

MATHS

BOOKS - CENGAGE

APPLICATIONS OF DERIVATIVES

Single Correct Answer Type

1. The equation of the normal to the curve parametrically represented by $x=t^2+3t-8$ and $y=2t^2-2t-5$ at the point $P(2,\ -1)$ is

A. 2x + 3y - 1 = 0

B. 6x - 7y - 11 = 0

C. 7x + 6y - 8 = 0

D.
$$3x + y - 1 = 0$$

Answer: C

Watch Video Solution

2. In the curve $y = x^3 + ax$ and $y = bx^2 + c$ pass through the point (-1, 0) and have a common tangent line at this point then the value of a + b + c is

A. 0

B. 1

C. -3

 $\mathsf{D.}-1$

Answer: D

3. If the function $f(x) = x^4 + bx^2 + 8x + 1$ has a horizontal tangent and a point of inflection for the same value of x then the value of b is equal to -1 (b) 1 (c) 6 (d) -6

 $\mathsf{A.}-2$

B.-6

C. 6

D. 3

Answer: B

4. Let $f(x) = x^3 + x + 1$ and let g(x) be its inverse function then

equation of the tangent to y = g(x) at x = 3 is

A.
$$x-4y+1=0$$

B. x + 4y - 1 = 0

C. 4x - y + 1 = 0

D.
$$4x + y - 1 = 0$$

Answer: A

5. A curve is represented parametrically by the equations $x = t + e^{at}$ and $y = -t + e^{at}$ when $t \in R$ and a > 0. If the curve touches the axis of x at the point A, then the coordinates of the point A are

A. (1, 0)

B. (2e, 0)

C.(e, 0)

D. (1/e, 0)

Answer: B

Watch Video Solution

6. The equation of the straight lines which are both tangent and normal to the curve $27x^2 = 4y^3$ are

A.
$$x=\pm\sqrt{2}(y-2)$$

B. $x=\pm\sqrt{3}(y-2)$
C. $x=\pm\sqrt{2}(y-3)$
D. $x=\pm\sqrt{3}(y-3)$

Answer: A

Watch Video Solution

7. If the tangent at (1,1) on $y^2=x(2-x)^2$ meets the curve again

at P, then find coordinates of P

A. (4, 4)

B. (2, 0)

$$\mathsf{C}.\left(\frac{9}{4},\frac{3}{8}\right)$$
$$\mathsf{D}.\left(3,3^{1/2}\right)$$

Answer: C

Watch Video Solution

8. A curve with equation of the form $y = ax^4 + bx^3 + cx + d$ has zero gradient at the point (0, 1) and also touches the x - axis at the point (-1, 0) then the value of x for which the curve has a negative gradient are: A. x > -1B. x > 1C. x < -1D. $-1 \le x \le 1$

Answer: C

9. Find Distance between the points for which lines that pass through the point (1,1) and are tangent to the curve represent parametrically as $x=2t-t^2$ and $y=t+t^2$

A.
$$\frac{2\sqrt{43}}{9}$$

B. 2

C. 3

D.
$$\frac{2\sqrt{53}}{9}$$

Answer: D

Watch Video Solution

10. The value of parameter t so that the line $(4-t)x + ty + (a^3-1) = 0$ is normal to the curve xy = 1 may lie in the interval

A. (1, 4)B. $(-\infty, 0) \cup (4, \infty)$ C. (-4, 4)D. [3, 4]

Answer: B

11. The tangent at any point on the curve $x = at^3$. $y = at^4$ divides the abscissa of the point of contact in the ratio m:n, then |n + m|is equal to (m and n are co-prime)

A. 1/4

B. 3/4

C. 3/2

D. 2/5

Answer: B

12. The length of the sub-tangent to the hyperbola $x^2 - 4y^2 = 4$ corresponding to the normal having slope unity is $\frac{1}{\sqrt{k}}$, then the

value of k is

B. 2

- C. 3
- D. 4

Answer: C

13. Cosine of the acute angle between the curve $y = 3^{x-1}\log_e x$ and $y = x^x - 1$, at the point of intersection (1,0) is

