©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - CENGAGE

CIRCLE

Single Correct Answer Type

1. If a circle passes through the points where the lines $3 k x-2 y-1=0$ and $4 x-3 y+2=0$ meet the coordinate axes then $k=$
A. 1
B. -1
C. $\frac{1}{2}$
D. $\frac{-1}{2}$

Watch Video Solution

2. All chords.of the curve $x^{2}+y^{2}-10 x-4 y+4=0$ which make a right angle at ($8,-2$) pass through
A. $(2,5)$
B. $(-2,-5)$
C. $(-5,-2)$
D. $(5,2)$

Answer: D

- Watch Video Solution

3. Let $A(1,2), B(3,4)$ be two points and $C(x, y)$ be a point such that area of $\triangle A B C$ is 3 sq. units and $(x-1)(x-3)+(y-2)(y-4)=0$. Then number of positions of C , in the xy plane is
A. 2
B. 4
C. 8
D. 0

Answer: D

- View Text Solution

4. The equation of the image of the circle $x^{2}+y^{2}+16 x-24 y+183=0$ by the line mirror $4 x+7 y+13=0$ is :
A. $x^{2}+y^{2}+32 x-4 y+235=0$
B. $x^{2}+y^{2}+32 x+4 y-235=0$
C. $x^{2}+y^{2}+32 x-4 y-235=0$
D. $x^{2}+y^{2}+32 x+4 y+235=0$
5. Equation of circle inscribed in $|x-a|+|y-b|=1$ is
A. $(x+a)^{2}+(y+b)^{2}=2$
B. $(x-a)^{2}+(y-b)^{2}=\frac{1}{2}$
C. $(x-a)^{2}+(y-b)^{2}=\frac{1}{\sqrt{2}}$
D. $(x-a)^{2}+(y-b)^{2}=1$

Answer: B

- View Text Solution

6. Find the common differences of the following A.P: $2,4,6$, 8

- Watch Video Solution

7. If a chord of a the circle $x^{2}+y^{2}=32$ makes equal intercepts of length of I on the co-ordinate axes, then
A. $l<8$
B. $l<16$
C. $l>8$
D. $l>16$

Answer: A

- Watch Video Solution

8. P and Q are any two points on the circle $x^{2}+y^{2}=4$ such that PQ is a diameter. If α and β are the lengths of perpendiculars from P and Q on $x+y=1$ then the maximum value of $\alpha \beta$ is
A. $\frac{1}{2}$
B. $\frac{7}{2}$
C. 1
D. 2

Answer: B

- Watch Video Solution

9. about to only mathematics
A. 14
B. 15
C. 16
D. none of these

Answer: B

- Watch Video Solution

10. about to only mathematics
A. 1
B. 2
C. $\frac{3}{2}$
D. 4

Answer: D

- Watch Video Solution

11. The circle with equation $x^{2}+y^{2}=1$ intersects the line $y=7 x+5$ at two distinct points A and B . Let C be the point at which the positive x -axis intersects the circle. The angle ACB is
A. $\tan ^{-1}\left(\frac{4}{3}\right)$
B. $\tan ^{-1}\left(\frac{3}{4}\right)$
C. $\pi / 4$
D. $\tan ^{-1}\left(\frac{3}{2}\right)$

Answer: C

- Watch Video Solution

12. $P A$ and $P B$ are tangents to a circle S touching it at points A and $B . C$ is a point on S in between A and B as shown in the figure. LCM is a tangent to S intersecting PA and $P B$ in S at points L and M, respectively. Then the perimeter of the triangle PLM depends on o
A. A,B,C and P
B. P but not on C
C. P and C only
D. the radius of S only

Answer: B

13. Two equal chords AB and AC of the circle $x^{2}+y^{2}-6 x-8 y-24=0$ are drawn from the point $A(\sqrt{33}+3,0)$. Another chord PQ is drawn intersecting $A B$ and $A C$ at points R and S, respectively given that $A R=S C=7$ and $\mathrm{RB}=\mathrm{AS}=3$. The value of $P \frac{R}{Q} S$ is
A. 1
B. 1.5
C. 2
D. None of these

Answer: A

- Watch Video Solution

14. From a point P outside a circle with centre at C, tangents $P A$ and $P B$ are drawn such that $\frac{1}{(C A)^{2}}+\frac{1}{(P A)^{2}}=\frac{1}{16}$, then the length of chord $A B$ is
A. 6
B. 8
C. 4
D. 12

Answer: B

- Watch Video Solution

15. $(1,2 \sqrt{2})$ is a point on circle, $x^{2}+y^{2}=9$. Which of the following is not the point on the circle at 2 units distance from $(1,2 \sqrt{2})$?
A. $(-1,2 \sqrt{2})$
B. $(2 \sqrt{2}, 1)$
C. $\left(\frac{23}{9}, \frac{10 \sqrt{2}}{9}\right)$
D. None of these

(D) Watch Video Solution

16. inside the circles $x^{2}+y^{2}=1$ there are three circles of equal radius a tangent to each other and to s the value of a equals to
A. $\sqrt{2}(\sqrt{2}-1)$
B. $\sqrt{3}(2-\sqrt{3})$
C. $\sqrt{2}(2-\sqrt{3})$
D. $\sqrt{3}(\sqrt{3}-1)$

Answer: B

- Watch Video Solution

17. If the curves $\frac{x^{2}}{4}+y^{2}=1$ and $\frac{x^{2}}{a^{2}}+y^{2}=1$ for a suitable value of a cut on four concyclic points, the equation of the circle passing through these four points is (a) $x^{2}+y^{2}=2$ (b) $x^{2}+y^{2}=1$ (c) $x^{2}+y^{2}=4$ (d) none of these
A. $x^{2}+y^{2}=2$
B. $x^{2}+y^{2}=1$
C. $x^{2}+y^{2}=4$
D. none of these

Answer: B

- Watch Video Solution

18. AB is a chord of $x^{2}+y^{2}=4$ and $\mathrm{P}(1,1)$ trisects AB . Then the length of the chord $A B$ is (a) 1.5 units (c) 2.5 units (b) 2 units (d) 3 units
A. 1.5 units
B. 2 units
C. 2.5 units
D. 3 units
19. Find the common differences of the following A.P: $5,10,15,20$

