are linearly idependent satisfying  $(\sqrt{3}\tan\theta + 1)\vec{a} + (\sqrt{3}\sec\theta - 2)\vec{b} = 0$ , then the most general values of  $\theta$ 

are a. 
$$2n\pi - \frac{\pi}{6}, n \in Z$$
 b.  $2n\pi \pm \frac{11\pi}{6}, n \in Z$  c.  $n\pi \pm \frac{\pi}{6}, n \in Z$  d.  
 $2n\pi \pm \frac{11\pi}{6}, n \in Z$ 

Watch Video Solution

**3.** Given three non-zero, non-coplanar vectors  $\vec{a}, \vec{b}$ , and  $\vec{c}, \vec{r}_1 = p\vec{a} + q\vec{b} + \vec{c}$  and  $\vec{r}_2 = \vec{a} + p\vec{b} + q\vec{c}$  If the vectors  $\vec{r}_1 + 2\vec{r}_2$  and  $2\vec{r}_1 + \vec{r}_2$  are collinear, then (p, q) is `

#### Watch Video Solution

**4.** Let  $\vec{r}_1, \vec{r}_2, \vec{r}_3, \dots, \vec{r}_n$  be the position vectors of points  $P_1, P_2, P_3, \dots, P_n$ relative to the origin O. If the vector equation  $a_1\vec{r}_1 + a_2\vec{r}_2 + \dots + a_n\vec{r}_n = 0$ hold, then a similar equation will also hold w.r.t. to any other origin provided a)  $a_1 + a_2 + \dots + a_n = n$  b)  $a_1 + a_2 + \dots + a_n = 1$  c)  $a_1 + a_2 + \dots + a_n = 0$  d)  $a_1 = a_2 = a_3 + a_n = 0$  **5.** In triangle *ABC*,  $\angle A = 30^{\circ}$ , *H* is the orthocenter and *D* is the midpoint of *BC*. Segment *HD* is produced to *T* such that *HD* = *DT* The length *AT* is equal to

(a). 2BC

(b). 3*BC* 

(c). 
$$\frac{4}{2}BC$$

(d). none of these

Watch Video Solution

**6.** If 
$$\vec{\alpha} + \vec{\beta} + \vec{\gamma} = a\vec{\delta}and\vec{\beta} + \vec{\gamma} + \vec{\delta} = b\vec{\alpha}, \vec{\alpha}and\vec{\delta}$$
 are non-colliner, then  
 $\vec{\alpha} + \vec{\beta} + \vec{\gamma} + \vec{\delta}$  equals a.  $a\vec{\alpha}$  b.  $b\vec{\delta}$  c. 0 d.  $(a + b)\vec{\gamma}$ 

### Watch Video Solution

**7.** Given three vectors  $\vec{a} = 6\hat{i} - 3\hat{j}$ ,  $\vec{b} = 2\hat{i} - 6\hat{j}$  and  $\vec{c} = -2\hat{i} + 21\hat{j}$  such that  $\vec{\alpha} = \vec{a} + \vec{b} + \vec{c}$  Then the resolution of the vector  $\vec{\alpha}$  into components with

respect to  $\vec{a}and\vec{b}$  is given by a.  $3\vec{a} - 2\vec{b}$  b.  $3\vec{b} - 2\vec{a}$  c.  $2\vec{a} - 3\vec{b}$  d.  $\vec{a} - 2\vec{b}$ 

#### Watch Video Solution

**8.** Let us define the length of a vector  $a\hat{i} + b\hat{j} + c\hat{k}as|a| + |b| + |c|$  This definition coincides with the usual definition of length of a vector  $a\hat{i} + b\hat{j} + c\hat{k}$  is and only if (a) a = b = c = 0 (b) any two of a, b, andc are zero (c) any one of a, b, andc is zero (d) a + b + c = 0

#### Watch Video Solution

**9.** Vectors  $\vec{a} = -4\hat{i} + 3\hat{k}$ ;  $\vec{b} = 14\hat{i} + 2\hat{j} - 5\hat{k}$  are laid off from one point. Vector  $\hat{d}$ , which is being laid of from the same point dividing the angle between vectors  $\vec{a}$  and  $\vec{b}$  in equal halves and having the magnitude  $\sqrt{6}$ , is a.  $\hat{i} + \hat{j} + 2\hat{k}$  b.  $\hat{i} - \hat{j} + 2\hat{k}$  c.  $\hat{i} + \hat{j} - 2\hat{k}$  d.  $2\hat{i} - \hat{j} - 2\hat{k}$ 

**10.** Vectors  $\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}$ ,  $\vec{b} = 2\hat{i} - \hat{j} + \hat{k}$  and  $\vec{c} = 3\hat{i} + \hat{j} + 4\hat{k}$ , are so placed that the end point of one vector is the starting point of the next vector. Then the vector are (A) not coplanar (B) coplanar but cannot form a triangle (C) coplanar and form a triangle (D) coplanar and can form a right angled triangle



**11.** The position vectors of the vertices A, B, andC of a triangle are  $\hat{i} + \hat{j}$ ,  $\hat{j} + \hat{k}and\hat{i} + \hat{k}$ , respectively. Find the unit vector  $\hat{r}$  lying in the plane of *ABC* and perpendicular to *IA*, *whereI* is the incentre of the triangle.

Watch Video Solution

**12.** A ship is sailing towards the north at a speed of 1.25 m/s. The current is taking it towards the east at the rate of 1 m/s and a sailor is climbing a vertical pole on the ship at the rate of 0.5 m/s. Find the velocity of the sailor in space.

**13.** Given four points  $P_1$ ,  $P_2$ ,  $P_3$  and  $P_4$  on the coordinate plane with origin

*O* which satisfy the condition 
$$\begin{pmatrix} \vec{O} \\ OP \end{pmatrix}_{n-1} + \begin{pmatrix} \vec{O} \\ OP \end{pmatrix}_{n+1} = \frac{3}{2} \stackrel{\rightarrow}{OP}_n$$
. If P1 and P2

lie on the curve xy=1, then prove that P3 does not lie on the curve

Watch Video Solution

**14.** The vectors  $\vec{a}$  and  $\vec{b}$  are non collinear. If  $\vec{p} = (x + 4y)\vec{a} + (2x + y + 1)\vec{b}$ and  $\vec{q} = (-2x + y + 2)\vec{a} + (2x - 3y - 1)\vec{b}$  satisfy the relation  $3\vec{p} = 2\vec{q}$  find the values of x and y.

#### Watch Video Solution

**15.** If  $\vec{a}$ ,  $\vec{b}$  and  $\vec{c}$  are any three non-coplanar vectors, then prove that points are collinear:  $\vec{a} + \vec{b} + \vec{c}$ ,  $4\vec{a} + 3\vec{b}$ ,  $10\vec{a} + 7\vec{b} - 2\vec{c}$ .

**16.** If  $\vec{a}$ ,  $\vec{b}$  and  $\vec{c}$  are three non-zero non-coplanar vectors, then the value of

$$(\vec{a}.\vec{a})\vec{b}\times\vec{c}+(\vec{a}.\vec{b})\vec{c}\times\vec{a}+(\vec{a}.\vec{c})\vec{a}\times\vec{b}.$$

Watch Video Solution

**17.** Let a, b, c be distinct non-negative numbers an the vectors  $a\hat{i} + a\hat{j} + c\hat{k}$ ,  $\hat{i} + \hat{k}$ ,  $c\hat{i} + c\hat{j} + b\hat{k}$  lie in a plane, then prove that the quadratic equation  $ax^2 + 2cx + b = 0$  has equal roots

#### Watch Video Solution

**18.** A pyramid with vertex at point P has a regular hexagonal base *ABCDEF*, Position vector of points A and B are  $\hat{i}$  and  $\hat{i} + 2\hat{j}$  The centre of base has the position vector  $\hat{i} + \hat{j} + \sqrt{3}\hat{k}$ . Altitude drawn from P on the base meets the diagonal AD at point G find the all possible position



**20.** *A*, *B*, *C* and *D* have position vectors  $\vec{a}$ ,  $\vec{b}$ ,  $\vec{c}$  and  $\vec{d}$ , respectively, such that  $\vec{a} - \vec{b} = 2(\vec{d} - \vec{c})^{'}$  Then a. *ABandCD* bisect each other b. *BDandAC* bisect each other c. *ABandCD* trisect each other d. *BDandAC* trisect each other other

**21.** If  $\vec{a}$  and  $\vec{b}$  are two unit vectors and  $\theta$  is the angle between them, then the unit vector along the angular bisector of  $\vec{a}$  and  $\vec{b}$  will be given by a.

$$\frac{\vec{a} - \vec{b}}{\cos(\theta/2)} \text{ b. } \frac{\vec{a} + \vec{b}}{2\cos(\theta/2)} \text{ c. } \frac{\vec{a} - \vec{b}}{2\cos(\theta/2)} \text{ d. none of these}$$

Watch Video Solution

**22.** *ABCD* is a quadrilateral. *E* is the point of intersection of the line joining the midpoints of the opposite sides. If *O* is any point and  $\vec{O}A + \vec{O}B + \vec{O}C + \vec{O}D = x\vec{O}E$ , then *x* is equal to a. 3 b. 9 c. 7 d. 4



**23.** If vectors  $\vec{AB} = -3\hat{i} + 4\hat{k}and\vec{AC} = 5\hat{i} - 2\hat{j} + 4\hat{k}$  are the sides of a  $\triangle ABC$ , then the length of the median through Ais a.  $\sqrt{14}$  b.  $\sqrt{18}$  c.  $\sqrt{29}$  d.  $\sqrt{5}$ 

**24.** *ABCD* parallelogram, and  $A_1 and B_1$  are the midpoints of sides *BCandCD*, respectivley. If  $\vec{A}A_1 + \vec{A}B_1 = \lambda \vec{A}C$ , then $\lambda$  is equal to a.  $\frac{1}{2}$  b. 1 c.  $\frac{3}{2}$  d. 2 e.  $\frac{2}{3}$ 

#### Watch Video Solution

**25.** The position vectors of the points *PandQ* with respect to the origin *O* are  $\vec{a} = \hat{i} + 3\hat{j} - 2\hat{k}$  and  $\vec{b} = 3\hat{i} - \hat{j} - 2\hat{k}$ , respectively. If *M* is a point on *PQ*, such that *OM* is the bisector of  $\angle POQ$ , then  $\vec{O}M$  is a.  $2(\hat{i} - \hat{j} + \hat{k})$  b.  $2\hat{i} + \hat{j} - 2\hat{k}$  c.  $2(-\hat{i} + \hat{j} - \hat{k})$  d.  $2(\hat{i} + \hat{j} + \hat{k})$ 

Watch Video Solution

**26.** A point O is the centre of a circle circumscribed about a triangleABC

Then  $\vec{O}A\sin 2A + \vec{O}B\sin 2B + \vec{O}C\sin 2C$  is equal to

**27.** If G is the centroid of triangle ABC, then  $\vec{GA} + \vec{GB} + \vec{GC}$  is equal to a.  $\vec{0}$ 

b.  $3\vec{G}A$  c.  $3\vec{G}B$  d.  $3\vec{G}C$ 



**28.** Let *ABC* be triangle, the position vectors of whose vertices are respectively  $\hat{i} + 2\hat{j} + 4\hat{k}$ ,  $-2\hat{i} + 2\hat{j} + \hat{k}$  and  $2\hat{i} + 4\hat{j} - 3\hat{k}$ . Then Delta*ABC* is a. isosceles b. equilateral c. right angled d. none of these

Watch Video Solution

**29.** If  $\left| \vec{a} + \vec{b} \right| < \left| \vec{a} - \vec{b} \right|$ , then the angle between  $\vec{a}$  and  $\vec{b}$  can lie in the interval a.  $(\pi/2, \pi/2)$  b.  $(0, \pi)$  c.  $(\pi/2, 3\pi/2)$  d.  $(0, 2\pi)$ 

**30.** '*I*' is the incentre of triangle *ABC* whose corresponding sides are *a*, *b*, *c*, rspectively.  $\vec{aIA} + \vec{bIB} + \vec{cIC}$  is always equal to a.  $\vec{0}$  b.  $(a + b + c)\vec{BC}$  c.  $(\vec{a} + \vec{b} + \vec{c})\vec{AC}$  d.  $(a + b + c)\vec{AB}$ 



**31.** Let  $x^2 + 3y^2 = 3$  be the equation of an ellipse in the x - y plane. *AandB* are two points whose position vectors are  $-\sqrt{3\hat{i}and} - \sqrt{3\hat{i}} + 2\hat{k}$ . Then the position vector of a point *P* on the ellipse such that  $\angle APB = \pi/4$  is a.  $\pm \hat{j}$  b.  $\pm (\hat{i} + \hat{j})$  c.  $\pm \hat{i}$  d. none of these

Watch Video Solution

**32.** Locus of the point P, for which *OP* represents a vector with direction cosine  $\cos \alpha = \frac{1}{2}$  (where O is the origin) is

**33.** If  $\vec{x}$  and  $\vec{y}$  are two non-collinear vectors and ABC is a triangle with side

lengths 
$$a, b, andc$$
 satisfying  
 $(20a - 15b)\vec{x} + (15b - 12c)\vec{y} + (12c - 20a)(\vec{x} \times \vec{y}) = 0$ , then triangle *ABC* is  
a. an acute-angled triangle b. an obtuse-angled triangle c. a right-angled  
triangle d. an isosceles triangle

Watch Video Solution

**34.** If  $\hat{i} - 3\hat{j} + 5\hat{k}$  bisects the angle between  $\hat{a}$  and  $-\hat{i} + 2\hat{j} + 2\hat{k}$ , where  $\hat{a}$  is a

unit vector, then a.  $\hat{a} = \frac{1}{105} \left( 41\hat{i} + 88\hat{j} - 40\hat{k} \right)$  b.  $\hat{a} = \frac{1}{105} \left( 41\hat{i} + 88\hat{j} + 40\hat{k} \right)$ c.  $\hat{a} = \frac{1}{105} \left( -41\hat{i} + 88\hat{j} - 40\hat{k} \right)$  d.  $\hat{a} = \frac{1}{105} \left( 41\hat{i} - 88\hat{j} - 40\hat{k} \right)$ 

Watch Video Solution

**35.** If  $4\hat{i} + 7\hat{j} + 8\hat{k}$ ,  $2\hat{i} + 3\hat{j} + 4\hat{j}and 2\hat{i} + 5\hat{j} + 7\hat{k}$  are the position vectors of the vertices *A*, *BandC*, respectively, of triangle *ABC*, then the position

vecrtor of the point where the bisector of angle A meets BC is a.  $\frac{2}{3}\left(-\hat{6i}-\hat{8j}-\hat{k}\right)\mathbf{b}.\frac{2}{3}\left(\hat{6i}+\hat{8j}+\hat{6k}\right)\mathbf{c}.\frac{1}{3}\left(\hat{6i}+1\hat{3j}+1\hat{8k}\right)\mathbf{d}.\frac{1}{3}\left(\hat{5j}+1\hat{2k}\right)$ 

Watch Video Solution

**36.** If  $\vec{b}$  is a vector whose initial point divides the join of  $5\hat{i}and5\hat{j}$  in the ratio k:1 and whose terminal point is the origin and  $\left|\vec{b}\right| \leq \sqrt{37}$ , thenk lies in the interval a. [-6, -1/6] b. (- $\infty$ , -6] U [-1/6,  $\infty$ ) c. [0, 6] d. none of these

Watch Video Solution

**37.** Find the value of  $\lambda$  so that the points *P*, *Q*, *R* and *S* on the sides *OA*, *OB*, *OC* and *AB*, respectively, of a regular tetrahedron *OABC* are coplanar. It is given that  $\frac{OP}{OA} = \frac{1}{3}, \frac{OQ}{OB} = \frac{1}{2}, \frac{OR}{OC} = \frac{1}{3}$  and  $\frac{OS}{AB} = \lambda$  (A)  $\lambda = \frac{1}{2}$  (B)  $\lambda = -1$  (C)  $\lambda = 0$  (D) for no value of  $\lambda$ 

**38.** A uni-modular tangent vector on the curve  

$$x = t^2 + 2, y = 4t - 5, z = 2t^2 - 6$$
 at  $t = 2$  is  
a.  $\frac{1}{3}(2\hat{i} + 2\hat{j} + \hat{k})$  b.  $\frac{1}{3}(\hat{i} - \hat{j} - \hat{k})$  c.  $\frac{1}{6}(2\hat{i} + \hat{j} + \hat{k})$  d.  $\frac{2}{3}(\hat{i} + \hat{j} + \hat{k})$   
Watch Video Solution

**39.** If  $\vec{x}$  and  $\vec{y}$  are two non-collinear vectors and a, b, and c represent the sides of a *ABC* satisfying  $(a - b)\vec{x} + (b - c)\vec{y} + (c - a)(\vec{x} \times \vec{y}) = 0$ , then *ABC* is (where  $\vec{x} \times \vec{y}$  is perpendicular to the plane of *xandy*) a. an acute-angled triangle b. an obtuse-angled triangle c. a right-angled triangle d. a scalene triangle

Watch Video Solution

**40.** The position vectors of points *AandB* w.r.t. the origin are  $\vec{a} = \hat{i} + 3\hat{j} - 2\hat{k}, \ \vec{b} = 3\hat{i} + \hat{j} - 2\hat{k}$  respectively. Determine vector  $\vec{O}P$  which bisects angle *AOB*, where *P* is a point on *AB* 

**41.** What is the unit vector parallel to  $\vec{a} = 3\hat{i} + 4\hat{j} - 2\hat{k}$ ? What vector should be added to  $\vec{a}$  so that the resultant is the unit vector  $\hat{i}$ ?

> Watch Video Solution

**42.** ABCD is a quadrilateral and E is the point of intersection of the lines joining the middle points of opposite side. Show that the resultant of  $\overrightarrow{OA}$ ,  $\overrightarrow{OB}$ ,  $\overrightarrow{OC}$  and  $\overrightarrow{OD}$  = 4  $\overrightarrow{OE}$ , where O is any point.

Watch Video Solution

**43.** A straight line *L* cuts the lines *AB*, *ACandAD* of a parallelogram *ABCD* 

at points  $B_1, C_1 and D_1$ , respectively. If

$$(\vec{A}B)_1, \lambda_1 \vec{A}B, (\vec{A}D)_1 = \lambda_2 \vec{A}Dand(\vec{A}C)_1 = \lambda_3 \vec{A}C,$$
 then prove that  
 $\frac{1}{\lambda_3} = \frac{1}{\lambda_1} + \frac{1}{\lambda_2}.$ 

Watch Video Solution

44. Find the vector of magnitude 3, bisecting the angle between the

vectors  $\vec{a} = 2\hat{i} + \hat{j} - \hat{k}$  and  $\vec{b} = \hat{i} - 2\hat{j} + \hat{k}$ 

Watch Video Solution

**45.** If  $\vec{a}$  and  $\vec{b}$  are two vectors of magnitude 1 inclined at  $120^0$ , then find

the angle between  $\vec{b}and\vec{b}$  -  $\vec{a}$ 



**46.** If  $\vec{r}_1$ ,  $\vec{r}_2$ ,  $\vec{r}_3$  are the position vectors of the collinear points and scalar pandq exist such that  $\vec{r}_1 = p\vec{r}_2 + q\vec{r}_3$ , then show that p + q = 1. **47.** Examine the following vector for linear independence:

(1)  $\vec{i} + \vec{j} + \vec{k}, 2\vec{i} + 3\vec{j} - \vec{k}, -\vec{i} - 2\vec{j} + 2\vec{k}$ 

(2)  $3\vec{i} + \vec{j} - \vec{k}, 2\vec{i} - \vec{j} + 7\vec{k}, 7\vec{i} - \vec{j} + 13\vec{k}$ 

Watch Video Solution

**48.** Show that the vectors  $2\vec{a} - \vec{b} + 3\vec{c}$ ,  $\vec{a} + \vec{b} - 2\vec{c}$  and  $\vec{a} + \vec{b} - 3\vec{c}$  are non-

coplanar vectors (where  $\vec{a}, \vec{b}, \vec{c}$  are non-coplanar vectors)

Watch Video Solution

**49.** Let  $\vec{a}$ ,  $\vec{b}and\vec{c}$  be three units vectors such that  $2\vec{a} + 4\vec{b} + 5\vec{c} = 0$ . Then which of the following statement is true? a.  $\vec{a}$  is parallel to  $\vec{b}$  b.  $\vec{a}$  is perpendicular to  $\vec{b}$  c.  $\vec{a}$  is neither parallel nor perpendicular to  $\vec{b}$  d. none of these



50. Four non -zero vectors will always be a. linearly dependent

b. linearly independent c. either a or b d. none of

these

> Watch Video Solution

**51.** A boat moves in still water with a velocity which is *k* times less than the river flow velocity. Find the angle to the stream direction at which the boat should be rowed to minimize drifting.

Watch Video Solution

**52.** In a triangle PQR, SandT are points on QRandPR, respectively, such that QS = 3SRandPT = 4TR Let M be the point of intersection of PSandQT Determine the ratio QM:MT using the vector method .

**53.** In a quadrilateral PQRS,  $\vec{P}Q = \vec{a}$ ,  $\vec{Q}R = \vec{b}$ ,  $\vec{S}P = \vec{a} - \vec{b}$ , M is the midpoint of  $\vec{Q}RandX$  is a point on SM such that  $SX = \frac{4}{5}SM$ . Prove that P, XandR are collinear.

Watch Video Solution

**54.** solve the differential equation 
$$(1 + x^2)\frac{dy}{dx} = x$$

Watch Video Solution

**55.** If points 
$$\hat{i} + \hat{j}$$
,  $\hat{i} - \hat{j}$  and  $p\hat{i} + q\hat{j} + r\hat{k}$  are collinear, then

#### Watch Video Solution

**56.** The position vector of the points P and Q are  $5\hat{i} + 7\hat{j} - 2\hat{k}$  and  $-3\hat{i} + 3\hat{j} + 6\hat{k}$ , respectively. Vector  $\vec{A} = 3\hat{i} - \hat{j} + \hat{k}$  passes through point P

and vector  $\vec{B} = -3\hat{i} + 2\hat{j} + 4\hat{k}$  passes through point Q. A third vector  $2\hat{i} + 7\hat{j} - 5\hat{k}$  intersects vectors A and B Find the position vectors of points of intersection.

57.Considerthevectors
$$\hat{i} + \cos(\beta - \alpha)\hat{j} + \cos(\gamma - \alpha)\hat{k}, \cos(\alpha - \beta)\hat{i} + \hat{j} + \cos(\gamma - \beta)\hat{k}$$
and $\cos(\alpha - \gamma)\hat{i} + \cos(\beta - \gamma)\hat{j} + a\hat{k}$  where  $\alpha, \beta$ , and  $\gamma$  are different angles. If thesevectors are coplanar, show that  $a$  is independent of  $\alpha, \beta$  and  $\gamma$ 

## Watch Video Solution

**58.** If  $\vec{A}$  and  $\vec{B}$  are two vectors and k any scalar quantity greater than zero,

then prove that 
$$\left|\vec{A} + \vec{B}\right|^2 \leq (1+k)\left|\vec{A}\right|^2 + \left(1 + \frac{1}{k}\right)\left|\vec{B}\right|^2$$

**59.** The vectors  $x\hat{i} + (x+1)\hat{j} + (x+2)\hat{k}, (x+3)\hat{i} + (x+4)\hat{j} + (x+5)\hat{k}$  and  $(x+6)\hat{i} + (x+7)\hat{j} + (x+8)\hat{k}$  are coplanar if x is equal to a. 1 b. -3 c. 4 d. 0

### Watch Video Solution

**60.**  $\vec{A}$  is a vector with direction cosines  $\cos\alpha$ ,  $\cos\beta$  and  $\cos\gamma$  Assuming the y - z plane as a mirror, the directin cosines of the reflected image of  $\vec{A}$  in the plane are a.  $\cos\alpha$ ,  $\cos\beta$ ,  $\cos\gamma$  b.  $\cos\alpha$ ,  $-\cos\beta$ ,  $\cos\gamma$  c.  $-\cos\alpha$ ,  $\cos\beta$ ,  $\cos\gamma$  d.  $-\cos\alpha$ ,  $-\cos\beta$ ,  $-\cos\beta$ ,  $-\cos\gamma$ 



**61.** A vector  $\vec{a}$  has components 2p and 1 with respect to a rectangular Cartesian system, this system is rotated through a certain clockwise sense, if we write the new system  $\vec{a}$  has components (p+1) and 1 then

**62.** The sides of a parallelogram are  $2\hat{i} + 4\hat{j} - 5\hat{k}$  and  $\hat{i} + 2\hat{j} + 3\hat{k}$ . The unit vector parallel to one of the diagonals is a.  $\frac{1}{7}(3\hat{i} + 6\hat{j} - 2\hat{k})$  b.  $\frac{1}{7}(3\hat{i} - 6\hat{j} - 2\hat{k})$  c.  $\frac{1}{\sqrt{69}}(\hat{i} + 6\hat{j} + 8\hat{k})$  d.  $\frac{1}{\sqrt{69}}(-\hat{i} - 2\hat{j} + 8\hat{k})$ 

Watch Video Solution

**63.** If  $\vec{a}$ ,  $\vec{b}$ ,  $\vec{c}$  are non-coplanar vector and  $\lambda$  is a real number, then the vectors  $\vec{a} + 2\vec{b} + 3\vec{c}$ ,  $\lambda\vec{b} + \mu\vec{c}and(2\lambda - 1)\vec{c}$  are coplanar when a.  $\mu \in R$  b.  $\lambda = \frac{1}{2}$  c.  $\lambda = 0$  d. no value of  $\lambda$ 

Watch Video Solution

**64.** If points  $\hat{i} + \hat{j}$ ,  $\hat{i} - \hat{j}$  and  $p\hat{i} + q\hat{j} + r\hat{k}$  are collinear, then

A. a. *p* = 1

B. b. r = 0

C. c.  $q \in R$ 

D. d.  $q \neq 1$ 



**65.** If the vectors  $\hat{i} - \hat{j}$ ,  $\hat{j} + \hat{k}$  and  $\vec{a}$  form a triangle, then  $\vec{a}$  may be a.  $-\hat{i} - \hat{k}$  b.  $\hat{i} - 2\hat{j} - \hat{k}$  c.  $2\hat{i} + \hat{j} + \hat{k}$  d.  $\hat{i} + \hat{k}$ 

Watch Video Solution

**66.** If the resultant of three forces  $\vec{F}_1 = p\hat{i} + 3\hat{j} - \hat{k}, \vec{F}_2 = 6\hat{i} - \hat{k}and\vec{F}_3 = -5\hat{i} + \hat{j} + 2\hat{k}$  acting on a particle has

magnitude equal to 5 units, then the value of p is a. -6 b. -4 c. 2 d. 4

# **Watch Video Solution**

**67.** If  $\vec{a}$ ,  $\vec{b}$ ,  $\vec{c}$  are unit vectors satisfying the condition  $\vec{a} + \vec{b} + \vec{c} = 0$  then show that  $\vec{a}$ .  $\vec{b} + \vec{b}$ .  $\vec{c} + \vec{c}$ .  $\vec{a} = -3/2$ .

