© 'doubtnut

MATHS

ALLEN

LOGARITHMS

Others

1. The
value
of
N
satisfying
$(\log)_{a}\left[1+(\log)_{b}\left\{1+(\log)_{c}\left(1+(\log)_{p} N\right)\right\}\right]=0$ is-
a. 4 b. 3 c. 2 d. 1

D Watch Video Solution

2. If $\log _{5} p=a$ and $\log _{2} q=a$, then prove that $\frac{p^{4} q^{4}}{100}=100^{2 a-1}$
3. The value of $7 \log \left(\frac{16}{15}\right)+5 \log \left(\frac{25}{24}\right)+3 \log \left(\frac{81}{80}\right)=$

- Watch Video Solution

4. If $a^{2}+b^{2}=23 a b$, then prove that $\frac{\log ((a+b))}{5}=\frac{1}{2}(\log a+\log b)$.

- Watch Video Solution

5. If $(\log)_{k} x .(\log)_{5} k=(\log)_{x} 5, k \neq 1, k>0$, then x is equal to k
(a) k (b) $\frac{1}{5}$ (c) 5 (d) none of these

- Watch Video Solution

6. If $\log _{a} b+\log _{b} c=+\log _{c}$ a vanishes where a, b and c are positive reals different than unity then the value of $\left(\log _{a} b\right)^{3}+\left(\log _{b} c\right)^{3}+\left(\log _{c} a\right)^{3}$ is
7. Evaluate : $3(40)^{\frac{1}{3}}-4(320)^{\frac{1}{3}}-(5)^{\frac{1}{3}}$

- Watch Video Solution

8. If $||x-1|-2|=5$ then find x

- Watch Video Solution

9. If $|x-1|+|x+1|=2$, then find x.

- Watch Video Solution

10. Solve the equation $|x-1|+|7-x|+2|x-2|=4$

- Watch Video Solution

11. Prove that $\sqrt{7}$ is an irrational number.

- Watch Video Solution

12. If in a right angled triangle, a and b are the lengths of sides and c is the length of hypotenuse and $c-b \neq 1, c+b \neq 1$, then show that $(\log)_{\mathrm{c}+\mathrm{b}} \mathrm{a}+(\log)_{\mathrm{c}-\mathrm{b}} \mathrm{a}=2(\log)_{\mathrm{c}+\mathrm{b}} a \log _{\mathrm{c}-\mathrm{b}} a$.

- Watch Video Solution

13. Solve : $(\log)_{(2 x-1)}\left(\frac{x^{4}+2}{2 x+1}\right)=1$

- Watch Video Solution

14. $\frac{1}{(\log)_{\sqrt{b c}} a b c}+\frac{1}{(\log)_{\sqrt{c a}} a b c}+\frac{1}{(\log)_{\sqrt{a b}} a b c}$ has the value of equal to: a. $\frac{1}{2}$ b. 1 c. 2 d. 4
15. The ratio $\frac{2^{\log _{2} a^{4}}-3^{\log _{27}\left(a^{2}+1\right)^{3}}-2 a}{\left(7^{4 \log _{49} a}-a-1\right)}$ simplfies to

- Watch Video Solution

16. The value of expression, $(\log)_{4}\left(\frac{x^{2}}{4}\right)-2(\log)_{4}\left(4 x^{4}\right)$ when $x=-2$ is
(a) -6 (b) -5 (c) -4 (d) meaningless

- Watch Video Solution

17. If $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}$ then $(a+b)(b+c)(c+a)=\ldots \ldots$. a.abc
b. $\frac{1}{a b c}$
c. 0
d. 1
18. Which one of the following denotes the greatest positive proper fraction?
a. $\left(\frac{1}{4}\right)^{(\log)_{2} 6}$ b. $\left(\frac{1}{3}\right)^{(\log)_{3} 5}$ c. $3^{(\log)_{3} 2}$ d. $\left.8^{\left(\frac{1}{(\log)^{2}}\right.}\right)$

- Watch Video Solution

19. If $p=\frac{s}{(1+k)^{n}}$, then n equals
a. $\frac{\log s}{p(1+k)}$ b. $\frac{\log \left(\frac{s}{p}\right)}{\log (1+k)}$ c. $\frac{\log s}{\log p(1+k)}$ d. $\frac{\log p(1+k)}{\log \left(\frac{s}{p}\right)}$

- Watch Video Solution

20.