- Watch Video Solution

20. Check whether the following sequences are in A.P or not? $x+3,2 x+4,3 x+5, \ldots$

- Watch Video Solution

21. Check whether the following sequences are in A.P or not? $z-1, z-3, z-5 \ldots$

- Watch Video Solution

22. Q.ys In the xy-plane, the length of the shortest path from (0.0) to (12.16) that does not go inside the circle 6) (y-8) 25 is (D) 10 (B) 105 (A) 10 Dps' on Circle
A. $10 \sqrt{3}$
B. $10 \sqrt{5}$
C. $10 \sqrt{3}+\frac{5 \pi}{3}$
D. $10+5 \pi$

Answer: C

- Watch Video Solution

23. Triangle $A B C$ is right angled at A. The circle with centre A and radius $A B$ cuts $B C$ and $A C$ internally at D and E respectively. If $B D=20$ and $D C=16$ then the length $A C$ equals (A) 6 sqrt21 (B) 6 sqrt26 (C) 30 (D) 32
A. $6 \sqrt{21}$
B. $6 \sqrt{26}$
C. 30
D. 32

Answer: B

- View Text Solution

24. All chords through an external point to the circle $x^{2}+y^{2}=16$ are drawn having length l which is a positive integer. The sum of the squares of the distances from centre of circle to these chords is
A. 154
B. 124
C. 172
D. 128
25. If $m(x-2)+\sqrt{1-m^{2}} y=3$, is tangent to a circle for all $m \in[-1,1]$ then the radius of the circle is
A. 1.5
B. 2
C. 4.5
D. 3

Answer: D

- Watch Video Solution

26. If the line $3 x-4 y-\lambda=0$ touches the circle $x^{2}+y^{2}-4 x-8 y-5=0$ at (a, b) then which of the following is not the possible value of $\lambda+a+b$?
A. 20
B. -28
C. -30
D. none of these

Answer: C

- Watch Video Solution

27. The normal at the point $(3,4)$ on a circle cuts the circle at the point $(-1,-2)$. Then the equation of the circle is
A. $x^{2}+y^{2}+2 x-2 y-13=0$
B. $x^{2}+y^{2}-2 x-2 y-11=0$
C. $x^{2}+y^{2}-2 x+2 y+12=0$
D. $x^{2}+y^{2}-2 x-2 y+14=0$
28. For all values of $m \in R$ the line $y-m x+m-1=0$ cuts the circle $x^{2}+y^{2}-2 x-2 y+1=0$ at an angle
A. $\frac{\pi}{3}$
B. $\frac{\pi}{6}$
C. $\frac{\pi}{2}$
D. $\frac{\pi}{4}$

Answer: C

- View Text Solution

29. If the line $|y|=x-\alpha$, such that $\alpha>0$ does not meet the circle $x^{2}+y^{2}-10 x+21=0$, then α belongs to

$$
\text { A. }(0,5-2 \sqrt{2}) \cup(5+2 \sqrt{2}, \infty)
$$

B. $(5-2 \sqrt{2}, 5+2 \sqrt{2})$
C. $(5-2 \sqrt{2}, 7)$
D. none of these

Answer: C

- View Text Solution

30. Let C be the circle of radius unity centred at the origin. If two positive numbers x_{1} and x_{2} are such that the line passing through $\left(x_{1},-1\right)$ and $\left(x_{2}, 1\right)$ is tangent to C then $x_{1} \cdot x_{2}$
A. $x_{1} x_{2}=1$
B. $x_{1} x_{2}=-1$
C. $x_{1}+x_{2}=1$
D. $4 x_{1} x_{2}=1$
31. A circle of radius 5 is tangent to the line $4 x-3 y=18$ at $\mathrm{M}(3,-2)$ and lies above the line. The equation of the circle is
A. $x^{2}+y^{2}-6 x+4 y-12=0$
B. $x^{2}+y^{2}+2 x-2 y-3=0$
C. $x^{2}+y^{2}+2 x-2 y-23=0$
D. $x^{2}+y^{2}+6 x+4 y-12=0$

Answer: C

- View Text Solution

32. The line $y=m x$ intersects the circle $x^{2}+y^{2}-2 x-2 y=0$ and $x^{2}+y^{2}+6 x-8 y=0$ at point A and B (points being other than origin). The range of m such that origin divides $A B$ internally is
A. $-1<m<\frac{3}{4}$
B. $m>\frac{4}{3}$ or $m<-2$
C. $-2<m<\frac{4}{3}$
D. $m>-1$

Answer: A

- View Text Solution

33. If $C_{1}: x^{2}+y^{2}=(3+2 \sqrt{2})^{2}$ is a circle and $P A$ and $P B$ are a pair of tangents on C_{1}, where P is any point on the director circle of C_{1}, then the radius of the smallest circle which touches c_{1} externally and also the two tangents $P A$ and $P B$ is $2 \sqrt{3}-3$ (b) $2 \sqrt{2}-12 \sqrt{2}-1$ (d) 1
A. 1
B. 2
C. 3
D. 4

- Watch Video Solution

34. From points on the straight line $3 x-4 y+12=0$, tangents are drawn to the circle $x^{2}+y^{2}=4$. Then, the chords of contact pass through a fixed point. The slope of the chord of the circle having this fixed point as its mid-point is
A. $\frac{4}{3}$
B. $\frac{1}{2}$
C. $\frac{1}{3}$
D. none of these

Answer: D

- View Text Solution

35. If tangent at $(1,2)$ to the circle $C_{1}: x^{2}+y^{2}=5$ intersects the circle $C_{2}: x^{2}+y^{2}=9$ at A and B and tangents at A and B to the second circle meet at point C , then the co- ordinates of C are given by
A. $(4,5)$
B. $\left(\frac{9}{15}, \frac{18}{5}\right)$
C. $(4,-5)$
D. $\left(\frac{9}{5}, \frac{18}{5}\right)$

Answer: D

- View Text Solution

36. $A B$ is a line segment of length 48 cm and C is its mid-point. If three semicircles are drawn at AB, AC and CB using as diameters, then radius of the circle inscribed in the space enclosed by three semicircles is
A. $3 \sqrt{2}$
B. 6
C. 8
D. 10

Answer: C

- View Text Solution

37. Consider circles
$C_{1}: x^{2}+y^{2}+2 x-2 y+p=0$
$C_{2}: x^{2}+y^{2}-2 x+2 y-p=0$
$C_{3}: x^{2}+y^{2}=p^{2}$
Statement-I: If the circle C_{3} intersects C_{1} orthogonally then C_{2} does not represent a circle Statement-II: If the circle C_{3} intersects C_{2} orthogonally then C_{2} and C_{3} have equal radii Then which of the following is true?
A. statement II is false and statement I is true
B. statement I is false and statement II is true
C. both the statements are false
D. both the statements are true

