©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - CENGAGE

APPLICATION OF DERIVATIVES

Solved Examples And Exercises

1. The two curves $x^{3}-3 x y^{2}+2=0$ and $3 x^{2} y-y^{3}-2=0$ cuts orthogonally

- Watch Video Solution

2. Find the angle of intersection of $y=a^{x} a n d y=b^{x}$

Watch Video Solution
3. If $y=x+2$ is normal to the parabola $y^{2}=4 a x$, then find the value of a.

- Watch Video Solution

4. Find the cosine of the angle of intersection of curves $f(x)=2^{x}(\log)_{e} \operatorname{xandg}(x)=x^{2 x}-1$.

- Watch Video Solution

5. The acute angle between the curves $y=\left|x^{2}-1\right|$ and $y=\left|x^{2}-3\right|$ at their points of intersection when when $x>0$, is

- Watch Video Solution

6. In the curve $x^{m+n}=a^{m-n} y^{2 n}$, prove that the $m t h$ power of the subtangent varies as the $n t h$ power of the sub-normal.
7. Find the length of the tangent for the curve $y=x^{3}+3 x^{2}+4 x-1$ at point $x=0$.

- Watch Video Solution

8. Find the equation of a curve passing through the origin, given that the slope of the tangent of the curve at any point (x, y) is equal to tha sum of the coordinates of the point.

- Watch Video Solution

9. Sketch the curve $y=f(x)=x^{2}-5 x+6$

- Watch Video Solution

10. The condition that the equation $a x^{2}+b x+c=0$ may have one root is the double the other is

- Watch Video Solution

11. Find c of Lagranges mean value theorem for the function $f(x)=3 x^{2}+5 x+7$ in the interval $[1,3]$.

- Watch Video Solution

12. Let $0<a<b<\frac{\pi}{2}$. If $f(x)=\left|\begin{array}{lll}\tan x & \tan a & \tan b \\ \sin x & \sin a & \sin b \\ \cos x & \cos a & \cos b\end{array}\right|$, then find the minimum possible number of roots of $f^{\prime}(x)=0$ in (a, b)

- Watch Video Solution

13. Let $f(x) \operatorname{andg}(x)$ be differentiable for $0 \leq x \leq 2$ such that $f(0)=2, g(0)=1, \operatorname{and} f(2)=8$. Let there exist a real number c in
$[0,2]$ such that $f^{\prime}(c)=3 g^{\prime}(c)$. Then find the value of $g(2)$.

- Watch Video Solution

14. Let f be continuous on $[a, b], a>0$, and differentiable on (a, b). Prove that there exists $c \in(a, b)$ such that $\frac{b f(a)-a f(b)}{b-a}=f(c)-c f^{\prime}(c)$

- Watch Video Solution

15.

> Prove
that
$\tan ^{-1} x+\tan ^{-1} y+\tan ^{-1} z=\tan ^{-1}\left(\frac{x+y+z-x y z}{1-x y-y z-z x}\right)$

- Watch Video Solution

16. Using Lagranges mean value theorem, prove that $|\cos a-\cos b|<|a-b|$.
17. If $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are in G.P, prove that $\left(a^{n}+b^{n}\right),\left(b^{n}+c^{n}\right),\left(c^{n}+d^{n}\right)$ are in G.P.

- Watch Video Solution

18. Let f be differentiable for all x, If $f(1)=-2 a n d f^{\prime}(x) \geq 2$ for all $x \in[1,6]$, then find the range of values of $f(6)$.

- Watch Video Solution

19. The equation of the tangent to the curve $y=x^{2}-4 x+2$ at $(4,2)$ is

- Watch Video Solution

20. Show that the function $f(x)=(x-a)^{2}(x-b)^{2}+x$ takes the value $\frac{a+b}{2}$ for some value of $x \in[a, b]$.
21. If the equetion of tangent to the curve $y^{3}=a x^{3}+\mathrm{b}$ at point $(2,3)$ is $y=4 x=5$, then find the values of a and b.

Watch Video Solution

22. Find the length of the tangent for the curve $y=x^{3}+3 x^{2}+4 x-1$ at point $x=0$.

- Watch Video Solution

23. For the curve $x y=c$, prove that the portion of the tangent intercepted between the coordinate axes is bisected at the point of contact.

- Watch Video Solution

24. The line $y=x+1$ is a tangent to the curve $y^{2}=4 x$ at the poin

- Watch Video Solution

25. If $x=a(\theta+\sin \theta), y=a(1-\cos \theta)$ then prove that at $\theta=\frac{\pi}{2}, y^{\prime \prime}=\frac{1}{a}$.

- Watch Video Solution

26. Find the equations of tangent and normal to the curve $y=x^{2}+3 x-2$ at the point (1,2). .

- Watch Video Solution

27. If $f(x)$ is continuous in $[a, b]$ and differentiable in (a,b), then prove that there exists at least one $c \in(a, b)$ such that $\frac{f^{\prime}(c)}{3 c^{2}}=\frac{f(b)-f(a)}{b^{3}-a^{3}}$
28. Let $f(x) \operatorname{andg}(x)$ be two functions which are defined and differentiable for all $x \geq x_{0}$. If $f\left(x_{0}\right)=g\left(x_{0}\right) \operatorname{and} f^{\prime}(x)>g^{\prime}(x)$ for all $x>x_{0}$, then prove that $f(x)>g(x)$ for all $x>x_{0}$.

- Watch Video Solution

29. A particle moves along the curve $6 y=x^{3}+2$. Find the points on the curve at which the y-coordinate is changing 8 times as fast as the x coordinate.

- Watch Video Solution

30. The length x of a rectangle is decreasing at the rate of $5 \mathrm{~cm} /$ minute and the width y is increasing at the rate of $4 \mathrm{~cm} /$ minute. When $\mathrm{x}=8 \mathrm{~cm}$ and $y=6 \mathrm{~cm}$, find the rates of change of (a) the perimeter, and (b) the area of the rectangle.
31.

$\left(x_{1}-x_{2}\right)^{2}+\left(\frac{x_{1}^{2}}{20}-\sqrt{\left(17-x_{2}\right)\left(x_{2}-13\right)}\right)^{2}$
$x_{1} \in R^{+}, x_{2} \in(13,17)$.

- Watch Video Solution

32. Displacement s of a particle at time t is expressed as $s=\frac{1}{2} t^{3}-6 t$.

Find the acceleration at the time when the velocity vanishes (i.e., velocity tends to zero).

- Watch Video Solution

33. Find the distance of the point on $y=x^{4}+3 x^{2}+2 x$ which is nearest to the line $y=2 x-1$

- Watch Video Solution

34. In how many points graph of $y=x^{3}-3 x 2+5 x-3$ interest the x axis?

- Watch Video Solution

35. The tangent at any point P on the circle $x^{2}+y^{2}=4$ meets the coordinate axes at $A a n d B$. Then find the locus of the midpoint of $A B$.

- Watch Video Solution

36. Find the point on the parabola $y^{2}=2 x$ that is closest to the point (1,
4)

- Watch Video Solution

37. The two equal sides of an isosceles triangle with fixed base b are decreasing at the rate of 3 cm per second. How fast is the area decreasing
when the two equal sides are equal to the base ?

- Watch Video Solution

38. A lamp is $50 f t$. above the ground. A ball is dropped from the same height from a point 30 ft . away from the light pole. If ball falls a distance $s=16 t^{2} f t$. in t second, then how fast is the shadow of the ball moving along the ground $\frac{1}{2} s$ later?

- Watch Video Solution

39. Find the values of p so that the equation $2 \cos ^{2} x-(p+3) \cos x+2(p-1)=0$ has a real solution.

- Watch Video Solution

40. Find the angle between the curves $2 y^{2}=x^{3} a n d y^{2}=32 x$.
41. Find the locus of point on the curve $y^{2}=4 a\left(x+a s \in \frac{x}{a}\right)$ where tangents are parallel to the axis of x.

- Watch Video Solution

42. Find the values of a if equation $1-\cos x=\frac{\sqrt{3}}{2}|x|+a, x \in(0, \pi)$, has exactly one solution.

- Watch Video Solution

43. Find the angle at which the curve $y=K e^{K x}$ intersects the y-axis.

- Watch Video Solution

44. Find the angle of intersection of the curves $x y=a^{2} a n d x^{2}+y^{2}=2 a^{2}$
45. Find the angle between the curves $\mathrm{C} 1: x^{2}-\frac{y^{2}}{3}=a^{2} a n d C_{2}: x y^{3}=c$

- Watch Video Solution

46. If the two circles $2 x^{2}+2 y^{2}-3 x+6 y+k=0$ and $x^{2}+y^{2}-4 x+10 y+16=0$ cut orthogonally, then find the value of k.

- Watch Video Solution

47. Find the point on the curve $3 x^{2}-4 y^{2}=72$ which is nearest to the line $3 x+2 y+1=0$.

- Watch Video Solution

48. Find the area between the line $y=x+1$ and the curve $y=x^{2}-1$
49. Using differential find the approximate value of $\cos 61$, if it is given that $\sin 60^{\circ} 0.86603$ and $1^{\circ}=0.01745$ radians.

- Watch Video Solution

50. If an a triangle $A B C, b=3$ cand $C-B=90^{\circ}$, then find the value of $\tan B$

- Watch Video Solution

51. Find the approximate value of $(26)^{\frac{1}{3}}$.

- Watch Video Solution

52. Using the approximation to find approximate value of

(D) Watch Video Solution

53. Find the approximate change in the volume V of a cube of side x metres caused by increasing the side by 1%.

- Watch Video Solution

54. Find approximate value of $\mathrm{f}(5.001)$ where $f(x)=x^{3}-7 x^{2}+15$.

- Watch Video Solution

55. In an acute triangle $A B C$ if sides a, b are constants and the base angles AandB \quad vary, then show that
$\frac{d A}{\sqrt{a^{2}-b^{2} \sin ^{2} A}}=\frac{d B}{\sqrt{b^{2}-a^{2} \sin ^{2} B}}$

- Watch Video Solution

56. Find the approximate value of $\mathrm{f}(3.02)$ where $f(x)=3 x^{2}+5 x+3$.

- Watch Video Solution

57. If the radius of the sphere is measured as 9 cm with an error of 0.03 cm , the approximate error in calculating its volume is

- Watch Video Solution

58. Find the approximate value of $(1.999)^{6}$.

- Watch Video Solution

59. Let f be differentiable for all x, If $f(1)=-2 a n d f^{\prime}(x) \geq 2$ for all $x \in[1,6]$, then find the range of values of $f(6)$.

- Watch Video Solution

60. Let $f:[2,7] \overrightarrow{0, \infty}$ be a continuous and differentiable function. Then show that $(f(7)-f(2)) \frac{(f(7))^{2}+(f(2))^{2}+f(2) f(7)}{3}=5 f^{2}(c) f^{\prime}(c)$, where $c \in[2,7]$.

- Watch Video Solution

61. Let $f(x) \operatorname{andg}(x)$ be differentiable functions such that $f^{\prime}(x) g(x) \neq f(x) g^{\prime}(x)$ for any real x. Show that between any two real solution of $f(x)=0$, there is at least one real solution of $g(x)=0$.

- Watch Video Solution

62. Consider the function $f(x)=8 x^{2}-7 x+5$ on the interval $[-6,6]$. Find the value of c that satisfies the conclusion of Lagranges mean value theorem.

- Watch Video Solution

63. Using mean value theorem, show that $\frac{\beta-\alpha}{1+\beta^{2}}<\tan ^{-1} \beta-\tan ^{-1} \alpha<\frac{\beta-\alpha}{1+\alpha^{2}}, \beta>\alpha>0$.

- Watch Video Solution

64. Let $f(x) \operatorname{andg}(x)$ be two differentiable functions in $\operatorname{Randf}(2)=8, g(2)=0, f(4)=10, \operatorname{and} g(4)=8$. Then prove that $g^{\prime}(x)=4 f^{\prime}(x)$ for at least one $x \in(2,4)$.

- Watch Video Solution

65. Using Lagranges mean value theorem, prove that $|\cos a-\cos b| \leq|a-b|$.

- Watch Video Solution

66. Let $f(x) \operatorname{and} g(x)$ be differentiable function in (a, b), continuous at aandb, $\operatorname{andg}(x) \neq 0 \quad$ in $\quad[a, b]$. Then prove that
$\frac{g(a) f(b)-f(a) g(b)}{g(c) f^{\prime}(c)-f(c) g^{\prime}(c)}=\frac{(b-a) g(a) g(b)}{(g(c))^{2}}$

- Watch Video Solution

67. Suppose α, β andth η are angles satisfying 0

- Watch Video Solution

68. Let f be continuous on $[a, b], a>0$, and differentiable on (a, b).

Prove that there exists $c \in(a, b)$ such that $\frac{b f(a)-a f(b)}{b-a}=f(c)-c f^{\prime}(c)$

- Watch Video Solution

69. Two men PandQ start with velocity u at the same time from the junction of two roads inclined at 45^{0} to each other. If they travel by different roads, find the rate at which they are being separated.
70. $x a n d y$ are the sides of two squares such that $y=x-x^{2}$. Find the rate of the change of the area of the second square with respect to the first square.

- Watch Video Solution

71. A spherical iron ball 10 cm in radius is coated with a layer of ice of uniform thickness that melts at a rate of $50 \mathrm{~cm}^{3} / m \in$. When the thickness of ice is 5 cm , then find the rate at which the thickness of ice decreases.

- Watch Video Solution

72. Two cyclists start from the junction of two perpendicular roads, there velocities being $3 u m / m \in$ and $4 u m / m \in$, respectively. Find the rate at which the two cyclists separate.
73. Tangent of an angle increases four times as the angle itself. At what rate the sine of the angle increases w.r.t. the angle?

- Watch Video Solution

74. The distance covered by a particle moving in a straight line from a fixed point on the line is s, where $s^{2}=a t^{2}+2 b t+c$. Then prove that acceleration is proportional to s^{-3}.

- Watch Video Solution

75. A horse runs along a circle with a speed of $20 \mathrm{~km} / \mathrm{h}$. A lantern is at the centre of the circle. A fence is along the tangent to the circle at the point at which the horse starts. Find the speed with which the shadow of the horse moves along the fence at the moment when it covers $1 / 8$ of the circle in km / h.
76. Let x be the length of one of the equal sides of an isosceles triangle, and let θ be the angle between them. If x is increasing at the rate $(1 / 12)$ m / h, and θ is increasing at the rate of $\frac{\pi}{180}$ radius $/ \mathrm{h}$, then find the rate in m^{3} / h at which the area of the triangle is increasing when $x=12 m$ and $\theta=\pi / 4$.

- Watch Video Solution

77. If water is poured into an inverted hollow cone whose semi-vertical angel is 30°, and its depth (measured along the axis) increases at the rate of $1 \mathrm{~cm} / \mathrm{s}$. Find the rate at which the volume of water increases when the depth is 24 cm .

