

MATHS

BOOKS - BHARATI BHAWAN MATHS (HINGLISH)

Recent IIT questions

1. Let (x_0, y_0) be the solution of the following equations

 $\left(2x
ight)^{In2}=\left(3y
ight)^{In3}3^{Inx}=2^{Iny}$, then x_{0} is

A.
$$\frac{1}{6}$$

B. 1/3`

$$\mathsf{C}.\,\frac{1}{2}$$

D. 6

Answer:

2. Q. Let
$$P = \{\theta: \sin \theta - \cos \theta = \sqrt{2} \cos \theta\}$$
 and $Q = \{\theta: \sin \theta + \cos \theta = \sqrt{2} \sin \theta\}$ be two sets. then

A. $P \subset Q$ and $Q - P
eq \emptyset$

 $\mathsf{B}.\,Q!\subset P$

 $\mathsf{C}.\, P \, ! SubQ$

 $\mathsf{D}.\, P = Q$

Answer:

3. Let

$$\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}, \overrightarrow{b} = \hat{i} - \hat{j} + \hat{k} and \overrightarrow{c} = \hat{i} - \hat{j} - \hat{k}$$

be three vectors. A vector \overrightarrow{v} in the plane of

 \overrightarrow{a} and \overrightarrow{b} , whose projection on \overrightarrow{c} is $\frac{1}{\sqrt{3}}$ is given by $\hat{i} - 3\hat{j} + 3\hat{k}$ b. $-3\hat{i} - 3\hat{j} + 3\hat{k}$ c. $3\hat{i} - \hat{j} + 3\hat{k}$ d. $\hat{i} + 3\hat{j} - 3\hat{k}$ A. $\hat{i} - 3\hat{j} + 3\hat{k}$

 $\mathsf{B}.-3\hat{i}-3\hat{j}+\hat{k}$

C. $3\hat{i}-\hat{j}+3\hat{k}$

D.
$$\hat{i}-3\hat{j}-3\hat{k}$$

Answer:

4. Let α and β be the roots of equation $x^2-6x-2=0.$ If $a_n=\alpha^n-\beta^n,$ for $n\geq 1$ then the value of $\displaystyle \frac{a_{10}-2a_s}{2a_9}$ is equal to

A. 1

B. 2

C. 3

D. 4

5. A straight line L through the point (3,-2) is inclined at an angle 60° to the line $\sqrt{3}x + y = 1$ If L also intersects the x-axis then the equation of L is

A.
$$y + \sqrt{3}x + 2 - 3\sqrt{3} = 0$$

B. $y - \sqrt{3}x + 2 + 3\sqrt{3} = 0$
C. $\sqrt{3}y - x + 3 + 2\sqrt{3} = 0$

D.
$$\sqrt{3}y+x-3+2\sqrt{3}=0$$

6. Let the straight line x = b divide the area enclosed by $y = (1 - x)^2$, y = 0 and x = 0 into two parts $R_1(0 \le x \le b)$ and $R_2(b \le x \le 1)$ such that $R_1 - R_2 = \frac{1}{4}$. Then b equals (A) $\frac{3}{4}$ (B) $\frac{1}{2}$ (C) $\frac{1}{3}$ (D) $\frac{1}{4}$

Answer:

.

7. The vector(s) which is/are coplanar with vectors $\hat{i}+\hat{j}+2\hat{k}~~{
m and}~~\hat{i}+2\hat{j}+\hat{k}$ are perpendicular to the vector $\hat{i}+\hat{j}+\hat{k}$ is are

A. $\hat{j}-\hat{k}$ B. $-\hat{i}+\hat{j}$ C. $\hat{i}-\hat{j}$

D. $jatj + \hat{k}$

/atch Video Solution

8. Let the eccentricity of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ be reciprocal to that of the ellipse $x^2 + 4y^2 = 4$. If the hyperbola passes through a focus of the ellipse, then

A. the hyperbola has the equation
$$rac{x^2}{3} - rac{y^2}{2} = 1$$

B. the focus of the hyperbola is (2, 0)

C. the eccentricity of the hyperbola is (2,0)

D. the hyperbola has the equation $x^2 - 3y^2 = 3$. Answer: Watch Video Solution

9. Let MandN be two 3×3 non singular skewsymmetric matrices such that MN = NM. If P^T denote the transpose of P, then $M^2N^2(M^TN^{-1})^T$ is equal to M^2 b. $-N^2$ c. $-M^2$ d. MN A. M^2

 $B. - N^2$

 $\mathsf{C}.-M^2$

D. MN

Answer:

Watch Video Solution

10. Let $f\!:\!R o R$ be a function such that

 $f(x+y)=f(x)+f(y), Aax, y\in R.$ If f (x) is

differentiable at x = 0, then

A. f(x) is differentiable only in a finite interval

containing zero

- B. f(x) is continous !V x in R`
- C. f(x) is constant !V x in R`
- D. f(x) is differentiable except at finitely

many points

11. Let U_1 , and U_2 , be two urns such that U_1 , contains 3 white and 2 red balls, and U_2 , contains only1 white ball. A fair coin is tossed. If head appears then 1 ball is drawn at random from U_1 , and put into $U_2,\,$. However, if tail appears then 2balls are drawn at random from U_1 , and put into $U_2.$. Now 1 ball is drawn at random from $U_2, \;$.61 . The probability of the drawn ball from U_2 , being white is

A.
$$\frac{13}{30}$$

B. $\frac{23}{30}$

C.
$$\frac{19}{30}$$

D. $\frac{11}{30}$

Answer:

12. Given that the drawn ball from U2 is white, the

probability that head appeared on the coin

A.
$$\frac{17}{23}$$

B. $\frac{11}{23}$
C. $\frac{15}{23}$

Answer:

Watch Video Solution

13. If the point P(a, b, c), with reference to (E), lies on the plane 2x + y + z = 1, then the value of 7a + b + c is

A. 0

B. 12

C. 7

D. 6

Answer:

Watch Video Solution

14. Let ω be the solution of $x^3 - 1 = 0$ with $\operatorname{Im}(\omega) > 0$. If a=2 with b and c satisfying $\begin{bmatrix} 1 & 9 & 7 \\ 2 & 8 & 7 \\ 7 & 3 & 7 \end{bmatrix} = [0, 0, 0]$, then the value of $\frac{3}{\omega^a} + \frac{1}{\omega^b} + \frac{1}{\omega^c}$ is equal to

$$A. -2$$

B. 2

C. 3

 $\mathsf{D.}-3$

Answer:

Watch Video Solution

15. Consider the parabola $y^2 = 8x$. Let Δ_1 be the area of the triangle formed by the end points of its latus rectum and the point $P\left(\frac{1}{2},2\right)$ on the parabola, and Δ_2 be the area of the triangle

formed by drawing tangents at P and at the end

points of the latus rectum. Then $rac{\Delta_1}{\Delta_2}$ is

17. Let $f\colon [1,\infty]$ be a differentiable function such that f(1)=2. If $\int_1^x f(t)dt=3xf(x)-x^3$ for all $x\geq 1,$ then the value of f(2) is

18. The positive integer value of n>3 satisfying

the equation

$$\frac{1}{\sin\left(\frac{\pi}{n}\right)} = \frac{1}{\sin\left(\frac{2\pi}{n}\right)} + \frac{1}{\sin\left(\frac{3\pi}{n}\right)} is$$
Match Video Solution

19. The minimum value of the sum of real numbers

$$a^{-5}, a^{-4}, 3a^{-3}, 1, a^8 \;\; {
m and} \;\; a^{10} \;\; {
m with} \;\; a>0 {
m is}$$