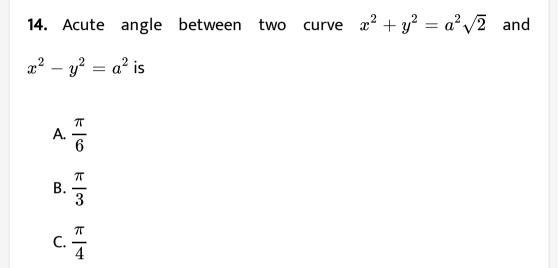
A. 0

B. 1

C.
$$\frac{\sqrt{3}}{2}$$

D. $\frac{1}{2}$

Answer: B



D. none of these

Answer: C

15. The minimum distance between a point on the curve $y=e^x$ and

a point on the curve $y = \log_e x$ is

A.
$$\frac{1}{\sqrt{2}}$$

B. $\sqrt{2}$
C. 3

D.
$$2\sqrt{2}$$

Answer: B

16. Tangents are drawn from origin to the curve $y = \sin + \cos x$ ·Then their points of contact lie on the curve

A.
$$\displaystyle rac{1}{x^2} + \displaystyle rac{2}{y^2} = 1$$

B. $\displaystyle rac{2}{x^2} - \displaystyle rac{1}{y^2} = 1$

C.
$$rac{2}{x^2}+rac{1}{y^2}=1$$

D. $rac{2}{y^2}-rac{1}{x^2}=1$

Answer: D

17. If 3x+2y=1 is a tangent to y=f(x) at x=1/2, then

$$\lim_{x o 0} \, rac{x(x-1)}{f\!\left(rac{e^{2x}}{2}
ight) - f\!\left(rac{e^{-2x}}{2}
ight)}$$

A. 1/3

 $\mathsf{B.}\,1/2$

C.1/6

D. 1/7

Answer: A

18. Distance of point P on the curve $y = x^{3/2}$ which is nearest to

the point M (4, 0) from origin is

A.
$$\sqrt{\frac{112}{27}}$$

B. $\sqrt{\frac{100}{27}}$
C. $\sqrt{\frac{101}{9}}$
D. $\sqrt{\frac{112}{9}}$

Answer: A

19. If the equation of the normal to the curve y = f(x)atx = 0 is

$$3x-y+3=0$$
 then the value of

$$\lim_{x o 0} \, rac{x^2}{\{f(x^2) - 5f(4x^2) + 4f(7x^2)\}}$$
 is

A. -3

B. 1/3

C. 3

 $\mathsf{D.}-1/3$

Answer: D

20. The rate of change of
$$\sqrt{x^2+16}$$
 with respect to $\displaystyle rac{x}{x-1}$ at $x=3$ is

B.
$$\frac{11}{5}$$

C. $-\frac{12}{5}$

 $\mathsf{D.}-3$

Answer: C

View Text Solution

21. The eccentricity of the ellipse $3x^2 + 4y^2 = 12$ is decreasing at the rate of 0.1 per sec. The time at which it will coincide with auxiliary circle is:

A. 2 seconds

B. 3 seconds

C. 5 seconds

D. 6 seconds

Answer: C

View Text Solution

22. A particle moves along the parabola $y = x^2$ in the first quadrant in such a way that its x-coordinate (measured in metres) increases at a rate of 10 m/sec. If the angle of inclination θ of the line joining the particle to the origin change, when x = 3 m, at the rate of k rad/sec., then the value of k is

A. 1

B. 2

C.1/2

D. 1/3

Answer: A

23. The rate of change of volume of a sphere is equal to the rate of change of its radius, then its radius is equal to (a) 1 unit (b) units (c) unit (d) unit

A. 1 B. 2

C. 0.5

D. none of these

Answer: B

View Text Solution

24. Water is dropped at the rate of $2m^2/s$ into a cone of semivertical angel of 45° . The rate at which periphery of water surface changes when height of water in the cone is 2 m, is