- Watch Video Solution

78. If $f:[-5,5] \rightarrow R$ is a differentiable function function and if $\mathrm{f}^{\prime}(\mathrm{x})$ does not vanish anywhere, then prove that $f(-5) \neq f(5)$.

Watch Video Solution

79. Discuss the applicability of Rolles theorem for the following functions on the indicated intervals:
$f(x)=|x| \in[-1,1]$
$f(x)=3+(x-2)^{2 / 3}$ in $[1,3]$
$f(x)=\tan x \in[0, \pi]$
$f(x)=\log \left\{\frac{x^{2}+a b}{x(a+b)}\right\}$ in $[\mathrm{a}, \mathrm{b}]$, where 0 less than a less than b

- Watch Video Solution

80. How many roots of the equation
$(x-1)(x-2)(x-3)+(x-1)(x-2)(x-4)+(x-2)(x-3)(x-4)$
are positive?
81. If the function $f(x)=x^{3}-6 x^{2}+a x+b$ defined on $[1,3]$ satisfies Rolles theorem for $c=\frac{2 \sqrt{3}+1}{\sqrt{3}}$ then find the value of $a a n d b$

- Watch Video Solution

82. If $\varphi(x)$ is differentiable function $\forall x \in R$ and $a \in R^{+}$such that $\varphi(0)=\varphi(2 a), \varphi(a)=\varphi(3 a) \operatorname{and} \varphi(0) \neq \varphi(a)$ then show that there is at least one root of equation $\varphi^{\prime}(x+a)=\varphi^{\prime}(x) \in(0,2 a)$

- Watch Video Solution

83. Let $f(x)$ be differentiable function and $g(x)$ be twice differentiable function. Zeros of $f(x), g^{\prime}(x)$ be a, b, respectively, ${ }^{`}$ (a
84. Show that between any two roots of $e^{-x}-\cos x=0$, there exists at least one root of $\sin x-e^{-x}=0$

- Watch Video Solution

85. If $2 a+3 b+6 c=0$, then prove that at least one root of the equation $a x^{2}+b x+c=0$ lies in the interval $(0,1)$.

- Watch Video Solution

86. The equation $a x^{2}-b x+c=0$ has real and positive roots. Prove that the roots of the equation $a d^{2} x^{2}+a(3 b-2 c) x+(2 b-c)(b-c)+a c=0$ re real and positive.

- Watch Video Solution

87. Let $P(x)$ be a polynomial with real coefficients, Let a, b in R, a
88. If the curve $y=a x^{2}-6 x+b$ pass through $(0,2)$ and has its tangent parallel to the x -axis at $x=\frac{3}{2}$, then find the values of $a a n d b$.

- Watch Video Solution

89. Find the equation of the tangent to the curve $\left(1+x^{2}\right) y=2-x$, where it crosses the x -axis.

- Watch Video Solution

90. A curve is given by the equations $x=\sec ^{2} \theta, y=\cot \theta$. If the tangent at Pwhere $\theta=\frac{\pi}{4}$ meets the curve again at Q, then $[P Q]$ is, where [.] represents the greatest integer function, \qquad .

- Watch Video Solution

91. Find the point on the curve where tangents to the curve $y^{2}-2 x^{3}-4 y+8=0$ pass through (1,2).

- Watch Video Solution

92. At the point $P\left(a, a^{n}\right)$ on the graph of $y=x^{n},(n \in N)$, in the first quadrant, a normal is drawn. The normal intersects the y-axis at the point $(0, b)$. If $(\lim)_{a \rightarrow 0} b=\frac{1}{2}$, then n equals \qquad .

- Watch Video Solution

93. Find the equation of the normal to the curve $x^{3}+y^{3}=8 x y$ at the point where it meets the curve $y^{2}=4 x$ other than the origin.

- Watch Video Solution

94. If the slope of line through the origin which is tangent to the curve $y=x^{3}+x+16$ is m, then the value of $m-4$ is

(Watch Video Solution

95. For the curve $x y=c$, prove that the portion of the tangent intercepted between the coordinate axes is bisected at the point of contact.

- Watch Video Solution

96. Water is dropped at the rate of $2 \mathrm{~m}^{3} / \mathrm{s}$ into a cone of semi-vertical angle is 45°. If the rate at which periphery of water surface changes when the height of the water in the cone is 2 m is d . Then the value of 5 d is \qquad $\mathrm{m} / \mathrm{sec}$

- Watch Video Solution

97. Find the equation of the normal to the curve $x^{2}=4 \mathrm{y}$ which passes through the point (1, 2).
98. Suppose a, b, c are such that the curve $y=a x^{2}+b x+c$ is tangent to $y=3 x-3 a t(1,0)$ and is also tangent to $y=x+1 a t(3,4)$. Then the value of $(2 a-b-4 c)$ equals \qquad

- Watch Video Solution

99. Find the normal to the curve $x=a(1+\cos \theta), y=a \sin \theta a \mathrm{~h} \eta$. Prove that it always passes through a fixed point and find that fixed point.

- Watch Video Solution

100. If the curve C in the $x y$ plane has the equation $x^{2}+x y+y^{2}=1$, then the fourth power of the greatest distance of a point on C from the origin is \qquad .

- Watch Video Solution

101. Show that the straight line $x \cos \alpha+y \sin \alpha=p$ touches the curve $x y=a^{2}$, if $p^{2}=4 a^{2} \cos \alpha \sin \alpha$.

- Watch Video Solution

102. Let C be a curve defined by $y=e^{a}+b x^{2}$. The curve C passes through the point $P(1,1)$ and the slope of the tangent at P is (-2). Then the value of $2 a-3 b$ is \qquad .

- Watch Video Solution

103. If the line $x \cos \theta+y \sin \theta=P$ is the normal to the curve $(x+a) y=1, \quad$ then show
$\theta \in\left(2 n \pi+\frac{\pi}{2},(2 n+1) \pi\right) \cup\left(2 n \pi+\frac{3 \pi}{2},(2 n+2) \pi\right), n \in Z$

- Watch Video Solution

104. Let f defined on $[0,1]$ be twice differentiable such that $|f(x)| \leq 1$ for $x \in[0,1]$. if $f(0)=f(1)$ then show that $\mid f^{\prime}(x)<1$ for all $x \in[0,1]$.

- Watch Video Solution

105. If the tangent at any point $\left(4 m^{2}, 8 m^{3}\right)$ of $x^{3}-y^{2}=0$ is a normal to the curve $x^{3}-y^{2}=0$, then find the value of m.

- Watch Video Solution

106. If a, b are two real numbers with $a<b$, then a real number c can be found between a and b such that the value of $\frac{a^{2}+a b+b^{2}}{c^{2}} i s_{---}$

- Watch Video Solution

107. For the curve $y=4 x^{3}-2 x^{5}$, find all the points at which the tangent passes through the origin.
108. Find the total number of parallel tangents of $f_{1}(x)=x^{2}-x+1 \operatorname{and} f_{2}(x)=x^{3}-x^{2}-2 x+1$.

- Watch Video Solution

109. There is a point (\mathbf{p}, q) on the graph of $f(x)=x^{2}$ and a point (r, s) on the graph of $g(x)=\frac{-8}{x}$, wherep $>0 a n d r>0$. If the line through $(p, q) a n d(r, s)$ is also tangent to both the curves at these points, respectively, then the value of $P+r$ is \qquad -

- Watch Video Solution

110. A curve is defined parametrically be equations $x=t^{2} a n d y=t^{3}$. A variable pair of perpendicular lines through the origin O meet the curve of PandQ. If the locus of the point of intersection of the tangents at PandQ is $a y^{2}=b x-1$, then the value of $(a+b)$ is

Watch Video Solution

111. Find the equation of the tangent to the curvey $=\left\{x^{2} \frac{\sin 1}{x}, x \neq 00, x=0\right.$ at the origin

- Watch Video Solution

112. Statement 1: If $f(x)$ is differentiable in $[0,1]$ such that $f(0)=f(1)=0$, then for any $\lambda \in R$, there exists c such that $f^{\prime}(\mathbf{c})$ $=\lambda \mathbf{f}(\mathbf{c}), 0<c<1$. statement 2: if $g(x)$ is differentiable in [0,1], where $g(0)=g(1)$, then there exists c such that $g^{\prime}(\mathbf{c})=\mathbf{0}$,

- Watch Video Solution

113. Find the equation of tangent to the curve $y=\frac{\sin ^{-1}(2 x)}{1+x^{2}} a t x=\sqrt{3}$

- Watch Video Solution

114. Statement 1: For the function $f(x)=x^{2}+3 x+2, L M V T$ is applicable in $[1,2]$ and the value of c is $3 / 2$. Statement 2 : If LMVT is known to be applicable for any quadratic polynomial in $[a, b]$, then c of $L M V T$ is $\frac{a+b}{2}$.

- Watch Video Solution

115. Find the equation of the normals to the curve $\mathbf{y}=x^{3}+2 \mathbf{x}+6$ which are parallel to the line $x+14 y+4=0$.

- Watch Video Solution

116. Let $y=f(x)$ be a polynomial of odd degree (≥ 3) with real coefficients and (a, b) be any point. Statement 1: There always exists a line passing through (a, b) and touching the curve $y=f(x)$ at some point. Statement 2: A polynomial of odd degree with real coefficients has at least one real root.
117. Find the equation of tangent and normal to the curve $x=\frac{2 a t^{2}}{\left(1+t^{2}\right)}, y=\frac{2 a t^{3}}{\left(1+t^{2}\right)}$ at the point for which $t=\frac{1}{2}$.

- Watch Video Solution

118. If d is the minimum distance between the curves $f(x)=e^{x} \operatorname{andg}(x)=(\log)_{e} x$, then the value of d^{6} is

- Watch Video Solution

119. Let $f(x 0$ be a non-constant thrice differentiable function defined on $(-\infty, \infty)$ such that $f(x)=f(6-x)$ and $f^{\prime}(0)=0=f^{\prime}(x)^{2}=f(5)$. If n is the minimum number of roots of $\left(f^{\prime}(x)^{2}+f^{\prime}(x) f^{x}=0\right.$ in the interval $[0,6]$, then the value of $\frac{n}{2}$ is

- Watch Video Solution

120. Points on the curve $f(x)=\frac{x}{1-x^{2}}$ where the tangent is inclined at an angle of $\frac{\pi}{4}$ to the x -axis are $(\mathbf{a})(0,0)(b)\left(\sqrt{3},-\frac{\sqrt{3}}{2}\right)\left(-2, \frac{2}{3}\right)$
$\left(-\sqrt{3}, \frac{\sqrt{3}}{2}\right)$

- Watch Video Solution

121. In the curve $y=c e^{\frac{x}{a}}$, the sub-tangent is constant sub-normal varies as the square of the ordinate tangent at $\left(x_{1}, y_{1}\right)$ on the curve intersects the x -axis at a distance of $\left(x_{1}-a\right)$ from the origin equation of the normal at the point where the curve cuts $y-a \xi s$ is $c y+a x=c^{2}$

- Watch Video Solution

122. Let $f^{\prime}(x)=e^{x \wedge} 2$ and $f(0)=10$.

If A

- Watch Video Solution

123. If f is a continuous function on $[0,1]$, differentiable in $(0,1)$ such that $f(1)=0$, then there exists some $c \in(0,1)$ such that
$c f^{\prime}(c)-f(c)=0$
$c f^{\prime}(c)+c f(c)=0$
$f^{\prime}(c)-c f(c)=0$
$c f^{\prime}(c)+f(c)=0$

- Watch Video Solution

124. Given $g(x)=\frac{x+2}{x-1}$ and the line $3 x+y-10=0$. Then the line is
(a)tangent to $g(x)$ (b) normal to $g(x)$ (c)chord of $g(x)$ (d) none of these

- Watch Video Solution

125. Let f be a continuous, differentiable, and bijective function. If the tangent to $y=f(x) a t x=a$ is also the normal to $y=f(x) a t x=b$, then there exists at least one $c \in(a, b)$ such that
(a) $f^{\prime}(c)=0$
(b) $f^{\prime}(c)>0$
(c) $f^{\prime}(c)<0$
(d) none of these

- Watch Video Solution

126. If $f(x) \operatorname{and} d(x)$ are differentiable functions for $0 \leq x \leq 1$ such that
$f(0)=10, g(0)=2, f(1)=2, g(1)=4$, then in the interval $(0,1)$.
$f^{\prime}(x)=0 f$ or allx (b) $f^{\prime}(x)+4 g^{\prime}(x)=0$ for at least one x (c)
$f(x)=2 g^{\prime}(x)$ for at most one x (d)none of these

- Watch Video Solution

127. A continuous and differentiable function $y=f(x)$ is such that its graph cuts line $y=m x+c$ at n distinct points. Then the minimum number of points at which $f^{\prime \prime}(x)=0$ is/are (a) $n-1$ (b) $n-3 n-2$ (d) cannot say
128. If $f(x)$ is continuous in $[a, b]$ and differentiable in (a,b), then prove that there exists at least one $c \in(a, b)$ such that $\frac{f^{\prime}(c)}{3 c^{2}}=\frac{f(b)-f(a)}{b^{3}-a^{3}}$

- Watch Video Solution

129. The radius of the base of a cone is increasing at the rate of $3 \mathrm{~cm} / \mathrm{min}$ and the altitude is decreasing at the rate of $4 \mathrm{~cm} / \mathrm{min}$. The rate of change of lateral surface when the radius is 7 cm and altitude is 24 cm is (a) $108 \pi \mathrm{~cm}^{2} / \min$ (b) $54 \pi \mathrm{~cm}^{2} / \min$ (c) $27 \pi \mathrm{~cm}^{2} / \min$ (d) none of these

- Watch Video Solution

130. Let $f(x) \operatorname{andg}(x)$ be differentiable for $0 \leq x \leq 2$ such that $f(0)=2, g(0)=1, \operatorname{and} f(2)=8$. Let there exist a real number c in $[0,2]$ such that $f^{\prime}(c)=3 g^{\prime}(c)$. Then find the value of $g(2)$.