Answer: B

- View Text Solution

38. Tangents drawn from point of intersection A of circles $x^{2}+y^{2}=4$ and $(x-\sqrt{3})^{2}+(y-3)^{2}=4$ cut the line joining their centres at B and C Then triangle $B A C$ is
A. equilateral triangle
B. right angle triangle
C. obtuse angle triangle
D. isosceles triangle and $\angle A B C=\frac{\pi}{6}$

Answer: A

39. Suppose that two circles C_{1} and C_{2} in a plane have no points in common. Then
A. there is no line tangent to both C_{1} and C_{2}
B. there are exactly four lines tangent to both C_{1} and C_{2}
C. there are no lines tangent to both C_{1} and C_{2} or there are exactly two lines tangent to both C_{1} and C_{2}
D. there are no lines tangent to both C_{1} and C_{2} or there are exactly four lines tangent to both C_{1} and C_{2}

Answer: D

- Watch Video Solution

40. A circle of radius 2 has its centre at $(2,0)$ and another circle of radius 1 has its centre at $(5,0)$. A line is tangent to the two circles at point in the first quadrant. The y-intercept of the tangent line is
A. $\sqrt{2}$
B. $2 \sqrt{2}$
C. $3 \sqrt{2}$
D. $4 \sqrt{2}$

Answer: B

- Watch Video Solution

41. Let circle $C_{1}: x^{2}+(y-4)^{2}=12$ intersects circle $C_{2}:(x-3)^{2}+y^{2}=13$ at A and B. A quadrilateral ACBD is formed by tangents at A and B to both circles. The diameter of circumcircle of quadrilateral ACBD is
A. 4
B. 5
C. 6
D. 9.25

D View Text Solution

42. Transverse common tangents are drawn from O to the two circles C_{1}, C_{2} with 4,2 respectively. Then the ratio of the areas of triangles formed by the tangents drawn from O to the circles C_{1} and C_{2} and chord of contacts of O w.r.t the circles C_{1} and C_{2} respectively is
A. 3 units
B. 6 units
C. 4 units
D. 5 units

Answer: C

43. Equation of the straight line meeting the cirle with centre at origin and radius equal to 5 in two points at equal distances of 3 units from the point $(3,4)$ is
A. $6 x+8 y=41$
B. $6 x-8 y+41=0$
C. $8 x+6 y+41=0$
D. $8 x-6 y+41=0$

Answer: A

- Watch Video Solution

44. Two circle touch the x-axes and the line $y=m x$ they meet at $(9,6)$ na d at one more point and the product of their radus is $\frac{117}{2}$ then the value of m is
A. $2 \sqrt{2}$
B. $\sqrt{2}$
C. $\frac{1}{\sqrt{2}}$
D. none of these

Answer: A

- View Text Solution

45. Tangents drawn from $P(1,8)$ to the circle $x^{2}+y^{2}-6 x-4 y-11=0$ touches the circle at the points A and B , respectively. The radius of the circle which passes through the points of intersection of circles
$x^{2}+y^{2}-2 x-6 y+6=0$ and $x^{2}+y^{2}-2 x-6 y+6=0$
circumcircle of the and interse $\triangle P A B$ orthogonally is equal to
A. $\frac{\sqrt{73}}{4}$
B. $\frac{\sqrt{71}}{2}$
C. 3

D. 2

Answer: A

- View Text Solution

46. If the radius of the circle touching the pair of lines $7 x^{2}-18 x y+7 y^{2}=0$ and the circle $x^{2}+y^{2}-8 x-8 y=0$, and contained in the given circle is equal to k , then k^{2} is equal to
A. 10
B. 9
C. 8
D. 7

Answer: C

47. Equation of a circle having radius equal to twice the radius of the circle $x^{2}+y^{2}+(2 p+3) x+(3-2 p) y+p-3=0$ and touching it at the origin is
A. $x^{2}+y^{2}+9 x-3 y=0$
B. $x^{2}+y^{2}-9 x+3 y=0$
C. $x^{2}+y^{2}+18 x+6 y=0$
D. $x^{2}+y^{2}+18 x-6 y=0$

Answer: D

- Watch Video Solution

48. Tangents $P T_{1}$, and $P T_{2}$, are drawn from a point P to the circle $x^{2}+y^{2}=a^{2}$. If the point P line $P x+q y+r=0$, then the locus of the centre of circumcircle of the triangle $P T_{1} T_{2}$ is
A. $p x+q y=r$
B. $(x-p)^{2}+(y-q)^{2}=r^{2}$
C. $p x+q y=\frac{r}{2}$
D. $2 p x+2 q y+r=0$

Answer: D

- View Text Solution

49. An isosceles triangle with base 24 and legs 15 each is inscribed in a circle with centre at $(-1,1)$. The locus of the centroid of that Δ is
A. $4\left(x^{2}+y^{2}\right)+8 x-8 y-73=0$
B. $2\left(x^{2}+y^{2}\right)+4 x-4 y-31=0$
C. $2\left(x^{2}+y^{2}\right)+4 x-4 y-21=0$
D. $4\left(x^{2}+y^{2}\right)+8 x-8 y-161=0$

Answer: D

D View Text Solution

50. $x^{2}+y^{2}=16$ and $x^{2}+y^{2}=36$ are two circles. If P and Q move respectively on these circles such that $P Q=4$ then the locus of midpoint of $P Q$ is a circle of radius
A. $\sqrt{20}$
B. $\sqrt{22}$
C. $\sqrt{30}$
D. $\sqrt{32}$

Answer: B

- Watch Video Solution

51. A variable line moves in such a way that the product of the perpendiculars from $(4,0)$ and $(0,0)$ is equal to 9 . The locus of the feet of the perpendicular from $(0,0)$ upon the variable line is a circle, the square of whose radius is
A. 13
B. 15
C. 19
D. 23

Answer: A

- Watch Video Solution

52. The locus of the mid-points of the chords of the circle of lines radiâ's r which subtend an angle $\frac{\pi}{4}$ at any point on the circumference of the circle is a concentric circle with radius equal to
A. $\frac{r}{2}$
B. $\frac{2 r}{3}$
C. $\frac{r}{\sqrt{2}}$
D. $\frac{r}{\sqrt{3}}$