Value
of x
satifying
$(\log)_{10} \sqrt{1+x}+3(\log)_{10} \sqrt{1-x}=(\log)_{10} \sqrt{1-x^{2}}+2$ is
a. $0<x<1$ b. $-1<x<1$ c. $-1<x<0$ d. None of this
21. Given system of simultaneous equations $2^{x} \cdot 5^{y}=1$ and $5^{x+1} \cdot 2^{y}=2$. Then - (a) . $x=(\log)_{10} 5$ and $y=(\log)_{10} 2$
(b)

$$
\begin{equation*}
x=(\log)_{10} 2 \text { and } y=(\log)_{10} 5 \tag{c}
\end{equation*}
$$

$x=(\log)_{10}\left(\frac{1}{5}\right)$ and $y=(\log)_{10} 2$
$x=(\log)_{10} 5$ and $y=(\log)_{10}\left(\frac{1}{2}\right)$

D Watch Video Solution

22. The value of N satisfying
$(\log)_{a}\left[1+(\log)_{b}\left\{1+(\log)_{c}\left(1+(\log)_{p} N\right)\right\}\right]=0$ is-
a. 4 b. 3 c. 2 d. 1

- Watch Video Solution

23. If α, β, γ are the roots of the cubic $x^{3}-p x^{2}+q x-r=0$

Find the equations whose roots are
(i) $\beta \gamma+\frac{1}{\alpha}, \gamma \alpha+\frac{1}{\beta}, \alpha \beta+\frac{1}{\gamma}$
(ii) $(\beta+\gamma-\alpha),(\gamma+\alpha-\beta),(\alpha+\beta-\gamma)$

Also find the valueof $(\beta+\gamma-\alpha)(\gamma+\alpha-\beta)(\alpha+\beta-\gamma)$

- Watch Video Solution

24. If $a^{x}=b, b^{y}=c, c^{z}=a$
$x=(\log)_{b} a^{2}, y=(\log)_{c} b^{3}, z=(\log)_{a} c^{k}$,
where $a, b, c>0$ and $a, b, c \neq 1$ then k is equal to
a. $\frac{1}{5}$ b. $\frac{1}{6}$ c. $(\log)_{64} 2$ d. $(\log)_{32} 2$

- Watch Video Solution

25. The number of real solutions of the equation $\left(\frac{9}{10}\right)^{x}=-3+x-x^{2}$ is

- Watch Video Solution

26. Which of the following when simplified reduces to an integer?
a. $\frac{2 \log 6}{\log 12+\log 3}$ b. $\frac{\log 32}{\log 4}$
c. $\frac{(\log)_{5} 15-(\log)_{5} 4}{(\log)_{5} 128}$ d. $(\log)_{1 / 4}\left(\frac{1}{16}\right)^{2}$

- Watch Video Solution

27. The equation $\frac{(\log)_{8}\left(\frac{8}{x^{2}}\right)}{\left((\log)_{8} x^{2}\right)}=3$ has
a. no integral solution b. one natural
c. two real solution
d. one irrational solution

- Watch Video Solution

28. Which of the following when simplified reduces to an integer?
a. $\frac{2 \log 6}{\log 12+\log 3}$ b. $\frac{\log 32}{\log 4}$
c. $\frac{(\log)_{5} 15-(\log)_{5} 4}{(\log)_{5} 128}$ d. $(\log)_{1 / 4}\left(\frac{1}{16}\right)^{2}$
29. If α, β be the roots of the equation $x^{2}-p x+q=0$, then find the equation whose roots are $\frac{q}{p-\alpha}$ and $\frac{q}{p-\beta}$