**68.** The vector  $\hat{i} + x\hat{j} + 3\hat{k}$  is rotated through an angle  $\theta$  and doubled in

magnitude, then it becomes  $4\hat{i} + (4x - 2)\hat{j} + 2\hat{k}$ . Then value of x are (a)- $\frac{2}{3}$ (b)  $\frac{1}{2}$  (c)  $\frac{2}{2}$  (d) 2

(b) 
$$\frac{-}{3}$$
 (c)  $\frac{-}{3}$  (d) 2

Watch Video Solution

**69.** Prove that point  $\hat{i} + 2\hat{j} - 3\hat{k}$ ,  $2\hat{i} - \hat{j} + \hat{k}$  and  $2\hat{i} + 5\hat{j} - \hat{k}$  from a triangle in space.

Watch Video Solution

**70.** Show that the point *A*, *B* and *C* with position vectors  $\vec{a} = 3\hat{i} - 4\hat{j} - 4\hat{k}\vec{b} = 2$  $\hat{i} - \hat{j} + \hat{k}$  and  $\vec{c} = \hat{i} - 3\hat{j} - 5\hat{k}$ , respectively form the vertices of a right angled triangle.



**74.** If the projections of vector  $\vec{a}$  on x -, y - and z -axes are 2, 1 and 2 units

,respectively, find the angle at which vector  $\vec{a}$  is inclined to the z -axis.



**Watch Video Solution** 

**76.** If  $\vec{a}$ ,  $\vec{b}$ ,  $\vec{c}$ ,  $\vec{d}$  are the position vector of point *A*, *B*, *C* and *D*, respectively referred to the same origin *O* such that no three of these point are collinear and  $\vec{a} + \vec{c} = \vec{b} + \vec{d}$ , than prove that quadrilateral *ABCD* is a parallelogram.

Watch Video Solution

**77.** Show that the points A(6, -7, 0), B(16, -19, -4), C(0, 3, -6) and D(2, -5, 10) are such that AB and CD intersect at the point P(1, -1, 2).

**78.** Statement 1: The direction cosines of one of the angular bisectors of two intersecting line having direction cosines as  $l_1$ ,  $m_1$ ,  $n_1$  and  $l_2$ ,  $m_2$ ,  $n_2$  are proportional to  $l_1 + l_2$ ,  $m_1 + m_2$ ,  $n_1 + n_2$  Statement 2: The angle between the two intersection lines having direction cosines as  $l_1$ ,  $m_1$ ,  $n_1$  and  $l_2$ ,  $m_2$ ,  $n_2$  is given by  $\cos\theta = l_1l_2 + m_1m_2 + n_1n_2$ 



**79.** Statement 1: In 
$$\triangle ABC$$
,  $AB + BC + CA = 0$   
 $\overrightarrow{ABC}$ ,  $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = 0$   
Statement 2: If  $\overrightarrow{OA} = \overrightarrow{a}$ ,  $\overrightarrow{OB} = \overrightarrow{b}$ , then  $\overrightarrow{AB} = \overrightarrow{a} + \overrightarrow{b}$ 

Watch Video Solution

**80.** If  $\vec{a}and\vec{b}$  are two vectors of magnitude 1 inclined at  $120^0$ , then find

the angle between  $\vec{b}and\vec{b}$  -  $\vec{a}$ 

**81.**  $\vec{A}$  is a vector with direction cosines  $\cos\alpha$ ,  $\cos\beta$  and  $\cos\gamma$  Assuming the y - z plane as a mirror, the directin cosines of the reflected image of  $\vec{A}$  in the plane are a.  $\cos\alpha$ ,  $\cos\beta$ ,  $\cos\gamma$  b.  $\cos\alpha$ ,  $-\cos\beta$ ,  $\cos\gamma$  c.  $-\cos\alpha$ ,  $\cos\beta$ ,  $\cos\gamma$  d.  $-\cos\alpha$ ,  $-\cos\beta$ ,  $-\cos\gamma$ 



**82.** A vector  $\vec{a}$  has components 2p and 1 with respect to a rectangular Cartesian system, this system is rotated through a certain clockwise sense, if we write the new system  $\vec{a}$  has components (p+1) and 1 then

#### Watch Video Solution

**83.** Statement 1 : If three point P, Q and R have position vectors  $\vec{a}$ ,  $\vec{b}$  and  $\vec{c}$ , respectively, and  $2\vec{a} + 3\vec{b} - 5\vec{c} = 0$ , then the point P, Q and R must be collinear.

Statement 2 : If for three points A, B and C,  $AB = \lambda AC$ , then points A, B and C must be collinear.

Watch Video Solution

**84.** In a four-dimensional space where unit vectors along the axes are  $\hat{i}, \hat{j}, \hat{k}$  and  $\hat{l}$ , and  $\vec{a}_1, \vec{a}_2, \vec{a}_3, \vec{a}_4$  are four non-zero vectors such that no vector can be expressed as a linear combination of others and  $(\lambda - 1)(\vec{a}_1 - \vec{a}_2) + \mu(\vec{a}_2 + \vec{a}_3) + \gamma(\vec{a}_3 + \vec{a}_4 - 2\vec{a}_2) + \vec{a}_3 + \delta\vec{a}_4 = 0$ , then A. a.  $\lambda = 1$ B. b.  $\mu = -2/3$ 

C. c.  $\gamma = 2/3$ 

D. d.  $\delta = 1/3$ 

**85.** Let *ABC* be a triangle, the position vectors of whose vertices are  $-10\hat{i} + 10\hat{k}$ ,  $-\hat{i} + 6\hat{j} + 6\hat{k}$  and  $-4\hat{i} + 9\hat{j} + 6\hat{k}$ . Then  $\triangle ABC$  is a. isosceles b. equilateral c. right angled d. none of these

# Watch Video Solution

**86.** If non-zero vectors  $\vec{a}$  and  $\vec{b}$  are equally inclined to coplanar vector  $\vec{c}$ ,

then 
$$\vec{c}$$
 can be a.  $\frac{|\vec{a}|}{|\vec{a}|+2|\vec{b}|}a + \frac{|\vec{b}|}{|\vec{a}|+|\vec{b}|}\vec{b}$  b.  $\frac{|\vec{b}|}{|\vec{a}|+|\vec{b}|}a + \frac{|\vec{a}|}{|\vec{a}|+|\vec{b}|}\vec{b}$  c.  
 $\frac{|\vec{a}|}{|\vec{a}|+2|\vec{b}|}a + \frac{|\vec{b}|}{|\vec{a}|+2|\vec{b}|}\vec{b}$  d.  $\frac{|\vec{b}|}{2|\vec{a}|+|\vec{b}|}a + \frac{|\vec{a}|}{2|\vec{a}|+|\vec{b}|}\vec{b}$   
Watch Video Solution

**87.** If A(-4, 0, 3) and B(14, 2, -5), then which one of the following points lie on the bisector of the angle between  $\vec{O}A$  and  $\vec{O}B(O$  is the origin of

| reference )?                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------|
| a. (2, 2, 4) b. (2, 11, 5) c. ( - 3, - 3, - 6) d. (1, 1, 2)                                                                |
| Watch Video Solution                                                                                                       |
|                                                                                                                            |
| <b>88.</b> Prove that the sum of three vectors determined by the medians of a triangle directed from the vertices is zero. |
| Watch Video Solution                                                                                                       |
|                                                                                                                            |
|                                                                                                                            |
| 89. Prove that the resultant of two forces acting at point O and                                                           |
| represented by $ec{OB}$ and $ec{OC}$ is given by 2 $ec{OD}$ ,where D is the midpoint of                                    |
| BC.                                                                                                                        |
| Watch Video Solution                                                                                                       |

**90.** Two forces  $\vec{AB}$  and  $\vec{AD}$  are acting at vertex A of a quadrilateral ABCD and two forces  $\vec{CB}$  and  $\vec{CD}$  at C prove that their resultant is given by  $4\vec{EF}$  , where E and F are the midpoints of AC and BD, respectively.



```
92. If vector \vec{a} + \vec{b} bisects the angle between \vec{a} and \vec{b}, then prove that |\vec{a}| = |\vec{b}|.
```



**93.** ABCDE is a pentagon. Prove that the resultant of force  $\vec{AB}$ ,  $\vec{AE}$ ,  $\vec{BC}$ ,  $\vec{DC}$ 

, $\vec{E}D$  and  $\vec{A}C$  , is  $\vec{A}AC$  .





**94.** if AO + OB = BO + OC, than prove that B is the midpoint of AC.



**95.** A unit vector of modulus 2 is equally inclined to x- and y-axes at an angle  $\pi/3$ . Find the length of projection of the vector on the z-axis.

Watch Video Solution

**96.** Find the equations of the normal to the curve  $y = x^3 + 2x + 6$  which

are parallel to the line x + 14y + 4 = 0.

**97.** Let  $\vec{a}$ ,  $\vec{b}$  and  $\vec{c}$  be unit vectors such that  $\vec{a} + \vec{b} - \vec{c} = 0$ . If the area of triangle formed by vectors  $\vec{a}$  and  $\vec{b}$  is A, then what is the value of  $4A^2$ ?



**98.** If the resultant of three forces  
$$\vec{F}_1 = p\hat{i} + 3\hat{j} - \hat{k}, \vec{F}_2 = 6\hat{i} - \hat{k}$$
 and  $\vec{F}_3 = -5\hat{i} + \hat{j} + 2\hat{k}$  acting on a particle has  
magnitude equal to 5 units, then the value of p is a. -6 b. -4 c. 2 d. 4

Watch Video Solution

**99.** Let  $\vec{a}, \vec{b}, \vec{c}, \vec{d}$  be the position vectors of the four distinct points

A, B, C, D If  $\vec{b} - \vec{a} = \vec{c} - \vec{d}$ , then show that ABCD is parallelogram.

**100.** Statement 1:Let  $A(\vec{a}), B(\vec{b}) and C(\vec{c})$  be three points such that  $\vec{a} = 2\hat{i} + \hat{k}, \vec{b} = 3\hat{i} - \hat{j} + 3\hat{k}and\vec{c} = -\hat{i} + 7\hat{j} - 5\hat{k}$  Then *OABC* is a tetrahedron. Statement 2: Let  $A(\vec{a}), B(\vec{b}) and C(\vec{c})$  be three points such that vectors  $\vec{a}, \vec{b}and\vec{c}$  are non-coplanar. Then *OABC* is a tetrahedron where *O* is the origin.

Watch Video Solution

**101.** Statement 1: If  $|\vec{a} + \vec{b}| = |\vec{a} - \vec{b}|$ , then  $\vec{a}$  and  $\vec{b}$  are perpendicular to each other. Statement 2: If the diagonal of a parallelogram are equal magnitude, then the parallelogram is a rectangle. Which of the following Statements is/are correct ?

# Watch Video Solution

**102.** Statement 1:  $\vec{a} = 3\vec{i} + p\vec{j} + 3\vec{k}$  and  $\vec{b} = 2\vec{i} + 3\vec{j} + q\vec{k}$  are parallel

vectors if p = 9/2andq = 2. Statement 2: if
$\vec{a} = a_1\vec{i} + a_2\vec{j} + a_3\vec{k}$  and  $\vec{b} = b_1\vec{i} + b_2\vec{j} + b_3\vec{k}$  are parallel, then  $\frac{a_1}{b_1} = \frac{a_2}{b_2} = \frac{a_3}{b_3}$ . Which of the following Statements is/are correct ?

#### Watch Video Solution

**103.** The position vectors of the vertices *A*, *BandC* of a triangle are three unit vectors  $\vec{a}$ ,  $\vec{b}$ , and  $\vec{c}$ , respectively. A vector  $\vec{d}$  is such that  $\vec{d} \cdot \vec{a} = \vec{d} \cdot \vec{b} = \vec{d} \cdot \vec{c}$  and  $\vec{d} = \lambda (\vec{b} + \vec{c})^{\cdot}$  Then triangle *ABC* is a. acute angled b. obtuse angled c. right angled d. none of these

Watch Video Solution

**104.** If  $|\vec{a}| = |\vec{b}| = |\vec{a} + \vec{b}| = 1$ , then find the value of  $|\vec{a} - \vec{b}|$ 

**105.** Column I, Column II Collinear vectors, p. $\vec{a}$  Coinitial vectors, q.  $\vec{b}$  Equal

vectors, r.  $\vec{c}$  Unlike vectors (same intitial point), s.  $\vec{d}$ 



**106.** Statement 1: 
$$|\vec{a}| = 3$$
,  $|\vec{b}| = 4$  and  $|\vec{a} + \vec{b}| = 5$ , then  $|\vec{a} - \vec{b}| = 5$ .

Statement 2: The length of the diagonals of a rectangle is the same.

Watch Video Solution

**107.** A man travelling towards east at 8km/h finds that the wind seems to blow directly from the north On doubling the speed, he finds that it appears to come from the north-east. Find the velocity of the wind.

**108.** OABCDE is a regular hexagon of side 2 units in the XY-plane in the first quadrant. O being the origin and OA taken along the x-axis. A point P is taken on a line parallel to the z-axis through the centre of the hexagon at a distance of 3 unit from O in the positive Z direction. Then find vector AP.

Watch Video Solution

**109.** If  $\vec{a} = 7\hat{i} - 4\hat{j} - 4\hat{k}$  and  $\vec{b} = -2\hat{i} - \hat{j} + 2\hat{k}$ , determine vector  $\vec{c}$  along the internal bisector of the angle between of the angle between vectors  $\vec{a}$  and  $\vec{b}$  such that  $|\vec{c}| = 5\sqrt{6}$ 

Watch Video Solution

**110.** Find a unit vector  $\vec{c}$  if  $\vec{-i} + \vec{j} - \vec{k}$  bisects the angle between  $\vec{c}$  and  $3\vec{i} + 4\vec{j}$ .

**111.** The vectors  $2\hat{i} + 3\hat{j}$ ,  $5\hat{i} + 6\hat{j}$  and  $8\hat{i} + \lambda\hat{j}$  have initial points at (1, 1). Find

the value of  $\lambda$  so that the vectors terminate on one straight line.

**112.** If  $\vec{a}$ ,  $\vec{b}$  and  $\vec{c}$  are three non-zero vectors, no two of which are collinear,  $\vec{a} + 2\vec{b}$  is collinear with  $\vec{c}$  and  $\vec{b} + 3\vec{c}$  is collinear with  $\vec{a}$ , then find the value of  $\left|\vec{a} + 2\vec{b} + 6\vec{c}\right|$ .

Watch Video Solution

**113.** Check whether the given three vectors are coplanar or non-coplanar.

$$-2\hat{i} - 2\hat{j} + 4\hat{k}, -2\hat{i} + 4\hat{j}, 4\hat{i} - 2\hat{j} - 2\hat{k}$$

**114.** Prove that the four points  $6\hat{i} - 7\hat{j}$ ,  $16\hat{i} - 19\hat{j} - 4\hat{k}$ ,  $3\hat{j} - 6\hat{k}$  and  $2\hat{i} + 5\hat{j} + 10\hat{k}$  form a tetrahedron in space.



**115.** Show, by vector methods, that the angularbisectors of a triangle are concurrent and find an expression for the position vector of the point of concurrency in terms of the position vectors of the vertices.

Watch Video Solution

**116.** Let  $\vec{A}(t) = f_1(t)\hat{i} + f_2(t)\hat{j}$  and  $\vec{B}(t) = g(t)\hat{i} + g_2(t)\hat{j}$ ,  $t \in [0, 1]$ ,  $f_1, f_2, g_1, g_2$ are continuous functions. If  $\vec{A}(t)$  and  $\vec{B}(t)$  are non-zero vectors for all t and  $\vec{A}(0) = 2\hat{i} + 3\hat{j}$ ,  $\vec{A}(1) = 6\hat{i} + 2\hat{j}$ ,  $\vec{B}(0) = 3\hat{i} + 2\hat{i}$  and  $\vec{B}(1) = 2\hat{i} + 6\hat{j}$ Then, show that  $\vec{A}(t)$  and  $\vec{B}(t)$  are parallel for some t.

**117.** Find the least positive integral value of x for which the angle between

vectors  $\vec{a} = x\hat{i} - 3\hat{j} - \hat{k}$  and  $\vec{b} = 2x\hat{i} + x\hat{j} - \hat{k}$  is acute.

#### Watch Video Solution

**118.** If vectors  $\vec{a} = \hat{i} + 2\hat{j} - \hat{k}$ ,  $\vec{b} = 2\hat{i} - \hat{j} + \hat{k}$  and  $\vec{c} = \lambda\hat{i} + \hat{j} + 2\hat{k}$  are coplanar,

then find the value of  $(\lambda - 4)$ .

Watch Video Solution

**119.** Find the values of  $\lambda$  such that  $x, y, z \neq (0, 0, 0)$  and  $(\hat{i} + \hat{j} + 3\hat{k})x + (3\hat{i} - 3\hat{j} + \hat{k})y + (-4\hat{i} + 5\hat{j})z = \lambda(x\hat{i} + y\hat{j} + z\hat{k})$ , where  $\hat{i}, \hat{j}, \hat{k}$ 

are unit vector along coordinate axes.

**120.** A vector has component  $A_1$ ,  $A_2$  and  $A_3$  in a right -handed rectangular Cartesian coordinate system *OXYZ* The coordinate system is rotated about the x-axis through an angel  $\pi/2$ . Find the component of A in the new coordinate system in terms of  $A_1$ ,  $A_2$ , and  $A_3$ 

Watch Video Solution

**121.** The position vectors of the point *A*, *B*, *C* and *D* are  $3\hat{i} - 2\hat{j} - \hat{k}$ ,  $2\hat{i} + 3\hat{j} - 4\hat{k}$ ,  $-\hat{i} + \hat{j} + 2\hat{k}$  and  $4\hat{i} + 5\hat{j} + \lambda\hat{k}$ , respectively. If the points *A*, *B*, *C* and *D* lie on a plane, find the value of  $\lambda$ .

# Watch Video Solution

122. Let OACB be a parallelogram with O at the origin andOC a diagonal.
Let D be the midpoint of OA using vector methods prove that BDandCO intersect in the same ratio. Determine this ratio.

**123.** In a triangle *ABC*, *DandE* are points on *BCandAC*, respectivley, such that BD = 2DCandAE = 3EC Let *P* be the point of intersection of *ADandBE* Find *BP/PE* using the vector method.

Watch Video Solution

**124.** Prove by vector method that the line segment joining the mid-points of the diagonals of a trapezium is parallel to the parallel sides and equal to half of their difference.

Watch Video Solution

**125.** If the resultant of two forces is equal in magnitude to one of the components and perpendicular to it direction, find the other components using the vector method.

**126.** The axes of coordinates are rotated about the z-axis through an angle of  $\pi/4$  in the anticlockwise direction and the components of a vector are  $2\sqrt{2}$ ,  $3\sqrt{2}$ , 4. Prove that the components of the same vector in the original system are -1, 5, 4.

Watch Video Solution

**127.** Prove that the sum of three vectors determined by the medians of a

triangle directed from the vertices is zero.

Watch Video Solution

**128.** If two side of a triangle are  $\hat{i} + 2\hat{j}$  and  $\hat{i} + \hat{k}$ , then find the length of

the third side.

**129.** If in parallelogram ABCD, diagonal vectors are  $\vec{A}C = 2\hat{i} + 3\hat{j} + 4\hat{k}$  and

 $\vec{B}D = -6\hat{i} + 7\hat{j} - 2\hat{k}$ , then find the adjacent side vectors  $\rightarrow AB$  and  $\vec{A}D$ 



**130.** Find the resultant of vectors  $\vec{a} = \hat{i} - \hat{j} + 2\hat{k}$  and  $\vec{b} = \hat{i} + 2\hat{j} - 4\hat{k}$  Find the unit vector in the direction of the resultant vector.

Watch Video Solution

**131.** Check whether the three vectors  $2\hat{i} + 2\hat{j} + 3\hat{k}$ ,  $-3\hat{i} + 3\hat{j} + 2\hat{k}and3\hat{i} + 4\hat{k}$ 

from a triangle or not



**132.** The midpoint of two opposite sides of a quadrilateral and the midpoint of the diagonals are the vertices of a parallelogram. Prove that



**134.** Find the angle of vector  $\vec{a} = 6\hat{i} + 2\hat{j} - 3\hat{k}$  with x -axis.

Watch Video Solution

**135.** If the vectors  $\vec{\alpha} = a\hat{i} + a\hat{j} + c\hat{k}$ ,  $\vec{\beta} = \hat{i} + \hat{k}$  and  $\vec{\gamma} = c\hat{i} + c\hat{j} + b\hat{k}$  are

coplanar, then prove that c is the geometric mean of a and b.



**136.** The points with position vectors 60i + 3j, 40i - 8j, ai - 52j are collinear

if a. *a* = - 40 b. *a* = 40 c. *a* = 20 d. none of these



**137.** Let  $\alpha$ ,  $\beta$  and  $\gamma$  be distinct real numbers. The points whose position vector's are  $\alpha \hat{i} + \beta \hat{j} + \gamma \hat{k}$ ;  $\beta \hat{i} + \gamma \hat{j} + \alpha \hat{k}$  and  $\gamma \hat{i} + \alpha \hat{j} + \beta \hat{k}$  a. are collinear. b. forms an equilateral triangle. c. forms a scalene triangle. d. forms a right angled triangle.

Watch Video Solution

**138.** Let  $\vec{a} = \vec{i} - \vec{k}$ ,  $\vec{b} = x\vec{i} + \vec{j} + (1 - x)\vec{k}$  and  $\vec{c} = y\vec{i} + x\vec{j} + (1 + x - y)\vec{k}$ . Then  $\begin{bmatrix} \vec{a}\vec{b}\vec{c} \end{bmatrix}$  depends on (A) only x (B) only y (C) Neither x nor y (D) both x and y

**139.** In the  $\triangle OAB$ , *M* is the mid-point of AB,C is a point on OM, such that 2OC=CM. X is a point on the side OB such that OX=2XB. The line XC is produced to meet OA in Y. then,  $\frac{OY}{YA}$  is equal to



**140.** If  $\vec{a}$ ,  $\vec{b}$  are two non-collinear vectors, prove that the points with position vectors  $\vec{a} + \vec{b}$ ,  $\vec{a} - \vec{b}$  and  $\vec{a} + \lambda \vec{b}$  are collinear for all real values of .

Watch Video Solution

**141.** If  $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ ,  $\vec{b} = 4\hat{i} + 3\hat{j} + 4\hat{k}$  and  $\vec{c} = \hat{i} + \alpha\hat{j} + \beta\hat{k}$  are linearly dependent vectors &  $|\vec{c}| = \sqrt{3}$ , then ordered pair  $(\alpha, \beta)$  is (a)(1, 1) (b) (1, -1) (c) (-1, 1) (d) (-1, -1)

**142.** The number of distinct real values of  $\lambda$ , for which the vectors  $-\lambda^2 \hat{i} + \hat{j} + k$ ,  $\hat{i} - \lambda^2 \hat{j} + \hat{k}$  and  $\hat{i} + \hat{j} - \lambda^2 \hat{k}$  are coplanar is a. zero b. one c. two d. three

# Watch Video Solution

**143.** If  $\vec{A}O + \vec{O}B = \vec{B}O + \vec{O}C$ , then A, B and C are (where O is the origin) a.

coplanar b. collinear c. non-collinear d. none of these

Watch Video Solution

144. Find a vector magnitude 5 units, and parallel to the resultant of the

vectors  $\vec{a} = 2\hat{i} + 3\hat{j} - \hat{k}$  and  $\vec{b} = \hat{i} - 2\hat{j} + \hat{k}$ 

**145.** Show that the points A(1, -2, -8), B(5, 0, -2)andC(11, 3, 7) are

collinear, and find the ratio in which B divides AC



148. Let ABCD be a p[arallelogram whose diagonals intersect at P and let

*O* be the origin. Then prove that  $\vec{O}A + \vec{O}B + \vec{O}C + \vec{O}D = 4\vec{O}P$ 



149. If ABCD is quadrilateral and EandF are the mid-points of ACandBD

respectively, prove that  $\vec{AB} + \vec{AD} + \vec{CB} + \vec{CD} = 4 \vec{EF}$ 

Watch Video Solution

150. If ABCD is a rhombus whose diagonals cut at the origin O, then

proved that  $\vec{O}A + \vec{O}B + \vec{O}C + \vec{O}D$  =0



**151.** Let *D*, *EandF* be the middle points of the sides *BC*, *CAandAB*, respectively of a triangle *ABC* Then prove that  $\vec{AD} + \vec{BE} + \vec{CF} = \vec{0}$ .



153. Find the direction cosines of the vector joining the points

 $A(1, 2, -3)a \cap B(-1-2, 1)$  directed from  $A \rightarrow B$ 

Watch Video Solution

**154.** Find the direction cosines of the vector  $\hat{i} + 2\hat{j} + 3\hat{k}$ 

155. The median AD of the triangle ABC is bisected at E and BE meets AC

at F. Find AF : FC.