Answer: C

53. Tangents $P A$ and $P B$ are drawn to the circle $x^{2}+y^{2}=8$ from any arbitrary point P on the line $x+y=4$. The locus of mid-point of chord of contact $A B$ is
A. $x^{2}+y^{2}-2 x-2 y=0$
B. $x^{2}+y^{2}+2 x+2 y=0$
C. $x^{2}+y^{2}-2 x+2 y=0$
D. $x^{2}+y^{2}+2 x-2 y=0$

Answer: A

- Watch Video Solution

54. The locus of the centre of a circle which cuts a given circle orthogonally and also touches a given straight line is (a) circle (c) parabola (b) line (d) ellipse
A. circle
B. line
C. parabola
D. ellipse

Answer: C

- View Text Solution

55. A circle with radius $|a|$ and center on the y-axis slied along it and a variable line through $(a, 0)$ cuts the circle at points PandQ. The region in which the point of intersection of the tangents to the circle at points P and Q lies is represented by (a) $y^{2} \geq 4\left(a x-a^{2}\right)$ (b) $y^{2} \leq 4\left(a x-a^{2}\right)$ (c) $y \geq 4\left(a x-a^{2}\right)$ (d) $y \leq 4\left(a x-a^{2}\right)$
A. $y^{2} \geq 4 a(x-a)$
B. $y^{2} \leq 4 a x$
C. $x^{2}+y^{2} \leq 4 a^{2}$
D. $x^{2}-y^{2} \geq a^{2}$

Answer: A

- Watch Video Solution

56. Find the locus of the point at which two given portions of the straight line subtend equal angle.
A. a straihght line
B. a circle
C. a parabola
D. none of these

Answer: B

- Watch Video Solution

57. The locus of the centre of the circle which bisects the circumferences of the circles $x^{2}+y^{2}=4 \& x^{2}+y^{2}-2 x+6 y+1=0$ is:
A. $2 x-6 y-15=0$
B. $2 x+6 y+15=0$
C. $2 x-6 y+15=0$
D. $2 x+6 y-15=0$

Answer: A

- View Text Solution

58. The centre of family of circles cutting the family of circles $x^{2}+y^{2}+4 x\left(\lambda-\frac{3}{2}\right)+3 y\left(\lambda-\frac{4}{3}\right)-6(\lambda+2)=0 \quad$ orthogonally, lies on
A. $x-y-1=0$
B. $4 x+3 y-6=0$
C. $4 x+3 y+7=0$
D. $3 x-4 y-1=0$

Answer: B

- View Text Solution

Multiple Correct Answers Type

1. The line $3 x+6 y=k$ intersects the curve $2 x^{2}+3 y^{2}=1$ at points

AandB. The circle on $A B$ as diameter passes through the origin. Then the value of k^{2} is \qquad
A. 3
B. 4
C. -4
D. -3

- Watch Video Solution

2. Consider the circle $x^{2}+y^{2}-8 x-18 y+93=0$ with the center C and a point $P(2,5)$ out side it. From P a pair of tangents PQ and PR are drawn to the circle with S as mid point of $Q R$. The line joining P to C intersects the given circle at A and B . Which of the following hold (s)
A. $C P$ is the arithmetic mean of $A P$ and $B P$
B. PR is the geometric mean of PS and PC
C. PS is the harmonic mean of PA and PB
D. The angle between the two tangents from P is $\tan ^{-1}\left(\frac{4}{3}\right)$

Answer: A::B::C::D

- View Text Solution

3. Consider two circles $C_{1}: x^{2}+y^{2}-1=0$ and $C_{2}: x^{2}+y^{2}-2=0$. Let $\mathrm{A}(1,0)$ be a fixed point on the circle C_{1} and B be any variable point on the circle C_{2}. The line BA meets the curve C_{2} again at C . Which of the following alternative(s) is/are correct?
A. $O A^{2}+O B^{2}+B C^{2} \in[7,11]$, where O is the origin
B. $O A^{2}+O B^{2}+B C^{2} \in[4,7]$, where O is the origin
C. Locus of midpoint of $A B$ is a circle of radius $\frac{1}{\sqrt{2}}$
D. Locus of midpoint of $A B$ is a circle of area $\frac{\pi}{2}$

Answer: A:C

- View Text Solution

4. The real numbers a and b are distinct. Consider the circles
$\omega_{1}:(x-a)^{2}+(y-b)^{2}=a^{2}+b^{2}$ and
$\omega_{2}:(x-b)^{2}+(y-a)^{2}=a^{2}+b^{2}$
Which of the following is (are) true?
A. The line $y=x$ is an axis of symmetry for the circles
B. The circles intersect at the origin and a point, $\mathrm{P}($ say $)$, which lies on the line $y=x$
C. The line $y=x$ is the radical axis of the pair of circles.
D. The circles are orthogonal for all $a \neq b$.

Answer: A::B::C

- View Text Solution

5.

Consider
two
circles
$S,=x^{2}+y^{2}+8 x=0$ and $S_{2}=x^{2}+y^{2}-2 x=0$. Let $\triangle P O R$ be formed by the common tangents to circles S_{1} and S_{2}, Then which of the following hold(s) good?
A. Incentre of $\triangle P Q R$ is $(1,0)$
B. The equation of radical axis of circles S_{1} and S_{2} is $y=0$
C. Product of slope of direct common tangents is $\frac{16}{9}$
D. If transverse common tangent intersects direct common tangents at points A and B, then $A B$ equals 4 .

Answer: A::D

- View Text Solution

6. A circle touching the line $x+y-2=0$ at $(1,1)$ and cuts the circle $x^{2}+y^{2}+4 x+5 y-6=0$ at P and Q . Then
A. PQ can never be parallel to the given line $x+y-2=0$
B. PQ can never be perpendicular to the given line $x+y-2=0$
C. PQ always passes through $(6,-4)$
D. PQ always passes through $(-6,4)$

Answer: A::B::C

- Watch Video Solution

7. A circle $S=0$ passes through the common points of family of circles $x^{2}+y^{2}+\lambda x-4 y+3=0$ and $(\lambda \varepsilon R)$ has minimum area then (A) area of $S=0$ is π sq. units (C) radius of director circle of $S=0$ is 1 unit (D) $S=0$ never cuts $|2 x|=1$ (B) radius of director circle of $S=0$ is $\sqrt{2}$
A. area of $S=0$ is π sq. units
B. radius of director circle of $S=0$ is $\sqrt{2}$
C. radius of director circle of $S=0$ is 1 unit
D. $S=0$ never cuts $|2 x|=1$