A. 0.5m/s

B. 2m/s

C. 3m/s

D. 1m/s

Answer: D

25. Suppose that water is emptied from a spherical tank of radius 10 cm. If the depth of the water in the tank is 4 cm and is decreasing at the rate of 2 cm/sec, then the radius of the top surface of water is decreasing at the rate of

A. 1

B. 2/3

C.3/2

Answer: C

26. The altitude of a cone is 20 cm and its semi-vertical angle is 30° . If the semi-vertical angle is increasing at the rate of 2° per second, then the radius of the base is increasing at the rate of

A. 30 cm/sec

$$\mathsf{B.}\,\frac{160}{3}cm/\sec$$

- C. 10 cm/sec
- D. 160 cm/sec

Answer: B

27. Let the equation of a curve be
$$x = a(\theta + \sin \theta), y = a(1 - \cos \theta)$$
. If θ changes at a constant rate k then the rate of change of the slope of the tangent to the curve at $\theta = \frac{\pi}{3}$ is (a) $\frac{2k}{\sqrt{3}}$ (b) $\frac{k}{\sqrt{3}}$ (c) k (d) none of these A. $2k/\sqrt{3}$

C. k

D. none of these

Answer: D

28.

$$f(x) = |1-x|, 1 \leq x \leq 2 \, ext{ and } g(x) = f(x) + b \sin rac{\pi}{2} x, 1 \leq x \leq 2$$

Consider

then which of the following is correct?

A. Rolle's theorem is applicable to both f and g with $b=rac{3}{2}.$

B. LMVT is not applicable to f and Rolle's theorem is applicable

to g with
$$b=rac{1}{2}$$

C. LMVT is applicable to f and Rolle's theorem is applicable to g

with b = 1.

D. Rolle's theorem is not applicable to both f and g for any real

b.

Answer: C

29. If $c = \frac{1}{2}$ and $f(x) = 2x - x^2$, then interval of x in which LMVT is applicable, is

A. (1, 2)

B.(-1,1)

C.(0,1)

D.(2,1)

Answer: C

30. If a twice differentiable function f(x) on (a, b) and continuous on [a, b] is such that f''(x) < 0 for all $x \in (a, b)$ then for any

$$c\in(a,b), rac{f(c)-f(a)}{f(b)-f(c)}>$$

A. $rac{b-c}{c-a}$
B. $rac{c-a}{b-c}$
C. $(b-c)(c-a)$

D.
$$rac{1}{(b-c)(c-a)}$$

Answer: B

31. Let $a,n\in N$ such that $a\geq n^3.$ Then $\sqrt[3]{a+1}-\sqrt[3]{a}$ is always

A. less than
$$\frac{1}{3n^2}$$

B. less than $\frac{1}{2n^3}$
C. more than $\frac{1}{n^3}$
D. more than $\frac{1}{4n^2}$

Answer: A

View Text Solution

32. Given f'(1) = 1 and $f(2x) = f(x) \ \forall x > 0$. Iff'(x) is differentiable, then there exists a number $c \in (2, 4)$ such that f''(c) equal

A. 1/4

 ${\sf B.}-1/2$

C. -1/4

D. - 1/8

Answer: D

Watch Video Solution

Multiple Correct Answer Type

1. Equation of a line which is tangent to both the curve

$$y = x^2 + 1$$
 and $y = x^2$ is $y = \sqrt{2}x + \frac{1}{2}$ (b) $y = \sqrt{2}x - \frac{1}{2}$
 $y = -\sqrt{2}x + \frac{1}{2}$ (d) $y = -\sqrt{2}x - \frac{1}{2}$
A. $y = \sqrt{2}x - \frac{1}{2}$
B. $y = \sqrt{2}x + \frac{1}{2}$
C. $y = -\sqrt{2}x + \frac{1}{2}$