**156.** Vectors  $\vec{a}$  and  $\vec{b}$  are non-collinear. Find for what value of *n* vectors

 $\vec{c} = (n-2)\vec{a} + \vec{b}$  and  $\vec{d} = (2n+1)\vec{a} - \vec{b}$  are collinear?

Watch Video Solution

**157.** i. If  $\vec{a}, \vec{b}$  and  $\vec{c}$  are non-coplanar vectors, prove that vectors  $3\vec{a} - 7\vec{b} - 4\vec{c}, 3\vec{a} - 2\vec{b} + \vec{c}$  and  $\vec{a} + \vec{b} + 2\vec{c}$  are coplanar.

# Watch Video Solution

**158.** Prove that a necessary and sufficient condition for three vectors  $\vec{a}$ ,  $\vec{b}$ and  $\vec{c}$  to be coplanar is that there exist scalars l, m, n not all zero simultaneously such that  $l\vec{a} + m\vec{b} + n\vec{c} = \vec{0}$ 



**161.** Find the unit vector in the direction of the vector  $\vec{a} = \hat{i} + \hat{j} + 2\hat{k}$ .

162. let P an interioer point of a triangle ABC and AP, BP, CP meets the

sides BC, CA, AB in D, E, F, respectively, Show that  $\frac{AP}{PD} = \frac{AF}{FB} + \frac{AE}{EC}$ 



**163.** Let 
$$\vec{a}, \vec{b}and\vec{c}$$
 be unit vectors, such that  
 $\vec{a} + \vec{b} + \vec{c} = \vec{x}, \vec{a}\vec{x} = 1, \vec{b}\vec{x} = \frac{3}{2}, |\vec{x}| = 2$ . Then find the angle between  
 $\vec{c}$  and  $\vec{x}$   
**Watch Video Solution**

**164.** Let  $\vec{A}$  and  $\vec{B}$  be two non-parallel unit vectors in a plane. If  $\left(\alpha \vec{A} + \vec{B}\right)$  bisects the internal angle between  $\vec{A}$  and  $\vec{B}$ , then find the value of  $\alpha$ 

**165.** If the vectors  $3\vec{p} + \vec{q}$ ;  $5p - 3\vec{q}$  and  $2\vec{p} + \vec{q}$ ;  $4\vec{p} - 2\vec{q}$  are pairs of mutually

perpendicular vectors, then find the angle between vectors  $\vec{p}$  and  $\vec{q}$ 



**Watch Video Solution** 

**168.** Let  $\vec{u} = \hat{i} + \hat{j}$ ,  $\vec{v} = \hat{i} - \hat{j}$  and  $\vec{w} = \hat{i} + 2\hat{j} + 3\hat{k}$ . If  $\hat{n}$  is a unit vector such that  $\vec{u} \cdot \hat{n} = 0$  and  $\vec{v} \cdot \hat{n} = 0$ , then  $|\vec{w} \cdot \hat{n}|$  is



 $\left| \vec{a} - \vec{b} \right|$ 

Watch Video Solution

**170.**  $\vec{a} + \vec{b} + \vec{c} = \vec{0}$ ,  $|\vec{a}| = 3$ ,  $|\vec{b}| = 5$ ,  $|\vec{c}| = 9$ ,find the angle between  $\vec{a}$  and  $\vec{c}$ .

# Watch Video Solution

**171.** Constant forces  $P_1 = \hat{i} + \hat{j} + \hat{k}$ ,  $P_2 = -\hat{i} + 2\hat{j} - \hat{k}andP_3 = -\hat{j} - \hat{k}$  act on a particle at a point  $\hat{A}$  Determine the work done when particle is displaced from position  $A(4\hat{i} - 3\hat{j} - 2\hat{k})$  to  $B(6\hat{i} + \hat{j} - 3\hat{k})$ .

**172.** If  $\vec{a}$ , and  $\vec{b}$  are unit vectors , then find the greatest value of  $\left|\vec{a} + \vec{b}\right| + \left|\vec{a} - \vec{b}\right|$ 



**173.** Let  $G_1, G_2 and G_3$  be the centroids of the triangular faces *OBC*, *OCAandOAB*, respectively, of a tetrahedron *OABC*<sup>-</sup> If  $V_1$  denotes the volumes of the tetrahedron *OABCandV*<sub>2</sub> that of the parallelepiped with  $OG_1, OG_2 and OG_3$  as three concurrent edges, then prove that  $4V_1 = 9V_2$ 

Watch Video Solution

**174.** Prove that  $\hat{i} \times (\vec{a} \times \hat{i}) + \hat{j} \times (\vec{a} \times \hat{j}) + \hat{k} \times (\vec{a} \times \hat{k}) = 2\vec{a}$ 

**175.** If 
$$\hat{i} \times \left[\left(\vec{a} - \hat{j}\right) \times \hat{i}\right] + \hat{j} \times \left[\left(\vec{a} - \hat{k}\right) \times \hat{j}\right] + \hat{k} \times \left[\left(\vec{a} - \hat{i}\right) \times \hat{k}\right] = 0$$
, then

find vector  $\vec{a}$ .



**176.** Let 
$$\vec{a}, \vec{b}$$
, and  $\vec{c}$  be any three vectors, then prove that [  
 $\vec{a} \times \vec{b}\vec{b} \times \vec{c}\vec{c} \times \vec{a}$ ]= $[\vec{a}\vec{b}\vec{c}]^2$ 

Watch Video Solution

**177.** If 
$$\left[\vec{a}\vec{b}\vec{c}\right] = 2$$
, then find the value of  $\left[\left(\vec{a}+2\vec{b}-\vec{c}\right)\left(\vec{a}-\vec{b}\right)\left(\vec{a}-\vec{c}\right)\right]^{\cdot}$ 

Watch Video Solution

**178.** If  $\vec{a}$ ,  $\vec{b}$ ,  $\vec{c}$  are mutually perpendicular unit vectors, find  $\begin{vmatrix} 2\vec{a} + \vec{b} + \vec{c} \end{vmatrix}$ 

179. If a, bandc are three non-copOlanar vector, non-zero vectors then the

value of 
$$(\vec{a}. \vec{a})\vec{b} \times \vec{c} + (\vec{a}. \vec{b})\vec{c} \times \vec{a} + (\vec{a}. \vec{c})\vec{a} \times \vec{b}$$
.

**Watch Video Solution** 

**180.** Prove that vectors 
$$\vec{u} = (al + a_1l_1)\hat{i} + (am + a_1m_1)\hat{j} + (an + a_1n_1)\hat{k}$$
  
 $\vec{v} = (bl + b_1l_1)\hat{i} + (bm + b_1m_1)\hat{j} + (bn + b_1n_1)\hat{k}$   
 $\vec{w} = (cl + c_1l_1)\hat{i} + (cm + c_1m_1)\hat{j} + (cn + c_1n_1)\hat{k}$  are coplanar.

**181.** For any four vectors, prove that 
$$(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = [\vec{a} \vec{c} \vec{d}] \vec{b} - [\vec{b} \vec{c} \vec{d}] \vec{a}$$
  
Watch Video Solution

**182.** If  $\vec{b}$  and  $\vec{c}$  are two-noncollinear vectors such that  $\vec{a} \mid \vec{b} \times \vec{c}$ , then

prove that 
$$(\vec{a} \times \vec{b})$$
.  $(\vec{a} \times \vec{c})$  is equal to  $|\vec{a}|^2 (\vec{b} \vec{c})^2$ .



**183.** If the vertices A,B,C of a triangle ABC are (1,2,3),(-1,0,0),(0,1,2), respectively, then find  $\angle ABC$ .

Watch Video Solution

**184.** Let  $\vec{a}$ ,  $\vec{b}$  and  $\vec{c}$  be pairwise mutually perpendicular vectors, such that

$$\left|\vec{a}\right| = 1$$
,  $\left|\vec{b}\right| = 2$ ,  $\left|\vec{c}\right| = 2$ . Then find the length of  $\left|\vec{a} + \vec{b} + \vec{c}\right|$ 

**185.** Show that  $|\vec{a}|\vec{b} + |\vec{b}|\vec{a}$  is a perpendicular to  $|\vec{a}|\vec{b} - |\vec{b}|\vec{a}$ , for any two

non-zero vectors  $\vec{a}and\vec{b}$ 



**186.** If  $|\vec{a}| = 3$ ,  $|\vec{b}| = 4$  and the angle between  $\vec{a}$  and  $\vec{b}is120^\circ$ . Then find the value of  $|4\vec{a} + 3\vec{b}|$ 

Watch Video Solution

**187.** If  $\vec{a}$ ,  $\vec{b}$ , and  $\vec{c}$  be three non-coplanar vector and p, q, r constitute the reciprocal system of vectors, then (la + mb + nc). (lp + mq + nr). is equals

to



**188.** Find  $| \rightarrow a |$  and  $| \rightarrow b |$ , if  $( \rightarrow a + \rightarrow b) \rightarrow a - \rightarrow b = 8$  and  $| \rightarrow a | = 8 | \rightarrow b |$ 

# Watch Video Solution

**189.** Let  $\vec{a}, \vec{b}, and \vec{c} and \vec{a}', \vec{b}', \vec{c}'$  are reciprocal system of vectors, then

prove that 
$$\vec{a}' \times \vec{b}' + \vec{b}' \times \vec{c}' + \vec{c}' \times \vec{a}' = \frac{\vec{a} + \vec{b} + \vec{c}}{\left[\vec{a}\vec{b}\vec{c}\right]}$$

Watch Video Solution

**190.** If  $\vec{a}, \vec{b}$  and  $\vec{c}$  are three non-coplanar vectors, then  $\left(\vec{a} + \vec{b} + \vec{c}\right) \cdot \left[\left(\vec{a} + \vec{b}\right) \times \left(\vec{a} + \vec{c}\right)\right]$  equals a.0 b.  $\left[\vec{a}\vec{b}\vec{c}\right]$  c.  $2\left[\vec{a}\vec{b}\vec{c}\right]$  d.  $-\left[\vec{a}\vec{b}\vec{c}\right]$ 

**191.** Find the vector equation of the plane passing through the points

having position vectors  $\hat{i} + \hat{j} - 2\hat{k}$ ,  $2i - \hat{j} + \hat{k}and\hat{i} + 2\hat{j} + \hat{k}$ 

**192.** If  $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} \neq 0$ , where  $\vec{a}$ ,  $\vec{b}$ , and  $\vec{c}$  are coplanar vectors, then for

some scalar k prove that  $\vec{a} + \vec{c} = k\vec{b}$ 

Watch Video Solution

**193.** If 
$$\vec{a} = 2\vec{i} + 3\vec{j} - \vec{k}$$
,  $\vec{b} = -\vec{i} + 2\vec{j} - 4\vec{k}$  and  $\vec{c} = \vec{i} + \vec{j} + \vec{k}$ , then find

thevalue of  $(\vec{a} \times \vec{b})(\vec{a} \times \vec{c})$ .

**194.** If the vectors  $\vec{c}$ ,  $\vec{a} = x\hat{i} + y\hat{j} + z\hat{k}$  and  $\vec{b} = \hat{j}$  are such that  $\vec{a}$ ,  $\vec{c}$  and  $\vec{b}$ 

form a right-handed system, then find  $\vec{c}$ 

**195.** Given that  $\vec{a}\vec{b} = \vec{a}\vec{c}$ ,  $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$  and  $\vec{a}$  is not a zero vector. Show

that  $\vec{b} = \vec{c}$ 

Watch Video Solution

**196.** If 
$$|\vec{a}| = 5$$
,  $|\vec{a} - \vec{b}| = 8$  and  $|\vec{a} + \vec{b}| = 10$ , then find  $|\vec{b}|$ 

> Watch Video Solution

197. If A, B, C, D are four distinct point in space such that AB is not

$$\vec{AB. CD} = k \left( \left| \vec{AD} \right|^2 + \left| \vec{BC} \right|^2 - \left| \vec{AC} \right|^2 - \left| \vec{BD} \right|^2 \right), \text{ then find the value of } k.$$

**Watch Video Solution** 

**198.** If  $\vec{a} = 2\hat{i} + 3\hat{j} - 5\hat{k}$ ,  $\vec{b} = m\hat{i} + n\hat{j} + 12\hat{k}$  and  $\vec{a} \times \vec{b} = \vec{0}$ , then find (m, n)

Watch Video Solution

**199.** If 
$$|\vec{a}| = 2|\vec{b}| = 5$$
 and  $|\vec{a} \times \vec{b}| = 8$ , then find the value of  $\vec{a} \cdot \vec{b}$ 

Watch Video Solution

**200.** Prove that 
$$(\vec{a} - \vec{b}) \times (\vec{a} + \vec{b}) = 2(\vec{a} \times \vec{b})$$
 and interpret it

geometrically.

**201.**  $\vec{a}$ ,  $\vec{b}and\vec{c}$  are unit vectors such that  $|\vec{a} + \vec{b} + 3\vec{c}| = 4$ . Angle between  $\vec{a}and\vec{b}is\theta_1$ , between  $\vec{b}and\vec{c}$  is  $\theta_2$  and between  $\vec{a}and\vec{c}$  varies  $[\pi/6, 2\pi/3]$ . Then the maximum of  $\cos\theta_1 + 3\cos\theta_2 is 3$  b. 4 c.  $2\sqrt{2}$  d. 6

**202.** Prove that 
$$\begin{bmatrix} \vec{a} + \vec{b} & \vec{b} + \vec{c} & \vec{c} + \vec{a} \end{bmatrix} = 2 \begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix}$$

Watch Video Solution

**203.** Let *A*, *B*, *C* be three unit vectors and *A*. *B* = *A*. *C* = 0. If the angle between B and C is  $\frac{\pi}{6}$ , then A is equals to

#### Watch Video Solution

**204.** The position vectors of the four angular points of a tetrahedron are  $A(\hat{j} + 2\hat{k}), B(3\hat{i} + \hat{k}), C(4\hat{i} + 3\hat{j} + 6\hat{k}) and D(2\hat{i} + 3\hat{j} + 2\hat{k})$ . Find the volume



**205.** If the vectors  $2\hat{i} - 3\hat{j}$ ,  $\hat{i} + \hat{j} - \hat{k}$  and  $3\hat{i} - \hat{k}$  form three concurrent edges of

a parallelepiped, then find the volume of the parallelepiped.

Watch Video Solution

**206.** If  $\vec{u}, \vec{v}$  and  $\vec{w}$  are three non-coplanar vectors, then prove that  $(\vec{u} + \vec{v} - \vec{w}) \cdot [[(\vec{u} - \vec{v}) \times (\vec{v} - \vec{w})]] = \vec{u} \cdot (\vec{v} \times \vec{w})$ 

Watch Video Solution

**207.** Find the value of *a* so that the volume of the parallelepiped formed by vectors  $\hat{i} + a\hat{j} + k$ ,  $\hat{j} + a\hat{k}$  and  $a\hat{i} + \hat{k}$  becomes minimum.

**208.** If  $\vec{a} = 2\hat{i} + 3\hat{j} - 5\hat{k}$ ,  $\vec{b} = m\hat{i} + n\hat{j} + 12\hat{k}$  and  $\vec{a} \times \vec{b} = \vec{0}$ , then find (m, n)

# Watch Video Solution

**209.** Prove that 
$$\begin{bmatrix} \vec{l} \ \vec{m} \ \vec{n} \end{bmatrix} \begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix} = \begin{vmatrix} \vec{l} & \vec{a} & \vec{l} & \vec{b} & \vec{l} & \vec{c} \\ \vec{m} & \vec{a} & \vec{m} & \vec{b} & \vec{m} & \vec{c} \\ \vec{n} & \vec{a} & \vec{n} & \vec{b} & \vec{n} & \vec{c} \end{vmatrix}$$

Watch Video Solution

**210.** Find the altitude of a parallelopiped whose three coterminous edges are vectors  $\vec{A} = \hat{i} + \hat{j} + \hat{k}$ ,  $\vec{B} = 2\hat{i} + 4\hat{j} - \hat{k}and\vec{C} = \hat{i} + \hat{j} + 3\hat{k}with\vec{A}$  and  $\vec{B}$  as the sides of the base of the parallopiped.

**211.** If  $\vec{a}$  and  $\vec{b}$  are two vectors such that  $|\vec{a}| = 2$ ,  $|\vec{b}| = 3$  and  $\vec{a} \cdot \vec{b} = 4$ , then find the value of  $|\vec{a} - \vec{b}|$ 

# Watch Video Solution

212. Prove that  

$$\vec{R} + \frac{\left[\vec{R}\vec{\beta} \times \left(\vec{\beta} \times \vec{\alpha}\right)\right]\vec{\alpha}}{\left|\vec{\alpha} \times \vec{\beta}\right|^{2}} + \frac{\left[\vec{R}\vec{\alpha} \times \left(\vec{\alpha} \times \vec{\beta}\right)\right]\vec{\beta}}{\left|\vec{\alpha} \times \vec{\beta}\right|^{2}} = \frac{\left[\vec{R}\vec{\alpha}\vec{\beta}\right]\left(\vec{\alpha} \times \vec{\beta}\right)}{\left|\vec{\alpha} \times \vec{\beta}\right|^{2}}$$

$$(\mathbf{N})$$
Watch Video Solution

**213.** If  $\vec{a}, \vec{b}$ , and  $\vec{c}$  are non-coplanar unit vectors such that  $\vec{a} \times (\vec{b} \times \vec{c}) = \frac{\vec{b} + \vec{c}}{\sqrt{2}}$ ,  $\vec{b}$  and  $\vec{c}$  are non-parallel, then prove that the angle between  $\vec{a}$  and  $\vec{b}, is 3\pi/4$ .

**214.** If 
$$|\vec{a}| = 5$$
,  $|\vec{a} - \vec{b}| = 8$  and  $|\vec{a} + \vec{b}| = 10$ , then find  $|\vec{b}|$ 

Watch Video Solution

**215.** If  $\vec{a}$  and  $\vec{b}$  are two given vectors and k is any scalar, then find the

vector  $\vec{r}$  satisfying  $\vec{r} \times \vec{a} + k\vec{r} = \vec{b}$ .

Watch Video Solution

**216.**  $\vec{a}$ ,  $\vec{b}$  and  $\vec{c}$  are three non-coplanar ,non-zero vectors and  $\vec{r}$  is any vector

in space, then  $(\vec{a} \times \vec{b}) \times (\vec{r} \times \vec{c}) + (\vec{b} \times \vec{c}) \times (\vec{r} \times \vec{a}) + (\vec{c} \times \vec{a}) \times (\vec{r} \times \vec{b})$  is equal to Watch Video Solution
**217.** If vector 
$$\vec{x}$$
 satisfying  $\vec{x} \times \vec{a} + (\vec{x}, \vec{b})\vec{c} = \vec{d}$  is given  
 $\vec{x} = \lambda \vec{a} + \vec{a} \times \frac{\vec{a} \times (\vec{d} \times \vec{c})}{(\vec{a}, \vec{c})|\vec{a}|^2}$ , then find the value of  $\lambda$ 

## Watch Video Solution

**218.** Let  $\hat{a}, \hat{b}$ , and  $\hat{c}$  be the non-coplanar unit vectors. The angle between  $\hat{b}$ and  $\hat{c}$  is  $\alpha$ , between  $\hat{c}$  and  $\hat{a}$  is  $\beta$  and between  $\hat{a}$  and  $\hat{b}$  is  $\gamma$ . If  $A(\hat{a}\cos\alpha, 0), B(\hat{b}\cos\beta, 0)$  and  $C(\hat{c}\cos\gamma, 0)$ , then show that in triangle  $ABC, \quad \frac{\left|\hat{a} \times (\hat{b} \times \hat{c})\right|}{\sin A} = \frac{\left|\hat{b} \times (\hat{c} \times \hat{a})\right|}{\sin B} = \frac{\left|\hat{c} \times (\hat{a} \times \hat{b})\right|}{\sin C}$ **Watch Video Solution** 

**219.** Find the vector of length 3 unit which is perpendicular to  $\hat{i} + \hat{j} + \hat{k}$ and lies in the plane of  $\hat{i} + \hat{j} + \hat{k}$  and  $2\hat{i} - 3\hat{j}$ .

**220.** If  $\vec{b}$  is not perpendicular to  $\vec{c}$ , then find the vector  $\vec{r}$  satisfying the equation  $\vec{r} \times \vec{b} = \vec{a} \times \vec{b}$  and  $\vec{r} \cdot \vec{c} = 0$ .



**221.** If 
$$\vec{a}$$
,  $\vec{b}$  and  $\vec{c}$  are three non coplanar vectors, then  $\left(\vec{a} + \vec{b} + \vec{c}\right) \left[\left(\vec{a} + \vec{b}\right) \times \left(\vec{a} + \vec{c}\right)\right]$  is :

Watch Video Solution

**222.** Let  $\vec{a}$ ,  $\vec{b}$  and  $\vec{c}$  be three non-zero vectors such that  $\vec{a} + \vec{b} + \vec{c} = 0$  and

 $\lambda \vec{b} \times \vec{a} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} = 0$ , then find the value of  $\lambda$ 

**223.** Prove that  $(\vec{a}, \hat{i})(\vec{a} \times \hat{i}) + (\vec{a}, j)(\vec{a} \times \hat{j}) + (\vec{a}, \hat{k})(\vec{a} \times \hat{k}) = 0.$ 

**224.** If 
$$(\vec{a} \times \vec{b})^2 + (\vec{a} \cdot \vec{b})^2 = 144$$
 and  $|\vec{a}| = 4$ , then find the value of  $|\vec{b}|$ 

## Watch Video Solution

**225.** A particle has an angular speed of 3 rad/s and the axis of rotation passes through the points (1, 1, 2) and (1, 2, -2) Find the velocity of the particle at point P(3, 6, 4)

Watch Video Solution

**226.** Find the moment of  $\vec{F}$  about point (2, -1, 3), where force  $\vec{F} = 3\hat{i} + 2\hat{j} - 4\hat{k}$  is acting on point (1, -1, 2).

**227.** Given  $|\vec{a}| = |\vec{b}| = 1$  and  $|\vec{a} + \vec{b}| = \sqrt{3}$ . If  $\vec{c}$  is a vector such that  $\vec{c} - \vec{a} - 2\vec{b} = 3(\vec{a} \times \vec{b})$ , then find the value of  $\vec{c} \cdot \vec{b}$ 

## Watch Video Solution

**228.** Let 
$$\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$$
,  $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$  and  $\vec{c} = c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$  be three non-zero vectors such that  $\vec{c}$  is a unit vector perpendicular to both  $\vec{a}$  and  $\vec{b}$ . If the angle between  $a$  and  $b$  is  $\frac{\pi}{6}$ , then prove that  $\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} \Big|^2 = \frac{1}{4} \Big( a_1^2 + a_2^2 + a_3^2 \Big) \Big( b_1^2 + b_2^2 + b_3^2 \Big)$ 

### Watch Video Solution

**229.** Statement 1:  $\vec{a}$ ,  $\vec{b}$ , and  $\vec{c}$  are three mutually perpendicular unit vectors and  $\vec{d}$  is a vector such that  $\vec{a}$ ,  $\vec{b}$ ,  $\vec{c}$  and  $\vec{d}$  are non-coplanar. If  $\left[\vec{d}\vec{b}\vec{c}\right] = \left[\vec{d}\vec{a}\vec{b}\right] = \left[\vec{d}\vec{c}\vec{a}\right] = 1$ , then  $\vec{d} = \vec{a} + \vec{b} + \vec{c}$ . Statement 2:  $\begin{bmatrix} \vec{d}\vec{b}\vec{c} \end{bmatrix} = \begin{bmatrix} \vec{d}\vec{a}\vec{b} \end{bmatrix} = \begin{bmatrix} \vec{d}\vec{c}\vec{a} \end{bmatrix}$ ; then  $\vec{d}$  equally inclined to  $\vec{a},\vec{b}$  and  $\vec{c}$ . (a) statement 1 is true but statement 2 is false. (b) statement 2 is true but statement 1 is false. (c)both the statements are true. (d) both the statements are false.

# Watch Video Solution

**230.** If the volume of a parallelepiped whose adjacent edges are  $\vec{a} = 2\hat{i} + 3\hat{j} + 4\hat{k}, \vec{b} = \hat{i} + \alpha\hat{j} + 2\hat{k}, \vec{c} = \hat{i} + 2\hat{j} + \alpha\hat{k}$  is 15, then find the value of  $\alpha$  if  $(\alpha > 0)$ 

Watch Video Solution

**231.** Prove that 
$$\begin{bmatrix} \vec{l} \ \vec{m} \ \vec{n} \end{bmatrix} \begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix} = \begin{vmatrix} \vec{l} & \vec{a} & \vec{l} & \vec{b} & \vec{l} & \vec{c} \\ \vec{m} & \vec{a} & \vec{m} & \vec{b} & \vec{m} & \vec{c} \\ \vec{n} & \vec{a} & \vec{n} & \vec{b} & \vec{n} & \vec{c} \end{vmatrix}$$

232. Using dot product of vectors, prove that a parallelogram, whose

diagonals are equal, is a rectangle



using vector method.



**235.** Prove that an angle inscribed in a semi-circle is a right angle using

vector method.



**236.** If 
$$\vec{a} \cdot \hat{i} = \vec{a} \cdot (\hat{i} + \hat{j}) = \vec{a} \cdot (\hat{i} + \hat{j} + \hat{k})$$
, then find the unit vector  $\vec{a}$ 



**237.** Prove by vector method that cos(A + B) = cosAcosB - sinAsinB

Watch Video Solution

**238.** If the scalar projection of vector  $x\hat{i} - \hat{j} + \hat{k}$  on vector  $2\hat{i} - \hat{j} + 5\hat{k}$ , is  $\frac{1}{\sqrt{30}}$ 

,then find the value of x



**239.** If  $\vec{a} = x\hat{i} + (x-1)\hat{j} + \hat{k}$  and  $\vec{b} = (x+1)\hat{i} + \hat{j} + a\hat{k}$  make an acute angle

 $\forall x \in R$ , then find the values of a



**241.** if  $\vec{a}$ ,  $\vec{b}$  and  $\vec{c}$  are there mutually perpendicular unit vectors and  $\vec{a}$  ia a

unit vector then find the value of  $\left|2\vec{a} + \vec{b} + \vec{c}\right|^2$ 

Watch Video Solution

**242.** If  $\vec{a}$ ,  $\vec{b}$ , and  $\vec{c}$  be non-zero vectors such that no two are collinear or  $(\vec{a} \times \vec{b}) \times \vec{c} = \frac{1}{3} |\vec{b}| |\vec{c}| \vec{a}$  If  $\theta$  is the acute angle between vectors  $\vec{b}$  and  $\vec{c}$ ,

then find the value of  $\sin\! heta$ 

**243.** If  $\vec{p}$ ,  $\vec{q}$ ,  $\vec{r}$  denote vector  $\vec{b} \times \vec{c}$ ,  $\vec{c} \times \vec{a}$ ,  $\vec{a} \times \vec{b}$ , respectively, show that  $\vec{a}$ 

is parallel to  $\vec{q} \times \vec{r}$ ,  $\vec{b}$  is parallel  $\vec{r} \times \vec{p}$ ,  $\vec{c}$  is parallel to  $\vec{p} \times \vec{q}$ .