- Watch Video Solution

131. If $3(a+2 c)=4(b+3 d)$, then the equation $a x^{3}+b x^{2}+c x+d=0$ will have (a)no real solution (b)at least one real root in $(-1,0)$ (c)at least one real root in $(0,1)$ (d)none of these

- Watch Video Solution

132. If $f(x)=x^{3}+7 x-1$, then $f(x)$ has a zero between $x=0 a n d x=1$. The theorem that best describes this is a. mean value theorem b. maximum-minimum value theorem c. intermediate value theorem none of these

- Watch Video Solution

133. Consider the
function
$f(x)=\left\{x \sin \left(\frac{\pi}{x}\right), f\right.$ or $x>0,0 f$ or $x=0$ The, the number of point in $(0,1)$ where the derivative $f^{\prime}(x)$ vanishes is $\mathbf{0}$ (b) $\mathbf{1}$ (c) $\mathbf{2}$ (d) infinite
134. Let $f(x)$ be a twice differentiable function for all real values of x and satisfies $f(1)=1, f(2)=4, f(3)=9$. Then which of the following is definitely true? (a). $f^{\prime \prime}(x)=2 \forall x$ in (1,3) (b) $f^{\prime \prime}(x)=5$ for some \mathbf{x} in $(2,3)$ (c) $f^{\prime \prime}(x)=3 \forall x$ in (2,3) (d) $f^{\prime \prime}(x)=2$ for some \mathbf{x} in $(1,3)$

- Watch Video Solution

135. The value of c in Lagranges theorem for the function $f(x)=\log \sin x$ in the interval $\left[\frac{\pi}{6}, \frac{5 \pi}{6}\right]$ is (a) $\frac{\pi}{4}$ (b) $\frac{\pi}{2}$ (c) $\frac{2 \pi}{3}$ (d) none of these

- Watch Video Solution

136. If the function $f(x)=a x^{3}+b x^{2}+11 x-6$ satisfies conditions of Rolles theorem in $[1,3]$ and $f^{\prime}\left(2+\frac{1}{\sqrt{3}}\right)=0$, then values of a and b , respectively, are
(A) $-3,2$
(B) $2,-4$
(C) $1,-6$
(D) none of these

- Watch Video Solution

137. A value of C for which the conclusion of Mean Value Theorem holds for the function $f(x)=(\log)_{e} x$ on the interval [1, 3] is (1) $2(\log)_{3} e$ (2) $\frac{1}{2}(\log)_{e} 3(3)(\log)_{3} e(4)(\log)_{e} 3$

- Watch Video Solution

138. Each question has four choices, a, b, c and d, out of which only one is correct. Each question contains STATEMENT 1 and STATEMENT 2. If both the statement are TRUE and STATEMENT 2 is the correct explanation of STATEMENT 1. If both the statements are TRUE but STATEMENT 2 is NOT the correct explanation of STATEMENT 1. If STATEMENT 1 is TRUE and STATEMENT 2 is FLASE. If STATEMENT 1 is FALSE and STATEMENT 2 is TURE.

Statement 1: Lagrange mean value theorem is not applicable to
$f(x)=|x-1|(x-1)$ Statement 2: $|x-1|$ is not differentiable at $x=1$.

- Watch Video Solution

139. The abscissa of the point on the curve $\sqrt{x y}=a+x$ the tangent at which cuts off equal intercepts from the coordinate axes is $-\frac{a}{\sqrt{2}}$
$a / \sqrt{2}$ (c) $-a \sqrt{2}$ (d) $a \sqrt{2}$

- Watch Video Solution

140. In which of the following functions is Rolles theorem applicable?
(a) $f(x)=\{x, 0 \leq x<10, x=1 \operatorname{on}[0,1]$
(b) $f(x)=\left\{\frac{\sin x}{x},-\pi \leq x<00, x=0 o n[-\pi, 0)\right.$
(c) $f(x)=\frac{x^{2}-x-6}{x-1}$ on $[-2,3]$
(d) $f(x)=\left\{\frac{x^{3}-2 x^{2}-5 x+6}{x-1}\right.$ if $x \neq 1,-6$ if $x=1$ on $[-2,3]$
141. A point on the parabola $y^{2}=18 x$ at which the ordinate increases at twice the rate of the abscissa is $(\mathbf{a})(2,6)(b)(2,-6)(c)\left(\frac{9}{8},-\frac{9}{2}\right)$ $\left(\frac{9}{8}, \frac{9}{2}\right)$

- Watch Video Solution

142. Statement 1: If $g(x)$ is a differentiable function, $g(2) \neq 0, g(-2) \neq 0, \quad$ and Rolles theorem is not applicable to $f(x)=\frac{x^{2}-4}{g(x)} \in[-2,2]$, theng (x) has at least one root in $(-2,2)$. Statement 2: If $f(a)=f(b)$, $\operatorname{theng}(x)$ has at least one root in $(-2,2)$. Statement 2: If $f(a)=f(b)$, then Rolles theorem is applicable for $x \in(a, b)$.

- Watch Video Solution

143. Statement 1: The maximum value of
$\left(\sqrt{-3+4 x-x^{2}}+4\right)^{2}+(x-5)^{2}(w h e r e 1 \leq x \leq 3) i s 36$. Statement

2: The maximum distance between the point $(5,-4)$ and the point on the circle $(x-2)^{2}+y^{2}=1$ is 6

- Watch Video Solution

144. Statement 1: If both functions $f(t) a n d g(t)$ are continuous on the closed interval $[1, \mathrm{~b}]$, differentiable on the open interval (\mathbf{a}, b) and $g^{\prime}(t)$ is not zero on that open interval, then there exists some c in (a, b) such that $\frac{f^{\prime}(c)}{g^{\prime}(c)}=\frac{f(b)-f(a)}{g(b)-g(a)}$ Statement 2: If $f(t) a n d g(t)$ are continuou and differentiable in [a, b], then there exists some c in (\mathbf{a}, b) such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a} a n d g^{\prime}(c) \frac{g(b)-g(a)}{b-a}$ from Lagranes mean value theorem.

- Watch Video Solution

145. Statement 1: If $27 a+9 b+3 c+d=0$, then the equation $f(x)=4 a x^{3}+3 b x^{2}+2 c x+d=0$ has at least one real root lying between $(0,3)$. Statement 2: If $f(x)$ is continuous in [a,b], derivable in
(a, b) such that $f(a)=f(b)$, then there exists at least one point $c \in(a, b)$ such that $f^{\prime}(c)=0$.

- Watch Video Solution

146. Find the angle of intersection of curves $y=[|\sin x|+|\cos x|]$ and $x^{2}+y^{2}=5$, where [.] denotes the greatest integral function.

- Watch Video Solution

147. If the curves $a x^{2}+b y^{2}=1$ and $a_{1} x^{2}+b_{1} y^{2}=1$ intersect each other orthogonally then show that $\frac{1}{a}-\frac{1}{b}=\frac{1}{a_{1}}-\frac{1}{b_{1}}$

Watch Video Solution

148. If the area of the triangle included between the axes and any tangent to the curve $x^{n} y=a^{n}$ is constant, then find the value of n.
149. If the tangent at $\left(x_{1}, y_{1}\right)$ to the curve $x^{3}+y^{3}=a^{3}$ meets the curve again in $\left(x_{2}, y_{2}\right)$, then prove that $\frac{x_{2}}{x_{1}}+\frac{y_{2}}{y_{1}}=-1$

- Watch Video Solution

150. Show that the segment of the tangent to the curve $y=\frac{a}{2} \operatorname{In}\left(\frac{a+\sqrt{a^{2}-x^{2}}}{a-\sqrt{a^{2}-x^{2}}}\right)-\sqrt{a^{2}-x^{2}}$ contained between the $\mathrm{y}=\mathrm{axis}$ and the point of tangency has a constant length.

- Watch Video Solution

151. Prove that the equation of the normal to $x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}$ is $y \cos \theta-x \sin \theta=a \cos 2 \theta$, where θ is the angle which the normal makes with the axis of x.
$y=f(x),[f(x)>0]$, and $y=f(x) \sin x$, where $f(x)$ is differentiable function, have common tangents at common points.

- Watch Video Solution

153. Tangents are drawn from the origin to curve $y=\sin x$. Prove that points of contact lie on $y^{2}=\frac{x^{2}}{1+x^{2}}$

- Watch Video Solution

154. Given $f(x)=4-\left(\frac{1}{2}-x\right)^{\frac{2}{3}}, g(x)=\left\{\frac{\tan [x]}{x}, x \neq 01, x=0\right.$ $h(x)=\{x\}, k(x)=5^{(\log)_{2}(x+3)}$ Then in [0,1], lagranges mean value theorem is not applicable to (where [.] and \{.\} represents the greatest integer functions and fractional part functions, respectively). f (b) g (c) k (d) h
155. Show that the angle between the tangent at any point P and the line joining P to the origin O is same at all points on the curve $\log \left(x^{2}+y^{2}\right)=k \tan ^{-1}\left(\frac{y}{x}\right)$

- Watch Video Solution

156. The angle between the tangents to the curves $y=x^{2} a n d x=y^{2} a t(1,1)$ is $\cos ^{-1}\left(\frac{4}{5}\right)$ (b) $\sin ^{-1}\left(\frac{3}{5}\right) \tan ^{-1}\left(\frac{3}{4}\right)$ $\tan ^{-1}\left(\frac{1}{3}\right)$

- Watch Video Solution

157. If the tangent at any point $\left(4 m^{2}, 8 m^{3}\right)$ of $x^{3}-y^{2}=0$ is a normal to the curve $x^{3}-y^{2}=0$, then find the value of m.
158. The angle formed by the positive y - axis and the tangent to $y=x^{2}+4 x-17 a t\left(\frac{5}{2},-\frac{3}{4}\right)$ is: (a) $\tan ^{-1}(9) \quad$ (b) $\frac{\pi}{2}-\tan ^{-1}(9)$ $\frac{\pi}{2}+\tan ^{-1}(9)$ (d) none of these

Watch Video Solution

159. The abscissa of a point on the curve $x y=(a+x)^{2}$, the normal which cuts off numerically equal intercepts from the coordinate axes, is
$-\frac{1}{\sqrt{2}}$ (b) $\sqrt{2} a$ (c) $\frac{a}{\sqrt{2}}$ (d) $-\sqrt{2} a$

- Watch Video Solution

160. The corrdinate of the points(s) on the graph of the function, $f(x)=\frac{x^{3}}{3}-\frac{5 x^{2}}{2}+7 x-4$ where the tangent drawn cuts offintercepts from the coordinate axes which are equal in magnitude but opposite is sign, is
161. Which of the following pair(s) of curves is/are orthogonal? $y^{2}=4 a x ; y=e^{-\frac{x}{2 a}} y^{2}=4 a x ; x^{2}=4 a y a t(0,0) x y=a^{2} ; x^{2}-y^{2}=b^{2}$ $y=a x ; x^{2}+y^{2}=c^{2}$

- Watch Video Solution

162. Let the parabolas $y=x(c-x) a n d y=x^{2}+a x+b$ touch each other at the point (1,0). Then (a) $a+b+c=0$ (b) $a+b=2$ (c) $b-c=1$ (d) $a+c=-2$

Watch Video Solution

163. Let $f(x)=a_{5} x^{5}+a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x$, where $a_{i}{ }^{\prime} s$ are real and $f(x)=0$ has a positive root α_{0}. Then (a) $f^{\prime}(x)=0$ has a positive root α_{1} such that $0 \alpha_{1} \alpha_{0}$
A. (b) $f^{\prime}(x)=0$ has at least two real roots (c) $f^{x}=0$ has at least one
real root (d)noneofthese
B. null
C. null
D. null

- Watch Video Solution

164. If there is an error of $k \%$ in measuring the edge of a cube, then the percent error in estimating its volume is (a) k (b) $3 k$ (c) $\frac{k}{3}$ (d) none of these

- Watch Video Solution

165. The rate of change of the volume of a sphere w.r.t. its surface area,
(b) 2
(c) 3
(d) 4
166. A man is moving away from a tower 41.6 m high at the rate of 2 $\mathrm{m} / \mathrm{sec}$. Find the rate at which the angle of elevation of the top of tower is changing, when he is at a distance of 30 m from the foot of the tower. Assume that the eye level of the man is 1.6 m from the ground.

- Watch Video Solution

167. A lamp of negligible height is placed on the ground l_{1} away from a wall. A man $l_{2} m$ tall is walking at a speed of $\frac{l_{1}}{10} \mathrm{~m} / \mathrm{s}$ from the lamp to the nearest point on the wall. When he is midway between the lamp and the wall, the rate of change in the length of this shadow on the wall is $-\frac{5 l_{2}}{2} m / s$ (b) $-\frac{2 l_{2}}{5} m / s-\frac{l_{2}}{2} m / s$ (d) $-\frac{l_{2}}{5} m / s$

- Watch Video Solution

168. At the point $P\left(a, a^{n}\right)$ on the graph of $y=x^{n},(n \in N)$, in the first quadrant, a normal is drawn. The normal intersects the y-axis at the point $(0, b) \cdot$ If $(\lim)_{a \rightarrow 0} b=\frac{1}{2}$, then n equals \qquad .

- Watch Video Solution

169. The coordinates of a point on the parabola $y^{2}=8 x$ whose distance from the circle $x^{2}+(y+6)^{2}=1$ is minimum is $(\mathbf{a})(2,4)$ (b) $(2,-4)$ (c) $(18,-12)(\mathrm{d})(8,8)$

- Watch Video Solution

170. The radius of a right circular cylinder increases at the rate of 0.1 $\mathrm{cm} / \mathrm{min}$, and the height decreases at the rate of $0.2 \mathrm{~cm} / \mathrm{min}$. The rate of change of the volume of the cylinder, in $\mathrm{cm}^{2} / m \in$, when the radius is $2 c m$ and the height is 3 cm is $-2 p$ (b) $-\frac{8 \pi}{5}-\frac{3 \pi}{5}$ (d) $\frac{2 \pi}{5}$
171. Suppose that f is differentiable for all x and that $f^{\prime}(x) \leq 2 f$ or allx. If $f(1)=2 \operatorname{and} f(4)=8$, $\operatorname{then} f(2)$ has the value equal to 3 (b) 4 (c) 6 (d) 8

- Watch Video Solution

172. The tangent to the curve $y=e^{k x}$ at a point (0,1) meets the x -axis at ($\mathbf{a}, \mathbf{0}$), where $a \in[-2,-1]$. Then $k \in\left[-\frac{1}{2}, 0\right]$ (b) $\left[-1,-\frac{1}{2}\right]$ $[0,1]$ (d) $\left[\frac{1}{2}, 1\right]$

- Watch Video Solution

173. A cube of ice melts without changing its shape at the uniform rate of $4 \frac{\mathrm{~cm}^{3}}{\mathrm{~m} \in}$. The rate of change of the surface area of the cube, in $\frac{\mathrm{cm}^{2}}{\mathrm{~m} \epsilon}$, when the volume of the cube is $125 \mathrm{~cm}^{3}$, is -4 (b) $-\frac{16}{5}$ (c) $-\frac{16}{6}$ (d) $-\frac{8}{15}$
174. Using Rolles theorem, prove that there is at least one root in $\left(45^{\frac{1}{100}}, 46\right)$ of the equation.
$P(x)=51 x^{101}-2323(x)^{100}-45 x+1035=0$.

- Watch Video Solution

175. if $\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| \leq\left(x_{1}-x_{2}\right)^{2}$ Find the equation of gent to the curve $y=f(x)$ at the point $(1,2)$.