- Watch Video Solution

30. Which one of the following denotes the greatest positive proper fraction?
a. $\left(\frac{1}{4}\right)^{(\log)_{2} 6}$ b. $\left(\frac{1}{3}\right)^{(\log)_{3} 5}$ c. $3^{(\log)_{3} 2}$ d. $\left.8^{\left(\frac{1}{(\log)_{3}}\right.}\right)$

- Watch Video Solution

31. If $\log _{a} b+\log _{b} c=+\log _{c}$ a vanishes where a, b and c are positive reals different than unity then the value of $\left(\log _{a} b\right)^{3}+\left(\log _{b} c\right)^{3}+\left(\log _{c} a\right)^{3}$ is

- Watch Video Solution

32. The solution set of the system of equations
$\log _{12} x\left(\frac{1}{\log _{x} 2}+\log _{2} y\right)=\log _{2} x$ and $\log _{2} x .\left(\log _{3}(x+y)\right)=3 \log _{3} x$ is :
(i) $x=6, y=2$
(ii) $x=4, y=3$
(iii) $x=2, y=6$
$(i v) x=3, y=4$

- Watch Video Solution

33. If x_{1} and x_{2} are the solution of the equation $x^{3 \log _{10}^{3} x-\frac{2}{3} \log _{10} x}=100 \sqrt[3]{10}$ then $-a . \quad \mathrm{x} 1 \mathrm{x} 2=1 b . x 1 \cdot x 2=x 1+x 2$
$\log _{x 2} x 1=-1 \mathrm{~d} . \log \left(x_{1} \cdot x_{2}\right)=0$

- Watch Video Solution

34. If

$$
a^{x}=b, b^{y}=c, c^{z}=a
$$

$x=(\log)_{b} a^{2}, y=(\log)_{c} b^{3}, z=(\log)_{a} c^{k}$,
where $a, b, c>0$ and $a, b, c \neq 1$ then k is equal to
a. $\frac{1}{5}$ b. $\frac{1}{6}$ c. $(\log)_{64} 2$ d. $(\log)_{32} 2$

- Watch Video Solution

35. If $(\log)_{k} x .(\log)_{5} k=(\log)_{x} 5, k \neq 1, k>0$, then x is equal to k
(a) k (b) $\frac{1}{5}$ (c) 5 (d) none of these

- Watch Video Solution

36. The equation $\frac{(\log)_{8}\left(\frac{8}{x^{2}}\right)}{\left((\log)_{8} x^{2}\right)}=3$ has
a. no integral solution b. one natural
c. two real solution
d. one irrational solution

- Watch Video Solution

37. $\frac{(\log)_{10}(x-3)}{(\log)_{10}\left(x^{2}-21\right)}=\frac{1}{2}$

- Watch Video Solution

38. $x^{\left(\log _{2} x\right)+4}=32$

- Watch Video Solution

39. Solve for x if $\log (x-1)+\log (x+1)=\log 1$

- Watch Video Solution

40. $9^{1+\log x}-3^{1+\log x}-210=0$ where the base of \log is 10

- Watch Video Solution

$a=y^{2}, b=z^{2}, c=x^{2}$, then $8(\log)_{a} x^{3} \log _{b} y^{3} \log _{c} z^{3}=27$
Statement II: $(\log)_{b} a \log _{c} b=(\log)_{c} a$, also $(\log)_{b} a=\frac{1}{\log _{a} b}$
Statement 1 is True: Statement 2 is True; Statement 2 is a correct explanation for statement 1.

Statement 1 is true, Statement 2 is true; 2 Statement 2 not a correct explanation for statement 1.

Statement 1 is true, statement 2 is false

Statement 1 is false, statement 2 is true

- Watch Video Solution

42. Statement I: If $(\log)_{\left((\log)_{5} x\right)} 5=2$, thn $x=5^{\sqrt{5}}$

Statement II: $(\log)_{x} a=b, \quad$ if $\quad a>0$, then $x=a^{1 / b}$
Statement 1 is True: Statement 2 is True, Statement 2 is a correct explanation for statement 1.

Statement 1 is true, Statement 2 is true; 2 Statement 2 not a correct explanation for statement 1.