**244.** If  $\vec{a}$  and  $\vec{b}$  be two non-collinear unit vector such that  $\vec{a} \times (\vec{a} \times \vec{b}) = \frac{1}{2}\vec{b}$ , then find the angle between  $\vec{a}$  and  $\vec{b}$ .

Watch Video Solution

**245.** Show that 
$$(\vec{a} - \vec{b}) \times (\vec{a} + \vec{b}) = 2(\vec{a} \times \vec{b})^{T}$$

Watch Video Solution

**246.** Prove that 
$$(\vec{a}.(\vec{b}\times\hat{i}))\hat{i}+(\vec{a}.(\vec{b}\times\hat{j}))\hat{j}+(\vec{a}.(\vec{b}\times\hat{k}))\hat{k}=\vec{a}\times\vec{b}.$$

**247.** For any four vectors,  $\vec{a}, \vec{b}, \vec{c}$  and  $\vec{d}$  prove that  $\vec{d}. (\vec{a} \times (\vec{b} \times (\vec{c} \times \vec{d}))) = (\vec{b}. \vec{d}) [\vec{a} \ \vec{c} \ \vec{d}].$ 

Watch Video Solution

**248.** If 
$$\vec{a}, \vec{b}$$
, and  $\vec{c}$  are three vectors such that  $\vec{a} \times \vec{b} = \vec{c}, \vec{b} \times \vec{c} = \vec{a}, \vec{c} \times \vec{a} = \vec{b}$ , then prove that  $|\vec{a}| = |\vec{b}| = |\vec{c}|$ .

Watch Video Solution

**249.** If 
$$\vec{a} = \vec{p} + \vec{q}$$
,  $\vec{p} \times \vec{b} = 0$  and  $\vec{q}\vec{b} = 0$ , then prove that  $\frac{\vec{b} \times (\vec{a} \times \vec{b})}{\vec{b}\vec{b}} = \vec{q}$ 

**250.** If  $\vec{a} = \hat{i} + \hat{j} + \hat{k}$  and  $\vec{b} = \hat{i} - 2\hat{j} + \hat{k}$ , then find vector  $\vec{c}$  such that  $\vec{a} \cdot \vec{c} = 2$  and  $\vec{a} \times \vec{c} = \vec{b}$ .



**251.** If non-zero vectors  $\vec{a}$  and  $\vec{b}$  are perpendicular to each other, then the

solution of the equation  $\vec{r} \times \vec{a} = \vec{b}$  is given by

Watch Video Solution

**252.** If  $\vec{a}, \vec{b}$ , and  $\vec{c}$  are mutually perpendicular vectors of equal magnitudes, then find the angle between vectors  $\vec{a}$  and  $\vec{a} + \vec{b} + \vec{c}$ .



**253.** If  $\vec{a}$ ,  $\vec{b}$ ,  $\vec{c}$  are unit vectors satisfying the condition  $\vec{a} + \vec{b} + \vec{c} = 0$  then show that  $\vec{a}$ .  $\vec{b} + \vec{b}$ .  $\vec{c} + \vec{c}$ .  $\vec{a} = -3/2$ .



**256.** Find the angle between the vectors  $\hat{i} - 2\hat{j} + 3\hat{k}$  and  $3\hat{i} - 2\hat{j} + \hat{k}$ 





**260.** If  $\theta$  is the angle between the unit vectors a and b, then prove that

$$\cos\left(\frac{\theta}{2}\right) = \frac{1}{2}\left|\vec{a} + \vec{b}\right|, \text{and } \sin\left(\frac{\theta}{2}\right) = \frac{1}{2}\left|\vec{a} - \vec{b}\right|$$

**261.** Let  $\vec{a}$ ,  $\vec{b}$ , and  $\vec{c}$  be three non-coplanar unit vectors such that the angle between every pair of them is pi/3 . If veca × vecb + vecb × vecc =p veca +q vecb +r vecc , where p,q and r are scalars, then the value of p 2 +2q 2 +r 2 /q2 is

Watch Video Solution

**262.** Given unit vectors  $\hat{m}$ ,  $\hat{n}$  and  $\hat{p}$  such that angel between  $\hat{m}$  and  $\hat{n}$  is  $\alpha$ 

and angle between  $\hat{p}$  and  $(\hat{m} \times \hat{n})$  is also  $\alpha$ , then  $[\hat{n}\hat{p}\hat{m}] =$ 

# Watch Video Solution

**263.** Let  $\vec{a}$ ,  $\vec{b}$ , and  $\vec{c}$  be non-coplanar vectors and let the equation  $\vec{a}'$ ,  $\vec{b}'$ ,  $\vec{c}'$  are reciprocal system of vector  $\vec{a}$ ,  $\vec{b}$ ,  $\vec{c}$ , then prove that  $\vec{a} \times \vec{a}' + \vec{b} \times \vec{b}' + \vec{c} \times \vec{c}'$  is a null vector.

**264.** Vector  $\vec{O}A = \hat{i} + 2\hat{j} + 2\hat{k}$  turns through a right angle passing through the positive x-axis on the way. Show that the vector in its new position is  $\frac{4\hat{i} - \hat{j} - \hat{k}}{\sqrt{2}}$ 

Watch Video Solution

**265.** Find 
$$|\vec{a} \times \vec{b}|$$
, if  $\vec{a} = \hat{i} - 7\hat{j} + 7\hat{k}$  and  $\vec{b} = 3\hat{i} - 2\hat{j} + 2\hat{k}$ 

Watch Video Solution

**266.** Let the vectors 
$$\vec{a}$$
 and  $\vec{b}$  be such that  $|\vec{a}| = 3$  and  $|\vec{b}| = \frac{\sqrt{2}}{3}$ , then,  $\vec{a} \times \vec{b}$  is a unit vector, if the angel between  $\vec{a}$  and  $\vec{b}$  is?

**267.** Show that 
$$(\vec{a} - \vec{b}) \times (\vec{a} + \vec{b}) = 2(\vec{a} \times \vec{b})^{T}$$

Watch Video Solution

**268.** Let  $\vec{a} = \hat{i} + 4\hat{j} + 2\hat{k}$ ,  $\vec{b} = 3\hat{i} - 2\hat{j} + 7\hat{k}$  and  $\vec{c} = 2\hat{i} - \hat{j} + 4\hat{k}$  Find a vector  $\vec{d}$ 

which is perpendicular to both  $\vec{a}$  and  $\vec{b}$  and  $\vec{c}$ .  $\vec{d}$  = 15.

Watch Video Solution

269. If A, BandC are the vetices of a triangle ABC, then prove sine rule

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Watch Video Solution

**270.** Using cross product of vectors , prove that sin(A + B) = sinAcosB + cosAsinB.

271. Find a unit vector perpendicular to the plane determined by the

points (1, -1, 2), (2, 0, -1) and (0, 2, 1)

Watch Video Solution

**272.** If  $\vec{a}$  and  $\vec{b}$  are two vectors, then prove that  $(\vec{a} \times \vec{b})^2 = \begin{vmatrix} \vec{a} & \vec{a} & \vec{a} & \vec{b} \\ \vec{b} & \vec{a} & \vec{b} & \vec{b} \end{vmatrix}$ .

Watch Video Solution

**273.** In isosceles triangles ABC,  $|\vec{AB}| = |\vec{B}C| = 8$ , a point E divides AB internally in the ratio 1:3, then find the angle between  $\vec{C}Eand\vec{C}A(where |\vec{C}A| = 12)$ 

**274.** Prove that in a tetrahedron if two pairs of opposite edges are perpendicular, then the third pair is also perpendicular.

# Watch Video Solution

**275.** Let 
$$\vec{a}, \vec{b}$$
, and  $\vec{c}$  are vectors such that  $|\vec{a}| = 3$ ,  $|\vec{b}| = 4$  and  $|\vec{c}| = 5$ , and  $(\vec{a} + \vec{b})$  is perpendicular to  $\vec{c}, (\vec{b} + \vec{c})$  is perpendicular to  $\vec{a}$  and  $(\vec{c} + \vec{a})$  is perpendicular to  $\vec{b}$ . Then find the value of  $|\vec{a} + \vec{b} + \vec{c}|$ .

Watch Video Solution

**276.** If 
$$\left| \vec{a} \right| = \left| \vec{b} \right| = \left| \vec{a} + \vec{b} \right| = 1$$
, then find the value of  $\left| \vec{a} - \vec{b} \right|$ 

Watch Video Solution

**277.** If  $\vec{A} = 4\hat{i} + 6\hat{j}$  and  $\vec{B} = 3\hat{j} + 4\hat{k}$ , then find the component of  $\vec{A}$  along  $\vec{B}$ 

**278.** A particle acted by constant forces  $4\hat{i} + \hat{j} - 3\hat{k}$  and  $3\hat{i} + 9\hat{j} - \hat{k}$  is displaced from point  $\hat{i} + 2\hat{j} + 3\hat{k}$  to point  $5\hat{i} + 4\hat{j} + \hat{k}$  find the total work done by the forces in SI units.

Watch Video Solution

**279.** If  $\vec{a}$ ,  $\vec{b}$ ,  $\vec{c}$  are three mutually perpendicular unit vectors, then prove that  $|\vec{a} + \vec{b} + \vec{c}| = \sqrt{3}$ 

Watch Video Solution

**280.** Let  $\vec{a} = x\hat{i} + 12\hat{j} - \hat{k}$ ,  $\vec{b} = 2\hat{i} + 2x\hat{j} + \hat{k}$  and  $\vec{c} = \hat{i} + \hat{k}$  If the ordered set

 $\begin{bmatrix} \vec{b} \, \vec{c} \, \vec{a} \end{bmatrix}$  is left handed, then find the values of x

**281.** If  $\vec{a}$ ,  $\vec{b}$ , and  $\vec{c}$  are three non-coplanar vectors, then find the value of

$$\frac{\vec{a}.\left(\vec{b}\times\vec{c}\right)}{\vec{b}.\left(\vec{c}\times\vec{a}\right)} + \frac{\vec{b}.\left(\vec{c}\times\vec{a}\right)}{\vec{c}.\left(\vec{a}\times\vec{b}\right)} + \frac{\vec{c}.\left(\vec{b}\times\vec{a}\right)}{\vec{a}.\left(\vec{b}\times\vec{c}\right)}$$

Watch Video Solution

**282.** If 
$$\vec{a}, \vec{b}, \vec{c}$$
 and  $\vec{d}$  are the position vectors of the vertices of a cyclic  
quadrilateral  $ABCD$ , prove that  
 $\frac{\left|\vec{a} \times \vec{b} + \vec{b} \times \vec{d} + \vec{d} \times \vec{a}\right|}{\left(\vec{b} - \vec{a}\right) \cdot \left(\vec{d} - \vec{a}\right)} + \frac{\left|\vec{b} \times \vec{c} + \vec{c} \times \vec{d} + \vec{d} \times \vec{b}\right|}{\left(\vec{b} - \vec{c}\right) \cdot \left(\vec{d} - \vec{c}\right)} = 0$ .  
Watch Video Solution

283. The position vectors of the vertices of a quadrilateral with A as origin

are  $B(\vec{b}), D(\vec{d}) and C(l\vec{b} + m\vec{d})$ . Prove that the area of the quadrialateral is  $\frac{1}{2}(l+m)|\vec{b} \times \vec{d}|$ .

**284.** If  $\vec{a} \times \vec{b} = \vec{c} \times \vec{d}$  and  $\vec{a} \times \vec{c} = \vec{b} \times \vec{d}$ , then show that  $\vec{a} - \vec{d}$ , is parallel to  $\vec{b} - \vec{c}$ 

**285.** Show by a numerical example and geometrically also that  $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$  does not imply  $\vec{b} = \vec{c}$ 

Watch Video Solution

**286.** In triangle *ABC* ,points *D*, *EandF* are taken on the sides *BC*, *CAandAB*, respectively, such that  $\frac{BD}{DC} = \frac{CE}{EA} = \frac{AF}{FB} = n$  Prove that  $\triangle DEF = \frac{n^2 - n + 1}{(n + 1)^2} \triangle (ABC)$ 

**287.** Let *A*, *B*, *C* be points with position vectors  $2\hat{i} - \hat{j} + \hat{k}, \hat{i} + 2\hat{j} + 3\hat{k}and3\hat{i} + \hat{j} + 2\hat{k}$  respectively. Find the shortest distance between point *B* and plane *OAC* 

## Watch Video Solution

**288.** Let  $\vec{a}$  and  $\vec{b}$  be unit vectors such that  $\left|\vec{a} + \vec{b}\right| = \sqrt{3}$ . Then find the value of  $\left(2\vec{a} + 5\vec{b}\right)$ .  $\left(\left(3\vec{a} + \vec{b} + \vec{a} \times \vec{b}\right)\right)^{\cdot}$ 

Watch Video Solution

**289.** If u and v are two non-collinear unit vectors such that

$$\left| \vec{u} \times \vec{v} \right| = \left| \frac{\vec{u} - \vec{v}}{2} \right|$$
, then the value of  $\left| \vec{u} \times \left( \vec{u} \times \vec{v} \right) \right|^2$  is equal to

**290.** A rigid body is spinning about a fixed point (3,-2,-1) with an angular velocity of 4 rad/s, the axis of rotation being in the direction of (1,2,-2). Find the velocity of the particle at point (4,1,1).



## Watch Video Solution

**293.** If  $\vec{a}$ ,  $\vec{b}$ ,  $\vec{c}$  are position vectors of the vertices A, B, C of a triangle ABC, show that the area of the triangle ABC is  $\frac{1}{2} \left[ \vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} \right]$ . Also

deduce the condition for collinearity of the points A, B and C.



**294.** *A*, *B*, *CandD* are any four points in the space, then prove that  $\left| \vec{AB} \times \vec{CD} + \vec{BC} \times \vec{AD} + \vec{CA} \times \vec{BD} \right| = 4$  (area of *ABC*).

Watch Video Solution

**295.** Find the area of the parallelogram whose adjacent sides are determined by the vectors  $\vec{a} = \hat{i} - \hat{j} + 3\hat{k}and\vec{b} = 2\hat{i} - 7\hat{j} + \hat{k}$ 

Watch Video Solution

296. Using vectors, find the area of the triangle with vertices A (1, 1, 2), B

(2, 3, 5) and C (1, 5, 5).

**297.** Let  $\vec{a}$ ,  $\vec{b}$  and  $\vec{c}$  be three verctors such that  $\vec{a} \neq 0$ ,  $|\vec{a}| = |\vec{c}| = 1$ ,  $|\vec{b}| = 4$ and  $|\vec{b} \times \vec{c}| = \sqrt{15}$  If  $\vec{b} - 2\vec{c} = \lambda \vec{a}$ , then find the value of  $\lambda$ 

Watch Video Solution

**298.** Find the area of a parallelogram whose diagonals are  $\vec{a} = 3\hat{i} + \hat{j} - 2\hat{k}$  and  $\vec{b} = \hat{i} - 3\hat{j} + 4\hat{k}$ 

Watch Video Solution

**299.** If  $\vec{a}$  and  $\vec{b}$  are unit vectors such that  $(\vec{a} + \vec{b})$ .  $[(2\vec{a} + 3\vec{b}) \times (3\vec{a} - 2\vec{b})] = 0$ , then angle between  $\vec{a}$  and  $\vec{b}$  is A. a.0 B. b.  $\pi/2$ C. c.  $\pi$ 

D. d. indeterminate

**300.** If  $\vec{a}and\vec{b}$  are any two unit vectors, then find the greatest positive

integer in the range of 
$$\frac{3\left|\vec{a}+\vec{b}\right|}{2}+2\left|\vec{a}-\vec{b}\right|$$
.

Watch Video Solution

**301.** If the vectors  $\vec{a}$ ,  $\vec{b}$ , and  $\vec{c}$  form the sides *BC*, *CA*and*AB*, respectively, of triangle *ABC*, *then* 

A. (a)
$$\vec{a}\vec{b} + \vec{b}\vec{c} + \vec{c}\vec{a} = 0$$
  
B. (b) $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a}$   
.  
C. (c).  $\vec{a}\vec{b} = \vec{b}\vec{c} = \vec{c}\vec{a}$   
D. (d).  $\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} = 0$ 

**302.** Let  $\vec{u}$  be a vector on rectangular coordinate system with sloping angle  $60^{\circ}$ . Suppose that  $\left|\vec{u} - \hat{i}\right|$  is geometric mean of  $\left|\vec{u}\right|and\left|\vec{u} - 2\hat{i}\right|$ , where  $\hat{i}$  is the unit vector along the x-axis. Then find the value of  $(\sqrt{2} + 1)\left|\vec{u}\right|$ 

Watch Video Solution

**303.** Two adjacent sides of a parallelogram *ABCD* are given by  $\vec{AB} = 2\hat{i} + 10\hat{j} + 11\hat{k}and\vec{AD} = -\hat{i} + 2\hat{j} + 2\hat{k}$  The side *AD* is rotated by an acute angle  $\alpha$  in the plane of the parallelogram so that *AD* becomes AD'If *AD'* makes a right angle with the side *AB*, then the cosine of the angel  $\alpha$  is given by  $\frac{8}{9}$  b.  $\frac{\sqrt{17}}{9}$  c.  $\frac{1}{9}$  d.  $\frac{4\sqrt{5}}{9}$ 

**304.** Let  $\vec{a}, \vec{b}, and \vec{c}$  be non-coplanar unit vectors, equally inclined to one another at an angle $\theta$  then  $\left[\vec{a}\vec{b}\vec{c}\right]$  in terms of  $\theta$  is equal to :

# Watch Video Solution

**305.** Given three vectors  $\vec{a}$ ,  $\vec{b}$ , and  $\vec{c}$  two of which are non-collinear. Further if  $(\vec{a} + \vec{b})$  is collinear with  $\vec{c}$ ,  $(\vec{b} + \vec{c})$  is collinear with  $\vec{a}$ ,  $|\vec{a}| = |\vec{b}| = |\vec{c}| = \sqrt{2}$ . Find the value of  $\vec{a}$ .  $\vec{b} + \vec{b}$ .  $\vec{c} + \vec{c}$ .  $\vec{a}$  a. 3 b. -3 c. 0 d. cannot be evaluated

Watch Video Solution

**306.** Find the value of *a* so that the volume of the parallelepiped formed by vectors  $\hat{i} + a\hat{j} + k$ ,  $\hat{j} + a\hat{k}$  and  $a\hat{i} + \hat{k}$  becomes minimum.

**307.**  $A_1, A_2, ..., A_n$  are the vertices of a regular plane polygon with n sides

and O as its centre. Show that 
$$\sum_{i=1}^{n} \overrightarrow{OA}_{i} \times \overrightarrow{OA}_{i+1} = (1 - n) \left( \overrightarrow{OA}_{2} \times \overrightarrow{OA}_{1} \right)$$



**308.** If *c* is a given non-zero scalar, and  $\vec{A}$  and  $\vec{B}$  are given non-zero vector such that  $\vec{A} \perp \vec{B}$ , then find vector  $\vec{X}$  which satisfies the equation  $\vec{A} \cdot \vec{X} = c$  and  $\vec{A} \times \vec{X} = \vec{B}$ .

#### Watch Video Solution

**309.** *A*, *B*, *CandD* are any four points in the space, then prove that  $\left| \vec{AB} \times \vec{CD} + \vec{BC} \times \vec{AD} + \vec{CA} \times \vec{BD} \right| = 4$  (area of *ABC*).

**310.** If *a*, *bandc* are three non-copOlanar vector, non-zero vectors then the

value of 
$$(\vec{a}.\vec{a})\vec{b}\times\vec{c}+(\vec{a}.\vec{b})\vec{c}\times\vec{a}+(\vec{a}.\vec{c})\vec{a}\times\vec{b}.$$

#### Watch Video Solution

**311.** Let  $\vec{A} = 2\vec{i} + \vec{k}$ ,  $\vec{B} = \vec{i} + \vec{j} + \vec{k}$ ,  $\vec{C} = 4\hat{i} - 3\hat{j} + 7\hat{k}$  Determine a vector  $\vec{R}$ 

satisfying  $\vec{R} \times \vec{B} = \vec{C} \times \vec{B}$  and  $\vec{R} \cdot \vec{A} = 0$ .

Watch Video Solution

**312.** Determine the value of c so that for all real x, vectors  $cx\hat{i} - 6\hat{j} - 3\hat{k}$  and  $x\hat{i} + 2\hat{j} + 2cx\hat{k}$  make an obtuse angle with each other.

**313.** If 
$$\vec{r} = x_1 (\vec{a} \times \vec{b}) + x_2 (\vec{b} \times \vec{c}) + x_3 (\vec{c} \times \vec{a})$$
 and  $4 [\vec{a}\vec{b}\vec{c}] = 1$ , then  $x_1 + x_2 + x_3$  is equal to (A)  $\frac{1}{2}\vec{r} \cdot (\vec{a} + \vec{b} + \vec{c})$  (B)  $\frac{1}{4}\vec{r} \cdot (\vec{a} + \vec{b} + \vec{c})$  (C)

$$2\vec{r}.\left(\vec{a}+\vec{b}+\vec{c}\right)$$
 (D)  $4\vec{r}.\left(\vec{a}+\vec{b}+\vec{c}\right)$ 

Watch Video Solution

**314.** 
$$\left[\left(\vec{a} \times \vec{b}\right) \times \left(\vec{b} \times \vec{c}\right) \left(\vec{b} \times \vec{c}\right) \times \left(\vec{c} \times \vec{a}\right) \left(\vec{c} \times \vec{a}\right) \times \left(\vec{a} \times \vec{b}\right)\right]$$
 is equal to (where  $\vec{a}$ ,  $\vec{b}$  and  $\vec{c}$  are nonzero non-coplanar vector) a.  $\left[\vec{a}\vec{b}\vec{c}\right]^2$  b.  $\left[\vec{a}\vec{b}\vec{c}\right]^3$  c.  $\left[\vec{a}\vec{b}\vec{c}\right]^4$  d.  $\left[\vec{a}\vec{b}\vec{c}\right]$ 

Watch Video Solution

# **315.** If *V* be the volume of a tetrahedron and *V*<sup>\*</sup> be the volume of another tetrahedran formed by the centroids of faces of the previous tetrahedron and V = KV', *thenK* is equal to a. 9 b. 12 c. 27 d. 81

# **Watch Video Solution**

**316.**  $\vec{a}$ ,  $\vec{b}$  and  $\vec{c}$  are three non-coplanar ,non-zero vectors and  $\vec{r}$  is any vector

$$\left(\vec{a} \times \vec{b}\right) \times \left(\vec{r} \times \vec{c}\right) + \left(\vec{b} \times \vec{c}\right) \times \left(\vec{r} \times \vec{a}\right) + \left(\vec{c} \times \vec{a}\right) \times \left(\vec{r} \times \vec{b}\right)$$
 is equal to

Watch Video Solution

**317.**  $A(\vec{a}), B(\vec{b}), C(\vec{c})$  are the vertices of the triangle ABC and  $R(\vec{r})$  is any point in the plane of triangle ABC, then  $\vec{r}.(\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a})$  is always equal to

Watch Video Solution

**318.** Let  $\vec{a}$ ,  $\vec{b}$  and  $\vec{c}$  be three non-coplanar vectors and  $\vec{p}$ ,  $\vec{q}$  and  $\vec{r}$  the vectors

defined by the relation  $\vec{p} = \frac{\vec{b} \times \vec{c}}{\left[\vec{a}\vec{b}\vec{c}\right]}$ ,  $\vec{q} = \frac{\vec{c} \times \vec{a}}{\left[\vec{a}\vec{b}\vec{c}\right]}$  and  $\vec{r} = \frac{\vec{a} \times \vec{b}}{\left[\vec{a}\vec{b}\vec{c}\right]}$ . Then the

value of the expression  $(\vec{a} + \vec{b})\vec{p} + (\vec{b} + \vec{c})\vec{q} + (\vec{c} + \vec{a})\vec{r}$  is a.0 b. 1 c. 2 d.

