©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - CENGAGE

APPLICATION OF INTEGRALS

Solved Examples And Exercises

1. If the area by $y=x^{2}+2 x-3$ and the line
$y=k x+1$ is the least, find k and also the
least area.

- Watch Video Solution

2. Area enclosed by the curve $y=f(x)$ defined parametrically
$x=\frac{1-t^{2}}{1+t^{2}}, y=\frac{2 t}{1+t^{2}}$ is equal

D Watch Video Solution

3. Let $f(x)=M$ a xi mu m
$\left\{x^{2},(1-x)^{2}, 2 x(1-x)\right\}$,
where
$0 \leq x \leq 1$. Determine the area of the region
bounded by the curves $y=f(x), \mathrm{x}$-axis, $\mathrm{x}=0$, and $x=1$.

D Watch Video Solution

4. Find the area of the region
$\left\{(x, y): y^{2} \leq 4 x, 4 x^{2}+4 y^{2} \leq 9\right\}$.

- Watch Video Solution

5. $A O B$ is the positive quadrant of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ in which $O A=a, O B=b$.

Then find the area between the arc $A B$ and the chord $A B$ of the ellipse.

D Watch Video Solution

6. Find the area lying above x-axis and included
between the circle $x^{2}+y^{2}=8 x$ and inside
the parabola $y^{2}=4 x$.

D Watch Video Solution
7. Find the area of the smaller part of the circle $x^{2}+y^{2}=a^{2}$ cut off by the line $x=\frac{a}{\sqrt{2}}$.

- Watch Video Solution

8. Prove that the area bounded by the circle
$x^{2}+y^{2}=a^{2}$ and the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is equal to the area of another ellipse having semi-axis $a-b$ and $a, a>b$.

- Watch Video Solution

9. Each question has four choices, a,b,c and d,
out of which only one is correct. Each question
contains STATEMENT 1 and STATEMENT 2. If
both the statement are TRUE and STATEMENT
2 is the correct explanation of STATEMENT 1. If both the statements are TRUE but STATEMENT

2 is NOT the correct explanation of STATEMENT

1. If STATEMENT 1 is TRUE and STATEMENT 2 is

FLASE. If STATEMENT 1 is FALSE and STATEMENT
2 is TURE. Statement 1: Lagrange mean value theorem is not applicable to
$f(x)=|x-1|(x-1)$ Statement 2: $|x-1|$ is not differentiable at $x=1$.

D Watch Video Solution

10. Find the area of the region bounded by the curves $y=x^{2}+2, y=x, x=0$ and $\mathrm{x}=3$.

- Watch Video Solution

11. The area of the circle $x^{2}+y^{2}=16$ exterior
to the parabola $y^{2}=6 x$ is

- Watch Video Solution

12. The are a bounded by the y-axis, $y=\cos x$ and $\mathrm{y} \sin \mathrm{x}$ when $0 \leq x \leq \frac{\pi}{2}$ is

- Watch Video Solution

13. Prove that $\sec x-\cos x=\tan x \sin x$
14. The area of the region whose boundaries are defined by the
curves
$y=2 \cos x, y=3 \tan x$, andthe $y-a \xi s i s$
$1+31 n\left(\frac{2}{\sqrt{3}}\right)$ squinits
$1+\frac{3}{2} 1 n 3-31 n 2$ sqünits
$1+\frac{3}{2} 1 n 3-1 n 2$ sqünits $1 n 3-1 n 2$ squinits

- Watch Video Solution

15. Area bounded by the curve
$x y^{2}=a^{2}(a-x)$ and the y-axis is
πa^{2}
$\frac{\pi a^{2}}{2}$ squinits (b) πa^{2} squinits (c) $3 \pi a^{2}$ squinits (d) None of these

D Watch Video Solution

16. The area of the closed figure bounded by $y=\frac{x^{2}}{2}-2 x+2$ and the tangents to it at $\left(1, \frac{1}{2}\right)$ and $(4,2)$ is (A) $\frac{9}{8}$ sq.unit (B) $\frac{3}{8}$ sq.units (C) $\frac{3}{2}$ sq.units (D) $\frac{9}{4}$ sq.units

- Watch Video Solution

17. Find the area bounded by the curve $x^{2}=4 y$ and the line $x=4 y-2$.

- Watch Video Solution