Statement 1 is true, statement 2 is false.

Statement 1 is false, statement 2 is true

- Watch Video Solution

43. Statement 1 is True: Statement 2 is True; Statement 2 is a correct explanation for statement 1

Statement 1 is true, Statement 2 is true;2 Statement 2 not a correct explanation for statement 1.

Statement 1 is true, statement 2 is false

Statement 1 is false, statement 2 is true
Statement I: the equation $(\log)_{\frac{1}{2+|\mathbf{x}|}}\left(5+x^{2}\right)=(\log)_{\left(3+x^{2}\right)}(15+\sqrt{x})$ has real solutions. Because Statement II: $(\log)_{1 / \mathrm{b}} a=-\log _{b} a($ where $a, b>0$ and $b \neq 1)$ and if number and base both are greater than unity then the number is positive. a. A b. B c. C d. D

- Watch Video Solution

44. Comprehension 1 Let $a^{(\log)_{b} x}=c$ where $a, b, c \& x$ are parameters. On the basis of above information, answer the following questions: If $a=2 x=a^{(\log)_{5} 25} \& c=\sqrt{2}$, then b is- a. 2 b. 16 c. 12 d .2

- Watch Video Solution

45. Let $f(\theta)=\sin \left(\tan ^{-1}\left(\frac{\sin \theta}{\sqrt{\cos 2 \theta}}\right)\right.$, where $-\frac{\pi}{4}<\theta<\frac{\pi}{4}$. Then, the value of $\frac{d}{d(\tan \theta)} \cdot f(\theta)$, is

- Watch Video Solution

46. Comprehension 1 Let $a^{(\log)_{b} x}=c$ where $a, b, c \& x$ are parameters.

On the basis of above information, answer the following questions: If $b=(\log)_{\sqrt{3}} 3, c=2(\log)_{b} \sqrt{b}$ and $\sin \theta=a$ (where, $x>1$) then θ can be
a. $\frac{\pi}{4}$
b. $\frac{3 \pi}{2}$
c. $\frac{\pi}{2}$
d. 0

\bullet Watch Video Solution

47. Comprehension 2 In comparison of two numbers, logarithm of smaller number is smaller, if base of the logarithm is greater than one. Logarithm of smaller number is larger, if base of logarithm is in between zero and one. For example $\log _{2} 4$ is smaller than $(\log)_{2} 8 \operatorname{and}(\log)_{\frac{1}{2}} 4$ is larger than $(\log)_{\frac{1}{2}} 8$. Identify the correct order:
$(\log)_{3} 8<\log _{3} 6$
$(\log){ }_{3} 8>\log _{3} 6$
$(\log)_{2} 6>\log _{3} 6$
$(\log){ }_{4} 6<\log _{3} 6$

- Watch Video Solution

48. Comprehension 2: In comparison of two numbers, logarithm of smaller number is smaller, if base of the logarithm is greater than one. Logarithm of smaller number is larger, if base of logarithm is in between zero and one.

For example $\log _{2} 4$ is smaller than $(\log)_{2} 8$ and $(\log)_{\frac{1}{2}} 4$ is larger than $(\log)_{\frac{1}{2}} 8$ and $\left(\log _{\frac{2}{3}} \frac{5}{6}\right.$ is-
a. less than zero
b. greater than zero and less than one
c. greater than one
d. none of these

- Watch Video Solution

49. Comprehension 3: If P is the non negative characteristic of $(\log)_{10} N$, the number of significant digit in N is $P+1$. If P is the negative characteristic of $(\log)_{10} N$, then number of zeros after decimal before a significant digit start are $P-1$.
(Use $\left.\log _{10} 2=0.301, \log \right)_{10} 3=0.4771$) Number of significant digit in N, where $N=\left(\frac{5}{3}\right)^{100}$, is-
a. 23
b. 22
c. 21
d. none