3

**319.**  $\vec{a}$ ,  $\vec{b}$  and  $\vec{c}$  are three non-coplanar ,non-zero vectors and  $\vec{r}$  is any vector

in space, then 
$$(\vec{r} - \vec{r}) - (\vec{r} - \vec{r})$$

$$\left(\vec{a} \times \vec{b}\right) \times \left(\vec{r} \times \vec{c}\right) + \left(\vec{b} \times \vec{c}\right) \times \left(\vec{r} \times \vec{a}\right) + \left(\vec{c} \times \vec{a}\right) \times \left(\vec{r} \times \vec{b}\right)$$
 is equal to



**320.** The position vectors of point *A*, *B*, and*C* are  $\hat{i} + \hat{j} + \hat{k}$ ,  $\hat{i} + 5\hat{j} - \hat{k}and2\hat{i} + 3\hat{j} + 5\hat{k}$ , respectively. Then greatest angel of triangle *ABC* is  $120^0$  b.  $90^0$  c.  $\cos^{-1}(3/4)$  d. none of these

#### Watch Video Solution

**321.** Let  $\vec{a}(x) = (\sin x)\hat{i} + (\cos x)\hat{j}and\vec{b}(x) = (\cos 2x)\hat{i} + (\sin 2x)\hat{j}$  be two variable vectors  $(x \in R)$ . Then  $\vec{a}(x)and\vec{b}(x)$  are a. collinear for unique value of x b. perpendicular for infinite values of x c. zero vectors for unique value of x d. none of these

**322.** If 
$$\vec{a} = 2\hat{i} + \hat{j} + \hat{k}, \vec{b} = \hat{i} + 2\hat{j} + 2\hat{k}, \vec{c} = \hat{i} + \hat{j} + 2\hat{k}$$
 and

$$(1 + \alpha)\hat{i} + \beta(1 + \alpha)\hat{j} + \gamma(1 + \alpha)(1 + \beta)\hat{k} = \vec{a} \times (\vec{b} \times \vec{c}), \text{ then}\alpha, \beta \text{ and}\gamma \text{ are}$$
  
a.-2, -4,  $-\frac{2}{3}$  b.2, -4,  $\frac{2}{3}$  c.-2, 4,  $\frac{2}{3}$  d.2, 4,  $-\frac{2}{3}$ 

**323.** If 
$$\vec{a}$$
,  $\vec{b}$  and  $\vec{c}$  are unit vectors satisfying  $|\vec{a} - \vec{b}|^2 + |\vec{b} - \vec{c}|^2 + |\vec{c} - \vec{a}|^2 = 9$ , then  $|2\vec{a} + 5\vec{b} + 5\vec{c}|$  is.

**324.** If 
$$\vec{d} = \vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}$$
 is non-zero vector and  
 $\left| (\vec{d} \cdot \vec{c}) (\vec{a} \times \vec{b}) + (\vec{d} \cdot \vec{a}) (\vec{b} \times \vec{c}) + (\vec{d} \cdot \vec{b}) (\vec{c} \times \vec{a}) \right| = 0$ , then  
a. $\left| \vec{a} \right| = \left| \vec{b} \right| = \left| \vec{c} \right|$   
b.  $\left| \vec{a} \right| + \left| \vec{b} \right| + \left| \vec{c} \right| = \left| d \right|$ 



d. none of these



**325.** The vector(s) which is/are coplanar with vectors  $\hat{i} + \hat{j} + 2\hat{k}$  and  $\hat{i} + 2\hat{j} + \hat{k}$ , and perpendicular to vector  $\hat{i} + \hat{j} + \hat{k}$ , is/are a.  $\hat{j} - \hat{k}$  b.  $-\hat{i} + \hat{j}$  c.  $\hat{i} - \hat{j}$  d.  $-\hat{j} + \hat{k}$ 

Watch Video Solution

**326.** Let  $\vec{a} = -\hat{i} - \hat{k}$ ,  $\vec{b} = -\hat{i} + \hat{j}and\vec{c} = \hat{i} + 2\hat{j} + 3\hat{k}$  be three given vectors. If

 $\vec{r}$  is a vector such that  $\vec{r} \times \vec{b} = \vec{c} \times \vec{b}$  and  $\vec{r}\vec{a} = 0$ , then find the value of

 $\vec{r}\vec{b}$ 

**327.** Let 
$$\vec{a}, \vec{b}, and\vec{c}$$
 be vectors forming right-hand traid. Let  
 $\vec{p} = \frac{\vec{b} \times \vec{c}}{\left[\vec{a}\vec{b}\vec{c}\right]}, \vec{q} = \frac{\vec{c} \times \vec{a}}{\left[\vec{a}\vec{b}\vec{c}\right]}, and\vec{r} = \frac{\vec{a} \times \vec{b}}{\left[\vec{a}\vec{b}\vec{c}\right]}, \text{ If } x \in \mathbb{R}^+, \text{ then}$   
a.  $x\left[\vec{a}\vec{b}\vec{c}\right] + \frac{\left[\vec{p}\vec{q}\vec{r}\right]}{x}$  has least value  $= 2. \text{ b. } x^4\left[\vec{a}\vec{b}\vec{c}\right]^2 + \frac{\left[\vec{p}\vec{q}\vec{r}\right]}{x^2}$  has least  
value  $= \left(\frac{3}{2}\right)^{2/3}$  c.  $\left[\vec{p}\vec{q}\vec{r}\right] > 0$  d. none of these  
**Watch Video Solution**

**328.** If the vectors  $\vec{a}$ ,  $\vec{b}$ , and  $\vec{c}$  form the sides BC, CAandAB, respectively, of

triangle ABC, then

Watch Video Solution

**329.** Find  $\vec{a} \times \vec{b}$ , if  $\vec{a} = 2\hat{i} + \hat{k}$  and  $\vec{b} = \hat{i} + \hat{j} + \hat{k}$
**330.** Find the work done by the force  $F = 3\hat{i} - \hat{j} - 2\hat{k}$  acrting on a particle such that the particle is displaced from point  $A(-3, -4, 1) \rightarrow B(-1, -1, -2)$ 

# Watch Video Solution

**331.** Prove that 
$$\begin{bmatrix} \vec{a} + \vec{b} & \vec{b} + \vec{c} & \vec{c} + \vec{a} \end{bmatrix} = 2 \begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix}$$

Watch Video Solution

**332.** find the angle between the vectors  $\vec{a} = \hat{i} + \hat{j} - \hat{k}$  and  $\vec{b} = \hat{i} - \hat{j} + \hat{k}$ 

**Watch Video Solution** 

**333.** *OABC* is regular tetrahedron in which *D* is the circumcentre of *OAB* and E is the midpoint of edge AC Prove that *DE* is equal to half the edge of tetrahedron.



**334.** In the quadrilateral ABCD, the diagonals AC and BD are equal and perpendicular to each other. What type of a quadrilateral is ABCD?

Watch Video Solution

**335.** If 
$$\vec{e}_1, \vec{e}_2, \vec{e}_3$$
 and  $\vec{E}_1, \vec{E}_2, \vec{E}_3$  are two sets of vectors such that  $\vec{e}_i, \vec{E}_j = 1$ , if  $i = j$  and  $\vec{e}_i, \vec{E}_j = 0$  and if  $i \neq j$ , the prove that  $\begin{bmatrix} \vec{e}_1 \vec{e}_2 \vec{e}_3 \end{bmatrix} \begin{bmatrix} \vec{E}_2 \vec{e}_3 \end{bmatrix} \begin{bmatrix} \vec{E}_1 \vec{e}_2 \vec{e}_3 \end{bmatrix} \begin{bmatrix} \vec{E}_2 \vec{e}_3 \vec{e}_3 \end{bmatrix} \begin{bmatrix} \vec{E}_1 \vec{e}_2 \vec{e}_3 \end{bmatrix} \begin{bmatrix} \vec{E}_2 \vec{e}_3 \vec{e}_3 \end{bmatrix} \begin{bmatrix} \vec{E}_3 \vec{e}_$ 

Watch Video Solution

**336.** Find the angle between the vectors  $\vec{a} = \hat{i} + \hat{j} - \hat{k}$  and  $\vec{b} = \hat{i} - \hat{j} + \hat{k}$ 

**337.** Given the vectors  $\vec{A}$ ,  $\vec{B}$ ,  $and\vec{C}$  form a triangle such that  $\vec{A} = \vec{B} + \vec{C}$  find a, b, c, andd such that the area of the triangle is  $5\sqrt{6}$  where  $\vec{A} = a\hat{i} + b\hat{j} + c\hat{k}\vec{B} = d\hat{i} + 3\hat{j} + 4\hat{k}\vec{C} = 3\hat{i} + \hat{j} - 2\hat{k}$ 



**338.** If  $\vec{a}$ ,  $\vec{b}$  and  $\vec{c}$  are three mutually perpendicular vectors, then the vector

which is equally inclined to these vectors is  $\vec{a} + \vec{b} + \vec{c}$  b.  $\frac{\vec{a}}{|\vec{a}|} + \frac{\vec{b}}{|\vec{b}|} + \frac{\vec{c}}{|\vec{c}|}$ 

c. 
$$\frac{\ddot{a}}{|\vec{a}|^2} + \frac{b}{|\vec{b}|^2} + \frac{\ddot{c}}{|\vec{c}|^2}$$
 d.  $|\vec{a}|\vec{a} - |\vec{b}|\vec{b} + |\vec{c}|\vec{c}$ 

Watch Video Solution

**339.** Let a three dimensional vector  $\vec{V}$  satisfy the condition,  $2\vec{V} + \vec{V} \times (\hat{i} + 2\hat{j}) = 2\hat{i} + \hat{k} \text{ If } 3 |\vec{V}| = \sqrt{m} \text{ Then find the value of } m$ 

**340.** If 
$$\vec{a} = 3\hat{i} - \hat{j} - 4\hat{k}$$
,  $\vec{b} = 2\hat{i} + 4\hat{j} - 3\hat{k}$  and  $\vec{c} = \hat{i} + 2\hat{j} - \hat{k}$ , find  $|3\vec{a} - 2\hat{b} + 4\hat{c}|$ 



**341.** Let  $\vec{O}A = \vec{a}$ ,  $\hat{O}B = 10\vec{a} + 2\vec{b}and\vec{O}C = \vec{b}$ , where O, AandC are noncollinear points. Let p denotes the area of quadrilateral OACB, and let q denote the area of parallelogram with OAandOC as adjacent sides. If p = kq, then find  $\vec{k}$ 

Watch Video Solution

**342.** If  $\vec{a}, \vec{b}, \vec{c}$  are unit vectors such that  $\vec{a}. \vec{b} = 0 = \vec{a}. \vec{c}$  and the angle between  $\vec{b}$  and  $\vec{c}$  is  $\frac{\pi}{3}$ , then find the value of  $\left| \vec{a} \times \vec{b} - \vec{a} \times \vec{c} \right|$ .

**343.** If  $\vec{x}, \vec{y}$  are two non-zero and non-collinear vectors satisfying  $\left[(a-2)\alpha^2 + (b-3)\alpha + c\right]\vec{x} + \left[(a-2)\beta^2 + (b-3)\beta + c\right]\vec{y} + \left[(a-2)\gamma^2 + (b-3)\gamma + c\right]\vec{y}$ 

are three distinct real numbers, then find the value of  $(a^2 + b^2 + c^2 - 4)^2$ 

# Watch Video Solution

**344.** Let 
$$\vec{a} = \alpha \hat{i} + 2\hat{j} - 3\hat{k}$$
,  $\vec{b} = \alpha \hat{i} + 2\alpha \hat{j} - 2\hat{k}$ ,  $and\vec{c} = 2\hat{i} - \alpha \hat{j} + \hat{k}$  Find thevalue of  $6\alpha$ , such that  $\left\{ \left( \vec{a} \times \vec{b} \right) \times \left( \vec{b} \times \vec{c} \right) \right\} \times \left( \vec{c} \times \vec{a} \right) = 0$ .

Watch Video Solution

**345.** Let  $\vec{a}$ ,  $\vec{b}and\vec{c}$  be three vectors having magnitudes 1, 5and 3, respectively, such that the angel between  $\vec{a}and\vec{b}is\theta$  and  $\vec{a} \times (\vec{a} \times \vec{b}) = c$ . Then  $tan\theta$  is equal to a. 0 b. 2/3 c. 3/5 d. 3/4

346. Two vectors in space are equal only if they have equal component in

a. a given direction b. two given directions c. three given

directions d. in any arbitrary direction

## Watch Video Solution

**347.** Let 
$$\vec{a} = \hat{i} - \hat{j}$$
,  $\vec{b} = \hat{j} - \hat{k}and\vec{c} = \hat{k} - \hat{i}$ . If  $\vec{d}$  is a unit vector such that  
 $\vec{a} \cdot \vec{d} = 0 = \left[\vec{b}\vec{c}\vec{d}\right]$ , then  $d$  equals  $\mathbf{a} \pm \frac{\hat{i} + \hat{j} - 2\hat{k}}{\sqrt{6}}$  b.  $\pm \frac{\hat{i} + \hat{j} - \hat{k}}{\sqrt{3}}$  c.  $\pm \frac{\hat{i} + \hat{j} + \hat{k}}{\sqrt{3}}$  d.  
 $\pm \hat{k}$ 

### Watch Video Solution

**348.** If vectors  $\vec{a}and\vec{b}$  are two adjacent sides of a parallelogram, then the vector respresenting the altitude of the parallelogram which is the

perpendicular to 
$$a$$
 is a. $\vec{b}$  +  $\frac{\vec{b} \times \vec{a}}{|\vec{a}|^2}$  b.  $\frac{\vec{a}\vec{b}}{|\vec{b}|^2}$  c.  $\vec{b}$  -  $\frac{\vec{b}\vec{a}}{|\vec{a}|^2}$  d.  $\frac{\vec{a} \times (\vec{b} \times \vec{a})}{|\vec{b}|^2}$ 

**349.** If  $\vec{a} \times (\vec{b} \times \vec{c})$  is perpendicular to  $(\vec{a} \times \vec{b}) \times \vec{c}$ , we may have a.

$$(\vec{a}.\vec{c})|\vec{b}|^2 = (\vec{a}.\vec{b})(\vec{b}.\vec{c})(\vec{c}.\vec{a})$$
 b.  $\vec{a}\vec{b} = 0$  c.  $\vec{a}\vec{c} = 0$  d.  $\vec{b}\vec{c} = 0$ 

Watch Video Solution

**350.** 
$$\left[ \left( \vec{a} \times \vec{b} \right) \left( \vec{c} \times \vec{d} \right) \left( \vec{e} \times \vec{f} \right) \right]$$
 is equal to  
(a)  $\left[ \vec{a} \vec{b} \vec{d} \right] \left[ \vec{c} \vec{e} \vec{f} \right] - \left[ \vec{a} \vec{b} \vec{c} \right] \left[ \vec{d} \vec{e} \vec{f} \right]$   
(b)  $\left[ \vec{a} \vec{b} \vec{e} \right] \left[ \vec{f} \vec{c} \vec{d} \right] - \left[ \vec{a} \vec{b} \vec{f} \right] \left[ \vec{e} \vec{c} \vec{d} \right]$   
(c)  $\left[ \vec{c} \vec{d} \vec{a} \right] \left[ \vec{b} \vec{e} \vec{f} \right] - \left[ \vec{a} \vec{d} \vec{b} \right] \left[ \vec{a} \vec{e} \vec{f} \right]$   
(d)  $\left[ \vec{a} \vec{c} \vec{e} \right] \left[ \vec{b} \vec{d} \vec{f} \right]$ 

**351.** 
$$\vec{a}$$
,  $\vec{b}$  and  $\vec{c}$  are non-collinear if  
 $\vec{a} \times (\vec{b} \times \vec{c}) + (\vec{a} \cdot \vec{b})\vec{b} = (4 - 2x - \sin y)\vec{b} + (x^2 - 1)\vec{c}$  and  $(\vec{c} \cdot \vec{c})\vec{a} = \vec{c}$  Then

a. x = 1 b. x = -1 c.  $y = (4n + 1)\pi/2$ ,  $n \in I$  d.  $y = (2n + 1)\pi/2$ ,  $n \in I$ 



**352.** If  $\vec{a}$  and  $\vec{b}$  are unit vectors, then angle between  $\vec{a}$  and  $\vec{b}$  for  $\sqrt{3} \vec{a} - \vec{b}$  to be unit vector is

Watch Video Solution

**353.** If  $\vec{a} \perp \vec{b}$ , then vector  $\vec{v}$  in terms of  $\vec{a}$  and  $\vec{b}$  satisfying the equation s

$$\vec{v}\vec{a} = 0 \text{ and } \vec{v}\vec{b} = 1 \text{ and } \left[\vec{v}\vec{a}\vec{b}\right] = 1 \text{ is a.} \frac{\vec{b}}{\left|\vec{b}\right|^2} + \frac{\vec{a}\times\vec{b}}{\left|\vec{a}\times\vec{b}\right|^2} \text{ b. } \frac{\vec{b}}{\left|\vec{b}\right|^{\Box}} + \frac{\vec{a}\times\vec{b}}{\left|\vec{a}\times\vec{b}\right|^2} \text{ c.}$$

 $\frac{\vec{b}}{\left|\vec{b}\right|^{2}} + \frac{\vec{a} \times \vec{b}}{\left|\vec{a} \times \vec{b}\right|^{\Box}} \text{ d. none of these}$ 

**354.** If  $\vec{a}' = \hat{i} + \hat{j}$ ,  $\vec{b}' = \hat{i} - \hat{j} + 2\hat{k}$  and  $\vec{c}' = 2\hat{i} + \hat{j} - \hat{k}$ , then the altitude of the parallelepiped formed by the vectors  $\vec{a}$ ,  $\vec{b}$  and  $\vec{c}$  having base formed by  $\vec{b}$  and  $\vec{c}$  is (where  $\vec{a}'$  is reciprocal vector  $\vec{a}$  )

**355.** If 
$$\vec{a} = \hat{i} + \hat{j}$$
,  $\vec{b} = \hat{j} + \hat{k}$ ,  $\vec{c} = \hat{k} + \hat{i}$ , then in the reciprocal system of vectors  $\vec{a}$ ,  $\vec{b}$ ,  $\vec{c}$  reciprocal  $\vec{a}$  of vector  $\vec{a}$  is a.  $\frac{\hat{i} + \hat{j} + \hat{k}}{2}$  b.  $\frac{\hat{i} - \hat{j} + \hat{k}}{2}$  c.  $\frac{-\hat{i} - \hat{j} + \hat{k}}{2}$  d.  $\frac{\hat{i} + \hat{j} - \hat{k}}{2}$ 

**356.** If unit vectors  $\vec{a}$  and  $\vec{b}$  are inclined at angle  $2\theta$  such that  $\left|\vec{a} - \vec{b}\right| < 1$  and  $0 \le \theta \le \pi$ , then  $\theta$  lies in interval a.[0,  $\pi/6$ ) b. ( $5\pi/6, \pi$ ] c.  $[\pi/6, \pi/2]$  d.  $[\pi/2, 5\pi/6]$ 

**357.** Let  $\vec{a}$ ,  $\vec{b}$  and  $\vec{c}$  be three non-coplanar vectors and  $\vec{p}$ ,  $\vec{q}$  and  $\vec{r}$  the vectors

defined by the relation 
$$\vec{p} = \frac{\vec{b} \times \vec{c}}{\left[\vec{a}\vec{b}\vec{c}\right]}$$
,  $\vec{q} = \frac{\vec{c} \times \vec{a}}{\left[\vec{a}\vec{b}\vec{c}\right]}$  and  $\vec{r} = \frac{\vec{a} \times \vec{b}}{\left[\vec{a}\vec{b}\vec{c}\right]}$ . Then the

value of the expression  $(\vec{a} + \vec{b})\vec{p} + (\vec{b} + \vec{c})\vec{q} + (\vec{c} + \vec{a})\vec{r}$  is 0 b. 1 c. 2 d. 3

Watch Video Solution

**358.** Let 
$$\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$$
,  $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$  and  $\vec{c} = c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$  be three non-zero vectors such that  $\vec{c}$  is a unit vector perpendicular to both  $\vec{a}$  and  $\vec{b}$ . If the angle between  $\vec{a}$  and  $\vec{b}$  is  $\frac{\pi}{a}$  then prove that

6'

$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}^2 = \frac{1}{4} \left( a_1^2 + a_2^2 + a_3^2 \right) \left( b_1^2 + b_2^2 + b_3^2 \right)$$

A. (a) 0

B. (b) 1

C. (c) 
$$\frac{1}{4} \left( a_1^2 + a_2^2 + a_3^2 \right) \left( b_1^2 + b_2^2 + b_3^2 \right)$$

D. (d) 
$$\frac{3}{4} \left( a_1^2 + a_2^2 + a_3^2 \right) \left( b_1^2 + b_2^2 + b_3^2 \right) \left( c_1^2 + c_2^2 + c_3^2 \right)$$

Watch Video Solution

**359.** A, B, CandD are four points such that  

$$\vec{AB} = m(2\hat{i} - 6\hat{j} + 2\hat{k}), \vec{BC} = (\hat{i} - 2\hat{j})and\vec{CD} = n(-6\hat{i} + 15\hat{j} - 3\hat{k})$$
. If CD  
intersects AB at some point E, then a.  $m \ge 1/2$  b. $n \ge 1/3$  c.  $m = n$  d.  $m < n$ 

Watch Video Solution

**360.** Let  $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ ,  $\vec{b} = \hat{i} - \hat{j} + \hat{k}and\vec{c} = \hat{i} - \hat{j} - \hat{k}$  be three vectors. A vector  $\vec{v}$  in the plane of  $\vec{a}and\vec{b}$ , whose projection on  $\vec{c}$  is  $\frac{1}{\sqrt{3}}$  is given by a.  $\hat{i} - 3\hat{j} + 3\hat{k}$  b.  $-3\hat{i} - 3\hat{j} + 3\hat{k}$  c.  $3\hat{i} - \hat{j} + 3\hat{k}$  d.  $\hat{i} + 3\hat{j} - 3\hat{k}$ 

**361.** If  $\hat{a}$ ,  $\hat{b}$ , and  $\hat{c}$  are unit vectors, then  $|\hat{a} - \hat{b}|^2 + |\hat{b} - \hat{c}|^2 + |\hat{c} - \hat{a}|^2$  does not

#### exceed



**362.** Which of the following expressions are meaningful? a.  $\vec{u}$ .  $(\vec{v} \times \vec{w})$  b.

 $\vec{u}$ .  $\vec{v}$ .  $\vec{w}$  c.  $(\vec{u}\vec{v})$ .  $\vec{w}$  d.  $\vec{u} \times (\vec{v}$ .  $\vec{w})$ 

Watch Video Solution

**363.** Find the value of  $\lambda$  if the volume of a tetrahedron whose vertices are with position vectors  $\hat{i} - 6\hat{j} + 10\hat{k}$ ,  $-\hat{i} - 3\hat{j} + 7\hat{k}$ ,  $5\hat{i} - \hat{j} + \lambda\hat{k}$  and  $7\hat{i} - 4\hat{j} + 7\hat{k}$  is 11 cubic unit.



**364.** Let  $\vec{a} = 2\hat{i} - \hat{j} + \hat{k}$ ,  $\vec{b} = \hat{i} + 2\hat{j} = \hat{k}and\vec{c} = \hat{i} + \hat{j} - 2\hat{k}$  be three vectors. A vector in the plane of  $\vec{b}and\vec{c}$ , whose projection on  $\vec{a}$  is of magnitude  $\sqrt{2/3}$ , is a. $2\hat{i} + 3\hat{j} - 3\hat{k}$  b.  $2\hat{i} - 3\hat{j} + 3\hat{k}$  c.  $-2\hat{i} - \hat{j} + 5\hat{k}$  d.  $2\hat{i} + \hat{j} + 5\hat{k}$ 



**365.** If  $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) \cdot (\vec{a} \times \vec{d}) = 0$ , then which of the following may be true? (a)  $\vec{a}$ ,  $\vec{b}$ ,  $\vec{c}$  and  $\vec{d}$  are necessarily coplanar (b)  $\vec{a}$  lies in the plane of  $\vec{c}$  and  $\vec{d}$  (c)  $\vec{b}$  lies in the plane of  $\vec{a}$  and  $\vec{d}$  (d)  $\vec{c}$  lies in the plane of  $\vec{a}$  and  $\vec{d}$ 

**366.** Vector 
$$\frac{1}{3}(2\hat{i} - 2\hat{j} + \hat{k})$$
 is  
(A) a unit vector (B) makes an angle  $\pi/3$  with vector  $(2\hat{i} - 4\hat{j} + 3\hat{k})$  (C)  
parallel to vector  $(-\hat{i} + \hat{j} - \frac{1}{2}\hat{k})$  (D) perpendicular to vector  $3\hat{i} + 2\hat{j} - 2\hat{k}$   
**Watch Video Solution**

**367.** Let  $\vec{u}$  and  $\vec{v}$  be unit vectors such that  $\vec{u} \times \vec{v} + \vec{u} = \vec{w}$  and  $\vec{w} \times \vec{u} = \vec{v}$ . Find the value of  $\begin{bmatrix} \vec{u} & \vec{v} & \vec{w} \end{bmatrix}$ .