D.
$$y=-\sqrt{2}x-rac{1}{2}$$

Answer: B::C::D

Watch Video Solution

2. For the functions defined parametrically by the equations

$$f(t) = x = egin{cases} 2t + t^2 \sin rac{1}{t} & t
eq 0 \ 0 & t = 0 \ \end{bmatrix}$$
 and $g(t) = y = egin{cases} rac{1}{t} \sin t^2 & t
eq 0 \ 0 & t = 0 \ \end{bmatrix}$

A. equation of tangent at t = 0 is x-2y=0

B. equation of normal at t = 0 is 2x + y = 0

C. tangent does not exist at t = 0

D. normal does not exist at t=0

Answer: A::B

3. Prove that the segment of the normal to the curve $x = 2a \sin t + a \sin t \cos^2 t$; $y = -a \cos^3 t$ contained between the co-ordinate axes is equal to 2a.

A. normal is inclined at an angle $rac{\pi}{2} + t$ with x-axis.

B. normal is inclined at an angle t with x-axis.

C. portion of normal contained between the co-ordinate axes is

equal to 2a.

D. portion of normal containned between the co-ordinate axes is

equal to 4a.

Answer: A::C

4. The curve $y = ax^3 + bx^2 + cx$ is inclined at 45° to x-axis at (0, 0) but it touches x-axis at (1, 0), then

A. f'(1) = 0

B. f''(1) = 2

C. f'''(2) = 12

D. f(2) = 2

5. If $L_T \, L_N \, L_{ST}$ and L_{SN} denote the lengths of tangent, normal sub-tangent and sub-normal, respectively, of a curve y = f(x) at a point P(2009, 2010) on it, then

A.
$$\frac{L_{ST}}{2010} = \frac{2010}{L_{SN}}$$
B.
$$\left|\frac{L_T}{L_N}\sqrt{\frac{L_{SN}}{L_{ST}}}\right| = \text{constant}$$
C.
$$1 - L_{ST}L_{SN} = \frac{2000}{2010}$$
D.
$$\left(\frac{L_T + L_N}{L_T - L_N}\right)^2 = \frac{L_{ST}}{L_{SN}}$$

Answer: A::B

6. Which of the following pair(s) of family is/are orthogonl? where c and k are arbitrary constant.

A.
$$16x^2 + y^2 = c$$
 and $y^{16} = kx$
B. $y = x + ce^{-x}$ and $x + 2 = y + ke^{-y}$
C. $y = cx^2$ and $x^2 + 2y^2 = k$
D. $x^2 - y^2 = c$ and $xy = k$

Answer: A::B::C::D

View Text Solution

7. Let
$$f(x)=egin{bmatrix} 1&1&1\\ 3-x&5-3x^2&3x^3-1\\ 2x^2-1&3x^5-1&7x^8-1 \end{bmatrix}$$
 then the equation of $f(x)=0$ has

A. f(x) = 0 has at least two real roots

B. f'(x) = 0 has at least one real root.

C. f(x) is many-one function

D. none of these

Answer: A::B::C

View Text Solution

8. Which of the following is correct ?

$$egin{aligned} \mathsf{A}. \ &rac{ an ext{tan}^{-1} x - an ext{tan}^{-1} y}{x - y} \leq 1 \, orall x, y \in R, (x
eq y) \ & \mathsf{B}. \ &rac{ ext{sin}^{-1} x - ext{sin}^{-1} y}{x - y} > 1 \, orall x, y \in [-1,1], x
eq y \ & \mathsf{C}. \ &rac{ ext{cos}^{-1} x - ext{cos}^{-1} y}{x - y} < 1 \, orall x, y \in [-1,1], x
eq y \ & \mathsf{D}. \ &rac{ ext{cot}^{-1} x - ext{cot}^{-1} y}{x - y} < 1 \, orall x, y \in R, x
eq y \end{aligned}$$

Answer: A::B

View Text Solution

1. A lamp post of length 10 meter placed at the end A of a ladder AB of length 13 meters, which is leaning against a vertical wall as shown in figure and its base slides away from the wall. At the instant base B is 12 m from the vertical wall, the base B is moving at the rate of 5 m/sec. A man (M) of height 1.5 meter standing at a distance of 15 m from the vertical wall.