(D) Watch Video Solution

50. Comprehension 3 : If P is the non negative characteristic of $(\log)_{10} N$, the number of significant digit in N is $P+1$. If P is the negative characteristic of $(\log)_{10} N$, then number of zeros after decimal before a significant digit start are $P-1$
(Use $\log _{10} 2=0.301 .(\log)_{10} 3=0.4771$) Number of zeros after decimal before a significant digit start in N, where $N=\left(\frac{81}{16}\right)^{-25} i s-$
a. 16
b. 17
c. 18
d. 19

- Watch Video Solution

51. If $(\log)_{10} 33.8=1.5289$, then $(\log)_{10} 0.338$ is-
a.1.5289 b. -0.4711 c. -1.5289 d. 2.5289
52. Prove that $\frac{(\log)_{a} N}{(\log)_{a b} N}=1+(\log)_{a} b$

(Watch Video Solution

53. $\log _{\frac{1}{3}} \sqrt[4]{729 \cdot \sqrt[3]{9^{-1} \cdot 27^{-\frac{4}{3}}}}$ is equal to

- Watch Video Solution

54. Compute the following $a^{\frac{\left(\log _{)_{b}(}\left(\log _{g^{N}}\right)\right.}{\left(\log _{b}\right)_{b}\left(\log _{a}\right)}}$

- Watch Video Solution

55.

Prove
the
identity;
$(\log)_{a} N \cdot(\log)_{b} N+(\log)_{b} N \cdot(\log)_{c} N+(\log)_{c} N \cdot(\log)_{a} N=\frac{(\log)_{a} N \cdot(\mathrm{l}}{(\mathrm{lo}}$

- Watch Video Solution

56. Which is smaller? 2 or $\left((\log)_{e-1} 2+(\log)_{2}(e-1)\right)$

- Watch Video Solution

57. Solve for $x:(\log)_{4}(\log)_{3}(\log)_{2} x=0$

- Watch Video Solution

58. Find the value of $49^{A}+5^{B}$ where $A=1-(\log)_{7} 2, B=-(\log)_{5} 4$.

- Watch Video Solution

59. If $4^{A}+9^{B}=10^{C}$, where $A=(\log)_{16} 4, B=(\log)_{3} 9, C=(\log)_{x} 83$ then find x.
60. Value of $\left[\frac{2}{(\log)_{4}(2000)^{6}}+\frac{3}{(\log)_{5}(2000)^{6}}\right]$ is
a. $4^{\frac{1}{3}} \cdot 5^{\frac{1}{2}}$ b. $\frac{1}{6}$ c. 33 d . none of these

- Watch Video Solution

61. Solve the system of equations:
$(\log)_{a} x(\log)_{a}(x y z)=48,(\log)_{a} y \log _{a}(x y z)=12$,
$a>0, a \neq 1(\log)_{a} z \log _{a}(x y z)=84$

- Watch Video Solution

62. Compute the following $\frac{81^{\frac{1}{\left(\log _{5}\right)^{9}}}+3^{\frac{3}{(\log)} \sqrt{6^{3}}}}{409}(\sqrt{7})^{\frac{2}{(\log)_{25^{7}}}}-(125)^{(\log)_{25} 6}$

- Watch Video Solution

63.

$$
56+(\log)_{\sqrt{2}} \frac{4}{\sqrt{7}+\sqrt{3}}+(\log)_{1 / 2} \frac{1}{10+2 \sqrt{21}}
$$

$64.4^{5 \log _{4 \sqrt{2}}(3-\sqrt{6})-6 \log _{8}(\sqrt{3}-\sqrt{2})}$

- Watch Video Solution

65. Solve for $x: 5^{\log x}+5 x^{\log 5}=3(a>0)$; where base of \log is a

- Watch Video Solution

66. Solve $(\log)_{x} 2(\log)_{2 x} 2=(\log)_{4 x} 2$.

D Watch Video Solution

67. Solve for $x:(\log)_{x+1}\left(x^{2}+x-6\right)^{2}=4$
68. Solve for $x: x+(\log)_{10}\left(1+2^{x}\right)=x\left(\log _{10} 5+\log _{10} 6\right)$