Answer: A::B::D

- View Text Solution

8. Q is any point on the circle $x^{2}+y^{2}=9 . Q N$ is perpendicular from Q to the x -axis. Locus of the point of trisection of QN is

$$
\text { A. } 4 x^{2}+9 y^{2}=36
$$

B. $9 x^{2}+4 y^{2}=36$
C. $9 x^{2}+y^{2}=9$
D. $x^{2}+9 y^{2}=9$

Answer: A::D

- View Text Solution

9. Locus of the intersection of the two straight lines passing through $(1,0)$ and $(-1,0)$ respectively and including an angle of 45° can be a circle with
A. curve $(1,0)$ and radius $\sqrt{2}$
B. centre (1,0) and radius 2
C. centre $(0,1)$ and radius $\sqrt{2}$
D. centre $(0,-1)$ and radius $\sqrt{2}$

Answer: C::D

Comprehension Type

1. In the diagram as shown, a circle is drawn with centre $C(1,1)$ and radius I and a line L. The line Lis tangential to the circle at Q. Further L meet the y axis at R and the x-axis at Pis such a way that the angle OPQ equals θ where ${ }^{\circ} 0$ < theta
A. $(1+\cos \theta, 1+\sin \theta)$
B. $(\sin \theta, \cos \theta)$
C. $(1+\sin \theta, \cos \theta)$
D. $(1+\sin \theta, 1+\cos \theta)$

Answer: D

2.

In the diagram as shown, a circle is drawn with centre $C(1,1)$ and radius 1 and a line L. The line L is tangent to the circle at Q. Further L meets the y-axis at R and the x-axis at P in such a way that the angle OPQ equals θ where $0<\theta<\frac{\pi}{2}$.

Equation of the line $P R$ is
A. $x \cos \theta+y \sin \theta=\sin \theta+\cos \theta+1$
B. $x \sin \theta+y \cos \theta=\cos \theta+\sin \theta-1$
C. $x \sin \theta+y \cos \theta=\cos \theta+\sin \theta+1$
D. $x \tan \theta+y=1+\cot \left(\frac{\theta}{2}\right)$

- View Text Solution

3.

In the diagram as shown, a circle is drawn with centre $C(1,1)$ and radius 1 and a line L. The line L is tangent to the circle at Q. Further L meets the y-axis at R and the x-axis at P in such a way that the angle OPQ equals θ where $0<\theta<\frac{\pi}{2}$.

Area of triangle OPR when $\theta=\pi / 4$ is
A. $(3-2 \sqrt{2})$
B. $(3+2 \sqrt{2})$
C. $(6+4 \sqrt{2})$
D. none of these

Answer: B

- View Text Solution

4. Let $P(\alpha, \beta)$ be a point in the first quadrant. Circles are drawn through P touching the coordinate axes.

Radius of one of the circles is
A. $(\sqrt{a}-\sqrt{\beta})^{2}$
B. $(\sqrt{\alpha}+\sqrt{\beta})^{2}$
C. $\alpha+\beta-\sqrt{\alpha \beta}$
D. $\alpha+\beta-\sqrt{2 \alpha \beta}$

Answer: D

5. P is a point (a, b) in the first quadrant. If the two circles which pass through P and touch both the coordinates axes cut at right angles, then
$a^{2}-6 a b+b^{2}=0$

$$
a^{2}+2 a b-b^{2}=0
$$

$$
a^{2}-4 a b+b^{2}=0
$$

$a^{2}-8 a b+b^{2}=0$
A. $\alpha^{2}+\beta^{2}=4 \alpha \beta$
B. $(\alpha+\beta)^{2}=4 \alpha \beta$
C. $\alpha^{2}+\beta^{2}=\alpha \beta$
D. $\alpha^{2}+\beta^{2}=2 \alpha \beta$

Answer: A

- Watch Video Solution

6. Let $P(\alpha, \beta)$ be a point in the first quadrant. Circles are drawn through P touching the coordinate axes.

Equation of common chord of two circles is
A. $x+y=\alpha-\beta$
B. $x+y=2 \sqrt{\alpha \beta}$
C. $x+y=\alpha+\beta$
D. $\alpha^{2}-\beta^{2}=4 \alpha \beta$

Answer: C

- View Text Solution

7. $P(a, 5 a)$ and $Q(4 a, a)$ are two points. Two circles are drawn through these points touching the axis of y.

Centre of these circles are at
A. $(a, a),(2 a, 3 a)$
B. $\left(\frac{205 a}{18}, \frac{29 a}{3}\right),\left(\frac{5 a}{2}, 3 a\right)$
c. $\left(3 a, \frac{29 a}{3}\right),\left(\frac{205 a}{9}, \frac{29 a}{18}\right)$
D. None of these

Answer: B

- View Text Solution

8. Two circles are drawn through the points $(a, 5 a)$ and ($4 a, a$) to touch the y-axis. Prove that they intersect at angle $\tan ^{-1}\left(\frac{40}{9}\right)$.
A. $\tan ^{-1}(4 / 3)$
B. $\tan ^{-1}(40 / 9)$
C. $\tan ^{-1}(84 / 187)$
D. $\pi / 4$

Answer: B

- View Text Solution

Examples

1. Find the equation of a circle of radius 5 whose centre lies on x-axis and which passes through the point $(2,3)$.

- Watch Video Solution

2. If the lines $x+y=6 a n d x+2 y=4$ are diameters of the circle which passes through the point $(2,6)$, then find its equation.

- View Text Solution

3. Find the equation of the circle having center at $(2,3)$ and which touches $x+y=1$

- Watch Video Solution

4. Determine the nature of the quadrilateral formed by four lines $3 x+4 y-5=0,4 x-3 y-5=0 ; 3 x+4 y-5=0$ and $4 x-3 y+5=0$

Find the equation of the circle insc quadrilateral inscribed and circumscribing this quadrilateral.

- View Text Solution

5. Two vertices of an equilateral triangle are $(-1,0)$ and $(1,0)$, and its third vertex lies above the y-axis. The equation of its circumcircel is

- Watch Video Solution

6. Find the equation of the circle having radius 5 and which touches line $3 x+4 y-11=0$ at point (1,2).

- Watch Video Solution

7. Prove that for all values of θ, the locus of the point of intersection of the lines $x \cos \theta+y \sin \theta=a$ and $x \sin \theta-y \cos \theta=b$ is a circle.
8. Prove that the maximum number of points with rational coordinates on a circle whose center is $(\sqrt{3}, 0)$ is two.