- Watch Video Solution

176. If $f(x)$ is a twice differentiable function such that $f(a)=0, f(b)=2$, $\mathrm{f}(\mathrm{c})=-1, \mathrm{f}(\mathrm{d})=2, \mathrm{f}(\mathrm{e})=0$ where $\mathrm{a}<\mathrm{b}<\mathrm{c}<\mathrm{de}$, then the minimum number of zeroes of $g(x)=f^{\prime}(x)^{2}+f^{\prime \prime}(x) f(x)$ in the interval $[\mathrm{a}, \mathrm{e}]$ is

- Watch Video Solution

177. A function $y-f(x)$ has a second-order derivative $f^{x}=6(x-1)$. It its graph passes through the point $(2,1)$ and at that point tangent to the graph is $y=3 x-5$, then the value of $f(0)$ is $\mathbf{1}$ (b) -1 (c) $\mathbf{2}$ (d) $\mathbf{0}$

- Watch Video Solution

178. If $x+4 y=14$ is a normal to the curve $y^{2}=\alpha x^{3}-\beta$ at $(2,3)$, then the value of $\alpha+\beta$ is $9(b)-5$ (c) 7 (d) -7

- Watch Video Solution

179. In the curve represented parametrically by the equations $x=2 \log \cot t+1$ and $y=\tan t+\cot t, \quad$ A. tangent and normal intersect at the point $(2,1)$ B. normal at $t=\frac{\pi}{4}$ is parallel to the y-axis. C. tangent at $t=\frac{\pi}{4}$ is parallel to the line $y=x \mathbf{D}$. tangent at $t=\frac{\pi}{4}$ is parallel to the x-axis.
180. The abscissas of point $\operatorname{Pand} Q$ on the curve $y=e^{x}+e^{-x}$ such that tangents at PandQ make 60° with the x -axis are.
$1 n\left(\frac{\sqrt{3}+\sqrt{7}}{7}\right) \operatorname{and} 1 n\left(\frac{\sqrt{3}+\sqrt{5}}{2}\right) \quad \ln \left(\frac{\sqrt{3}+\sqrt{7}}{2}\right)$
$1 n\left(\frac{\sqrt{7}-\sqrt{3}}{2}\right) \pm 1 n\left(\frac{\sqrt{3}+\sqrt{7}}{2}\right)$

- Watch Video Solution

181. The normal to the curve $2 x^{2}+y^{2}=12$ at the point $(2,2)$ cuts the curve again at (A) $\left(-\frac{22}{9},-\frac{2}{9}\right)$ (B) $\left(\frac{22}{9}, \frac{2}{9}\right)$ (C) $(-2,-2)$ none of these

- Watch Video Solution

182. At what point of curve $y=\frac{2}{3} x^{3}+\frac{1}{2} x^{2}$, the tangent makes equal angle with the axis?
(a) $\left(\frac{1}{2}, \frac{2}{24}\right) \operatorname{and}\left(-1,-\frac{1}{6}\right)$
$\left(\frac{1}{2}, \frac{4}{9}\right) \operatorname{and}(-1,0)$
$\left(\frac{1}{3}, \frac{4}{47}\right)$ and $\left(-1,-\frac{1}{3}\right)$
(c) $\quad\left(\frac{1}{3}, \frac{1}{7}\right) \operatorname{and}\left(-3, \frac{1}{2}\right)$

(D) Watch Video Solution

183. The equation of the tangent to the curve $y=b e^{-x / a}$ at the point where it crosses the y -axis is $a) \frac{x}{a}-\frac{y}{b}=1 \quad$ (b) $a x+b y=1$ c) $a x-b y=1$ (d) $\frac{x}{a}+\frac{y}{b}=1$

- Watch Video Solution

184. Then angle of intersection of the normal at the point $\left(-\frac{5}{\sqrt{2}}, \frac{3}{\sqrt{2}}\right)$ of the curves $x^{2}-y^{2}=8$ and $9 x^{2}+25 y^{2}=225$ is 0
(b) $\frac{\pi}{2}$ (c) $\frac{\pi}{3}$ (d) $\frac{\pi}{4}$

- Watch Video Solution

185. If a variable tangent to the curve $x^{2} y=c^{3}$ makes intercepts $a, b o n x-a n d y-a x e s$, respectively, then the value of $a^{2} b$ is $27 c^{3}$
$\frac{4}{27} c^{3}$ (c) $\frac{27}{4} c^{3}$ (d) $\frac{4}{9} c^{3}$
186. Let C be the curve $y=x^{3}$ (where x takes all real values). The tangent at A meets the curve again at B. If the gradient at B is K times the gradient at A, then K is equal to 4 (b) 2 (c) -2 (d) $\frac{1}{4}$

- Watch Video Solution

187. If H is the number of horizontal tangents and V is the number of vertical tangents to the curve $y^{3}-3 x y+2=0$, then the value of $(H+V)$ equals

- Watch Video Solution

188. Let $f(1)=-2 a n d f^{\prime}(x) \geq 4.2 f$ or $1 \leq x \leq 6$. The smallest possible value of $f(6)$ is 9 (b) 12 (c) 15 (d) 19
189. The curves $4 x^{2}+9 y^{2}=72$ and $x^{2}-y^{2}=5 a t(3,2)$ touch each other (b) cut orthogonally intersect at 45^{0} (d) intersect at 60^{0}

- Watch Video Solution

190. If the length of sub-normal is equal to the length of sub-tangent at any point (3,4) on the curve $y=f(x)$ and the tangent at $(3,4)$ to $y=f(x)$ meets the coordinate axes at AandB, then the maximum area of the triangle $O A B$, where O is origin, is $45 / 2$ (b) $49 / 2$ (c) $25 / 2$ (d) $81 / 2$

- Watch Video Solution

191. At any point on the curve $2 x^{2} y^{2}-x^{4}=c$, the mean proportional between the abscissa and the difference between the abscissa and the sub-normal drawn to the curve at the same point is equal to or $d \in$ ate
(b) radius vector $x-\in$ tercep $\rightarrow f t a n \geq n t$ (d) sub-tangent
192. The x-intercept of the tangent at any arbitrary point of the curve $\frac{a}{x^{2}}+\frac{b}{y^{2}}=1$ is proportional to (a)square of the abscissa of the point of tangency (b)square root of the abscissa of the point of tangency (c)cube of the abscissa of the point of tangency (d)cube root of the abscissa of the point of tangency

- Watch Video Solution

193. A curve is represented by the equations $x=\sec ^{2} \operatorname{tandy}=\cot t$, where t is a parameter. If the tangent at the point P on the curve where $t=\frac{\pi}{4}$ meets the curve again at the point Q, then $|P Q|$ is equal to $\frac{5 \sqrt{3}}{2}$ (b) $\frac{5 \sqrt{5}}{2}$ (c) $\frac{2 \sqrt{5}}{3}$ (d) $\frac{3 \sqrt{5}}{2}$

- Watch Video Solution

194. The two curves $x=y^{2}, x y=a^{3}$ cut orthogonally at a point. Then a^{2} is equal to $\frac{1}{3}$ (b) 3 (c) 2 (d) $\frac{1}{2}$
195. The line tangent to the curves $y^{3}-x^{2} y+5 y-2 x=0$ and $x^{2}-x^{3} y^{2}+5 x+2 y=0$ at the origin intersect at an angle θ equal to
$\frac{\pi}{6}$
(b) $\frac{\pi}{4}$
(c) $\frac{\pi}{3}$
(d) $\frac{\pi}{2}$

- Watch Video Solution

196. Tangent of acute angle between the curves $y=\left|x^{2}-1\right|$ and $y=\sqrt{7-x^{2}}$ at their points of intersection is $\frac{5 \sqrt{3}}{2}$ (b) $\frac{3 \sqrt{5}}{2} \frac{5 \sqrt{3}}{4}$ (d) $\frac{3 \sqrt{5}}{4}$

Watch Video Solution

197. The number of point in the rectangle $\{(x, y)\}-12 \leq x \leq 12 a n d-3 \leq y \leq 3\}$ which lie on the curve $y=x+\sin x$ and at which in the tangent to the curve is parallel to the x -axis is $\mathbf{0}$ (b) $\mathbf{2}$ (c) $\mathbf{4}$ (d) 8

- Watch Video Solution

198. Statement 1: The tangent at $x=1$ to the curve $y=x^{3}-x^{2}-x+2$ again meets the curve at $x=0$. Statement 2: When the equation of a tangent is solved with the given curve, repeated roots are obtained at point of tangency.

Watch Video Solution

199. An aeroplane is flying horizontally at a height of $\frac{2}{3} \mathrm{~km}$ with a velocity of $15 \mathrm{~km} / \mathrm{h}$. Find the rate at which it is receding from a fixed point on the ground which it passed over 2 min ago.

- Watch Video Solution

200. Use the mean value theorem to prove $e^{x} \geq 1+x \forall x \in R$
201. Find the condition for the line $y=m x$ to cut at right angles the conic $a x^{2}+2 h x y+b y^{2}=1$.

- Watch Video Solution

202. Show that for the curve $b y^{2}=(x+a)^{3}$, the square of the subtangent varies as the sub-normal.

- Watch Video Solution

203. Let a, b, c be three real numbers such that `a

- Watch Video Solution

204. Prove that the portion of the tangent to the curve $\frac{x+\sqrt{a^{2}-y^{2}}}{a}=(\log)_{e} \frac{a+\sqrt{a^{2}-y^{2}}}{y}$ intercepted between the point of contact and the x-axis is constant.

(D) Watch Video Solution

205. Let a, b, c be non-zero real numbers such that $\int_{0}^{1}\left(1+\cos ^{8} x\right)\left(a x^{2}+b x+c\right) d x$
$=\int_{0}^{2}\left(1+\cos ^{8} x\right)\left(a x^{2}+b x+c\right) d x$

- Watch Video Solution

206. If f is continuous and differentiable function and $f(0)=1, f(1)=2$, then prove that there exists at least one $c \in[0,1] f$ or which $f^{\prime}(c)(f(c))^{n-1}>\sqrt{2^{n-1}}$, where $n \in N$.

- Watch Video Solution

207. Sand is pouring from a pipe at the rate of $12 \mathrm{~cm}^{3} / \mathrm{s}$. The falling sand forms a cone on the ground in such a way that the height of the cone is
always one-sixth of the radius of the base. How fast is the height of the sand cone increasing when the height is 4 cm ?

- Watch Video Solution

208. Let $\frac{a_{0}}{n+1}+\frac{a_{1}}{n}+\frac{a_{2}}{n-1}++\frac{a_{n-1}}{2}+a_{n}=0$. Show that there exists at least one real x between 0 and 1 such that $a_{0} x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}++a_{n}=0$

Watch Video Solution

209. If the line $a x+b y+c=0$ is a normal to the curve $x y=1$, then $a>0, b>0 a>0, b<0 a\langle 0, b\rangle 0$ (d) $a<0, b<0$ none of these

- Watch Video Solution

210. Which one of the following curves cut the parabola at right angles?
(a) $x^{2}+y^{2}=a^{2}$
(b) $y=e^{-x / 2 a}$
(c) $y=a x$
(d) $x^{2}=4 a y$
211. Let $f, g:[-1,2] \rightarrow \mathbb{R}$ be continuous functions which are twice differentiable on the interval ($-1,2$). Let the values of f and g at the points -1, 0 and 2 be as given in the following table : $x=-1 x=0 x=2 f(x) 360 g(x) 01-1$ In each of the intervals ($-1,0$) and $(0,2)$ the function ($f-3 g$)" never vanishes. Then the correct statement(s) is(are)

- Watch Video Solution

212. Which of the following is/are correct?
(A) Between any two roots of $e^{x} \cos x=1$, there exists at least one root of $\tan x=1$.
(B) Between any two roots of $e^{x} \sin x=1$, there exists at least one root of $\tan x=-1$.
(C) Between any two roots of $e^{x} \cos x=1$, there exists at least one root of $e^{x} \sin x=1$.
(D) Between any two roots of $e^{x} \sin x=1$, there exists at least one root of $e^{x} \cos x=1$.

D Watch Video Solution

213. Which of the following pair(s) of curves is/are orthogonal?
$y^{2}=4 a x ; y=e^{-\frac{x}{2 a}} y^{2}=4 a x ; x^{2}=4 a y a t(0,0) x y=a^{2} ; x^{2}-y^{2}=b^{2}$
$y=a x ; x^{2}+y^{2}=c^{2}$

D Watch Video Solution

214. Find the equation of tangents to the curve
$y=\cos (x+y),-2 \pi \leq x \leq 2 \pi$
that are parallel to the line $x+2 y=0$.

- Watch Video Solution

215. Find the equation of the normal to the curve $y=(1+x)^{y}+\sin ^{-1}\left(\sin ^{2} x\right) a t \mathbf{x}=\mathbf{0}$.

- Watch Video Solution

216. Let fandg be differentiable on $[0,1]$ such that $f(0)=2, g(0), f(1)=6 \operatorname{andg}(1)=2$. Show that there exists $c \in(0,1)$ such that $f^{\prime}(c)=2 g^{\prime}(c)$.

- Watch Video Solution

217. Find the shortest distance of the point ($0, \mathrm{c}$) from the parabola $y=x^{2}$, where $0 \leq c \leq 5$.

- Watch Video Solution

218. The distance between the origin and the tangent to the curve $y=e^{2 x}+x^{2}$ drawn at the point $x=0$ is

Watch Video Solution

219. Let $f(x)=\left\{-x^{2}, f\right.$ or $x<0, x^{2}+8, f$ or $x \geq 0$
the x intercept of the line, that is, the tangent to the graph of $f(x)$, is zero
(b) -1 (c) -2 (d) -4

- Watch Video Solution

220. The curve $y=a x^{3}+b x^{2}+c x+5$ touches the x -axis at $P(-2,0)$ and cuts the y-axis at the point Q where its gradient is 3 . Find the equation of the curve completely.

- Watch Video Solution

221. The slope of the tangent to the curve $y=\sqrt{4-x^{2}}$ at the point where the ordinate and the abscissa are equal is - 1 (b) 1 (c) 0 (d) none of these

- Watch Video Solution

222. If at each point of the curve $y=x^{3}-a x^{2}+x+1$, the tangent is inclined at an acute angle with the positive direction of the x-axis, then $a>0$ (b) $a<-\sqrt{3}-\sqrt{3} \leq a \leq \sqrt{3}$ (d) noneofthese

- Watch Video Solution

223. If the line joining the points $(0,3) \operatorname{and}(5,-2)$ is a tangent to the curve $y=\frac{C}{x+1}$, then the value of c is $\mathbf{1}$ (b) -2 (c) 4 (d) none of these

- Watch Video Solution

224. The curve given by $x+y=e^{x y}$ has a tangent parallel to the \mathbf{y} - axis at the point (a)(0,1)(b)(1,0)(c)(1,1)(d) none of these

Watch Video Solution

225. The number of tangents to the curve $x^{\frac{3}{2}}+y^{\frac{3}{2}}=2 a^{\frac{3}{2}}, a>0$, which are equally inclined to the axes, is $\mathbf{2}$ (b) $\mathbf{1}$ (c) $\mathbf{0}$ (d) $\mathbf{4}$

- Watch Video Solution

226. Show that the square roots of two successive natural numbers greater than N^{2} differ by less than $\frac{1}{2 N}$.