Rate at which θ decreases, when the base B is 12 m from the vertical wall, is

A. 1 rad/sec

B. 2 rad/sec

C. 5 rad/sec

D. 1/2 rad/sec

Answer: A

View Text Solution

2. A lamp post of length 10 meter placed at the end A of a ladder AB of length 13 meters, which is leaning against a vertical wall as shown in figure and its base slides away from the wall. At the instant base B is 12 m from the vertical wall, the base B is moving at the rate of 5 m/sec. A man (M) of height 1.5 meter standing at a distance of 15 m from the vertical wall.

The rate at which the length of shadow of man increases, when the base B is 12 m from vertical wall, is

A. 15 m/sec

B. 40/27 m/sec

C. 15/2 m/sec

D. 5 m/sec

Answer: B

View Text Solution

3. Let f(x) be a function such that its derovative f'(x) is continuous in [a, b] and differentiable in (a, b). Consider a function $\phi(x) = f(b) - f(x) - (b - x)f'(x) - (b - x)^2 A$. If Rolle's theorem is applicable to $\phi(x)$ on, [a,b], answer following questions. If there exists some unmber c(a lt c lt b) such that $\phi'(c) = 0$ and $f(b) = f(a) + (b - a)f'(a) + \lambda(b - a)^2 f''(c)$, then λ is

A. 1

B. 0

C.
$$\frac{1}{2}$$

$$\mathsf{D.}-rac{1}{2}$$

Answer: C

View Text Solution

4. Let f(x) be a function such that its derovative f'(x) is continuous in [a, b] and differentiable in (a, b). Consider a function $\phi(x) = f(b) - f(x) - (b - x)f'(x) - (b - x)^2 A$. If Rolle's theorem is applicable to $\phi(x)$ on, [a,b], answer following questions. Let $f(x) = x^3 - 3x + 3$, a = 1 and b = 1 + h. If there exists $c \in (1, 1 + h)$ such that $\phi'(c) = 0$ and $\frac{f(1 + h) - f(1)}{h^2} = \lambda c$, then λ =

A. 1/2

B. 2

C. 3

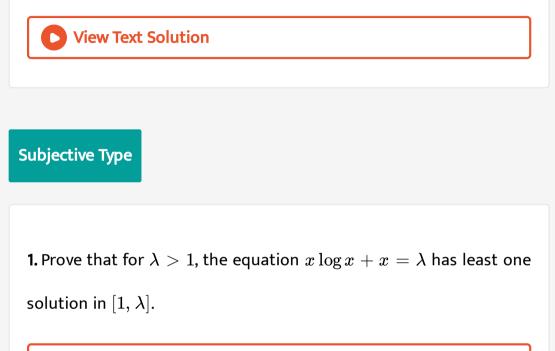
D. does not exist

Answer: C

View Text Solution

5. Let f(x) be a function such that its derovative f'(x) is continuous in differentiable in (a, b). Consider a function [a, b] and $\phi(x) = f(b) - f(x) - (b - x) f'(x) - (b - x)^2 A.$ If Rolle's theorem is applicable to $\phi(x)$ on, [a,b], answer following questions. Let $f(x) = \sin x, a = \alpha$ and $b = \alpha + h$. If have exists a real that $0 < t < 1, \phi'(\alpha + th) = 0$ number such t and $\sin(lpha+h)-\sinlpha-h\coslpha\ =\lambda\sin(lpha+th), ext{ then }\lambda=$ A. $\frac{1}{2}$ B. $-\frac{1}{2}$ C. $\frac{1}{4}$

Answer: B



View Text Solution

2. If f(x) and g(x) are continuous and differentiable functions,

then prove that there exists $c\in [a,b]$ such that $rac{f'(c)}{f(a)-f(c)}+rac{g'(c)}{g(b)-g(c)}=1.$

VIEW TEXT SUIULIUIT