**368.** The scalars *l* and *m* such that  $l\vec{a} + m\vec{b} = \vec{c}$  ,where  $\vec{a}, \vec{b}$  and  $\vec{c}$  are given

vectors, are equal to

Watch Video Solution

**369.** If *OABC* is a tetrahedron where *O* is the origin and *A*, *B*, *andC* are the other three vertices with position vectors,  $\vec{a}$ ,  $\vec{b}$ , *and*  $\vec{c}$  respectively, then prove that the centre of the sphere circumscribing the tetrahedron is

$$\frac{a^2(\vec{b}\times\vec{c})+b^2(\vec{c}\times\vec{a})+c^2(\vec{a}\times\vec{b})}{[\vec{c}\times\vec{c}]^2}$$

given by position vector

 $2\left[\vec{a}\vec{b}\vec{c}\right]$ 

370. If K is the length of any edge of a regular tetrahedron, then the

distance of any vertex from the opposite face is

**Watch Video Solution** 

**371.** In  $\triangle ABC$ , a point *P* is taken on *AB* such that AP/BP = 1/3 and point *Q* is taken on *BC* such that CQ/BQ = 3/1. If *R* is the point of intersection of the lines *AQandCP*, using vector method, find the area of *ABC* if the area of *BRC* is 1 unit

Watch Video Solution

**372.** Let *ABCD* be a parallelogram whose diagonals intersect at *P* and let

*O* be the origin. Then prove that  $\vec{O}A + \vec{O}B + \vec{O}C + \vec{O}D = 4\vec{O}P$ 

**373.** Find  $\vec{a}\vec{b}$  when:  $\vec{a} = \hat{j} - \hat{k}$  and  $\vec{b} = 2\hat{i} + 3\hat{j} - 2\hat{k}$ 



**374.** if 
$$\vec{a}=2\hat{i}-3\hat{j}+\hat{k}$$
 and  $\vec{b}=\hat{i}+2\hat{j}-3\hat{k}$  then  $\vec{a}X\vec{b}$  is

Watch Video Solution

**375.** If 
$$\vec{a} = x\hat{i} + y\hat{j} + z\hat{k}$$
,  $\vec{b} = y\hat{i} + z\hat{j} + x\hat{k}$  and  $\vec{c} = z\hat{i} + x\hat{j} + y\hat{k}$ , then  $\vec{a} \times (\vec{b} \times \vec{c})$  is

A. (a) parallel to  $(y - z)\hat{i} + (z - x)\hat{j} + (x - y)\hat{k}$ 

B. (b) orthogonal to  $\hat{i} + \hat{j} + \hat{k}$ 

C. (c) orthogonal to  $(y + z)\hat{i} + (z + x)\hat{j} + (x + y)\hat{k}$ 

D. (d) orthogonal to  $x\hat{i} + y\hat{j} + z\hat{k}$ 



**379.** Volume of the parallelopiped whose adjacent edges are vectors  $\vec{a}, \vec{b}, \vec{c}$  is  $\vec{a} = 2\hat{i} - 3\hat{j} - 4\hat{k}, \vec{b} = \hat{i} + 2\hat{j} - \hat{k}and\vec{c} = 3\hat{i} + \hat{j} - 2\hat{k}$ 

### Watch Video Solution

**380.** Column I, Column II If  $|\vec{a} + \vec{b}| = |\vec{a} + 2\vec{b}|$ , then angel between  $\vec{a}and\vec{b}$ is, p. 90<sup>0</sup> If  $|\vec{a} + \vec{b}| = |\vec{a} - 2\vec{b}|$ , then angel between  $\vec{a}and\vec{b}$  is, q. obtuse If  $|\vec{a} + \vec{b}| = |\vec{a} - \vec{b}|$ , then angel between  $\vec{a}and\vec{b}$  is, r.0<sup>0</sup> Angle between  $\vec{a} \times \vec{b}$ and a vector perpendicular to the vector  $\vec{c} \times (\vec{a} \times \vec{b})$  is, s. acute

## Watch Video Solution

**381.** If vectors  $\vec{A} = 2\hat{i} + 3\hat{j} + 4\hat{k}$ ,  $\vec{B} = \hat{i} + \hat{j} + 5\hat{k}$  and  $\vec{C}$  form a left-handed system, then  $\vec{C}$  is a.11 $\hat{i}$  - 6 $\hat{j}$  -  $\hat{k}$  b.-11 $\hat{i}$  + 6 $\hat{j}$  +  $\hat{k}$  c. 11 $\hat{i}$  - 6 $\hat{j}$  +  $\hat{k}$  d. -11 $\hat{i}$  + 6 $\hat{j}$  -  $\hat{k}$ 

**382.** Let a = 2i - j + k, b = i + 2j - k and c = i + j - 2k be three vectors. A vector r in the plane of b and c whose projection on a is of magnitude  $\sqrt{\frac{2}{3}}$  is

**383.** Vectors 
$$\vec{A}and\vec{B}$$
 satisfying the vector equation  
 $\vec{A} + \vec{B} = \vec{a}, \vec{A} \times \vec{B} = \vec{b}and\vec{A} \cdot \vec{a} = 1$ , where  $\vec{a}and\vec{b}$  are given vectors, are a.  
 $\vec{A} = \frac{\left(\vec{a} \times \vec{b}\right) - \vec{a}}{a^2}$  b.  $\vec{B} = \frac{\left(\vec{b} \times \vec{a}\right) + \vec{a}\left(a^2 - 1\right)}{a^2}$  c.  $\vec{A} = \frac{\left(\vec{a} \times \vec{b}\right) + \vec{a}}{a^2}$  d.  
 $\vec{B} = \frac{\left(\vec{b} \times \vec{a}\right) - \vec{a}\left(a^2 - 1\right)}{a^2}$ 

Watch Video Solution

Watch Video Solution

**384.** if  $\vec{\alpha} \mid | (\vec{\beta} \times \vec{\gamma})$ , then  $(\vec{\alpha} \times \beta) \cdot (\vec{\alpha} \times \vec{\gamma})$  equals to  $a \cdot |\vec{\alpha}|^2 (\vec{\beta}, \vec{\gamma})$  b.  $|\vec{\beta}|^2 (\vec{\gamma}, \vec{\alpha}) c \cdot |\vec{\gamma}|^2 (\vec{\alpha}, \vec{\beta}) d \cdot |\vec{\alpha}| |\vec{\beta}| |\vec{\gamma}|$  **385.** Let  $\vec{\alpha} = a\hat{i} + b\hat{j} + c\hat{k}$ ,  $\vec{\beta} = b\hat{i} + c\hat{j} + a\hat{k}and\vec{\gamma} = c\hat{i} + a\hat{j} + b\hat{k}$  are three coplanar vectors with  $a \neq b$ ,  $and\vec{v} = \hat{i} + \hat{j} + \hat{k}$ . Then v is perpendicular to  $\vec{\alpha}$  b. $\vec{\beta}$  c.  $\vec{\gamma}$  d. none of these

Watch Video Solution

**386.**  $a_1, a_2, a_3, \in \mathbb{R} - \{0\}$  and  $a_1 + a_2 \cos 2x + a_3 \sin^2 x = 0$  for all  $x \in \mathbb{R}$ ,

then

A. (a) vector  $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$  and  $\vec{b} = 4\hat{i} + 2\hat{j} + \hat{k}$  are perpendicular

to each other

B. (b) vector  $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$  and  $\vec{b} = -\hat{i} + \hat{j} + 2\hat{k}$  are parallel to

each other

C. (c) If vector  $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$  is of length  $\sqrt{6}$  units, then one of the ordered triplet is  $(a_1, a_2, a_3) = (1, -1, -2)$ 

D. (d) If 
$$2a_1 + 3a_2 + 6a_3 = 26$$
, then  $\left| a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k} \right|$  is  $2\sqrt{6}$ 

Watch Video Solution

**387.** If *P* is any arbitrary point on the circumcircle of the equilateral triangle of side length *l* units, then  $|\vec{P}A|^2 + |\vec{P}B|^2 + |\vec{P}C|^2$  is always equal to  $2l^2$  b.  $2\sqrt{3}l^2$  c.  $l^2$  d.  $3l^2$ 

Watch Video Solution

**388.** Let  $\vec{a}and\vec{b}$  be two non-zero perpendicular vectors. A vecrtor  $\vec{x}$ 

satisfying the equation  $\vec{x} \times \vec{b} = \vec{a}$  is  $\vec{x} = \beta \vec{b} - \frac{1}{|b|^2} \vec{a} \times \vec{b}$  then  $\beta$  can be

**389.** If  $\vec{a}and\vec{b}$  are two vectors and angle between them is  $\theta$ , then

$$\left|\vec{a} \times \vec{b}\right|^{2} + \left(\vec{a}\vec{b}\right)^{2} = \left|\vec{a}\right|^{2}\left|\vec{b}\right|^{2} \qquad \left|\vec{a} \times \vec{b}\right| = \left(\vec{a}\vec{b}\right), \text{ if } \theta = \pi/4$$
$$\vec{a} \times \vec{b} = \left(\vec{a}\vec{b}\right)\hat{n}, \text{ (where \hat{n} is unit vector,) if } \theta = \pi/4 \left(\vec{a} \times \vec{b}\right)\vec{a} + \vec{b} = 0$$

Watch Video Solution

**390.** Let 
$$\vec{r}$$
 be a unit vector satisfying  
 $\vec{r} \times \vec{a} = \vec{b}$ , where  $|\vec{a}| = \sqrt{3}and |\vec{b}| = \sqrt{2}$ . Then  $\vec{r} = ?$   
**Watch Video Solution**

**391.** If vector 
$$\vec{b} = (\tan \alpha, -1, 2\sqrt{\sin \alpha/2})$$
 and  $\vec{c} = (\tan \alpha, \tan \alpha, -\frac{3}{\sqrt{\sin \alpha/2}})$  are

orthogonal and vector  $\vec{a} = (1, 3, \sin 2\alpha)$  makes an obtuse angle with the z-

axis, then the value of  $\alpha$  is

**392.** Let  $\vec{a}, \vec{b}, and\vec{c}$  be non-zero vectors and  $\vec{V}_1 = \vec{a} \times (\vec{b} \times \vec{c}) and\vec{V}_2 = (\vec{a} \times \vec{b}) \times \vec{c}$ . Vectors  $\vec{V}_1 and\vec{V}_2$  are equal. Then (a). $\vec{a}an\vec{b}$  are orthogonal (b).  $\vec{a}and\vec{c}$  are collinear (c).  $\vec{b}and\vec{c}$  are orthogonal (d).  $\vec{b} = \lambda (\vec{a} \times \vec{c}) when\lambda$  is a scalar

Watch Video Solution

**393.** Let  $\vec{a} = 2\hat{i} - \hat{j} + \hat{k}$ ,  $\vec{b} = \hat{i} + 2\hat{j} = \hat{k}and\vec{c} = \hat{i} + \hat{j} - 2\hat{k}$  be three vectors. A vector in the plane of  $\vec{b}and\vec{c}$ , whose projection on  $\vec{a}$  is of magnitude  $\sqrt{2/3}$ , is  $2\hat{i} + 3\hat{j} - 3\hat{k}$  b.  $2\hat{i} - 3\hat{j} + 3\hat{k}$  c.  $-2\hat{i} - \hat{j} + 5\hat{k}$  d.  $2\hat{i} + \hat{j} + 5\hat{k}$ 

Watch Video Solution

**394.** Let  $\vec{P}R = 3\hat{i} + \hat{j} - 2\hat{k}and\vec{S}Q = \hat{i} - 3\hat{j} - 4\hat{k}$  determine diagonals of a parallelogram *PQRS*,  $and\vec{P}T = \hat{i} + 2\hat{j} + 3\hat{k}$  be another vector. Then the

volume of the parallelepiped determine by the vectors  $\vec{P}T$ ,  $\vec{P}Q$  and  $\vec{P}S$  is 5

b. 20 c. 10 d. 30



**395.** If in a right-angled triangle ABC, the hypotenuse AB = p, then

 $\vec{AB}$ .  $\vec{AC} + \vec{BC}$ .  $\vec{BA} + \vec{CA}$ .  $\vec{CB}$  is equal to  $2p^2$  b.  $\frac{p^2}{2}$  c.  $p^2$  d. none of these

Watch Video Solution

**396.** If 
$$\vec{a} = (\hat{i} + \hat{j} + \hat{k})$$
,  $\vec{a} \cdot \vec{b} = 1$  and  $\vec{a} \times \vec{b} = \hat{j} - \hat{k}$ , then  $\hat{b}$  is  $\hat{i} - \hat{j} + \hat{k}$  b.  $2\hat{j} - \hat{k}$  c.  $\hat{i}$  d.  $2\hat{i}$ 

## Watch Video Solution

**397.** If  $\vec{a}$  satisfies  $\vec{a} \times (\hat{i} + 2\hat{j} + \hat{k}) = \hat{i} - \hat{k}$ , then  $\vec{a}$  is equal to a.  $\lambda \hat{i} + (2\lambda - 1)\hat{j} + \lambda \hat{k}, \lambda \in R$  b.  $\lambda \hat{i} + (1 - 2\lambda)\hat{j} + \lambda \hat{k}, \lambda \in R$  c.  $\lambda \hat{i} + (2\lambda + 1)\hat{j} + \lambda \hat{k}, \lambda \in R \text{ d.} \lambda \hat{i} - (1 + 2\lambda)\hat{j} + \lambda \hat{k}, \lambda \in R$  **398.** If  $\vec{r} \cdot \vec{a} = \vec{r} \cdot \vec{b} = \vec{r} \cdot \vec{c} = 0$ , where  $\vec{a}$ ,  $\vec{b}$ , and  $\vec{c}$  are non-coplanar, then a.

$$\vec{r} \perp (\vec{c} \times \vec{a})$$
 b.  $\vec{r} \perp (\vec{a} \times \vec{b})$  c.  $\vec{r} \perp (\vec{b} \times \vec{c})$  d.  $\vec{r} = \vec{0}$ 

Watch Video Solution

**399.** The unit vector orthogonal to vector  $-\hat{i} + \hat{j} + 2\hat{k}$  and making equal

angles with the x and y-axis  $a \pm \frac{1}{3} \left( 2\hat{i} + 2\hat{j} - \hat{k} \right)$  b.  $\pm \frac{1}{3} \left( \hat{i} + \hat{j} - \hat{k} \right)$  c.  $\pm \frac{1}{3} \left( 2\hat{i} - 2\hat{j} - \hat{k} \right)$  d. none of these

Watch Video Solution

**400.** Vectors  $3\vec{a} - 5\vec{b}$  and  $2\vec{a} + \vec{b}$  are mutually perpendicular. If  $\vec{a} + 4\vec{b}$  and  $\vec{b} - \vec{a}$  are also mutually perpendicular, then the cosine of the angle between a and b is a.  $\frac{19}{5\sqrt{43}}$  b.  $\frac{19}{3\sqrt{43}}$  c.  $\frac{19}{2\sqrt{45}}$  d.  $\frac{19}{6\sqrt{43}}$ 

**401.** If vectors  $\vec{a}and\vec{b}$  are two adjacent sides of a parallelogram, then the vector respresenting the altitude of the parallelogram which is the

perpendicular to 
$$a$$
 is a. $\vec{b}$  +  $\frac{\vec{b} \times \vec{a}}{\left|\vec{a}\right|^2}$  b.  $\frac{\vec{a}\vec{b}}{\left|\vec{b}\right|^2}$  c.  $\vec{b}$  -  $\frac{\vec{b}\vec{a}}{\left|\vec{a}\right|^2}$  d.  $\frac{\vec{a} \times \left(\vec{b} \times \vec{a}\right)}{\left|\vec{b}\right|^2}$ 

Watch Video Solution

**402.** The value of x for which the angle between  $\vec{a} = 2x^2\hat{i} + 4x\hat{j} + \hat{k}and\vec{b} = 7\hat{i} - 2\hat{j} + \hat{k}$  is obtuse and the angle between b and the z-axis acute and less than  $\pi/6$  is given by

**403.** Let  $\vec{a} \cdot \vec{b} = 0$ , where  $\vec{a}$  and  $\vec{b}$  are unit vectors and the unit vector  $\vec{c}$  is

inclined at an angle  $\theta$  to both  $\vec{a}and\vec{b}$  If

$$\vec{c} = m\vec{a} + n\vec{b} + p\left(\vec{a} \times \vec{b}\right), (m, n, p \in R), \text{ then } a.-\frac{\pi}{4} \le \theta \le \frac{\pi}{4} \text{ b. } \frac{\pi}{4} \le \theta \le \frac{3\pi}{4}$$
  
c.  $0 \le \theta \le \frac{\pi}{4} \text{ d. } 0 \le \theta \le \frac{3\pi}{4}$   
Watch Video Solution  
404. A parallelogram is constructed on  
 $3\vec{a} + \vec{b}and\vec{a} - 4\vec{b}, \text{ where } |\vec{a}| = 6and |\vec{b}| = 8, and\vec{a}and\vec{b} \text{ are anti-parallel. Then}$   
the length of the longer diagonal is 40 b. 64 c. 32 d. 48

Watch Video Solution

**405.** Let the position vectors of the points *PandQ* be  $4\hat{i} + \hat{j} + \lambda\hat{k}and2\hat{i} - \hat{j} + \lambda\hat{k}$ , respectively. Vector  $\hat{i} - \hat{j} + 6\hat{k}$  is perpendicular to the plane containing the origin and the points *PandQ*. Then  $\lambda$  equals a -1/2 b. 1/2 c. 1 d. none of these

**406.** If  $a ext{ a n d } c$  are unit vectors and |b| = 4. The angle between a and c is

 $\cos^{-1}(1/4)$  and  $a \times b = 2a \times c$  then,  $b - 2c = \lambda a$  The value of  $\lambda$  is

## Watch Video Solution

**407.** If 
$$\vec{d} = \vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}$$
 is non-zero vector and  
 $|(\vec{d} \cdot \vec{c})(\vec{a} \times \vec{b}) + (\vec{d} \cdot \vec{a})(\vec{b} \times \vec{c}) + (\vec{d} \cdot \vec{b})(\vec{c} \times \vec{a})| = 0$ , then  
 $a.|\vec{a}| = |\vec{b}| = |\vec{c}|$   
 $b.|\vec{a}| + |\vec{b}| + |\vec{c}| = |d|$   
 $c. \vec{a}, \vec{b}, and\vec{c}$  are coplanar  
d. none of these

Watch Video Solution

**408.** If  $\vec{a} + 2\vec{b} + 3\vec{c} = 0$ , then  $\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} = a$ .  $2(\vec{a} \times \vec{b})$  b.  $6(\vec{b} \times \vec{c}) c. 3(\vec{c} \times \vec{a}) d. \vec{0}$ 

**409.** If  $\vec{a}$  and  $\vec{b}$  are two non-collinear unit vector, and  $|\vec{a} + \vec{b}| = 3 then(2\vec{a} - 5\vec{b}).(3\vec{a} + \vec{b})=$ Watch Video Solution

410. The angles of triangle, two of whose sides are represented by vectors

$$\sqrt{3}(\vec{a} \times \vec{b})$$
 and  $\vec{b} - (\hat{a}\vec{b})\hat{a}$ , where  $\vec{b}$  is a non zero vector and  $\hat{a}$  is unit vector

in the direction of  $\vec{a}$ , are

#### Watch Video Solution

**411.**  $\vec{a}, \vec{b}, and\vec{c}$  are unimodular and coplanar. A unit vector  $\vec{d}$  is perpendicular to then. If  $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = \frac{1}{6}\hat{i} - \frac{1}{3}\hat{j} + \frac{1}{3}\hat{k}$ , and the angel between  $\vec{a}and\vec{b}$  is  $30^{0}$ , then $\vec{c}$  is a.  $(\hat{i} - 2\hat{j} + 2\hat{k})/3$  b.  $(-\hat{i} + 2\hat{j} - 2\hat{k})/3$  c.  $(2\hat{i} + 2\hat{j} - \hat{k})/3$  d.  $(-2\hat{i} - 2\hat{j} + \hat{k})/3$ 

**412.** Vectors perpendicular to  $\hat{i} - \hat{j} - \hat{k}$  and in the plane of  $\hat{i} + \hat{j} + \hat{k}$  and  $\hat{i} + \hat{j} + \hat{k}$  are  $\hat{i} + \hat{k}$  b.  $2\hat{i} + \hat{j} + \hat{k}$  c.  $3\hat{i} + 2\hat{j} + \hat{k}$  d.  $-4\hat{i} - 2\hat{j} - 2\hat{k}$ 

Watch Video Solution

**413.** If side  $\vec{AB}$  of an equilateral trangle ABC lying in the x-y plane  $3\hat{i}$ , then side  $\vec{CB}$  can be a.  $-\frac{3}{2}(\hat{i}-\sqrt{3}\hat{j})$  b.  $\frac{3}{2}(\hat{i}-\sqrt{3}\hat{j})$  c.  $-\frac{3}{2}(\hat{i}+\sqrt{3}\hat{j})$  d.  $\frac{3}{2}(\hat{i}+\sqrt{3}\hat{j})$ Watch Video Solution

**414.** If  $\vec{a}, \vec{b}, \vec{c}$  and  $\vec{d}$  are unit vectors such that  $(\vec{a} \times \vec{b}) \cdot \vec{c} \times \vec{d} = 1$  and  $\vec{a}, \vec{c} = \frac{1}{2}$  then a)  $\vec{a}, \vec{b}$  and  $\vec{c}$  are non-coplanar b)  $\vec{b}, \vec{c}, \vec{d}$  are non -coplanar c) $\vec{b}, \vec{d}$  are non parallel d)  $\vec{a}, \vec{d}$  are parallel and  $\vec{b}, \vec{c}$  are parallel

**415.** Let two non-collinear unit vector  $\hat{a}$  a n d  $\hat{b}$  form an acute angle. A point *P* moves so that at any time *t*, the position vector *OP*(*whereO* is the origin) is given by  $\hat{a}cost + \hat{b}sintWhenP$  is farthest from origin *O*, let *M* be the length of *OPand* $\hat{u}$  be the unit vector along *OP*. Then (a)

$$\hat{u} = \frac{\hat{a} + \hat{b}}{\left|\hat{a} + \hat{b}\right|} andM = \left(1 + \hat{a}\hat{b}\right)^{1/2} \quad \text{(b)} \quad \hat{u} = \frac{\hat{a} - \hat{b}}{\left|\hat{a} - \hat{b}\right|} andM = \left(1 + \hat{a}^{\wedge}\right)^{1/2} \quad \text{(c)}$$

$$\hat{u} = \frac{\hat{a} + \hat{b}}{\left|\hat{a} + \hat{b}\right|} andM = \left(1 + 2\hat{a}\hat{\hat{b}}\right)^{1/2} (\mathsf{d}) \,\hat{u} = \frac{\hat{a} - \hat{b}}{\left|\hat{a} - \hat{b}\right|} andM = \left(1 + 2\hat{a}\hat{\hat{b}}\right)^{1/2}$$

Watch Video Solution

**416.** Let  $\vec{a} = \hat{i} + 2\hat{j} + \hat{k}$ ,  $\vec{b} = \hat{i} - \hat{j} + \hat{k}$  and  $\vec{c} = \hat{i} + \hat{j} - \hat{k}$ . Then find  $\begin{bmatrix} \vec{a} \cdot \vec{b} \cdot \vec{c} \end{bmatrix}$ 

**417.** If  $\vec{a}$ ,  $\vec{b}$  and  $\vec{c}$  are three non-zero, non coplanar vector  $\vec{b}_1 = \vec{b} - \frac{\vec{b} \cdot \vec{a}}{|\vec{a}|^2}\vec{a}$ ,

$$\vec{c}_{1} = \vec{c} - \frac{\vec{c} \cdot \vec{a}}{|\vec{a}|^{2}} \vec{a} + \frac{\vec{b} \cdot \vec{c}}{|\vec{c}|^{2}} \vec{b}_{1} , \quad , \quad c_{2} = \vec{c} - \frac{\vec{c} \cdot \vec{a}}{|\vec{a}|^{2}} \vec{a} - \frac{\vec{b} \cdot \vec{c}}{|\vec{b}_{1}|^{2}} ,$$

$$b_{1}, \vec{c}_{3} = \vec{c} - \frac{\vec{c} \cdot \vec{a}}{|\vec{c}|^{2}} \vec{a} + \frac{\vec{b} \cdot \vec{c}}{|\vec{c}|^{2}} \vec{b}_{1} , \quad \vec{c}_{4} = \vec{c} - \frac{\vec{c} \cdot \vec{a}}{|\vec{c}|^{2}} \vec{a} = \frac{\vec{b} \cdot \vec{c}}{|\vec{b}|^{2}} \vec{b}_{1}$$
 then the set of

orthogonal vectors is

a.  $(\vec{a}, \vec{b}_{1}, \vec{c}_{3})$ b.  $(\vec{a}, \vec{b}_{1}, \vec{c}_{2})$ c.  $(\vec{a}, \vec{b}_{1}, \vec{c}_{1})$ d.  $(\vec{a}, \vec{b}_{2}, \vec{c}_{2})$ 

Watch Video Solution

**418.** The unit vector which is orthogonal to the vector  $3\hat{i} + 2\hat{j} + 6\hat{k}$  and is coplanar with vectors  $2\hat{i} + \hat{j} + \hat{k}$  and  $\hat{i} - \hat{j} + \hat{k}$  is  $\frac{2\hat{i} - 6\hat{j} + \hat{k}}{\sqrt{41}}$  b.  $\frac{2\hat{i} - 3\hat{j}}{\sqrt{13}}$  c.  $\frac{3\hat{j} - \hat{k}}{\sqrt{10}}$  d.  $\frac{4\hat{i} + 3\hat{j} - 3\hat{k}}{\sqrt{34}}$ 



**419.** If  $\vec{a}$  and  $\vec{b}$  are unequal unit vectors such that  $\left(\vec{a} - \vec{b}\right) \times \left[\left(\vec{b} + \vec{a}\right) \times \left(2\vec{a} + \vec{b}\right)\right] = \vec{a} + \vec{b}$ , then angle  $\theta$  between  $\vec{a}and\vec{b}$  is  $0 \text{ b}. \pi/2 \text{ c}. \pi/4 \text{ d}. \pi$ 

Watch Video Solution

**420.** If  $\vec{a}$ ,  $\vec{b}$ ,  $\vec{c}$  are 3 unit vectors such that  $\vec{a} \times (\vec{b} \times \vec{c}) = \frac{\vec{b}}{2}$  then  $(\vec{b} \text{ and } \vec{c})$ being non parallel). (a)angle between  $\vec{a} \otimes \vec{b}$  is  $\frac{\pi}{3}$  (b)angle between  $\vec{a}$  and  $\vec{c}$ is  $\frac{\pi}{3}$  (c)angle between  $\vec{a}$  and  $\vec{b}$  is  $\frac{\pi}{2}$  (d)angle between  $\vec{a}$  and  $\vec{c}$  is  $\frac{\pi}{2}$ 

Watch Video Solution

**421.** Prove that  $\begin{bmatrix} \vec{a} + \vec{b} & \vec{b} + \vec{c} & \vec{c} + \vec{a} \end{bmatrix} = 2 \begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix}^{T}$ 

**422.** A vector  $\vec{d}$  is equally inclined to three vectors  $\vec{a} = \hat{i} + \hat{j} + \hat{k}, \vec{b} = 2\hat{i} + \hat{j}and\vec{c} = 3\hat{j} - 2\hat{k}$  Let  $\vec{x}, \vec{y}, and \vec{z}$  be three vectors in the plane of  $\vec{a}, \vec{b}; \vec{b}, \vec{c}; \vec{c}, \vec{a}$ , respectively. Then  $a.\vec{x}.\vec{d} = -1$  b.  $\vec{y}.\vec{d} = 1$  c.  $\vec{z}.\vec{d} = 0$  d.  $\vec{r}.\vec{d} = 0$ , where  $\vec{r} = \lambda\vec{x} + \mu\vec{y} + \delta\vec{z}$ 

#### Watch Video Solution

**423.** If  $a \times (b \times c) = (a \times b) \times c$ , then a.  $(\vec{c} \times \vec{a}) \times \vec{b} = \vec{0}$ b. $\vec{c} \times (\vec{a} \times \vec{b}) = \vec{0}$ c.  $\vec{b} \times (\vec{c} \times \vec{a}) = 0$ d.  $(\vec{c} \times \vec{a}) \times \vec{b} = \vec{b} \times (\vec{c} \times \vec{a}) = \vec{0}$ 

#### Watch Video Solution

**424.** If  $\hat{a}, \hat{b}, and\hat{c}$  are three unit vectors inclined to each other at angle  $\theta$ ,

then the minimum value of 
$$\theta$$
 is  $\frac{\pi}{3}$  b.  $\frac{\pi}{4}$  c.  $\frac{2\pi}{3}$  d.  $\frac{5\pi}{6}$ 

**425.** Let the pairs *a*, *b*, and *c*, *d* each determine a plane. Then the planes are parallel if  $a.(\vec{a} \times \vec{c}) \times (\vec{b} \times \vec{d}) = \vec{0}$  b.  $(\vec{a} \times \vec{c}).(\vec{b} \times \vec{d}) = \vec{0}$  c.  $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = \vec{0} d.(\vec{a} \times \vec{b}).(\vec{c} \times \vec{d}) = \vec{0}$ 

Watch Video Solution

**426.**  $P(\vec{p})$  and  $Q(\vec{q})$  are the position vectors of two fixed points and  $R(\vec{r})$  is the position vectorvariable point. If R moves such that  $(\vec{r} - \vec{p}) \times (\vec{r} - \vec{q}) = 0$  then the locus of R is

Watch Video Solution

**427.** Two adjacent sides of a parallelogram *ABCD* are  $2\hat{i} + 4\hat{j} - 5\hat{k}$  and  $\hat{i} + 2\hat{j} + 3\hat{k}$ . Then the value of  $|AC \times BD|$  is a.  $20\sqrt{5}$  b.  $22\sqrt{5}$  c.  $24\sqrt{5}$  d.  $26\sqrt{5}$ 

**428.** If  $\hat{a}$ ,  $\hat{b}$ , and $\hat{c}$  are three unit vectors, such that  $\hat{a} + \hat{b} + \hat{c}$  is also a unit vector and  $\theta_1$ ,  $\theta_2$  and  $\theta_3$  are angles between the vectors  $\hat{a}$ ,  $\hat{b}$ ;  $\hat{b}$ ,  $\hat{c}and\hat{c}$ ,  $\hat{a}$  respectively, then among  $\theta_1$ ,  $\theta_2$  and  $\theta_3$ . a. all are acute angles b. all are right angles c. at least one is obtuse angle d. none of these

Watch Video Solution

Watch Video Solution

**429.** If  $\vec{a}, \vec{b}, \vec{c}$  are unit vectors such that  $\vec{a}, \vec{b} = 0 = \vec{a}, \vec{c}$  and the angle between  $\vec{b}$  and  $\vec{c}$  is  $\frac{\pi}{3}$ , then find the value of  $\left| \vec{a} \times \vec{b} - \vec{a} \times \vec{c} \right|$ .