- Watch Video Solution

227. If m is the slope of a tangent to the curve $e^{y}=1+x^{2}$, then $|m|>1$ (b) $m>1 m \succ 1$ (d) $|m| \leq 1$
228. The angle made by the tangent of the curve $x=a(t+\sin t \cos t), y=a(1+\sin t)^{2}$ with the \mathbf{x}-axis at any point on it
is (A) $\frac{1}{4}(\pi+2 t)$
(B) $\frac{1-\sin t}{\cos t}$
(C) $\frac{1}{4}(2 t-\pi)$
(D) $\frac{1+\sin t}{\cos 2 t}$

- Watch Video Solution

229. If $f(x)=\left\{\begin{array}{ll}x^{\alpha} \log x & x>0 \\ 0 & x=0\end{array}\right.$ and Rolle's theorem is applicable to $f(x)$ for $x \in[0,1]$ then α may equal to (A) -2 (B) -1 (C) $\mathbf{0}$ (D) $\frac{1}{2}$

- Watch Video Solution

230. In [0,1] Lagranges Mean Value theorem in NOT applicable to
$f(x)=\left\{\frac{1}{2}-x ; x<\frac{1}{2}\left(\frac{1}{2}-x\right)^{2} ; x \geq \frac{1}{2}\right.$
b.
$f(x)=\left\{\frac{\sin x}{x}, x \neq 01, x=0\right.$ c. $f(x)=x|x|$ d. $f(x)=|x|$
231. The point(s) on the curve $y^{3}+3 x^{2}=12 y$ where the tangent is vertical, is(are) ?? $\left(\pm \frac{4}{\sqrt{3}},-2\right)$ (b) $\left(\pm \sqrt{\frac{11}{3}}, 1\right)(0,0)$ $\left(\pm \frac{4}{\sqrt{3}}, 2\right)$

- Watch Video Solution

232. The triangle formed by the tangent to the curve $f(x)=x^{2}+b x-b$ at the point $(1,1)$ and the coordinate axes, lies in the first quadrant. If its area is 2 , then the value of b is (a) -1 (b) 3 (c) -3 (d) 1

- Watch Video Solution

233. If the normal to the curve $y=f(x)$ at the point $(3,4)$ makes an angle $\frac{3 \pi}{4}$ with the positive x -axis, then $f^{\prime}(3)=$ (a) -1 (b) $-\frac{3}{4}$ (c) $\frac{4}{3}$ (d) 1
234. The slope of the tangent to a curve $y=f(x)$ at $(x, f(x))$ is $2 x+1$. If the curve passes through the point $(1,2)$ then the area of the region bounded by the curve, the x -axis and the line $x=1$ is (A) $\frac{5}{6}$ (B) $\frac{6}{5}$ (C) $\frac{1}{6}$ (D) 1

- Watch Video Solution

235. Show that the normal at any point θ to the curve $x=a \cos \theta+a \theta \sin \theta, y=a \sin \theta-a \theta \cos \theta$ is at a constant distance from the origin.

- Watch Video Solution

236. If $a, b, c \in R$ and $a+b+c=0$, then the quadratic equation $3 a x^{2}+2 b x+c=0$ has (a) at least one root in $[0,1]$ (b) at least one root in $[1,2]$ (c) at least one root in $\left[\frac{3}{2}, 2\right]$ (d) none of these
237. The tangent to the curve $y=e^{x}$ drawn at the point $\left(c, e^{c}\right)$ intersects the line joining $\left(c-1, e^{c-1}\right)$ and $\left(c+1, e^{c+1}\right)$ (a) on the left of $x=c$
(b) on the right of $x=c$ (c) at no points (d) at all points

- Watch Video Solution

238. Let S denote the set of all polynomials $P(x)$ of degree ≤ 2 such that $P(1)=1, P(0)=0$ and $P^{\prime}(x)>0 \forall x \in[0,1]$, then $S=\varphi \mathrm{b}$. $\mathrm{S}=$ $\left\{(1-a) x^{\wedge} 2+a x ; 0\right.$

- Watch Video Solution

Examples

1. Find the total number of parallel tangents of $f_{1}(x)=x^{2}-x+1 \operatorname{and} f_{2}(x)=x^{3}-x^{2}-2 x+1$.
2. Find the equation of tangent to the curve $y=\frac{\sin ^{-1}(2 x)}{1+x^{2}} a t x=\sqrt{3}$

- Watch Video Solution

3. The equation of the tangent tothe curve $y=\left\{x^{2} \sin \left(\frac{1}{x}\right), x \neq 0\right.$ and $0, x=0$ at the origin is

- Watch Video Solution

4. Find the equation of the normals to the curve $\mathbf{y}=x^{3}+2 \mathrm{x}+6$ which are parallel to the line $\mathrm{x}+14 \mathrm{y}+\mathbf{4}=\mathbf{0}$.

- Watch Video Solution

5. If the equation of the tangent to the curve $y^{2}=a x^{3}+b$ at point $(2,3) i s y=4 x-5$, then find the values of $a a n d b$.

- Watch Video Solution

6. For the curve $y=4 x^{3}-2 x^{5}$, find all the points at which the tangent passes through the origin.

- Watch Video Solution

7. For the curve $x y=c$, prove that the portion of the tangent intercepted between the coordinate axes is bisected at the point of contact.

- Watch Video Solution

8. If the tangent at any point $\left(4 m^{2}, 8 m^{3}\right)$ of $x^{3}-y^{2}=0$ is a normal to the curve $x^{3}-y^{2}=0$, then find the value of m.

- Watch Video Solution

9. Find the equation of tangents to the curve
$y=\cos (x+y),-2 \pi \leq x \leq 2 \pi$
that are parallel to the line $\mathrm{x}+2 \mathrm{y}=0$.

- Watch Video Solution

10. Find the equations of the tangents drawn to the curve $y^{2}-2 x^{3}-4 y+8=0$.

- Watch Video Solution

11. Find the acute angle between the curves $y=|x \hat{2}-1|$ and $y=\left|x^{2}-3\right|$ at their points of intersection.

- Watch Video Solution

12. Find the angle between the curves $2 y^{2}=x^{3} a n d y^{2}=32 x$.

- Watch Video Solution

13. Find the cosine of the angle of intersection of curves $f(x)=2^{x}(\log)_{e} \operatorname{xandg}(x)=x^{2 x}-1$.

- Watch Video Solution

14. The length of subtangent to the curve, $y=e^{x / a}$ is

- Watch Video Solution

15. Find the length of normal to the curve $x=a(\theta+\sin \theta), y=a(1-\cos \theta)$ at $\theta=\frac{\pi}{2}$.

Watch Video Solution

16. In the curve $x^{m+n}=a^{m-n} y^{2 n}$, prove that the $m t h$ power of the subtangent varies as the $n t h$ power of the sub-normal.

- Watch Video Solution

17. Find the possible values of p such that the equation $p x^{2}=(\log)_{e} x$ has exactly one solution.

- Watch Video Solution

18. Find the shortest distance between the line $y=x-2$ and the parabola $y=x^{2}+3 x+2$.
19. about to only mathematics

- Watch Video Solution

20. Prove that points of the curve $y^{2}=4 a\left\{x+a \sin \left(\frac{x}{a}\right)\right\}$ at which tangents are parallel to x-axis lie on the parabola.

- Watch Video Solution

21. Displacement s of a particle at time t is expressed as $s=\frac{1}{2} t^{3}-6 t$.

Find the acceleration at the time when the velocity vanishes (i.e., velocity tends to zero).

- Watch Video Solution

22. If $f(x)=2 x+3, g(x)=1-2 x$ and $h(x)=3 x$. Prove that $f o(g o h)=(f o g) o h$.

- Watch Video Solution

23. Find the derivative of $y=\tan ^{-1}\left(x^{2}-1\right)$

- Watch Video Solution

24. Let x be the length of one of the equal sides of an isosceles triangle, and let θ be the angle between them. If x is increasing at the rate ($1 / 12$) m / h, and θ is increasing at the rate of $\frac{\pi}{180}$ radius $/ \mathrm{h}$, then find the rate in m^{3} / h at which the area of the triangle is increasing when $x=12$ mandth $\eta=\pi / 4$.

- Watch Video Solution

25. A lamp is 50 ft . above the ground. A ball is dropped from the same height from a point 30 ft . away from the light pole. If ball falls a distance $s=16 t^{2} f t$. in t second, then how fast is the shadow of the ball moving along the ground $\frac{1}{2} s$ later?

- Watch Video Solution

26. If water is poured into an inverted hollow cone whose semi-vertical angel is 30°, and its depth (measured along the axis) increases at the rate of $1 \mathrm{~cm} / \mathrm{s}$. Find the rate at which the volume of water increases when the depth is 24 cm .

- Watch Video Solution

27. A horse runs along a circle with a speed of $20 \mathrm{~km} / \mathrm{h}$. A lantern is at the centre of the circle. A fence is along the tangent to the circle at the point at which the horse starts. Find the speed with which the shadow of
the horse moves along the fence at the moment when it covers $1 / 8$ of the circle in km / h.

- Watch Video Solution

28. The radius of the base of a cone is increasing at the rate of $3 \mathrm{~cm} / \mathrm{min}$ and the altitude is decreasing at the rate of $4 \mathrm{~cm} / \mathrm{min}$. The rate of change of lateral surface when the radius is 7 cm and altitude is 24 cm is

- Watch Video Solution

29. Find the approximate volume of metal in a hollow spherical shell whose internal and external radii are 3 cm and 3.0005 cm , respectively.

Watch Video Solution

30. Find approximate value of $\mathrm{f}(5.001)$ where $f(x)=x^{3}-7 x^{2}+15$.
31. Find the approximate change in the volume V of a cube of side x meters caused by increasing side by 1%.

- Watch Video Solution

32. Discuss the applicability of Rolles theorem for the following functions on the indicated intervals:
$f(x)=|x| \in[-1,1]$
$f(x)=3+(x-2)^{2 / 3}$ in $[1,3]$
$f(x)=\tan x \in[0, \pi]$
$f(x)=\log \left\{\frac{x^{2}+a b}{x(a+b)}\right\}$ in $[\mathbf{a}, \mathrm{b}]$, where \mathbf{O} less than a less than \mathbf{b}

- Watch Video Solution

33. If the function $f(x)=x^{3}-6 x^{2}+a x+b$ defined on [1,3] satisfies Rolles theorem for $c=\frac{2 \sqrt{3}+1}{\sqrt{3}}$ then find the value of $a a n d b$
34. How many roots of the equation
$(x-1)(x-2)(x-3)+(x-1)(x-2)(x-4)+(x-2)(x-3)(x-4)$ are positive?

- Watch Video Solution

35. If $2 \mathbf{a}+\mathbf{3} \mathbf{b}+6 \mathbf{c}=\mathbf{0}$, then show that the equation $a x^{2}+b x+c=0$ has atleast one real root between 0 to 1 .

- Watch Video Solution

36. Let $f(x)$ be differentiable function and $g(x)$ be twice differentiable function. Zeros of $f(x), g^{\prime}(x)$ be a, b, respectively, ` (a
37. Let $f(x)$ be differentiable function and $g(x)$ be twice differentiable function. Zeros of $f(x), g^{\prime}(x)$ be a, b, respectively, `

- Watch Video Solution

38. If $f:[-5,5] \rightarrow R$ is a differentiable function function and if $\mathrm{f}^{\prime}(\mathbf{x})$ does not vanish anywhere, then prove that $f(-5) \neq f(5)$.

- Watch Video Solution

39. Let f be differentiable for all x, If $f(1)=-2 a n d f^{\prime}(x) \geq 2$ for all $x \in[1,6]$, then find the range of values of $f(6)$.

- Watch Video Solution

40. Let $f:[2,7] \overrightarrow{0, \infty}$ be a continuous and differentiable function. Then show that $(f(7)-f(2)) \frac{(f(7))^{2}+(f(2))^{2}+f(2) f(7)}{3}=5 f^{2}(c) f^{\prime}(c)$, where $c \in[2,7]$.

- Watch Video Solution

41. Let $f(x) \operatorname{and} g(x)$ be differentiable function in (a, b), continuous at aandb, andg $(x) \neq 0 \quad$ in $\quad[a, b]$. Then prove that $\frac{g(a) f(b)-f(a) g(b)}{g(c) f^{\prime}(c)-f(c) g^{\prime}(c)}=\frac{(b-a) g(a) g(b)}{(g(c))^{2}}$

- Watch Video Solution

42. Using Lagranges mean value theorem, prove that $|\cos a-\cos b|<|a-b|$.

- Watch Video Solution

43. Let $f(x) \operatorname{andg}(x)$ be two differentiable functions in $\operatorname{Randf}(2)=8, g(2)=0, f(4)=10, \operatorname{andg}(4)=8$. Then prove that $g^{\prime}(x)=4 f^{\prime}(x)$ for at least one $x \in(2,4)$.

- Watch Video Solution

44. Suppose $\alpha, \beta a n d t h \eta$ are angles satisfying 0

- Watch Video Solution

45. Let f be continuous on $[a, b], a>0$, and differentiable on (a, b).

Prove that there exists $c \in(a, b)$ such that
$\frac{b f(a)-a f(b)}{b-a}=f(c)-c f^{\prime}(c)$

- Watch Video Solution

46. Prove that the equation of the normal to $x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}$ is $y \cos \theta-x \sin \theta=a \cos 2 \theta$, where θ is the angle which the normal makes with the axis of x.

- Watch Video Solution

47. If the area of the triangle included between the axes and any tangent to the curve $x^{n} y=a^{n}$ is constant, then find the value of n.

- Watch Video Solution

48. Show that the segment of the tangent to the curve $y=\frac{a}{2} \operatorname{In}\left(\frac{a+\sqrt{a^{2}-x^{2}}}{a-\sqrt{a^{2}-x^{2}}}\right)-\sqrt{a^{2}-x^{2}}$ contained between the $\mathrm{y}=\mathrm{axis}$ and the point of tangency has a constant length.

- Watch Video Solution

49. If the tangent at $\left(x_{1}, y_{1}\right)$ to the curve $x^{3}+y^{3}=a^{3}$ meets the curve again in $\left(x_{2}, y_{2}\right)$, then prove that $\frac{x_{2}}{x_{1}}+\frac{y_{2}}{y_{1}}=-1$

Watch Video Solution

50. Find the condition for the line $y=m x$ to cut at right angles the conic $a x^{2}+2 h x y+b y^{2}=1$.

- Watch Video Solution

51. If the curves $a x^{2}+b y^{2}=1$ and $a_{1} x^{2}+b_{1} y^{2}=1$ intersect each other orthogonally then show that $\frac{1}{a}-\frac{1}{b}=\frac{1}{a_{1}}-\frac{1}{b_{1}}$

- Watch Video Solution

52. A man is moving away from a tower 41.6 m high at the rate of $2 \mathrm{~m} / \mathrm{sec}$.

Find the rate at which the angle of elevation of the top of tower is
changing, when he is at a distance of 30 m from the foot of the tower. Assume that the eye level of the man is 1.6 m from the ground.