- Watch Video Solution

9. Find the locus of the midpoint of the chords of circle $x^{2}+y^{2}=a^{2}$ having fixed length I.

- Watch Video Solution

10. Find the locus of the midpoint of the chords of the circle $x^{2}+y^{2}=a^{2}$ which subtend a right angle at the point $(0,0)$.

- Watch Video Solution

11. Find the equation of the circle which is touched by $y=x$, has its center on the positive direction of the $\mathrm{x}=\mathrm{axis}$ and cuts off a chord of length 2 units along the line $\sqrt{3} y-x=0$

- Watch Video Solution

12. Find the equations of the circles passing through the point $(-4,3)$ and touching the lines $x+y=2$ and $x-y=2$

- Watch Video Solution

13. about to only mathematics

- Watch Video Solution

14. A circle touches the y-axis at the point $(0,4)$ and cuts the x-axis in a chord of length 6 units. Then find the radius of the circle.
15. Find the equation of the circle which touches both the axes and the straight line $4 x+3 y=6$ in the first quadrant and lies below it.

- Watch Video Solution

16. about to only mathematics

- Watch Video Solution

17. A variable circle passes through the point $A(a, b)$ and touches the x axis. Show that the locus of the other end of the diameter through A is $(x-a)^{2}=4 b y$.

- Watch Video Solution

18. If the equation $p x^{2}+(2-q) x y+3 y^{2}-6 q x+30 y+6 q=0$ represents a circle, then find the values of pandq.

Watch Video Solution

19. If $x^{2}+y^{2}-2 x+2 a y+a+3=0$ represents the real circle with nonzero radius, then find the values of a.

- Watch Video Solution

20. A point P moves in such a way that the ratio of its distance from two coplanar points is always a fixed number $(\neq 1)$. Then, identify the locus of the point.

- Watch Video Solution

21. Find the image of the circle $x^{2}+y^{2}-2 x+4 y-4=0$ in the line $2 x-3 y+5=0$

- Watch Video Solution

22. A point moves so that the sum of the squares of the perpendiculars let fall from it on the sides of an equilateral triangle is constant. Prove that its locus is a circle.

- Watch Video Solution

23. about to only mathematics

- Watch Video Solution

24. Find the length of intercept, the circle $x^{2}+y^{2}+10 x-6 y+9=0$ makes on the x-axis.
25. If the intercepts of the variable circle on the x - and yl-axis are 2 units and 4 units, respectively, then find the locus of the center of the variable circle.

- Watch Video Solution

26. Find the equation of the circle which passes through the points $(1,-2),(4,-3)$ and whose center lies on the line $3 x+4 y=7$.

- Watch Video Solution

27. Show that a cyclic quadrilateral is formed by the lines $5 x+3 y=9, x=3 y, 2 x=y$ and $x+4 y+2=0$ taken in order. Find the equation of the circumcircle.

- Watch Video Solution

28. Find the equation of the circle if the chord of the circle joining $(1,2)$ and $(-3,1)$ subtents 90° at the center of the circle.

- Watch Video Solution

29. Find the equation of the circle which passes through $(1,0)$ and $(0,1)$ and has its radius as small as possible.

- Watch Video Solution

30. If the abscissa and ordinates of two points $\operatorname{Pand} Q$ are the roots of the equations $x^{2}+2 a x-b^{2}=0$ and $x^{2}+2 p x-q^{2}=0$, respectively, then find the equation of the circle with $P Q$ as diameter.

- Watch Video Solution

31. Tangents P Aand $P B$ are drawn to $x^{2}+y^{2}=a^{2}$ from the point $P\left(x_{1}, y_{1}\right)$. Then find the equation of the circumcircle of triangle $P A B$.

- Watch Video Solution

32. The point on a circle nearest to the point $P(2,1)$ is at a distance of 4 units and the farthest point is (6,5). Then find the equation of the circle.

- Watch Video Solution

33. Let P, Q, R and S be the feet of the perpendiculars drawn from point $(1,1)$ upon the lines $y=3 x+4, y=-3 x+6$ and their angle bisectors respectively. Then equation of the circle whose extremities of a diameter are R and S is

- Watch Video Solution

34. Find the parametric form of the equation of the circle $x^{2}+y^{2}+p x+p y=0$.

- Watch Video Solution

35. Find the centre and radius of the circle whose parametric equation is $x=-1+2 \cos \theta, y=3+2 \sin \theta$.

- Watch Video Solution

36. about to only mathematics

- Watch Video Solution

37. A circle $x^{2}+y^{2}=a^{2}$ meets the x -axis at $\mathrm{A}(-\mathrm{a}, \mathrm{0})$ and $\mathrm{B}(\mathrm{a}, 0) . P(\alpha)$ and $\mathrm{Q}(\beta)$ are two points on the circle so that $\alpha-\beta=2 \gamma$, where γ is a constant. Find the locus of the point of intersection of AP and BQ .
38. P is the variable point on the circle with center at $C C A$ and $C B$ are perpendiculars from C on the x - and the y-axis, respectively. Show that the locus of the centroid of triangle $P A B$ is a circle with center at the centroid of triangle $C A B$ and radius equal to the one-third of the radius of the given circle.

- Watch Video Solution

39. Prove that quadrilateral $A B C D$, where

$$
A B \equiv x+y-10, B C \equiv x-7 y+50=0, C D \equiv 22 x-4 y+125=0, a n
$$

is concyclic. Also find the equation of the circumcircle of $A B C D$.

- Watch Video Solution

40. Find the values of α for which the point $(\alpha-1, \alpha+1)$ lies in the larger segment of the circle $x^{2}+y^{2}-x-y-6=0$ made by the chord
whose equation is $x+y-2=0$

- Watch Video Solution

41. The circle $x^{2}+y^{2}-6 x-10 y+k=0$ does not touch or intersect the coordinate axes, and the point $(1,4)$ is inside the circle. Find the range of value of k.

- Watch Video Solution

42. Find the area of the region in which the points satisfy the inequaties `40`

- Watch Video Solution

43. Find the greatest distance of the point $P(10,7)$ from the circle
$x^{2}+y^{2}-4 x-2 y-20=0$
44. Find the points on the circle $x^{2}+y^{2}-2 x+4 y-20=0$ which are the farthest and nearest to the point $(-5,6)$.

