©゙’ doubtnut

India's Number 1 Education App

MATHS

BOOKS - BHARATI BHAWAN MATHS

(HINGLISH)

Recent IIT questions

Exercise

1. Let $\left(x_{0}, y_{0}\right)$ be the solution of the following
equations
$(2 x)^{\operatorname{In} 2}=(3 y)^{I n 3} 3^{\operatorname{Inx}}=2^{I n y}$, then x_{0} is
A. $\frac{1}{6}$
B. $1 / 3^{`}$
C. $\frac{1}{2}$
D. 6

Answer:

(Watch Video Solution

2. Q. Let $P=\{\theta: \sin \theta-\cos \theta=\sqrt{2} \cos \theta\}$ and
$Q=\{\theta: \sin \theta+\cos \theta=\sqrt{2} \sin \theta\}$ be two sets.
then
A. $P \subset Q$ and $Q-P \neq \emptyset$
B. $Q!\subset P$
C. $P!S u b Q$
D. $P=Q$

Answer:

(D) Watch Video Solution

3.

Let
$\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}-\hat{j}+\hat{k} a n d \vec{c}=\hat{i}-\hat{j}-\hat{k}$
be three vectors. A vector \vec{v} in the plane of
\vec{a} and \vec{b}, whose projection on \vec{c} is $\frac{1}{\sqrt{3}}$ is given
by $\hat{i}-3 \hat{j}+3 \hat{k}$ b. $-3 \hat{i}-3 \hat{j}+3 \hat{k}$ c. $3 \hat{i}-\hat{j}+3 \hat{k}$ d. $\hat{i}+3 \hat{j}-3 \hat{k}$
A. $\hat{i}-3 \hat{j}+3 \hat{k}$
B. $-3 \hat{i}-3 \hat{j}+\hat{k}$
C. $3 \hat{i}-\hat{j}+3 \hat{k}$
D. $\hat{i}-3 \hat{j}-3 \hat{k}$

Answer:
4. Let α and β be the roots of equation $x^{2}-6 x-2=0$. If $a_{n}=\alpha^{n}-\beta^{n}$, for $n \geq 1$
then the value of $\frac{a_{10}-2 a_{s}}{2 a_{9}}$ is equal to
A. 1
B. 2
C. 3
D. 4

Answer:

- Watch Video Solution

5. A straight line L through the point $(3,-2)$ is inclined at an angle 60° to the line $\sqrt{3} x+y=1$ If L also intersects the x-axis then the equation of L is
A. $y+\sqrt{3} x+2-3 \sqrt{3}=0$
B. $y-\sqrt{3} x+2+3 \sqrt{3}=0$
C. $\sqrt{3} y-x+3+2 \sqrt{3}=0$
D. $\sqrt{3} y+x-3+2 \sqrt{3}=0$

Answer:
6. Let the straight line $x=b$ divide the area enclosed by $y=(1-x)^{2}, y=0$ and $x=0$ into two parts $R_{1}(0 \leq x \leq b)$ and $R_{2}(b \leq x \leq 1)$ such that $R_{1}-R_{2}=\frac{1}{4}$. Then b equals (A) $\frac{3}{4}$ (B) $\frac{1}{2}$ (C) $\frac{1}{3}$ (D) $\frac{1}{4}$
A. $\frac{3}{4}$
B. $\frac{1}{2}$
C. $\frac{1}{3}$
D. $\frac{1}{4}$

Answer:
7. The vector(s) which is/are coplanar with vectors $\hat{i}+\hat{j}+2 \hat{k}$ and $\hat{i}+2 \hat{j}+\hat{k}$ are perpendicular to the vector $\hat{i}+\hat{j}+\hat{k}$ is are
A. $\hat{j}-\hat{k}$
B. $-\hat{i}+\hat{j}$
C. $\hat{i}-\hat{j}$
D. $j a t j+\hat{k}$

Answer:
8. Let the eccentricity of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ be reciprocal to that of the ellipse $x^{2}+4 y^{2}=4$. If the hyperbola passes through a focus of the ellipse, then
A.the hyperbola has the equation

$$
\frac{x^{2}}{3}-\frac{y^{2}}{2}=1
$$

B. the focus of the hyperbola is $(2,0)$
C. the eccentricity of the hyperbola is $(2,0)$
D. the hyperbola has the equation

$$
x^{2}-3 y^{2}=3
$$

Answer:

D Watch Video Solution

9. Let MandN be two 3×3 non singular skewsymmetric matrices such that $M N=N M$. If P^{T} denote the transpose of P, then $M^{2} N^{2}\left(M^{T} N^{-1}\right)^{T}$ is equal to M^{2} b. $-N^{2}$ c. $-M^{2}$ d. $M N$
A. M^{2}
B. $-N^{2}$
C. $-M^{2}$
D. MN

Answer:

(D) Watch Video Solution

10. Let $f: R \rightarrow R$ be a function such that
$f(x+y)=f(x)+f(y), A a x, y \in R$. If $\mathrm{f}(\mathrm{x})$ is
differentiable at $x=0$, then
A. $f(x)$ is differentiable only in a finite interval containing zero
B. $f(x)$ is continous ! V x in $\mathrm{R}^{`}$
C. $f(x)$ is constant ! V x in $\mathrm{R}^{`}$
D. $f(x)$ is differentiable except at finitely many points

Answer:
(D) Watch Video Solution
11. Let U_{1}, and U_{2}, be two urns such that U_{1},
contains 3 white and 2 red balls, and U_{2}, contains
only1 white ball. A fair coin is tossed. If head appears then 1 ball is drawn at random from U_{1},
and put into U_{2}, . However, if tail appears then 2
balls are drawn at random from U_{1}, and put into
U_{2}. . Now 1 ball is drawn at random from $U_{2}, .61$.
The probability of the drawn ball from U_{2}, being white is
A. $\frac{13}{30}$
B. $\frac{23}{30}$
C. $\frac{19}{30}$
D. $\frac{11}{30}$

Answer:

D Watch Video Solution

12. Given that the drawn ball from U 2 is white, the probability that head appeared on the coin
A. $\frac{17}{23}$
B. $\frac{11}{23}$
C. $\frac{15}{23}$
D. $\frac{12}{23}$

Answer:

D Watch Video Solution

13. If the point $P(a, b, c)$, with reference to (E), lies on the plane $2 x+y+z=1$, then the value of $7 a+$ $b+c$ is
A. 0
B. 12
C. 7

D. 6

Answer:

D Watch Video Solution

14. Let ω be the solution of $x^{3}-1=0$ with
$\operatorname{Im}(\omega)>0$. If $a=2$ with b and c satisfying $[a b c]\left[\begin{array}{lll}1 & 9 & 7 \\ 2 & 8 & 7 \\ 7 & 3 & 7\end{array}\right]=[0,0,0]$, then the value of
$\frac{3}{\omega^{a}}+\frac{1}{\omega^{b}}+\frac{1}{\omega^{c}}$ is equal to
A. -2
B. 2
C. 3
D. -3

Answer:

- Watch Video Solution

15. Consider the parabola $y^{2}=8 x$. Let Δ_{1} be the area of the triangle formed by the end points of its latus rectum and the point $P\left(\frac{1}{2}, 2\right)$ on the parabola, and Δ_{2} be the area of the triangle
formed by drawing tangents at P and at the end points of the latus rectum. Then $\frac{\Delta_{1}}{\Delta_{2}}$ is

D Watch Video Solution

16.

Let
$`($ theta $)=\sin \left(\tan { }^{\wedge}(-1)\right.$
((sintheta)/(sqrt(cos2theta)))),w h e re-pi/4

(D) Watch Video Solution

17. Let $f:[1, \infty]$ be a differentiable function such that $f(1)=2$. If $\int_{1}^{x} f(t) d t=3 x f(x)-x^{3}$ for all $x \geq 1$, then the value of $f(2)$ is

- Watch Video Solution

18. The positive integer value of $n>3$ satisfying
the
equation
$\frac{1}{\sin \left(\frac{\pi}{n}\right)}=\frac{1}{\sin \left(\frac{2 \pi}{n}\right)}+\frac{1}{\sin \left(\frac{3 \pi}{n}\right)} i s$

(D) Watch Video Solution

19. The minimum value of the sum of real numbers
$a^{-5}, a^{-4}, 3 a^{-3}, 1, a^{8}$ and a^{10} with $a>0$ is
20. If z is any complex number satisfying $|z-3-2 i| \leq 2$, then the maximum value of $|2 z-6+5 i|$ is