- Watch Video Solution

53. If f is continuous and differentiable function and $f(0)=1, f(1)=2$, then prove that there exists at least one $c \in[0,1] f$ or which $f^{\prime}(c)(f(c))^{n-1}>\sqrt{2^{n-1}}$, where $n \in N$.

- Watch Video Solution

54. Let a, b, c be three real numbers such that 'a

- Watch Video Solution

55. Use the mean value theorem to prove $e^{x} \geq 1+x \forall x \in R$

- Watch Video Solution

56. Show that the square roots of two successive natural numbers greater than N^{2} differ by less than $\frac{1}{2 N}$.

Watch Video Solution

57. Using Rolles theorem, prove that there is at least one root in $\left(45^{\frac{1}{100}}, 46\right)$ of the equation.
$P(x)=51 x^{101}-2323(x)^{100}-45 x+1035=0$.

- Watch Video Solution

58. For a twice differentiable function $f(x), g(x)$ is defined as $g(x)=f^{\prime}(x)^{2}+f^{\prime}(x) f(x)$ on $[a, e]$. If for `a

Watch Video Solution

59. about to only mathematics

ILLUSTRATION

1. Find Distance between the points for which lines that pass through the point $(1,1)$ and are tangent to the curve represent parametrically as $x=2 t-t^{2}$ and $y=t+t^{2}$

- Watch Video Solution

2. Find the approximate value of $\sin 3$.

-
 Watch Video Solution

1. If $\boldsymbol{f}^{\prime \prime}(\mathbf{x})$ exists for all points in $[a, b]$ and
$\frac{f(c)-f(a)}{c-a}=\frac{f(b)-f(c)}{b-c}$, where $a<c<b$, then show that there exists a number ' k ' such that $f^{\prime \prime}(k)=0$.

- Watch Video Solution

Exercise 5.1

1. Find the equation of the tangent to the curve $\left(1+x^{2}\right) y=2-x$, where it crosses the x -axis.

- Watch Video Solution

2. Find the equation of tangent and normal to the curve $x=\frac{2 a t^{2}}{\left(1+t^{2}\right)}, y=\frac{2 a t^{3}}{\left(1+t^{2}\right)}$ at the point for which $t=\frac{1}{2}$.

- Watch Video Solution

3. Find the normal to the curve $x=a(1+\cos \theta), y=a \sin \theta a \mathrm{~h} \eta$. Prove that it always passes through a fixed point and find that fixed point.

- Watch Video Solution

4. If the curve $y=a x^{2}-6 x+b$ pass through $(0,2)$ and has its tangent parallel to the x -axis at $x=\frac{3}{2}$, then find the values of $a a n d b$.

- Watch Video Solution

5. Does there exists line/lines which is/are tangent to the curve $y=\sin x a t\left(x_{1}, y_{1}\right)$ and normal to the curve at $\left(x_{2}, y_{2}\right)$?

- Watch Video Solution

1. Find the angle of intersection of $y=a^{x} a n d y=b^{x}$

- Watch Video Solution

2. Find the angle of intersection of the curves $x y=a^{2} a n d x^{2}+y^{2}=2 a^{2}$

- Watch Video Solution

3. Find the angle at which the curve $y=K e^{K x}$ intersects the y-axis.

-
 Watch Video Solution

Exercise 5.3

1. Find the length of the tangent for the curve $y=x^{3}+3 x^{2}+4 x-1$ at point $x=0$.

Exercise 5.4

1. Minimum integral value of \mathbf{k} for which the equation $e^{x}=k x^{2}$ has exactly three real distinct solution,

- Watch Video Solution

2. Find the point on the curve $3 x^{2}-4 y^{2}=72$ which is nearest to the line $3 x+2 y+1=0$.

- Watch Video Solution

3. Find the possible values of 'a' such that the inequality $3-x^{2}>|x-a|$ has atleast one negative solution
4. Tangents are drawn from the origin to curve $y=\sin x$. Prove that points of contact lie on $y^{2}=\frac{x^{2}}{1+x^{2}}$

- Watch Video Solution

5. Find the distance of the point on $y=x^{4}+3 x^{2}+2 x$ which is nearest to the line $y=2 x-1$

- Watch Video Solution

Exercise 5.5

1. The distance covered by a particle moving in a straight line from a fixed point on the line is s, where $s^{2}=a t^{2}+2 b t+c$. Then prove that acceleration is proportional to s^{-3}.
2. Two cyclists start from the junction of two perpendicular roads, there velocities being $3 u m / m \in$ and $4 u m / m \in$, respectively. Find the rate at which the two cyclists separate.

- Watch Video Solution

3. A spherical iron ball 10 cm in radius is coated with a layer of ice of uniform thickness that melts at a rate of $50 \mathrm{~cm}^{3} / m \in$. When the thickness of ice is 5 cm , then find the rate at which the thickness of ice decreases.

- Watch Video Solution

4. $x a n d y$ are the sides of two squares such that $y=x-x^{2}$. Find the rate of the change of the area of the second square with respect to the first square.

- Watch Video Solution

5. Two men PandQ start with velocity u at the same time from the junction of two roads inclined at 45^{0} to each other. If they travel by different roads, find the rate at which they are being separated.

- Watch Video Solution

6. Sand is pouring from a pipe at the rate of $12 \mathrm{~cm}^{3} / \mathrm{s}$. The falling sand forms a cone on the ground in such a way that the height of the cone is always $1 / 6$ th of the radius of the base. How fast does the height of the sand cone increase when the height in 4 cm ?

- Watch Video Solution

7. An aeroplane is flying horizontally at a height of $\frac{2}{3} \mathrm{~km}$ with a velocity of $15 \mathrm{~km} / \mathrm{h}$. Find the rate at which it is receding from a fixed point on the ground which it passed over 2 min ago.
8. Find the approximate value of $(1.999)^{6}$.

- Watch Video Solution

2. Find the approximate value of $f(3.02)$, where $f(x)=3 x^{2}+5 x+3$.

- Watch Video Solution

Exercise 5.7

1. Let $0<a<b<\frac{\pi}{2}$. If $f(x)=\left|\begin{array}{ccc}\tan x & \tan a & \tan b \\ \sin x & \sin a & \sin b \\ \cos x & \cos a & \cos b\end{array}\right|$, then find the minimum possible number of roots of $f^{\prime}(x)=0$ in (a, b)

- Watch Video Solution

2. Let $f(x) \operatorname{andg}(x)$ be differentiable for $0 \leq x \leq 2$ such that $f(0)=2, g(0)=1, \operatorname{and} f(2)=8$. Let there exist a real number c in $[0,2]$ such that $f^{\prime}(c)=3 g^{\prime}(c)$. Then find the value of $g(2)$.

- Watch Video Solution

3. Prove that if $2 a_{0}^{2}<15 a$, all roots of
$x^{5}-a_{0} x^{4}+3 a x^{3}+b x^{2}+c x+d=0$ cannot be real. It is given that $a_{0}, a, b, c, d \in R$.

- Watch Video Solution

4. Let f and g be function continuous in $[a, b]$ and differentiable on $[a, b]$ If $f(a)=f(b)=0$ then show that there is a point $c \in(a, b)$ such that $g^{\prime}(c) f(c)+f^{\prime}(c)=0$.

- Watch Video Solution

5. If $\varphi(x)$ is differentiable function $\forall x \in R$ and $a \in R$ such that $\varphi(0)=\varphi(2 a), \varphi(a)=\varphi(3 a) \operatorname{and} \varphi(0) \neq \varphi(a)$ then show that there is at least one root of equation $\varphi^{\prime}(x+a)=\varphi^{\prime}(x) \in(0,2 a)$

- Watch Video Solution

Exercise 5.8

1. Find c of Lagranges mean value theorem for the function $f(x)=3 x^{2}+5 x+7$ in the interval $[1,3]$.

- Watch Video Solution

2. If $f(x)$ is differentiate in [a,b], then prove that there exists at least one $c \in(a, b)$ such that $\left(a^{2}-b^{2}\right) f^{\prime}(c)=2 c(f(a)-f(b))$.

- Watch Video Solution

1. The number of tangents to the curve $x^{\frac{3}{2}}+y^{\frac{3}{2}}=2 a^{\frac{3}{2}}, a>0$, which are equally inclined to the axes, is 2 (b) 1 (c) $\mathbf{0}$ (d) 4
A. 2
B. 1
C. 0
D. 4

Answer: B

- Watch Video Solution

2. The angle made by the tangent of the curve $x=a(t+s \in t \cos t), y=a(1+s \in t)^{2}$ with the \mathbf{x}-axis at any point on it is $\frac{1}{4}(\pi+2 t) \mathbf{(b)} \frac{1-s \in t}{\cos t} \frac{1}{4}(2 t-\pi)$ (d) $\frac{1+s \in t}{\cos 2 t}$
A. $\frac{1}{4}(\pi+2 t)$
B. $\frac{1-\sin t}{\cos t}$
C. $\frac{1}{4}(2 t-\pi)$
D. $\frac{1+\sin t}{\cos 2 t}$

Answer: A

- Watch Video Solution

3. If m is the slope of a tangent to the curve $e^{y}=1+x^{2}$, then $|m|>1$
(b) $m>1 m \succ 1$ (d) $|m| \leq 1$
A. $|m|>1$
B. $m>1$
C. $m>-1$
D. $|m| \leq 1$

Answer: D

4. If at each point of the curve $y=x^{3}-a x^{2}+x+1$, the tangent is inclined at an acute angle with the positive direction of the x-axis, then $a>0$ (b) $a<-\sqrt{3}-\sqrt{3} \leq a \leq \sqrt{3}$ (d) noneofthese
A. $a>0$
B. $a \leq \sqrt{3}$
C. $-\sqrt{3} \leq a \leq \sqrt{3}$
D. none of these

Answer: C

Watch Video Solution

5. The slope of the tangent to the curve $y=\sqrt{4-x^{2}}$ at the point where the ordinate and the abscissa are equal is - 1 (b) $\mathbf{1}$ (c) $\mathbf{0}$ (d) none of these
A. -1
B. 1
C. 0
D. none of these

Answer: A

- Watch Video Solution

6. The curve given by $x+y=e^{x y}$ has a tangent parallel to the y - axis at the point (a)(0,1)(b)(1,0)(c)(1,1)(d) none of these
A. $(0,1)$
B. $(1,0)$
C. $(1,1)$
D. none of these

Answer: B

7. If the line joining the points $(0,3) \operatorname{and}(5,-2)$ is a tangent to the curve $y=\frac{C}{x+1}$, then the value of c is 1 (b) -2 (c) 4 (d) none of these
A. 1
B. -2
C. 4
D. none of these

Answer: C

- Watch Video Solution

8. The distance between the origin and the tangent to the curve $y=e^{2 x}+x^{2}$ drawn at the point $x=0$ is $\left(1, \frac{1}{3}\right)$ (b) $\left(\frac{1}{3}, 1\right)$ $\left(2,-\frac{28}{3}\right)$ (d) none of these
A. $\frac{1}{\sqrt{5}}$
B. $\frac{2}{\sqrt{5}}$
C. $\frac{-1}{\sqrt{5}}$
D. $\frac{2}{\sqrt{3}}$

Answer: A

- Watch Video Solution

9. The normal to the curve $2 x^{2}+y^{2}=12$ at the point $(2,2)$ cuts the curve again at $\left(-\frac{22}{9},-\frac{2}{9}\right)$ (b) $\left(\frac{22}{9}, \frac{2}{9}\right)(-2,-2)$ (d) none of these
A. $\left(-\frac{22}{9},-\frac{2}{9}\right)$
B. $\left(\frac{22}{9}, \frac{2}{9}\right)$
C. $(-2,-2)$
D. none of these
10. At what point of curve $y=\frac{2}{3} x^{3}+\frac{1}{2} x^{2}$, the tangent makes equal angle with the axis?
(a) $\left(\frac{1}{2}, \frac{2}{24}\right) \operatorname{and}\left(-1,-\frac{1}{6}\right)$
$\left(\frac{1}{2}, \frac{4}{9}\right) \operatorname{and}(-1,0)$
(c) $\left(\frac{1}{3}, \frac{1}{7}\right)$ and $\left(-3, \frac{1}{2}\right)$
$\left(\frac{1}{3}, \frac{4}{47}\right)$ and $\left(-1,-\frac{1}{3}\right)$
A. $\left(\frac{1}{2}, \frac{4}{24}\right)$ and $\left(-1,-\frac{1}{6}\right)$
B. $\left(\frac{1}{2}, \frac{4}{9}\right)$ and $(-1,0)$
C. $\left(\frac{1}{3}, \frac{1}{7}\right)$ and $\left(-3, \frac{1}{2}\right)$
D. $\left(\frac{1}{3}, \frac{4}{47}\right)$ and $\left(-1,-\frac{1}{3}\right)$

Answer: A

- Watch Video Solution

11. The equation of the tangent to the curve $y=b e^{-x / a}$ at the point where it crosses the y-axis is $\frac{x}{a}-\frac{y}{b}=1$ (b) $a x+b y=1 a x-b y=1$
(d) $\frac{x}{a}+\frac{y}{b}=1$
A. $\frac{x}{a}-\frac{y}{b}=1$
B. $a x+b y+1$
C. $a x-b y=1$
D. $\frac{x}{a}+\frac{y}{b}=1$

Answer: D

- Watch Video Solution

12. Then angle of intersection of the normal at the point $\left(-\frac{5}{\sqrt{2}}, \frac{3}{\sqrt{2}}\right)$
of the curves $x^{2}-y^{2}=8$ and $9 x^{2}+25 y^{2}=225$ is 0 (b) $\frac{\pi}{2}$ (c) $\frac{\pi}{3}$ (d) $\frac{\pi}{4}$
A. 0
B. $\frac{\pi}{2}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{4}$

D Watch Video Solution

13. A function $y-f(x)$ has a second-order derivative $f^{x}=6(x-1)$. It its graph passes through the point $(2,1)$ and at that point tangent to the graph is $y=3 x-5$, then the value of $f(0)$ is $\mathbf{1}$ (b) -1 (c) $\mathbf{2}$ (d) 0
A. 1
B. -1
C. 2
D. 0

Answer: B
14. If $x+4 y=14$ is a normal to the curve $y^{2}=\alpha x^{3}-\beta$ at $(2,3)$, then the value of $\alpha+\beta$ is 9 (b) -5 (c) 7 (d) -7
A. 9
B. -5
C. 7
D. -7

Answer: A

- Watch Video Solution

15. The abscissas of point PandQ on the curve $y=e^{x}+e^{-x}$ such that tangents at PandQ make 60^{0} with the x -axis are.
$1 n\left(\frac{\sqrt{3}+\sqrt{7}}{7}\right) a n d 1 n\left(\frac{\sqrt{3}+\sqrt{5}}{2}\right)$

$$
\begin{equation*}
1 n\left(\frac{\sqrt{3}+\sqrt{7}}{2}\right) \tag{c}
\end{equation*}
$$