- Watch Video Solution

45. about to only mathematics

- Watch Video Solution

46. Find the range of values of m for which the line $y=m x+2$ cuts the circle $x^{2}+y^{2}=1$ at distinct or coincident points.

- Watch Video Solution

47. The range of parameter ' a ' for which the variable line $y=2 x+a$ lies between the circles $x^{2}+y^{2}-2 x-2 y+1=0 \quad$ and
$x^{2}+y^{2}-16 x-2 y+61=0$ without intersecting or touching either circle \quad is $\quad a \in(2 \sqrt{5}-15,0) \quad a \in(-\infty, 2 \sqrt{5}-15$, $a \in(0,-\sqrt{5}-10)(\mathrm{d}) a \in(-\sqrt{5}-1, \infty)$

- Watch Video Solution

48. Let $A \equiv(-1,0), B \equiv(3,0)$, and $P Q$ be any line passing through $(4,1)$ having slope m. Find the range of m for which there exist two points on $P Q$ at which $A B$ subtends a right angle.

- Watch Video Solution

49. The circle $x^{2}+y^{2}-4 x-4 y+4=0$ is inscribed in a variable triangle $O A B$. Sides $O A$ and $O B$ lie along the x - and y -axis, respectively, where O is the origin. Find the locus of the midpoint of side $A B$.

- Watch Video Solution

50. The lengths of the tangents from $P(1,-1)$ and $Q(3,3)$ to a circle are $\sqrt{2}$ and $\sqrt{6}$, respectively. Then, find the length of the tangent from $R(-1,-5)$ to the same circle.

- Watch Video Solution

51. Find the area of the triangle formed by the tangents from the point (4,
3) to the circle $x^{2}+y^{2}=9$ and the line joining their points of contact.

- Watch Video Solution

52. C_{1} and C_{2} are two concentrate circles, the radius of C_{2} being twice that of C_{1}. From a point P on C_{2} tangents PA and PB are drawn to C_{1}. Prove that the centroid of the $\triangle P A B$ lies on C_{1}

- Watch Video Solution

53. If from any point P on the circle $x^{2}+y^{2}+2 g x+2 f y+c=0$, tangents are drawn to the circle $x^{2}+y^{2}+2 g x+2 f y+c \sin ^{2} \alpha+\left(g^{2}+f^{2}\right) \cos ^{2} \alpha=0$, then find the angle between the tangents.

- Watch Video Solution

54. Find the length of the chord $x^{2}+y^{2}-4 y=0$ along the line $x+y=1$. Also find the angle that the chord subtends at the circumference of the larger segment.

- Watch Video Solution

55. If the lines $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$ cut the coordinae axes at concyclic points, then prove that $\left|a_{1} a_{2}\right|=\left|b_{1} b_{2}\right|$

- Watch Video Solution

56. about to only mathematics

- Watch Video Solution

57. Two circles $C_{1} a n d C_{2}$ intersect at two distinct points $\operatorname{Pand} Q$ in a line passing through P meets circles $C_{1} a n d C_{2}$ at $A a n d B$, respectively. Let Y be the midpoint of $A B$, and $Q Y$ meets circles $C_{1} a n d C_{2}$ at $X a n d Z$, respectively. Then prove that Y is the midpoint of $X Z$.

- Watch Video Solution

58. Find the equation of chord of the circle $x^{2}+y^{2}-2 x-4 y-4=0$ passing through the point $(2,3)$ which has shortest length.

- Watch Video Solution

59. A variable chord of circle $x^{2}+y^{2}+2 g x+2 f y+c=0$ passes through the point $P\left(x_{1}, y_{1}\right)$. Find the locus of the midpoint of the chord.

(D) Watch Video Solution

60. The tangent to the circle $x^{2}+y^{2}=5$ at $(1,-2)$ also touches the circle $x^{2}+y^{2}-8 x+6 y+20=0$. Find the coordinats of the corresponding point of contact.

- Watch Video Solution

61. Find the equation of the tangent at the endpoints of the diameter of circle $(x-a)^{2}+(y-b)^{2}=r^{2}$ which is inclined at an angle θ with the positive x-axis.

- Watch Video Solution

62. The circle $x^{2}+y^{2}-4 x+6 y+c=0$ touches x axis if

- Watch Video Solution

63. Two parallel tangents to a given circle are cut by a third tangent at the point Rand Q. Show that the lines from $\operatorname{Rand} Q$ to the center of the circle are mutually perpendicular.

- Watch Video Solution

64. Find the equations of the tangents to the circle $x^{2}+y^{2}-6 x+4 y=12$ which are parallel to the straight line $4 x+3 y+5=0$

- Watch Video Solution

65. Prove that the line $y=m(x-1)+3 \sqrt{1+m^{2}}-2$ touches the circle $x^{2}+y^{2}-2 x+4 y-4=0$ for all reacl values of m.

- Watch Video Solution

66. Find the equation of the tangent at the endpoints of the diameter of circle $(x-a)^{2}+(y-b)^{2}=r^{2}$ which is inclined at an angle θ with the positive x-axis.

- Watch Video Solution

67. If $a>2 b>0$, then find the positive value of m for which $y=m x-b \sqrt{1+m^{2}}$ is a common tangent to $x^{2}+y^{2}=b^{2}$ and $(x-a)^{2}+y^{2}=b^{2}$.

- Watch Video Solution

68. Find the equation of tangents to circle $x^{2}+y^{2}-2 x+4 y-4=0$ drawn from point $P(2,3)$.

- Watch Video Solution

69. Tangents drawn from point P to the circle $x^{2}+y^{2}=16$ make the angles θ_{1} and θ_{2} with positive x -axis. Find the locus of point P such that $\left(\tan \theta_{1}-\tan \theta_{2}\right)=c($ constant $)$.

- Watch Video Solution

70. Find the equation of pair of tangenst drawn to circle $x^{2}+y^{2}-2 x+4 y-4=0$ from point $\mathrm{P}(-2,3)$. Also find the angle between tangest.

- Watch Video Solution

71. If the chord of contact of the tangents drawn from a point on the circle $x^{2}+y^{2}=a^{2}$ to the circle $x^{2}+y^{2}=b^{2}$ touches the circle $x^{2}+y^{2}=c^{2}$, then prove that a, b and c are in GP.

- Watch Video Solution

72. If the straight line $x-2 y+1=0$ intersects the circle $x^{2}+y^{2}=25$ at points P and Q, then find the coordinates of the point of intersection of the tangents drawn at P and Q to the circle $x^{2}+y^{2}=25$.