**430.** Let  $\vec{a} = \hat{i} + \hat{j}; \vec{b} = 2\hat{i} - \hat{k}$  Then vector  $\vec{r}$  satisfying  $\vec{r} \times \vec{a} = \vec{b} \times \vec{a}$  and  $\vec{r} \times \vec{b} = \vec{a} \times \vec{b}$  then  $\vec{r}$  is a. $\hat{i} - \hat{j} + \hat{k}$  b.  $3\hat{i} - \hat{j} + \hat{k}$  c.  $3\hat{i} + \hat{j} - \hat{k}$  d.  $\hat{i} - \hat{j} - \hat{k}$
**431.** If  $\vec{a}, \vec{b}$  are two vectors such that  $\vec{a}, \vec{b} < 0$  and  $\left| \vec{a}, \vec{b} \right| = \left| \vec{a} \times \vec{b} \right|$  then

the angle between  $\vec{a}$  and  $\vec{b}$  is



**432.**  $\vec{a}$ ,  $\vec{b}$ , and  $\vec{c}$  are three vectors of equal magnitude. The angle between each pair of vectors is  $\pi/3$  such that  $\left|\vec{a} + \vec{b} + \vec{c}\right| = \sqrt{6}$ . Then  $\left|\vec{a}\right|$  is equal to a.2 b. -1 c. 1 d.  $\sqrt{6}/3$ 

Watch Video Solution

**433.** Let  $\vec{p}$  and  $\vec{q}$  be any two orthogonal vectors of equal magnitude 4 each. Let  $\vec{a}$ ,  $\vec{b}$ , and  $\vec{c}$  be any three vectors of lengths  $7\sqrt{15}$  and  $2\sqrt{33}$ , mutually perpendicular to each other. Then find the distance of the vector

$$\begin{pmatrix} \vec{a} \vec{p} \\ \vec{a} \vec{p} \end{pmatrix} \vec{p} + \begin{pmatrix} \vec{a} \vec{q} \\ \vec{a} \vec{q} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{a} \vec{p} \times \vec{q} \\ \vec{p} \times \vec{q} \end{pmatrix} (\vec{p} \times \vec{q}) + \begin{pmatrix} \vec{b} \vec{p} \\ \vec{b} \vec{p} \end{pmatrix} \vec{p} \begin{pmatrix} \vec{b} \vec{q} \\ \vec{b} \vec{q} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \vec{p} \times \vec{q} \\ \vec{b} \vec{p} \times \vec{q} \end{pmatrix} (\vec{p} \times \vec{q}) + \begin{pmatrix} \vec{b} \vec{p} \\ \vec{p} \end{pmatrix} \vec{p} \begin{pmatrix} \vec{a} \\ \vec{p} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \\ \vec{p} \\ \vec{p} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \\ \vec{p} \\ \vec{p} \\ \vec{p} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \\ \vec{p} \\ \vec{p} \\ \vec{p} \\ \vec{p} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \\ \vec{p} \\$$

from the origin.

**434.** Let  $\vec{a}and\vec{b}$  be two non-collinear unit vector. If  $\vec{u} = \vec{a} - \left(\vec{a}\vec{b}\right)\vec{b}and\vec{v} = \vec{a} \times \vec{b}$ , then  $|\vec{v}|$  is a.  $|\vec{u}|$  b.  $|\vec{u}| + \left|\vec{u}\vec{a}\right|$  c.  $|\vec{u}| + \left|\vec{u}\vec{b}\right|$  d.

 $\left|\vec{u}\right| + \hat{u}\left|\vec{a} + \vec{b}\right|$ 

Watch Video Solution

**435.** The vertex A triangle ABC is on the line  $\vec{r} = \hat{i} + \hat{j} + \lambda \hat{k}$  and the vertices *BandC* have respective position vectors  $\hat{i}and\hat{j}$ . Let  $\Delta$  be the area of the triangle and  $\Delta [3/2, \sqrt{33}/2]$ . Then the range of values of  $\lambda$  corresponding to A is a.[-8,4]  $\cup$  [4,8] b. [-4,4] c. [-2,2] d. [-4, -2]  $\cup$  [2,4]

**436.** If *a* is real constant *A*, *B* and *C* are variable angles and  $\sqrt{a^2 - 4} \tan A + a \tan B + \sqrt{a^2 + 4} \tan C = 6a$ , then the least value of  $\tan^2 A + \tan^2 B + \tan^2 C$  is a. 6 b. 10 c. 12 d. 3

## Watch Video Solution

**437.** The position vectors of the vertices *A*, *BandC* of a triangle are three unit vectors  $\vec{a}, \vec{b}, and\vec{c}$ , respectively. A vector  $\vec{d}$  is such that  $\vec{d} \cdot \vec{a} = \vec{d} \cdot \vec{b} = \vec{d} \cdot \vec{c} and\vec{d} = \lambda \left(\vec{b} + \vec{c}\right)^{\cdot}$  Then triangle *ABC* is a. acute angled b. obtuse angled c. right angled d. none of these

**438.** Given that 
$$\vec{a}, \vec{b}, \vec{p}, \vec{q}$$
 are four vectors such that  
 $\vec{a} + \vec{b} = \mu \vec{p}, \vec{b} \cdot \vec{q} = 0$  and  $|\vec{b}|^2 = 1$ , where  $\mu$  is a scalar. Then  
 $\left|\begin{pmatrix} \cdot \\ \vec{a}\vec{q} \end{pmatrix}\vec{p} - \begin{pmatrix} \cdot \\ \vec{p}\vec{q} \end{pmatrix}\vec{a}\right|$  is equal to (a)  $2|\vec{p},\vec{q}|$  (b)  $(1/2)|\vec{p},\vec{q}|$  (c)  $|\vec{p} \times \vec{q}|$  (d)  
 $|\vec{p},\vec{q}|$ 

**439.** In AB, DE and GF are parallel to each other and AD, BG and EF ar parallel to each other . If CD: CE = CG:CB = 2:1 then the value of area  $(\triangle AEG)$ : *area* $(\triangle ABD)$  is equal to (a) 7/2 (b)3 (c)4 (d)9/2

Watch Video Solution

**440.** In a quadrilateral ABCD,  $\vec{A}C$  is the bisector of  $\vec{A}Band\vec{A}D$ , angle between  $\vec{A}Band\vec{A}D$  is  $2\pi/3$ ,  $15\left|\vec{A}C\right| = 3\left|\vec{A}B\right| = 5\left|\vec{A}D\right|^{\cdot}$  Then the angle between  $\vec{B}Aand\vec{C}D$  is  $(a)\cos^{-1}\left(\frac{\sqrt{14}}{7\sqrt{2}}\right)$  b.  $\cos^{-1}\left(\frac{\sqrt{21}}{7\sqrt{3}}\right)$  c.  $\cos^{-1}\left(\frac{2}{\sqrt{7}}\right)$  d.  $\cos^{-1}\left(\frac{2\sqrt{7}}{14}\right)$ 

**441.** Position vector  $\hat{k}$  is rotated about the origin by angle  $135^0$  in such a way that the plane made by it bisects the angle between  $\hat{i}$  and  $\hat{j}$ . Then its new position is

A. a. 
$$\pm \frac{\hat{i}}{\sqrt{2}} \pm \frac{\hat{j}}{\sqrt{2}}$$
  
B. b.  $\pm \frac{\hat{i}}{2} \pm \frac{\hat{j}}{2} - \frac{\hat{k}}{\sqrt{2}}$   
C. c.  $\frac{\hat{i}}{\sqrt{2}} - \frac{\hat{k}}{\sqrt{2}}$ 

D. d. none of these

### Watch Video Solution

**442.** A non-zero vector  $\vec{a}$  is such that its projections along vectors

$$\frac{\hat{i}+\hat{j}}{\sqrt{2}}, \frac{-\hat{i}+\hat{j}}{\sqrt{2}} \text{ and } \hat{k} \text{ are equal, then unit vector along } \vec{a} \text{ is a.} \frac{\sqrt{2}\hat{j}-\hat{k}}{\sqrt{3}} \text{ b.}$$
$$\frac{\hat{j}-\sqrt{2}\hat{k}}{\sqrt{3}} \text{ c.} \frac{\sqrt{2}}{\sqrt{3}}\hat{j} + \frac{\hat{k}}{\sqrt{3}} \text{ d.} \frac{\hat{j}-\hat{k}}{\sqrt{2}}$$

**443.** Let  $\vec{a} = 2\hat{i} + \hat{j} + \hat{k}$ ,  $\vec{b} = \hat{i} + 2\hat{j} - \hat{k}$  and a unit vector  $\vec{c}$  be coplanar. If  $\vec{c}$  is perpendicular to  $\vec{a}$ , then  $\vec{c}$  is a.  $\frac{1}{\sqrt{2}} \left( -\hat{j} + \hat{k} \right)$  b.  $\frac{1}{\sqrt{3}} \left( -\hat{i} - \hat{j} - \hat{k} \right)$  c.  $\frac{1}{\sqrt{5}} \left( -\hat{k} - 2\hat{j} \right) d$ .  $\frac{1}{\sqrt{3}} \left( \hat{i} - \hat{j} - \hat{k} \right)$ 

Watch Video Solution

**444.** Let  $\vec{a} = 2i + j - 2kand\vec{b} = i + j$  If  $\vec{c}$  is a vector such that  $\vec{a} \cdot \vec{c} = |\vec{c}|, |\vec{c} - \vec{a}| = 2\sqrt{2}$  between  $\vec{a} \times \vec{b}$  and  $\vec{c}is30^{0}, then |(\vec{a} \times \vec{b}) \times \vec{c}|$  I equal to a. 2/3 b. 3/2 c. 2 d. 3

## Watch Video Solution

**445.** Let *ABCD* be a tetrahedron such that the edges *AB*, *AC* and *AD* are mutually perpendicular. Let the area of triangles *ABC*, *ACD* and *ADB* be 3, 4 and 5*sq. units*, respectively. Then the area of triangle *BCD* is  $a.5\sqrt{2}$ 



### Watch Video Solution

**446.** Vector  $\vec{a}$  in the plane of  $\vec{b} = 2\hat{i} + \hat{j}and\vec{c} = \hat{i} - \hat{j} + \hat{k}$  is such that it is equally inclined to  $\vec{b}and\vec{d}$  where  $\vec{d} = \hat{j} + 2\hat{k}$ . The value of  $\vec{a}$  is a.  $\frac{\hat{i} + \hat{j} + \hat{k}}{\sqrt{2}}$  b.

$$\frac{\hat{i}-\hat{j}+\hat{k}}{\sqrt{3}} \text{ c. } \frac{2\hat{i}+\hat{j}}{\sqrt{5}} \text{ d. } \frac{2\hat{i}+\hat{j}}{\sqrt{5}}$$

Watch Video Solution

**447.** If 
$$\vec{a}, \vec{b}$$
 and  $\vec{c}$  are non-coplanar unit vectors such that  $\vec{a} \times (\vec{b} \times \vec{c}) = \frac{\vec{b} + \vec{c}}{\sqrt{2}}$ , then the angle between  $\vec{a}$  and  $\vec{b}$  is a.  $3\pi/4$  b.  $\pi/4$  c.  $\pi/2$  d.  $\pi$ 

**448.** Let  $\vec{u}$ ,  $\vec{v}$  and  $\vec{w}$  be vectors such that  $\vec{u} + \vec{v} + \vec{w} = 0$ . If  $|\vec{u}| = 3$ ,  $|\vec{v}| = 4$ and  $|\vec{w}| = 5$ , then  $\vec{u}$ .  $\vec{v} + \vec{v}$ .  $\vec{w} + \vec{w}$ .  $\vec{u}$  is a.47 b. -25 c. 0 d. 25

**449.** If  $\vec{a}$ ,  $\vec{b}$ , and  $\vec{c}$  are three non-coplanar non-zero vecrtors, then prove

that 
$$\begin{pmatrix} \cdot \\ \vec{a}\vec{a} \end{pmatrix} \vec{b} \times \vec{c} + \begin{pmatrix} \cdot \\ \vec{a}\vec{b} \end{pmatrix} \vec{c} \times \vec{a} + \begin{pmatrix} \cdot \\ \vec{a}\vec{c} \end{pmatrix} \vec{a} \times \vec{b} = \begin{bmatrix} \vec{b}\vec{c}\vec{a} \end{bmatrix} \vec{a}$$
.

Watch Video Solution

**450.** Let  $\vec{p}$  and  $\vec{q}$  be any two orthogonal vectors of equal magnitude 4 each. Let  $\vec{a}$ ,  $\vec{b}$ , and  $\vec{c}$  be any three vectors of lengths  $7\sqrt{15}$  and  $2\sqrt{33}$ , mutually perpendicular to each other. Then find the distance of the vector

$$\begin{pmatrix} \vec{a} \vec{p} \\ \vec{a} \vec{q} \end{pmatrix} \vec{p} + \begin{pmatrix} \vec{a} \vec{q} \\ \vec{a} \vec{q} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{a} \vec{p} \times \vec{q} \\ \vec{p} \times \vec{q} \end{pmatrix} (\vec{p} \times \vec{q}) + \begin{pmatrix} \vec{b} \vec{p} \\ \vec{b} \vec{p} \end{pmatrix} \vec{p} \begin{pmatrix} \vec{b} \vec{q} \\ \vec{b} \vec{q} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \vec{p} \times \vec{q} \\ \vec{b} \vec{p} \times \vec{q} \end{pmatrix} (\vec{p} \times \vec{q}) + \begin{pmatrix} \vec{b} \vec{p} \\ \vec{p} \end{pmatrix} \vec{p} \begin{pmatrix} \vec{a} \vec{q} \\ \vec{p} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \vec{p} \\ \vec{p} \end{pmatrix} \vec{p} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \vec{p} \\ \vec{p} \end{pmatrix} \vec{p} \end{pmatrix} \vec{p} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \vec{p} \\ \vec{p} \end{pmatrix} \vec{p} \end{pmatrix} \vec{p} \end{pmatrix} \vec{p} \vec{p} + \begin{pmatrix} \vec{b} \vec{p} \end{pmatrix} \vec{p} \end{pmatrix} \vec{p} \end{pmatrix} \vec{p} \end{pmatrix} \vec{p} \vec{p} \end{pmatrix} \vec$$

from the origin.





Watch Video Solution

**452.** Find a unit vector perpendicular to each of the vectors  $(\vec{a} + \vec{b})$  and  $(\vec{a} - \vec{b})$ , where  $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ ,  $\vec{b} = \hat{i} + 2\hat{j} + 3\hat{k}$ .

**453.** Prove that 
$$(\vec{a}.(\vec{b}\times\hat{i}))\hat{i} + (\vec{a}.(\vec{b}\times\hat{j}))\hat{j} + (\vec{a}.(\vec{b}\times\hat{k}))\hat{k} = \vec{a}\times\vec{b}.$$

#### Watch Video Solution

Column Column The possible value 454. ١, - 11 of ā if  $\vec{r} = (\hat{i} + \hat{j}) + \lambda(\hat{i} + 2\hat{i} - \hat{k})$  and  $\vec{r} = (\hat{i} + 2\hat{j}) + \mu(-\hat{i} + \hat{j} + a\hat{k})$  are not consistent, where  $\lambda and\mu$  are scalars, is, p. -4 The angel between vectors  $\vec{a} = \lambda \hat{i} - 3\hat{j} - \hat{k}and\vec{b} = 2\lambda \hat{i} + \lambda \hat{j} - \hat{k}$  is acute, whereas vecrtor  $\vec{b}$  makes an obtuse angel with the axes of coordinates. Then  $\lambda$  may be, q. -2 The possible value of a such that  $2\hat{i} - \hat{j} + \hat{k}$ ,  $\hat{i} + 2\hat{j} + (1 + a)kand3\hat{i} + a\hat{j} + 5\hat{k}$  are coplanar is, r. 2 If  $\vec{A} = 2\hat{i} + \lambda\hat{j} + 3\hat{k}$ ,  $\vec{B} = 2\hat{i} + \lambda\hat{j} + \hat{k}$ ,  $\vec{C} = 3\hat{i} + \hat{j}and\vec{A} + \lambda\vec{B}$  is perpendicular to  $\vec{C}$  then  $|2\lambda|$  is, s. 3

# Watch Video Solution

**455.** If  $\vec{A}$ ,  $\vec{B}$  and  $\vec{C}$  are vectors such that  $\left| \vec{B} \right| = \left| \vec{C} \right|$ . Prove that  $\left[ \left( \vec{A} + \vec{B} \right) \times \left( \vec{A} + \vec{C} \right) \right] \times \left( \vec{B} + \vec{C} \right)$ .  $\left( \vec{B} + \vec{C} \right) = 0$ 



**457.** Statement 1: Vector  $\vec{c} = -5\hat{i} + 7\hat{j} + 2\hat{k}$  is along the bisector of angel between  $\vec{a} = \hat{i} + 2\hat{j} + 2\hat{k}and\vec{b} = 8\hat{i} + \hat{j} - 4\hat{k}$  Statement 2:  $\vec{c}$  is equally inclined to  $\vec{a}and\vec{b}$ 

## Watch Video Solution

**458.** Statement 1: A component of vector  $\vec{b} = 4\hat{i} + 2\hat{j} + 3\hat{k}$  in the direction perpendicular to the direction of vector  $\vec{a} = \hat{i} + \hat{j} + \hat{k}i\hat{s}\hat{i} - \hat{j}$  Statement 2: A component of vector in the direction of  $\vec{a} = \hat{i} + \hat{j} + \hat{k}$  is  $2\hat{i} + 2\hat{j} + 2\hat{k}$  **459.** Statement 1 : Points A(1, 0), B(2, 3), C(5, 3), and D(6, 0) are concyclic. Statement 2 : Points A, B, C, and D form an isosceles trapezium or

ABandCD meet at E Then  $EA \cdot EB = EC \cdot ED$ 

Watch Video Solution

**460.** Let  $\vec{r}$  be a non-zero vector satisfying  $\vec{r} \vec{a} = \vec{r} \vec{b} = \vec{r} \vec{c} = 0$  for given non-zero vectors  $\vec{a}, \vec{b}$  and  $\vec{c}$  Statement 1:  $\begin{bmatrix} \vec{a} - \vec{b} & \vec{b} - \vec{c} & \vec{c} - \vec{a} \end{bmatrix} = 0$ Statement 2:  $\begin{bmatrix} \vec{a} \vec{b} \vec{c} \end{bmatrix} = 0$ 

Watch Video Solution

**461.** Let  $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$ ,  $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$  and  $\vec{c} = c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$  be three non-zero vectors such that  $\vec{c}$  is a unit vector perpendicular to both

 $\vec{a}$  and  $\vec{b}$  . If the angle between a and b is  $\frac{\pi}{6}$ , then prove that

$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}^2 = \frac{1}{4} \left( a_1^2 + a_2^2 + a_3^2 \right) \left( b_1^2 + b_2^2 + b_3^2 \right)$$

Watch Video Solution

**462.** Statement-I 
$$A = 2\hat{i} + 3\hat{j} + 6\hat{k}, B = \hat{i} + \hat{j} - 2\hat{k} \text{ and } C = \hat{i} + 2\hat{j} + \hat{k}, \text{ then}$$
  
 $|A \times (A \times (A \times B)) \cdot C| = 243$   
Statement-II  $|A \times (A \times (A \times B)) \cdot C| = |A|^2 |[ABC]|$ 

### Watch Video Solution

**463.** If  $\vec{a}, \vec{b}, and\vec{c}$  are mutually perpendicular vectors and  $\vec{a} = \alpha \left(\vec{a} \times \vec{b}\right) + \beta \left(\vec{b} \times \vec{c}\right) + \gamma \left(\vec{c} \times \vec{a}\right) and \left[\vec{a}\vec{b}\vec{c}\right] = 1$ , then find the value of  $\alpha + \beta + \gamma$ 

**464.** Let vectors  $\vec{a}$ ,  $\vec{b}$ ,  $\vec{c}$ , and  $\vec{d}$  be such that  $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = 0$ . Let  $P_1 and P_2$  be planes determined by the pair of vectors  $\vec{a}$ ,  $\vec{b}$ , and  $\vec{c}$ ,  $\vec{d}$ , respectively. Then the angle between  $P_1 and P_2$  is a.0 b.  $\pi/4$  c.  $\pi/3$  d.  $\pi/2$ 

**465.** The number of vectors of unit length perpendicular to vectors  $\vec{a} = (1, 1, 0)and\vec{b} = (0, 1, 1)$  is a. one b. two c. three d. infinite

Watch Video Solution

**466.** Prove that 
$$(\vec{a} \cdot \hat{i})(\vec{a} \times \hat{i}) + (\vec{a} \cdot j)(\vec{a} \times \hat{j}) + (\vec{a} \cdot \hat{k})(\vec{a} \times \hat{k}) = 0.$$

**467.** Let  $f(t) = [t]\hat{i} + (t - [t])\hat{j} + [t + 1]\hat{k}$ , where [.] denotes the greatest

integer function. Then the vectors  $f\left(\frac{5}{4}\right)andf(t)$ , 0 < t < 1 are(a) parallel to

each other(b) perpendicular(c) inclined at  $\cos^{-1}2\left(\sqrt[4]{7}\left(1-t^2\right)\right)$  (d)inclined

at 
$$\cos^{-1}\left(\frac{8+t}{9\sqrt{1+t^2}}\right);$$

Watch Video Solution

**468.** If  $\vec{a}$  is parallel to  $\vec{b} \times \vec{c}$ , then  $(\vec{a} \times \vec{b}).(\vec{a} \times \vec{c})$  is equal to a.  $|\vec{a}|^2(\vec{b},\vec{c})$  b.  $|\vec{b}|^2(\vec{a},\vec{c})$  c.  $|\vec{c}|^2(\vec{a},\vec{b})$  d. none of these

Watch Video Solution

**469.** The three vectors  $\hat{i} + \hat{j}, \hat{j} + \hat{k}, \hat{k} + \hat{i}$  taken two at a time form three planes, The three unit vectors drawn perpendicular to these planes form a parallelopiped of volume:



**470.** If 
$$\vec{d} = \vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}$$
 is non-zero vector and  
 $|(\vec{d} \cdot \vec{c})(\vec{a} \times \vec{b}) + (\vec{d} \cdot \vec{a})(\vec{b} \times \vec{c}) + (\vec{d} \cdot \vec{b})(\vec{c} \times \vec{a})| = 0$ , then  
 $a.|\vec{a}| = |\vec{b}| = |\vec{c}|$   
 $b.|\vec{a}| + |\vec{b}| + |\vec{c}| = |\vec{d}|$   
 $c. \vec{a}, \vec{b}, and \vec{c}$  are coplanar  
d. none of these  
**Watch Video Solution**

**471.** If |a| = 2and|b| = 3 and ab = 0, then $(a \times (a \times (a \times (a \times b))))$  is equal to

 $48\hat{b}$  b.  $16\hat{b}$  c.  $48\hat{a}$  d. -  $48\hat{a}$ 

**472.** If the two diagonals of one its faces are  $6\hat{i} + 6\hat{k}and\hat{4}\hat{j} + 2\hat{k}$  and of the edges not containing the given diagonals is  $c = 4\hat{j} - 8\hat{k}$ , then the volume of a parallelepiped is a. 60 b. 80 c. 100 d. 120