$1 n\left(\frac{\sqrt{7}-\sqrt{3}}{2}\right) \pm 1 n\left(\frac{\sqrt{3}+\sqrt{7}}{2}\right)$
A. $\ln \left(\frac{\sqrt{3}+\sqrt{7}}{7}\right)$ and $\ln \left(\frac{\sqrt{3}+\sqrt{5}}{2}\right)$
B. $\left(\frac{\sqrt{3}+\sqrt{7}}{2}\right)$
C. $\ln \left(\frac{\sqrt{7}-\sqrt{3}}{2}\right)$
D. $\pm \ln \left(\frac{\sqrt{3}+\sqrt{7}}{2}\right)$

Answer: B

- Watch Video Solution

16. Let C be the curve $y=x^{3}$ (where x takes all real values). The tangent at A meets the curve again at B. If the gradient at B is K times the gradient at A, then K is equal to $\mathbf{4}$ (b) 2 (c) -2 (d) $\frac{1}{4}$
A. 4
B. 2
C. -2
D. $\frac{1}{4}$

Answer: A

- Watch Video Solution

17. The x-intercept of the tangent at any arbitrary point of the curve $\frac{a}{x^{2}}+\frac{b}{y^{2}}=1$ is proportional to (a)square of the abscissa of the point of tangency (b)square root of the abscissa of the point of tangency (c)cube of the abscissa of the point of tangency (d)cube root of the abscissa of the point of tangency
A. square of the abscissa of the point of tangency
B. square root of the absciss of the point of tangency
C. cube of the abscissa of the point of tangency
D. cube root of the abscissa of the point of tangency

Answer: C

- Watch Video Solution

18. Given $g(x)=\frac{x+2}{x-1}$ and the line $3 x+y-10=0$. Then the line is (a)tangent to $g(x)$ (b) normal to $g(x)$ (c)chord of $g(x)$ (d) none of these
A. tangent to $\mathrm{g}(\mathrm{x})$
B. normal to $\mathrm{g}(\mathrm{x})$
C. chord $\operatorname{ofg}(x)$
D. none of these

Answer: A

- Watch Video Solution

19. The number of point in the rectangle $\{(x, y)\}-12 \leq x \leq 12$ and $-3 \leq y \leq 3\}$ which lie on the curve $y=x+\sin x$ and at which in the tangent to the curve is parallel to the x-axis is $\mathbf{0}$ (b) 2 (c) $\mathbf{4}$ (d) 8
B. 2
C. 4
D. 8

Answer: A

- Watch Video Solution

20. Tangent of acute angle between the curves $y=\left|x^{2}-1\right|$ and $y=\sqrt{7-x^{2}}$ at their points of intersection is $\frac{5 \sqrt{3}}{2}$ (b) $\frac{3 \sqrt{5}}{2} \frac{5 \sqrt{3}}{4}$ (d) $\frac{3 \sqrt{5}}{4}$
A. $\frac{5 \sqrt{3}}{2}$
B. $\frac{3 \sqrt{5}}{2}$
C. $\frac{5 \sqrt{3}}{4}$
D. $\frac{3 \sqrt{5}}{4}$
21. The line tangent to the curves $y^{3}-x^{2} y+5 y-2 x=0$ and $x^{2}-x^{3} y^{2}+5 x+2 y=0$ at the origin intersect at an angle θ equal to $\frac{\pi}{6}$ (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{3}$ (d) $\frac{\pi}{2}$
A. $\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer: D

- Watch Video Solution

22. The two curves $x=y^{2}, x y=a^{3}$ cut orthogonally at a point. Then a^{2} is equal to $\frac{1}{3}$ (b) 3 (c) 2 (d) $\frac{1}{2}$
A. $\frac{1}{3}$
B. 3
C. 2
D. $\frac{1}{2}$

Answer: D

- Watch Video Solution

23. The tangent to the curve $y=e^{k x}$ at a point $(0,1)$ meets the x -axis at $(\mathrm{a}, \mathbf{0})$, where $a \in[-2,-1]$. Then $k \in\left[-\frac{1}{2}, 0\right]$ (b) $\left[-1,-\frac{1}{2}\right]$ $[0,1]$ (d) $\left[\frac{1}{2}, 1\right]$
A. $[-1 / 2,0]$
B. $[-1,-1 / 2]$
C. $[0,1]$
D. $[1 / 2,1]$

Answer: D

- Watch Video Solution

24. The curves $4 x^{2}+9 y^{2}=72$ and $x^{2}-y^{2}=5 a t(3,2)$ touch each other
(b) cut orthogonally intersect at 45° (d) intersect at 60°
A. touch each other
B. cut orthogonally
C. intersect at 45°
D. intersect at 60°

Answer: B

- Watch Video Solution

25. The coordinates of a point on the parabola $y^{2}=8 x$ whose distance from the circle $x^{2}+(y+6)^{2}=1$ is minimum is $(2,4)$ (b) $(2,-4)$
$(18,-12)(\mathrm{d})(8,8)$
A. $(2,4)$
B. $(2,-4)$
C. $(18,-12)$
D. $(8,8)$

Answer: B

- Watch Video Solution

26. At the point $P\left(a, a^{n}\right)$ on the graph of $y=x^{n}(n \in N)$ in the first quadrant at normal is drawn. The normal intersects the Y-axis at the point ($\mathbf{0}, \mathrm{b}$). If $\lim _{a \rightarrow 0} b=\frac{1}{2}$, then n equals
A. 1
B. 3
C. 2
D. 4

Answer: C

- Watch Video Solution

27. Let f be a continuous, differentiable, and bijective function. If the tangent to $y=f(x) a t x=a$ is also the normal to $y=f(x) a t x=b$, then there exists at least one $c \in(a, b)$ such that $f^{\prime}(c)=0$
$f^{\prime}(c)>0 f^{\prime}(c)<0$ (d) none of these
A. $f^{\prime}(c)=0$
B. $f^{\prime}(c)>0$
C. $f^{\prime}(c)<0$
D. none of these

Answer: A

28. A point on the parabola $y^{2}=18 x$ at which the ordinate increases at twice the rate of the abscissa is $(2,6)$ (b) $(2,-6)\left(\frac{9}{8},-\frac{9}{2}\right)$ $\left(\frac{9}{8}, \frac{9}{2}\right)$
A. $(2,6)$
B. $(2,-6)$
C. $\left(\frac{9}{8}, \frac{9}{2}\right)$
D. $\left(\frac{9}{8}, \frac{9}{2}\right)$

Answer: D

- Watch Video Solution

29. Find the rate of change of volume of a sphere with respect to its surface area when the radius is 2 cm .
A. 1
B. 2
C. 3
D. 4

Answer: A

- Watch Video Solution

30. If there is an error of $k \%$ in measuring the edge of a cube, then the percent error in estimating its volume is k (b) $3 k \frac{k}{3}$ (d) none of these
A. k
B. 3k
C. $\frac{k}{3}$
D. none of these

Answer: B

31. A lamp of negligible height is placed on the ground l_{1} away from a wall. A man $l_{2} m$ tall is walking at a speed of $\frac{l_{1}}{10} m / s$ from the lamp to the nearest point on the wall. When he is midway between the lamp and the wall, the rate of change in the length of this shadow on the wall is $-\frac{5 l_{2}}{2} m / s$ (b) $-\frac{2 l_{2}}{5} m / s-\frac{l_{2}}{2} m / s$ (d) $-\frac{l_{2}}{5} m / s$
A. $-\frac{5 l_{2}}{2} m / s$
B. $-\frac{2 l_{2}}{5} m / s$
C. $-\frac{l_{2}}{2} m / s$
D. $-\frac{l_{2}}{5} m / s$

Answer: B

Watch Video Solution

32. The function $f(x)=x(x+3) e^{-\left(\frac{1}{2}\right) x}$ satisfies the conditions of Rolle's theorem in $(-3,0)$. The value of c, is

$$
\text { A. }-2
$$

B. -1
C. 0
D. 3

Answer: A

- Watch Video Solution

33. The radius of a right circular cylinder increases at the rate of 0.1 $\mathrm{cm} / \mathrm{min}$, and the height decreases at the rate of $0.2 \mathrm{~cm} / \mathrm{min}$. The rate of change of the volume of the cylinder, in $\mathrm{cm}^{2} / m \in$, when the radius is $2 c m$ and the height is 3 cm is $-2 p$ (b) $-\frac{8 \pi}{5}-\frac{3 \pi}{5}$ (d) $\frac{2 \pi}{5}$
A. -2π
B. $-\frac{8 \pi}{5}$
C. $16 / 6$
D. $-8 / 15$

D Watch Video Solution

34. A cube of ice melts without changing its shape at the uniform rate of $4 \frac{\mathrm{~cm}^{3}}{m \in}$. The rate of change of the surface area of the cube, in $\frac{c m^{2}}{m \in}$, when the volume of the cube is $125 \mathrm{~cm}^{3}$, is -4 (b) $-\frac{16}{5}$ (c) $-\frac{16}{6}$ (d) $-\frac{8}{15}$
A. -4
B. $-16 / 5$
C. $-16 / 6$
D. $-8 / 15$

Answer: B

35. The radius of the base of a cone is increasing at the rate of $3 \mathrm{~cm} / \mathrm{min}$ and the altitude is decreasing at the rate of $4 \mathrm{~cm} / \mathrm{min}$. The rate of change of lateral surface when the radius is 7 cm and altitude is 24 cm is $108 \pi \mathrm{~cm}^{2} / \min$ (b) $7 \pi \mathrm{~cm}^{2} / \min 27 \pi \mathrm{~cm}^{2} / \min$ (d) none of these
A. $108 \pi \mathrm{~cm}^{2} / \mathrm{min}$
B. $7 \pi \mathrm{~cm}^{2} / \mathrm{min}$
C. $27 \pi \mathrm{~cm}^{2} / \mathrm{min}$
D. none of these

Answer: A

- Watch Video Solution

36. If $f(x)=x^{3}+7 x-1$, then $f(x)$ has a zero between $x=0 a n d x=1$. The theorem that best describes this is mean value theorem maximum-minimum value theorem intermediate value theorem none of these
A. mena value theorem
B. maximum-minimum value theorem
C. intermediate value theorem
D. none of these

Answer: C

- Watch Video Solution

37. Consider the function $f(x)= \begin{cases}x \frac{\sin (\pi)}{x} & \text { for } x>0 \\ 0 & \text { for } x=0\end{cases}$

Then, the number of points in $(0,1)$ where the derivative $f^{\prime}(x)$ vanishes is
A. 0
B. 1
C. 2
D. infinite

Watch Video Solution

38. Let $f(x) \operatorname{andg}(x)$ be differentiable for $0 \leq x \leq 1$, such that $f(0), g(0), f(1)=6$. Let there exists real number c in $(0,1)$ such taht $f^{\prime}(c)=2 g^{\prime}(c)$. Then the value of $g(1)$ must be 1 (b) $\mathbf{3}$ (c) -2 (d) -1
A. 1
B. 3
C. -2
D. 1 -

Answer: B

- Watch Video Solution

39. If $3(a+2 c)=4(b+3 d)$, then the equation $a x^{3}+b x^{2}+c x+d=0$ will have (a)no real solution (b)at least one real root in $(-1,0)$ (c)at least one real root in $(0,1)$ (d)none of these
A. no real solution
B. at least one real root in $(-1,0)$
C. at least one real root in $(0,1)$
D. none of these

Answer: B

- Watch Video Solution

40. A value of c for which the conclusion of Mean value theorem holds for the function $f(x)=\log _{e} x$ on the interval $[1,3]$ is
A. $\frac{1}{2} \log _{e} 3$
B. $\log _{3} e$
C. $\log _{e} 3$
D. $2 \log _{3} e$
41. Let $f(x)$ be a twice differentiable function for all real values of x and satisfies $f(1)=1, f(2)=4, f(3)=9$. Then which of the following is definitely true? $f^{x}=2 \forall x \in(1,3) f^{x}=f(x)=5 f$ or somex $\in(2,3)$ $f^{x}=3 \forall x \in(2,3) f^{x}=2 f$ or somex $\in(1,3)$
A. $f^{\prime \prime}(x)=2 \forall x \in(1,3)$
B. $f^{\prime \prime}(x)=f(x) 5$ for some $x \in(2,3)$
C. $f^{\prime \prime}(x)=3 \forall x \in(2,3)$
D. $f^{\prime \prime}(x)=2$ for some $x \in(1,3)$

Answer: D

- Watch Video Solution

42. The value of c in Lagranges theorem for the function $f(x)=\log \sin x$ in the interval $\left[\frac{\pi}{6}, \frac{5 \pi}{6}\right]$ is (a) $\frac{\pi}{4}$ (b) $\frac{\pi}{2}$ (c) $\frac{2 \pi}{3}$ (d) none of these
A. $\pi / 4$
B. $\pi / 2$
C. $2 \pi / 3$
D. none of these

Answer: B

- Watch Video Solution

43. In which of the following function Rolle's theorem is applicable?
A. $f(x)=\left\{\begin{array}{ll}x & 0 \leq x<1 \\ 0 & x=1\end{array}\right.$ on $[0,1]$
B. $f(x)=\left\{\begin{array}{ll}\frac{\sin x}{x} & -\pi \leq x<0 \\ 0 & x=0\end{array}\right.$ on $[-\pi, 0]$
C. $f(x) \frac{x^{2}-x-6}{x-1}$ on $[-2,3]$
D. $f(x)=\left\{\begin{array}{ll}\frac{x^{3}-2 x^{3}-5 x+6}{x-1} & \text { if } x \neq 1 \\ -6 & \text { if } x=1\end{array}\right.$ on $[-2,3]$

Answer: D
44. Let $f^{\prime}(x)=e^{x 2}$ and $f(0)=10$. If $A<f(1)<B$ can be concluded from the mean value theorem, then the largest volume of $(A-B)$ equals
A. e
B. $1-e$
C. $e-1$
D. $1+e$

Answer: B

- Watch Video Solution

45. If $f(x) \operatorname{andg}(x)$ are differentiable functions for $0 \leq x \leq 1$ such that $f(0)=10, g(0)=2, f(1)=2, g(1)=4$, then in the interval $(0,1) \cdot(\mathrm{a})$ $f^{\prime}(x)=0 f$ or allx (b) $f^{\prime}(x)+4 g^{\prime}(x)=0$ for at least one x (c) $f(x)=2 g^{\prime}(x)$ for at most one x (d)none of these
A. $f(x)=0$ for all x
B. $f(x)+4 g^{\prime}(x)=0$ for at least one \mathbf{x}
C. $f(x)=2 g^{\prime}(x)$ for at most one x
D. none of these

Answer: B

- Watch Video Solution

46. A continuous and differentiable function $y=f(x)$ is such that its graph cuts line $y=m x+c$ at n distinct points. Then the minimum number of points at which $f(x)=0$ is/are
(a) $n-1$
(b) $n-3$
(c) $n-2$
(d) cannot say
A. $n-1$
B. $n-3$
C. $n-2$
D. cannot say