- Watch Video Solution

69. Given $a^{2}+b^{2}=c^{2}, a>0 ; b>0 ; c>0, c-b \neq 1, c+b \neq 1$, prove that : $(\log)_{\mathrm{c}+\mathrm{b}} a+(\log)_{\mathrm{c}-\mathrm{b}} a=2(\log)_{\mathrm{c}+\mathrm{b}} a \log _{\mathrm{c}-\mathrm{b}} a$

- Watch Video Solution

70. Given $(\mathrm{log})_{10} 34.56=1.5386$,
find $(\log)_{10} 3.456 ;(\log)_{10} 0.3456$ and $(\log)_{10} 0.003456$

- Watch Video Solution

71. Find the number of positive integers which have the characteristics 3 when the base of the logarithm is 7 .
72. If $(\log)_{10} 2=0.3010 \&(\log)_{10} 3=0.4771$. Find the value of $(\log)_{10}(25)$

- Watch Video Solution

73. If $\log _{10} 2=0.3010, \log _{10} 3=0.4771$. Find the number of integers in : (a) 5^{200} (b) 6^{15} \& the number of zeros after the decimal in 3^{-100}

- Watch Video Solution

74. Find the antilogarithm of 0.75 if the base of the logarithm is 2401 .

- Watch Video Solution

75. If $x, y>0,(\log)_{y} x+(\log)_{x} y=\frac{10}{3} \quad$ and $\quad x y=144$, then $\frac{x+y}{2}=\sqrt{N}$ where N is a natural number, find the value of N.
76.

$y=\sqrt{\log _{2}(3) \log _{2}(12) \log _{2}(48) \log _{2}(192)+16}-\log _{2}(12) \log _{2}(48)+10$ find $y \in N$

- Watch Video Solution

77. If $x=1+(\log)_{a} b c, y=1+(\log)_{b} c a$ and $z=1+(\log)_{c} a b$, then prove that $x y z=x y+y z+z x$

- Watch Video Solution

78. A rational number which is 50 times its own logarithm to the base 10 , is
79. Prove that $a^{x}-b^{y}=0$
$x=\sqrt{(\log)_{a} b}, y=\sqrt{(\log)_{b} a}, a>0, b>0, a, b \neq 1$

- Watch Video Solution

80. If $\quad \frac{(\log)_{a} N}{(\log)_{c} N}=\frac{(\log)_{a} N-(\log)_{b} N}{(\log)_{b} N-(\log)_{c} N}, \quad$ where $\quad N>0 \quad$ and
$N \neq 1, a, b, c>0, \neq 1$, then prove that $b^{2}=a c$

- Watch Video Solution

81. If $(\log)_{b} a(\log)_{c} a+(\log)_{a} b(\log)_{c} b+(\log)_{a} c(\log)_{b} c=3$ (where a, b, c are different positive real numbers $\neq 1$), then find the value of $a b c$.

- Watch Video Solution

82. Prove that $(\log)_{7} 10$ is greater than $(\log)_{11} 13$.
83. Solve the system the equations $(a x)^{\log a}=(b y)^{\log b} ; b^{\log x}=a^{\log y}$ where $a>0, b>0$ and $a \neq b, a b \neq 1$

- Watch Video Solution

84.

> Solve
for
$x:(\log)_{5} 120+(x-3)-2 .(\log)_{5}\left(1-5^{x-3}\right)=-(\log)_{5}\left(0.2-5^{x-4}\right)$

- Watch Video Solution

85. Solve the equation for $x: \log 4+\left(1+\frac{1}{2 x}\right) \log 3=\log \left(3^{\frac{1}{x}}+27\right)$

(Watch Video Solution

86. Find the real solutions to the system of equations $\log _{10}(2000 x y)-\log _{10} x \cdot \log _{10} y=4$, $\log _{10}(2 y z)-\log _{10} y \log _{10} z=1$ and $\log _{10} z x-\log _{10} z \log _{10} x=0$

- Watch Video Solution

87. Find the x satisfying the equation $\log ^{2}\left(1+\frac{4}{x}\right)+\log ^{2}\left(1-\frac{4}{x+4}\right)=2 \log ^{2}\left(\frac{2}{x-1}-1\right)$.