**473.** The volume of a tetrahedron formed by the coterminous edges  $\vec{a}$ ,  $\vec{b}$ , and  $\vec{c}$  is 3. Then the volume of the parallelepiped formed by the coterminous edges  $\vec{a} + \vec{b}$ ,  $\vec{b} + \vec{c}$  and  $\vec{c} + \vec{a}$  is 6 b. 18 c. 36 d. 9

## Watch Video Solution

**474.** If  $\vec{a}$ ,  $\vec{b}$ , and  $\vec{c}$  are three mutually orthogonal unit vectors, then the triple product  $\left[\vec{a} + \vec{b} + \vec{c}\vec{a} + \vec{b}\vec{b} + \vec{c}\right]$  equals: (a.) 0 (b.) 1 or -1 (c.) 6 (d.) 3

**475.** Vector  $\vec{c}$  is perpendicular to vectors  $\vec{a} = (2, -3, 1)and\vec{b} = (1, -2, 3)$ and satisfies the condition  $\vec{x} \cdot (\hat{i} + 2\hat{j} - 7\hat{k}) = 10$ . Then vector  $\vec{c}$  is equal to a.(7, 5, 1) b. -7, -5, -1 c. 1, 1, -1 d. none of these

**476.** Given 
$$\vec{a} = x\hat{i} + y\hat{j} + 2\hat{k}$$
,  $\vec{b} = \hat{i} - \hat{j} + \hat{k}$ ,  $\vec{c} = \hat{i} + 2\hat{j}$ ;  $\vec{a} \perp \vec{b}$ ,  $\vec{a}\vec{c} = 4$ . Then  
 $\left[\vec{a}\vec{b}\vec{c}\right]^2 = \left|\vec{a}\right| \mathbf{b}$ .  $\left[\vec{a}\vec{b}\vec{c}\right]^= \left|\vec{a}\right| \mathbf{c}$ .  $\left[\vec{a}\vec{b}\vec{c}\right]^= \mathbf{0} \mathbf{d}$ .  $\left[\vec{a}\vec{b}\vec{c}\right]^= \left|\vec{a}\right|^2$ 

Watch Video Solution

**477.**  $\vec{a}and\vec{b}$  are two unit vectors that are mutually perpendicular. A unit vector that is equally inclined to  $\vec{a}$ ,  $\vec{b}and\vec{a} \times \vec{b}$  is  $\mathbf{a} \cdot \frac{1}{\sqrt{2}} \left( \vec{a} + \vec{b} + \vec{a} \times \vec{b} \right) \mathbf{b}$ .  $\frac{1}{2} \left( \vec{a} \times \vec{b} + \vec{a} + \vec{b} \right) \mathbf{c} \cdot \frac{1}{\sqrt{3}} \left( \vec{a} + \vec{b} + \vec{a} \times \vec{b} \right) \mathbf{d} \cdot \frac{1}{3} \left( \vec{a} + \vec{b} + \vec{a} \times \vec{b} \right)$ 

**478.** If  $\vec{r}$  and  $\vec{s}$  are non-zero constant vectors and the scalar b is chosen such that  $|\vec{r} + b\vec{s}|$  is minimum, then the value of  $|b\vec{s}|^2 + |\vec{r} + b\vec{s}|^2$  is equal to a.2  $|\vec{r}|^2$  b.  $|\vec{r}|^2/2$  c. 3  $|\vec{r}|^2$  d.  $|r|^2$ 

## Watch Video Solution

**479.** The scalar 
$$\vec{A}\left(\left(\vec{B}+\vec{C}\right)\times\left(\vec{A}+\vec{B}+\vec{C}\right)\right)$$
 equals  
a.0 b.  $\left[\vec{A}\vec{B}\vec{C}\right]+\left[\vec{B}\vec{C}\vec{A}\right]$  c.  $\left[\vec{A}\vec{B}\vec{C}\right]$  d. none of these

Watch Video Solution

**480.** The volume of he parallelepiped whose sides are given by

$$\vec{O}A = 2i - 2j$$
,  $\vec{O}B = i + j - kand\vec{O}C = 3i - k$  is a.  $\frac{4}{13}$  b. 4 c.  $\frac{2}{7}$  d. 2

**481.** For non-zero vectors  $\vec{a}$ ,  $\vec{b}$ , and  $\vec{c}$ ,  $\left| \left( \vec{a} \times \vec{b} \right) \vec{c} \right| = \left| \vec{a} \right| \left| \vec{b} \right| \left| \vec{c} \right|$  holds if and only if  $\mathbf{a}.\vec{a} \cdot \vec{b} = 0$ ,  $\vec{b} \cdot \vec{c} = 0$  b.  $\vec{b} \cdot \vec{c} = 0$ ,  $\vec{c} \cdot \vec{a} = 0$  c.  $\vec{c} \cdot \vec{a} = 0$ ,  $\vec{a} \cdot \vec{b} = 0$  d.  $\vec{a} \cdot \vec{b} = 0$ ,  $\vec{b} \cdot \vec{c} = 0$ ,  $\vec{c} \cdot \vec{a} = 0$ 

Watch Video Solution

**482.** For three vectors  $\vec{u}$ ,  $\vec{v}$  and  $\vec{w}$  which of the following expressions is not equal to any of the remaining three ? a. $\vec{u} \vec{v} \times \vec{w}$  b.  $(\vec{v} \times \vec{w})\vec{u}$  c.  $\vec{v}\vec{u} \times \vec{w}$  d.

$$(\vec{u} \times \vec{v})\vec{w}$$

Watch Video Solution

**483.** Let  $\vec{A}$  be a vector parallel to the line of intersection of planes  $P_1andP_2$  Plane  $P_1$  is parallel to vectors  $2\hat{j} + 3\hat{k}and4\hat{j} - 3kandP_2$  is parallel to  $\hat{j} - \hat{k}and3\hat{i} + 3\hat{j}$  Then the angle betweenvector  $\vec{A}$  and a given vector  $2\hat{i} + \hat{j} - 2\hat{k}$  is  $a.\pi/2$  b.  $\pi/4$  c.  $\pi/6$  d.  $3\pi/4$ 

**484.** If 
$$\vec{a} \cdot \vec{b} = \beta$$
 and  $\vec{a} \times \vec{b} = \vec{c}$ , then $\vec{b}$  is  $\frac{\left(\beta \vec{a} - \vec{a} \times \vec{c}\right)}{|\vec{a}|^2}$  b.  $\frac{\left(\beta \vec{a} + \vec{a} \times \vec{c}\right)}{|\vec{a}|^2}$  c.  
 $\frac{\left(\beta \vec{c} - \vec{a} \times \vec{c}\right)}{|\vec{a}|^2}$  d.  $\frac{\left(\beta \vec{a} + \vec{a} \times \vec{c}\right)}{|\vec{a}|^2}$   
Watch Video Solution

**485.** Let  $\vec{a}$ ,  $\vec{b}$  and  $\vec{c}$  be three non-coplanar vectors and  $\vec{r}$  be any arbitrary vector. Then  $(\vec{a} \times \vec{b}) \times (\vec{r} \times \vec{c}) + (\vec{b} \times \vec{c}) \times (\vec{r} \times \vec{a}) + (\vec{c} \times \vec{a}) \times (\vec{r} \times \vec{b})$  is always equal to  $[\vec{a}\vec{b}\vec{c}]\vec{r}$  b.  $2[\vec{a}\vec{b}\vec{c}]\vec{r}$  c.  $3[\vec{a}\vec{b}\vec{c}]\vec{r}$  d. none of these

## Watch Video Solution

**486.** Let  $\vec{a}$  and  $\vec{b}$  be mutually perpendicular unit vectors. Then for any

arbitrary 
$$\vec{r}$$
, a.  $\vec{r} = \left(\vec{r}\hat{a}\right)\hat{a} + \left(\vec{r}\hat{b}\right)\hat{b} + \left(\vec{r}\hat{a}\times\hat{b}\right)(\hat{a}\times\hat{b})$  b.

$$\vec{r} = \left(\vec{r}\hat{a}\right) - \left(\vec{r}\hat{b}\right)\hat{b} - \left(\vec{r}\hat{a}\times\hat{b}\right)(\hat{a}\times\hat{b})$$
$$\vec{r} = \left(\vec{r}\hat{a}\right)\hat{a} - \left(\vec{r}\hat{b}\right)\hat{b} + \left(\vec{r}\hat{a}\times\hat{b}\right)(\hat{a}\times\hat{b}) \text{ none of these}$$

c.

Watch Video Solution

**487.** Value of 
$$\begin{bmatrix} \vec{a} \times \vec{b}, \vec{a} \times \vec{c}, \vec{d} \end{bmatrix}$$
 is always equal to a.  $\begin{pmatrix} \cdot \\ \vec{a} \vec{d} \end{pmatrix} \begin{bmatrix} \vec{a} \vec{b} \vec{c} \end{bmatrix}$  b.

$$\left(\vec{a}\,\vec{c}\right)\left[\vec{a}\,\vec{b}\,\vec{d}\right]$$
 c.  $\left(\vec{a}\,\vec{b}\right)\left[\vec{a}\,\vec{b}\,\vec{d}\right]$  d. none of these

Watch Video Solution

**488.** Let  $\vec{a}and\vec{b}$  be unit vectors that are perpendicular to each other. Then  $\left[\vec{a} + \left(\vec{a} \times \vec{b}\right)\vec{b} + \left(\vec{a} \times \vec{b}\right)\vec{a} \times \vec{b}\right]$  will always be equal to 1 b. 0 c. -1 d. none

of these

**489.** Let  $\vec{r}$ ,  $\vec{a}$ ,  $\vec{b}$  and  $\vec{c}$  be four nonzero vectors such that  $\vec{r} \cdot \vec{a} = 0$ ,  $|\vec{r} \times \vec{b}| = |\vec{r}| |\vec{b}| and |\vec{r} \times \vec{c}| = |\vec{r}| |\vec{c}|$  Then [abc] is equal to |a||b||c|b. -|a||b||c| c. 0 d. none of these

Watch Video Solution

**490.** Let 
$$\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$$
,  $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$  and  $\vec{c} = c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$  be three non-zero vectors such that  $\vec{c}$  is a unit vector perpendicular to both  $\vec{a}$  and  $\vec{b}$ . If the angle between  $a$  and  $b$  is  $\frac{\pi}{6}$ , then prove that  $\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} \Big|^2 = \frac{1}{4} \Big( a_1^2 + a_2^2 + a_3^2 \Big) \Big( b_1^2 + b_2^2 + b_3^2 \Big)$ 

**491.** If  $4\vec{a} + 5\vec{b} + 9\vec{c} = 0$ , then  $(\vec{a} \times \vec{b}) \times [(\vec{b} \times \vec{c}) \times (\vec{c} \times \vec{a})]$  is equal to a. vector perpendicular to the plane of *a*, *b*, *c* b. a scalar quantity c.  $\vec{0}$  d. none of these



**493.** A vector of magnitude 
$$\sqrt{2}$$
 coplanar with the vector  $\vec{a} = \hat{i} + \hat{j} + 2\hat{k}$  and  $\vec{b} = \hat{i} + 2\hat{j} + \hat{k}$ , and perpendicular to the vector  $\vec{c} = \hat{i} + \hat{j} + \hat{k}$ , is a.- $\hat{j} + \hat{k}$  b.  $\hat{i} - \hat{k}$  c.  $\hat{i} - \hat{j}$  d.  $\hat{i} - \hat{j}$ 

**494.** Let *P* be a point interior to the acute triangle *ABC* If PA + PB + PC is a null vector, then w.r.t triangle *ABC*, point *P* is its a. centroid b. orthocentre c. incentre d. circumcentre

```
Watch Video Solution
```

```
495. G is the centroid of triangle ABC and A<sub>1</sub> and B<sub>1</sub> are the midpoints of sides AB and AC, respectively. If \Delta_1 is the area of quadrilateral GA<sub>1</sub>AB<sub>1</sub> and \Delta is the area of triangle ABC, then \frac{\Delta}{\Delta_1} is equal to a.\frac{3}{2}
b. 3
c. \frac{1}{3}
d. none of these
Watch Video Solution
```

**496.** Points 
$$\vec{a}, \vec{b}, \vec{c}, and\vec{d}$$
 are coplanar and  
 $(\sin\alpha)\vec{a} + (2\sin2\beta)\vec{b} + (3\sin3\gamma)\vec{c} - \vec{d} = 0$ . Then the least value of  
 $\sin^2\alpha + \sin^22\beta + \sin^23\gamma$  is a.  $\frac{1}{14}$  b. 14 c. 6 d.  $1/\sqrt{6}$ 

Watch Video Solution

**497.** If  $\vec{a}$  and  $\vec{b}$  are any two vectors of magnitudes 1 and 2, respectively, and

$$(1 - 3\vec{a}, \vec{b})^2 + |2\vec{a} + \vec{b} + 3(\vec{a} \times \vec{b})|^2 = 47$$
, then the angel between  $\vec{a}$  and  $\vec{b}$   
is  $\pi/3$  b.  $\pi$  - cos<sup>-1</sup>(1/4) c.  $\frac{2\pi}{3}$  d. cos<sup>-1</sup>(1/4)

Watch Video Solution

**498.** If  $\vec{a}$  and  $\vec{b}$  are any two vectors of magnitudes 2 and 3, respectively, such that  $|2(\vec{a} \times \vec{b})| + |3(\vec{a} \cdot \vec{b})| = k$ , then the maximum value of k is a.  $\sqrt{13}$  b.  $2\sqrt{13}$  c.  $6\sqrt{13}$  d.  $10\sqrt{13}$ 

**499.** If  $\vec{a}$  and  $\vec{b}$  are two vectors such that  $|\vec{a} \times \vec{b}| = \sqrt{3}$  and  $\vec{a}\vec{b} = 1$ , find the angle between  $\vec{a}$  and  $\vec{b}$ .

**500.** If the vector product of a constant vector  $\vec{O}A$  with a variable vector  $\vec{O}B$  in a fixed plane OAB be a constant vector, then the locus of B is a. a straight line perpendicular to  $\vec{O}A$  b. a circle with centre O and radius equal to  $\left|\vec{O}A\right|$  c. a straight line parallel to  $\vec{O}A$  d. none of these

### Watch Video Solution

**501.** Let  $\vec{u}$ ,  $\vec{v}$  and  $\vec{w}$  be such that  $|\vec{u}| = 1$ ,  $|\vec{v}| = 2$  and  $|\vec{w}| = 3$ . If the projection of  $\vec{v}$  along  $\vec{u}$  is equal to that of  $\vec{w}$  along  $\vec{u}$  and vectors  $\vec{v}$  and  $\vec{w}$  are perpendicular to each other, then  $|\vec{u} - \vec{v} + \vec{w}|$  equals 2 b.  $\sqrt{7}$  c.  $\sqrt{14}$  d.

A. 2

B. sqrt(7)`

C. sqrt(14)`

D. 14`

Answer: 3

Watch Video Solution

**502.** If the two adjacent sides of two rectangles are represented by vectors  $\vec{p} = 5\vec{a} - 3\vec{b}$ ;  $\vec{q} = -\vec{a} - 2\vec{b}$  and  $\vec{r} = -4\vec{a} - \vec{b}$ ;  $\vec{s} = -\vec{a} + \vec{b}$ , respectively, then the angel between the vector  $\vec{x} = \frac{1}{3}(\vec{p} + \vec{r} + \vec{s})$  and  $\vec{y} = \frac{1}{5}(\vec{r} + \vec{s})$  is  $a.-\cos^{-1}\left(\frac{19}{5\sqrt{43}}\right)$  b.  $\cos^{-1}\left(\frac{19}{5\sqrt{43}}\right)c.\pi - \cos^{-1}\left(\frac{19}{5\sqrt{43}}\right)d.$  cannot be evaluate

**503.** Let *P*, *Q*, *R* and *S* be the points on the plane with position vectors -2i - j, 4i, 3i + 3jand - 3i + 2j, respectively. The quadrilateral *PQRS* must be (a) Parallelogram, which is neither a rhombus nor a rectangle (b) Square (c) Rectangle but not a square (d) Rhombus, but not a square

### Watch Video Solution

**504.**  $\vec{u}$ ,  $\vec{v}$  and  $\vec{w}$  are three non-coplanar unit vectors and  $\alpha$ ,  $\beta$  and  $\gamma$  are the angles between  $\vec{u}$  and  $\vec{v}$ ,  $\vec{v}$  and  $\vec{w}$ ,  $and \vec{w}$  and  $\vec{u}$ , respectively, and  $\vec{x}$ ,  $\vec{y}$  and  $\vec{z}$  are unit vectors along the bisectors of the angles  $\alpha$ ,  $\beta and \gamma$ , respectively. Prove that

$$\left[\vec{x} \times \vec{y}\vec{y} \times \vec{z}\vec{z} \times \vec{x}\right] = \frac{1}{16} \left[\vec{u}\vec{v}\vec{w}\right]^2 \sec^2\left(\frac{\alpha}{2}\right) \sec^2\left(\frac{\beta}{2}\right) \sec^2\left(\frac{\gamma}{2}\right).$$

Watch Video Solution

**505.** If 
$$\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$$
;  $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$ ,  $\vec{c} = c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$  and  $[3\vec{a} + \vec{b} \ 3\vec{b} + \vec{c} \ 3\vec{c} + \vec{a}] = \lambda [\vec{a}\vec{b}\vec{c}]$ , then find the value of  $\frac{\lambda}{4}$ .

**506.** Find the absolute value of parameter t for which the area of the triangle whose vertices the A(-1, 1, 2); B(1, 2, 3) and C(t, 1, 1) is minimum.

## Watch Video Solution

**507.** The condition for equations  $\vec{r} \times \vec{a} = \vec{b}and\vec{r} \times \vec{c} = \vec{d}$  to be consistent

is a. 
$$\vec{b}\vec{c} = \vec{a}\vec{d}$$
 b.  $\vec{a}\vec{b} = \vec{c}\vec{d}$  c.  $\vec{b}\vec{c} + \vec{a}\vec{d} = 0$  d.  $\vec{a}\vec{b} + \vec{c}\vec{d} = 0$ 

Watch Video Solution



| <b>509.</b> $\left(\vec{a} + \vec{b}\right)\vec{b} + \vec{c} \times \left(\vec{a} + \vec{b} + \vec{c}\right) =$ |
|-----------------------------------------------------------------------------------------------------------------|
| a. $\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix}$                                                  |
| b.0                                                                                                             |
| c. 2 $\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix}$                                                |
| d $\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix}$                                                   |

Watch Video Solution

**510.** A vector of magnitude 10 along the normal to the curve  $3x^2 + 8xy + 2y^2 - 3 = 0$  at its point P(1, 0) can be (A)  $\hat{6i} + 8\hat{j}$  (B)  $-8\hat{i} + 3\hat{j}$  (C)  $\hat{6i} - 8\hat{j}$  (D)  $8\hat{i} + 6\hat{j}$ 

## Watch Video Solution

**511.** If  $a(\vec{\alpha} \times \vec{\beta}) + b(\vec{\beta} \times \vec{\gamma}) + c(\vec{\gamma} \times \vec{\alpha}) = 0$  and at least one of *a*, *bandc* is nonzero, then vectors  $\vec{\alpha}, \vec{\beta}and\vec{\gamma}$  are a. parallel b. coplanar c. mutually perpendicular d. none of these

**512.** If  $(\vec{a} \times \vec{b}) \times (\vec{b} \times \vec{c}) = \vec{b}$ , where  $\vec{a}$ ,  $\vec{b}$ , and  $\vec{c}$  are nonzero vectors, then 1.

 $\vec{a}$ ,  $\vec{b}$ , and  $\vec{c}$  can be coplanar 2. $\vec{a}$ ,  $\vec{b}$ , and  $\vec{c}$  must be coplanar 3. $\vec{a}$ ,  $\vec{b}$ , and  $\vec{c}$  cannot be coplanar 4.none of these

Watch Video Solution

**513.** If 
$$\vec{a}$$
,  $\vec{b}$  and  $\vec{c}$  are three non coplanar vectors, then  
 $\left(\vec{a} + \vec{b} + \vec{c}\right) \left[\left(\vec{a} + \vec{b}\right) \times \left(\vec{a} + \vec{c}\right)\right]$  is :

Watch Video Solution

**514.** If  $\vec{x} + \vec{c} \times \vec{y} = \vec{a} and \vec{y} + \vec{c} \times \vec{x} = \vec{b}$ , where  $\vec{c}$  is a nonzero vector, then

which of the following is not correct? 
$$\mathbf{a}.\vec{x} = \frac{\vec{b} \times \vec{c} + \vec{a} + \left(\vec{c}.\vec{a}\right)\vec{c}}{1 + \vec{c}.\vec{c}}$$
 b.

$$\vec{z} \times \vec{b} + \vec{b} + \left(\vec{c} \cdot \vec{a}\right)\vec{c} \quad c. \vec{y} = \frac{\vec{a} \times \vec{c} + \vec{b} + \left(\vec{c} \cdot \vec{b}\right)\vec{c}}{1 + \vec{c} \cdot \vec{c}} \quad d. \text{ none of these}$$

$$\vec{x} = \frac{\vec{c} \times \vec{b} + \vec{b} + \left(\vec{c} \cdot \vec{a}\right)\vec{c}}{1 + \vec{c} \cdot \vec{c}} \quad d. \text{ none of these}$$

$$\mathbf{I} + \vec{c} \cdot \vec{c} \quad d. \text{ none of these}$$

$$\mathbf{I} + \vec{c} \cdot \vec{c} \quad d. \text{ none of these}$$

$$\mathbf{I} + \vec{c} \cdot \vec{c} \quad d. \text{ none of these}$$

$$\mathbf{I} + \vec{c} \cdot \vec{c} \quad d. \text{ none of these}$$

$$\mathbf{I} + \vec{c} \cdot \vec{c} \quad d. \text{ none of these}$$

$$\mathbf{I} + \vec{c} \cdot \vec{c} \quad d. \text{ none of these}$$

$$\mathbf{I} + \vec{c} \cdot \vec{c} \quad d. \text{ none of these}$$

$$\mathbf{I} + \vec{c} \cdot \vec{c} \quad d. \text{ none of these}$$

$$\mathbf{I} + \vec{c} \cdot \vec{c} \quad d. \text{ none of these}$$

$$\mathbf{I} + \vec{c} \cdot \vec{c} \quad d. \text{ none of these}$$

**517.** Let V be the volume of the parallelopiped formed by the vectors  $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$  and  $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$  and  $\vec{c} = c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$ . If  $a_r, b_r$  and  $c_r$ , where r = 1, 2, 3, are non-negative real numbers and  $\sum_{r=1}^{3} (a_r + b_r + c_r) = 3L$  show that  $V \le L^3$ 

Watch Video Solution



**519.** Let  $\vec{u}$  and  $\vec{v}$  be unit vectors such that  $\vec{u} \times \vec{v} + \vec{u} = \vec{w}$  and  $\vec{w} \times \vec{u} = \vec{v}$ . Find the value of  $\begin{bmatrix} \vec{u} & \vec{v} & \vec{w} \end{bmatrix}$ .

**520.** For any two vectors  $\vec{u}$  and  $\vec{v}$  prove that  $(\vec{u}, \vec{v})^2 + |\vec{u} \times \vec{v}|^2 = |\vec{u}|^2 |\vec{v}|^2$ 



**521.** If the incident ray on a surface is along the unit vector  $\vec{v}$ , the reflected ray is along the unit vector  $\vec{w}$  and the normal is along the unit vector  $\vec{a}$  outwards, express  $\vec{w}$  in terms of  $\vec{a}$  and  $\vec{v}$ 

Watch Video Solution

**522.** If 
$$\vec{a}, \vec{b}, \vec{c}$$
 and  $\vec{d}$  are distinct vectors such that  
 $\vec{a} \times \vec{c} = \vec{b} \times \vec{d}$  and  $\vec{a} \times \vec{b} = \vec{c} \times \vec{d}$ , prove that  $(\vec{a} - \vec{d}) \cdot (\vec{b} - \vec{c}) \neq 0$ ,

# Watch Video Solution

**523.** Given two vectors  $\vec{a} = -\hat{i} + 2\hat{j} + 2\hat{k}and\vec{b} = -2\hat{i} + \hat{j} + 2\hat{k}$  Column I, Column II A vector coplanar with  $\vec{a}and\vec{b}$ , p.  $-3\hat{i} + 3\hat{j} + 4\hat{k}$  A vector which is perpendicular to both  $\vec{a}and\vec{b}$ , q.  $2\hat{i} - 2\hat{j} + 3\hat{k}$  A vector which is equally inclined to  $\vec{a}and\vec{b}$ , r.  $\hat{i} + \hat{j}$  A vector which forms a triangle with  $\vec{a}and\vec{b}$ , s.  $\hat{i} - \hat{j} + 5\hat{k}$ 

**524.** Let 
$$\vec{V} = 2\hat{i} + \hat{j} - \hat{k}and\vec{W} = \hat{i} + 3\hat{k}$$
 If  $\vec{U}$  is a unit vector, then the maximum value of the scalar triple product [*UVW*] is a.-1 b.  $\sqrt{10} + \sqrt{6}$  c.  $\sqrt{59}$  d.  $\sqrt{60}$ 

Watch Video Solution

**525.** If the vectors  $\vec{a}$ ,  $\vec{b}$ ,  $\vec{c}$  are non-coplanar and l,m,n are distinct real numbers, then  $[(l\vec{a} + m\vec{b} + n\vec{c})(l\vec{b} + m\vec{c} + n\vec{a})(l\vec{c} + m\vec{a} + n\vec{b})] = 0$ , implies (A) lm + mn + nl = 0 (B) l + m + n = 0 (C)  $l^2 + m^2 + n^2 = 0$
**526.** If  $\vec{a}$ ,  $\vec{b}$  and  $\vec{c}$  are unit coplanar vectors, then the scalar triple product

$$\left[2\vec{a} - \vec{b}2\vec{b} - \vec{c}2\vec{c} - \vec{a}\right]$$
 is 0 b. 1 c.  $-\sqrt{3}$  d.  $\sqrt{3}$ 

**Watch Video Solution**