Answer: C

- Watch Video Solution

47. Given $\quad f^{\prime}(1)=1$ and $\frac{d}{d x}(f(2 x))=f^{\prime}(x) \forall x>0$.lf $\quad f^{\prime}(x) \quad$ is differentiable then there exies a number $c \in(2,4)$ such that $f^{\prime \prime}(c)$

equals

A. $\frac{1}{4}$
B. $\frac{-1}{2}$
C. $-1 \frac{1}{4}$
D. $-\frac{1}{8}$
48. If (\mathbf{x}) is differentiable in $[a, b]$ such that $f(a)=2, f(b)=6$, then there exists at least one $c, a<c \leq b$, such that $\left(b^{3}-a^{3}\right) f^{\prime}(c)=$
A. c^{2}
B. $2 c^{2}$
C. $-3 c^{2}$
D. $12 c^{2}$

Answer: D

- Watch Video Solution

Exercise (Multiple)

1. Points on the curve $f(x)=\frac{x}{1-x^{2}}$ where the tangent is inclined at an angle of $\frac{\pi}{4}$ to the \mathbf{x}-axis are (a)(0,0) (b) $\left(\sqrt{3},-\frac{\sqrt{3}}{2}\right)\left(-2, \frac{2}{3}\right)$
$\left(-\sqrt{3}, \frac{\sqrt{3}}{2}\right)$
A. $(0,0)$
B. $\left(\sqrt{3},-\frac{\sqrt{3}}{2}\right)$
C. $\left(-2, \frac{2}{3}\right)$
D. $\left(\sqrt{3},-\frac{\sqrt{3}}{2}\right)$

Answer: A: B::D

- Watch Video Solution

2. For the curve $y=c e^{x / a}$, which one of the following is incorrect?
A. sub-tangent is constant
B. sub-normal varies as the square of the ordinate
C. tangent at $\left(x_{1}, y_{1}\right)$ on the curve intersects the \mathbf{x}-axis at a distance of $\left(x_{1}-a\right)$ from the origin
D. equaltion of the normal at the point where the curve cuts $y-$ axis is $c y+a x=c^{2}$

Answer: A::B::C::D

- Watch Video Solution

3. Let the parabolas $y=x(c-x) a n d y=x^{2}+a x+b$ touch each other at the point (1,0). Then (a) $a+b+c=0$ (b) $a+b=2$ (c) $b-c=1$ (d) $a+c=-2$
A. $a+b+c=0$
B. $a+b=2$
C. $b-c=1$
D. $a+c=-2$

Answer: A::C::D
4. The angle formed by the positive y - axis and the tangent to $y=x^{2}+4 x-17 a t\left(\frac{5}{2},-\frac{3}{4}\right)$ is: (a) $\tan ^{-1}(9) \quad$ (b) $\frac{\pi}{2}-\tan ^{-1}(9)$ $\frac{\pi}{2}+\tan ^{-1}(9)$ (d) none of these
A. $\tan ^{-1}(9)$
B. $\frac{\pi}{2}-\tan ^{-1}(9)$
C. $\frac{\pi}{2}+\tan ^{-1}(9)$
D. none of these

Answer: B::C

Watch Video Solution

5. Which of the following pair(s) of curves is/are orthogonal? $y^{2}=4 a x ; y=e^{-\frac{x}{2 a}} y^{2}=4 a x ; x^{2}=4 a y a t(0,0) x y=a^{2} ; x^{2}-y^{2}=b^{2}$ $y=a x ; x^{2}+y^{2}=c^{2}$

$$
\text { A. } y^{2}=4 a x, y=e^{-x / 2 a}
$$

B. $y^{2}=4 a x, x^{2}=4 a y a t(0,0)$
C. $x y=a^{2}, x^{2}-y^{2}=b^{2}$
D. $y=a x, x^{2}+y^{2}=c^{2}$

Answer: A::B::C::D

- Watch Video Solution

6. The coordinates of the point(s) on the graph of the function $f(x)=\frac{x^{3}}{x}-\frac{5 x^{2}}{2}+7 x-4$, where the tangent drawn cuts off intercepts from the coordinate axes which are equal in magnitude but opposite in sign, are $\left(2, \frac{8}{3}\right)$ (b) $\left(3, \frac{7}{2}\right)\left(1, \frac{5}{6}\right)$ (d) none of these
A. $(2,8 / 3)$
B. $(3,7 / 2)$
C. $(1,5 / 6)$
D. none of these

- Watch Video Solution

7. The abscissa of a point on the curve $x y=(a+x)^{2}$, the normal which cuts off numerically equal intercepts from the coordinate axes, is $-\frac{1}{\sqrt{2}}$
(b) $\sqrt{2} a$ (c) $\frac{a}{\sqrt{2}}$ (d) $-\sqrt{2} a$
A. $-\frac{a}{\sqrt{2}}$
B. $\sqrt{2} a$
C. $\frac{a}{\sqrt{2}}$
D. $-\sqrt{2} a$

Answer: A:C

- Watch Video Solution

8. Given $f(x)=4-\left(\frac{1}{2}-x\right)^{\frac{2}{3}}, g(x)=\left\{\frac{\tan [x]}{x}, x \neq 01, x=0\right.$ $h(x)=\{x\}, k(x)=5^{(\log)_{2}(x+3)}$ Then in [0,1], lagranges mean value theorem is not applicable to (where [.] and \{.\} represents the greatest integer functions and fractional part functions, respectively). f (b) g (c) k (d) h
A. f
B. g
C. k
D. h

Answer: A::B::D

- Watch Video Solution

9. Let $f(x)=a_{5} x^{5}+a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x$, where $a_{i}{ }^{\prime} s$ are real and $f(x)=0$ has a positive root α_{0}. Then $f^{\prime}(x)=0$ has a positive root α_{1} such that ${ }^{`} \mathbf{O}$
A. $\mathbf{f}^{\prime}(\mathbf{x})=\mathbf{0}$ has a root α_{1} such that $<\alpha_{1}<\alpha_{0}$
B. $f^{\prime}(x)=0$ has at least one real root
C. $f^{\prime \prime}(x)=0$ has at least one real root
D. none of these

Answer: A::B::C

- Watch Video Solution

10. Which of the following is/are correct ?
A. Between any two root of $e^{x} \cos x=1$, there exists at least one root of $\tan x=1$.
B. Between any two roots of $e^{x} \sin x=1$, there exists at least one root of $\tan x=-1$.
C. Between any two roots of $e^{x} \cos x=1$, there exists at least one root of $e^{x} \sin x=1$.
D. Between any two roots of $e^{x} \sin x=1$, then exists at least one root of $e^{x} \cos x=1$.

Answer: A::B::C

- Watch Video Solution

Exercise (Numerical)

1. There is a point (\mathbf{p}, q) on the graph of $f(x)=x^{2}$ and a point (r, s) on the graph of $g(x)=\frac{-8}{x}$, wherep $>0 a n d r>0$. If the line through $(p, q) \operatorname{and}(r, s)$ is also tangent to both the curves at these points, respectively, then the value of $P+r$ is \qquad .

- Watch Video Solution

2. A curve is defined parametrically be equations $x=t^{2} a n d y=t^{3}$. A variable pair of perpendicular lines through the origin O meet the curve
of $P a n d Q$. If the locus of the point of intersection of the tangents at PandQ is $a y^{2}=b x-1$, then the value of $(a+b)$ is \qquad

- Watch Video Solution

3. If d is the minimum distance between the curves $f(x)=e^{x} \operatorname{andg}(x)=(\log)_{e} x$, then the value of d^{0} is

- Watch Video Solution

4. Let $f(x 0$ be a non-constant thrice differentiable function defined on $(-\infty, \infty)$ such that $f(x)=f(6-x)$ and $f^{\prime}(0)=0=f^{\prime}(x)^{2}=f(5)$. If n is the minimum number of roots of $\left(f^{\prime}(x)^{2}+f^{\prime}(x) f^{x}=0\right.$ in the interval $[0,6]$, then the value of $\frac{n}{2}$ is

- Watch Video Solution

5. At the point $P\left(a, a^{n}\right)$ on the graph of $y=x^{n},(n \in N)$, in the first quadrant, a normal is drawn. The normal intersects the y-axis at the point $(0, b)$. If $(\lim)_{a \rightarrow 0} b=\frac{1}{2}$, then n equals \qquad .

- Watch Video Solution

6. A curve is given by the equations $x=\sec ^{2} \theta, y=\cot \theta$. If the tangent at Pwhere $\theta=\frac{\pi}{4}$ meets the curve again at Q, then $[P Q]$ is, where [.] represents the greatest integer function, \qquad .

- Watch Video Solution

7. about to only mathematics

- Watch Video Solution

8. If the slope of line through the origin which is tangent to the curve $y=x^{3}+x+16$ is m, then the value of $m-4$ is \qquad .

Watch Video Solution

9. Suppose a, b, c are such that the curve $y=a x^{2}+b x+c$ is tangent to $y=3 x-3 a t(1,0)$ and is also tangent to $y=x+1 a t(3,4)$. Then the value of $(2 a-b-4 c)$ equals \qquad

- Watch Video Solution

10. Let C be a curve defined by $y=e^{a}+b x^{2}$. The curve C passes through the point $P(1,1)$ and the slope of the tangent at P is (-2). Then the value of $2 a-3 b$ is \qquad .

- Watch Video Solution

11. If the curve C in the $x y$ plane has the equation $x^{2}+x y+y^{2}=1$, then the fourth power of the greatest distance of a point on C from the origin is \qquad .

- Watch Video Solution

12. If a, b are two real numbers with `a

- Watch Video Solution

JEE Previous Year

1. The shortest distance between line $\mathrm{y}-\mathrm{x}=1$ and curve $x=y^{2}$ is
A. $\frac{3 \sqrt{2}}{8}$
B. $\frac{2 \sqrt{3}}{8}$
C. $\frac{3 \sqrt{2}}{5}$
D. $\frac{\sqrt{3}}{4}$

Answer: A

- Watch Video Solution

2. The equation of the tangent to the curve $y=x+\frac{4}{x^{2}}$, that is parallel to the x - axis, is
A. $y=8$
B. $y=0$
C. $y=3$
D. $y=2$

Answer: C

Watch Video Solution
3. Consider the function $f(x)=|x-2|+|x-5|, c \in R$.

Statement 1: $f^{\prime}(4)=0$
Statement 2: f is continuous in $[2,5]$, differentiable in
A. Statement 1 is false, statement $\mathbf{2}$ is true.
B. Statement 1 is true, Statement 2 is true, statement 2 is correct explanation for Statement 1.
C. Statement 1 is true, Statement $\mathbf{2}$ is trur, Statement 2 is no a correct explanation for statement 1.
D. Statement 1 is true, Statement 2 is false.

Answer: C

- Watch Video Solution

4. Let fandg be differentiable on [0,1] such that $f(0)=2, g(0), f(1)=6 \operatorname{andg}(1)=2$. Show that there exists $c \in(0,1)$
such that $f^{\prime}(c)=2 g^{\prime}(c)$.
A. $2 f^{\prime}(c)=g^{\prime}(c)^{-}$
B. $2 f^{\prime}(c)=3 g^{\prime}(c)^{`}$
C. $f^{\prime}(c)=g^{\prime}(c)^{\prime}$
D. $f^{\prime}(c)=2 g^{\prime}(c)^{\prime}$

Answer: D

- Watch Video Solution

5. The norma to the curve $x^{2}+2 x y-3 y^{2}=0$ at $(1,1)$
A. does not meet the curve again.
B. meets the curve again in the second quadrant.
C. meets the curve again in the third quadrant.
D. meets the curve again in the fourth quadrant.

Watch Video Solution

6. Consider $f(x)=\tan ^{-1}\left(\sqrt{\frac{1+\sin x}{1-\sin x}}\right), x \in\left(0, \frac{\pi}{2}\right)$. A normal to $y=f(x)$ at $x=\frac{\pi}{6}$ also passes through the point: (1)(0,0)(2) $\left(0, \frac{2 \pi}{3}\right)$
(3) $\left(\frac{\pi}{6}, 0\right)$
(4) $\left(\frac{\pi}{4}, 0\right)$
A. $\left(0, \frac{2 \pi}{3}\right)$
B. $\left(\frac{\pi}{6} 0,\right)$
C. $\left(\frac{\pi}{4}, 0\right)$
D. $(0,0)$

Answer: A

- Watch Video Solution

7. The normal to the curve $y(x-2)(x-3)=x+6$ at the point where the curve intersects the $y-a \xi s$, passes through the point : $\left(\frac{1}{2},-\frac{1}{3}\right)$
(2) $\left(\frac{1}{2}, \frac{1}{3}\right)$ (3) $\left(-\frac{1}{2},-\frac{1}{2}\right)$ (4) $\left(\frac{\frac{1}{2,1}}{2}\right)$
A. $\left(\frac{1}{2}, \frac{1}{3}\right)$
B. $\left(-\frac{1}{2},-\frac{1}{2}\right)$
C. $\left(\frac{1}{2}, \frac{1}{2}\right)$
D. $\left(\frac{1}{2}, \frac{1}{3}\right)$

Answer: C

- Watch Video Solution

8. If the curves $y^{2}=6 x, 9 x^{2}+b y^{2}=16$ intersect each other at right angles, then the value of b is
A. $9 / 2$
B. 6
C. $7 / 2$
D. 4

Answer: A

- Watch Video Solution

9. Let $f, g:[-1,2] \vec{R}$ be continuous functions which are twice differentiable on the interval $(-1,2)$. Let the values of fandg at the points $-1,0$ and 2 be as given in the following table: , $x=-1, x=0$, $x=2 f(x), \mathbf{3}, \mathbf{6}, \mathbf{0} g(x), \mathbf{0}, \mathbf{1},-1$ In each of the intervals $(-1,0) \operatorname{and}(0,2)$ the function $(f-3 g)^{\prime \prime}$ never vanishes. Then the correct statement(s) is (are) $f^{\prime}(x)-3 g^{\prime}(x)=0$ has exactly three solutions in $(-1,0) \cup(0,2) \cdot f^{\prime}(x)-3 g^{\prime}(x)=0$ has exactly one solutions in $(-1,0) \cdot f^{\prime}(x)-3 g^{\prime}(x)=0$ has exactly one solutions in $(-1,2) \cdot f^{\prime}(x)-3 g^{\prime}(x)=0$ has exactly two solutions in $(-1,0)$ and exactly two solutions in $(0,2)$.
A. $f^{\prime}(x)-3 g^{\prime}(x)=0$ has exactly three solution in $(-1,0) \cup(0,2)$
B. $f^{\prime}(x)-3 g^{\prime}(x)=0$ has exactly one solution in $(-1,0)$
C. $f^{\prime}(x)-3 g^{\prime}(x)=0$ has exactly one solution in (0,2)
D. $f^{\prime}(x)-3 g^{\prime}(x)=0$ has excatly two solutions in ($-1,0$) and exactly two solution in (0,2)

Answer: B::C

Watch Video Solution