- Watch Video Solution

88.

$x: \log ^{2}(4-x)+\log (4-x) \cdot \log \left(x+\frac{1}{2}\right)-2 \log ^{2}\left(x+\frac{1}{2}\right)=0$

- Watch Video Solution

89. Solve the following equation for $x \& y:(\log)_{100}|x+y|=\frac{1}{2},(\log)_{10} y-(\log)_{10}|x|=\log _{100} 4$.

- Watch Video Solution

90. Find all real numbers x which satisfy the equation $2(\log)_{2} \log _{2} x+(\log)_{\frac{1}{2}}(\log)_{2}(2 \sqrt{2} x)=1$.

- Watch Video Solution

91. $\log _{\frac{3}{4}} \log _{8}\left(x^{2}+7\right)+\log _{\frac{1}{2}} \log _{\frac{1}{4}}\left(x^{2}+7\right)^{-1}=-2$

- Watch Video Solution

92. Given $(\log)_{10} 34.56=1.5386$,
find $(\log)_{10} 3.456 ;(\log)_{10} 0.3456$ and $(\log)_{10} 0.003456$
93. Find the number of positive integers which have the characteristics 3 when the base of the logarithm is 7.

- Watch Video Solution

94. If $(\log)_{10} 2=0.3010 \&(\log)_{10} 3=0.4771$. Find the value of $(\log)_{10}(2.25)$

- Watch Video Solution

95. Find the antilogarithm of 0.75 if the base of the logarithm is 2401 .

- Watch Video Solution

96. Let 'L' denotes the antilog of 0.4 to the base 1024. and ' M ' denotes the number of digits in 6^{10} (Given log,02-03 and ' N ' denotes the number of
positive integers which have the characteristic 2 , when base of the logarithm is 6 . Find the value of LMN

- Watch Video Solution

97. Find the product of the positive roots of the equation $\sqrt{(2008)}(x)^{(\log)_{2008} x}=x^{2}$.

- Watch Video Solution

98. Solve: $(\log)_{3}(\sqrt{x}+|\sqrt{x}-1|)=(\log)_{9}(4 \sqrt{x}-3+4|\sqrt{x}-1|)$

- Watch Video Solution

99. Find the value of x satisfying the equation $\left((\log)_{3}(3 x)^{\frac{1}{3}}+(\log)_{x}(3 x)^{\frac{1}{3}}\right) \log _{3} x^{3}+\left((\log)_{3}\left(\frac{x}{3}\right)^{\frac{1}{3}}+(\log)_{x}\left(\frac{3}{x}\right)^{\frac{1}{3}}\right) \log _{3}$

- Watch Video Solution

100. The number of solutions of $(\log)_{4}(x-1)=(\log)_{2}(x-3)$ is (2001, 2M)
(a) 3 (b)1 (c) 2 (d) 0

- Watch Video Solution

101. Let $\left(x_{0}, y_{0}\right)$ be the solution of the following equations:
$(2 x)^{\ln 2}=(3 y)^{\ln 3}, 3^{\ln x}=2^{\ln y}$ Then x_{0} is
(a) $\frac{1}{6}$ (b) $\frac{1}{3}$ (c) $\frac{1}{2}$ (d) 6

- Watch Video Solution

102. The value of $6+(\log)_{\frac{3}{2}}\left[\frac{1}{3 \sqrt{2}} \cdot \sqrt{\left(4-\frac{1}{3 \sqrt{2}}\right) \sqrt{4-\frac{1}{3 \sqrt{2}} \cdots \cdots .}}\right.$ is
103. If $3^{x}=4^{x-1}$, then $x=$, (a) $\frac{2(\log)_{3} 2}{2(\log)_{3} 2-1}$
(b) $\frac{2}{2-(\log)_{2} 3}$ (c)
$\frac{1}{1-(\log)_{4} 3}$ (d) $\frac{2(\log)_{2} 3}{2(\log)_{2} 3-1}$

- Watch Video Solution