- Watch Video Solution

73. Tangents are drawn to $x^{2}+y^{2}=1$ from any arbitrary point P on the line $2 x+y-4=0$.Prove that corresponding chords of contact pass through a fixed point and find that point.

- Watch Video Solution

74. Find the length of the chord of contact with respect to the point on the director circle of circle $x^{2}+y^{2}+2 a x-2 b y+a^{2}-b^{2}=0$.

- Watch Video Solution

75. Find the locus of the centers of the circles $x^{2}+y^{2}-2 x-2 b y+2=0$, where a and b are parameters, if the tangents from the origin to each of the circles are orthogonal.

- Watch Video Solution

76. Find the equation of the normals to the circle $x^{2}+y^{2}-8 x-2 y+12=0$ at the point whose ordinate is -1

- Watch Video Solution

77. Find the equation of the normal to the circle $x^{2}+y^{2}-2 x=0$ parallel to the line $x+2 y=3$.

- Watch Video Solution

78. Find the equation of radical axis of the circles $x^{2}+y^{2}-3 x+5 y-7=0$ and $2 x^{2}+2 y^{2}-4 x+8 y-13=0$.

- Watch Video Solution

79. The equation of three circles are given
$x^{2}+y^{2}=1, x^{2}+y^{2}-8 x+15=0, x^{2}+y^{2}+10 y+24=0$
Determine the coordinates of the point P such that the tangents drawn
from it to the circle are equal in length.

- Watch Video Solution

80. about to only mathematics

- Watch Video Solution

81. Show that the circles $x^{2}+y^{2}-10 x+4 y-20=0$ and $x^{2}+y^{2}+14 x-6 y+22=0$ touch each other. Find the coordinates of the point of contact and the equation of the common tangent at the point of contact.

- Watch Video Solution

82. If two circles $x^{2}+y^{2}+c^{2}=2 a x$ and $x^{2}+y^{2}+c^{2}-2 b y=0$ touch each other externally, then prove that $\frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{1}{c^{2}}$

- Watch Video Solution

83. Find the equation of a circle with center $(4,3)$ touching the circle $x^{2}+y^{2}=1$

- Watch Video Solution

84. Equation of the smaller circle that touches the circle $x^{2}+y^{2}=1$ and passes through the point $(4,3)$ is

- Watch Video Solution

85. If a circle Passes through a point $(1,2)$ and cut the circle $x^{2}+y^{2}=4$ orthogonally,Then the locus of its centre is

- Watch Video Solution

86. Find the locus of the center of the circle touching the circle $x^{2}+y^{2}-4 y=4$ internally and tangents on which from $(1,2)$ are making of 60^{0} with each other.

- Watch Video Solution

87. about to only mathematics
88. The locus of the centers of the circles $(x-1)^{2}+y^{2}=10$ and $x^{2}+(y-2)^{2}=5$ intersect is $\frac{\pi}{6}$ (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{3}$ (d) $\frac{\pi}{2}$

- Watch Video Solution

89. If the two circles $2 x^{2}+2 y^{2}-3 x+6 y+k=0$ and $x^{2}+y^{2}-4 x+10 y+16=0$ cut orthogonally, then find the value of k.

- Watch Video Solution

90. Two circles passing through $A(1,2), B(2,1)$ touch the line $4 x+8 y-7=0$ at C and D such that ACED in a parallelogram. Then: coordinates of E are

- Watch Video Solution

91. Find the center of the smallest circle which cuts circles $x^{2}+y^{2}=1$ and $x^{2}+y^{2}+8 x+8 y-33=0$ orthogonally.

- Watch Video Solution

92. Tangents are drawn to the circle $x^{2}+y^{2}=9$ at the points where it is met by the circle $x^{2}+y^{2}+3 x+4 y+2=0$. Fin the point of intersection of these tangents.

- Watch Video Solution

93. If the circle $x^{2}+y^{2}+2 g x+2 f y+c=0$ bisects the circumference of the circle $x^{2}+y^{2}+2 g^{\prime} x+2 f^{\prime} y+c^{\prime}=0$ then prove that $2 g^{\prime}\left(g-g^{\prime}\right)+2 f^{\prime}\left(f-f^{\prime}\right)=c-c^{\prime}$

- Watch Video Solution

94. If θ is the angle between the two radii (one to each circle) drawn from one of the point of intersection of two circles $x^{2}+y^{2}=a^{2}$ and $(x-c)^{2}+y^{2}=b^{2}$, then prove that the length of the common chord of the two circles is $\frac{2 a b \sin \theta}{\sqrt{a^{2}+b^{2}-2 a b \cos \theta}}$

- Watch Video Solution

95. If the circle $x^{2}+y^{2}=1$ is completely contained in the circle $x^{2}+y^{2}+4 x+3 y+k=0$, then find the values of k.

- Watch Video Solution

96. Prove that the equation $x^{2}+y^{2}-2 x-2 a y-8=0, a \in R$ represents the family of circles passing through two fixed points on x axis.
97. Find the equation of the circle passing throught (1,1) and the points of intersection of the circles $x^{2}+y^{2}+13 x-3 y=0$ and $2 x^{2}+2 y^{2}+4 x-7 y-25=0$

- Watch Video Solution

98. Find the equation of the smallest circle passing through the intersection of the line $x+y=1$ and the circle $x^{2}+y^{2}=9$

- Watch Video Solution

99. The equation of the cirele which passes through the point $(1,1)$ and touches the circle $x^{2}+y^{2}+4 x-6 y-3=0$ at the point $(2,3)$ on it is

- Watch Video Solution

100. consider a family of circles passing through two fixed points $S(3,7)$ and $B(6,5)$. If the common chords of the circle
$x^{2}+y^{2}-4 x-6 y-3=0$ and the members of the family of circles pass through a fixed point (a,b), then

- Watch Video Solution

101. If C_{1}, C_{2}, and C_{3} belong to a family of circles through the points $\left(x_{1}, y_{2}\right) \operatorname{and}\left(x_{2}, y_{2}\right)$ prove that the ratio of the length of the tangents from any point on C_{1} to the circles $C_{2} a n d C_{3}$ is constant.

- Watch Video Solution

102. The line $A x+B y+C=0$ cuts the circle $x^{2}+y^{2}+a x+b y+c=0$ at $\operatorname{Pand} Q$. The line $A^{\prime} x+B^{\prime} x+C^{\prime}=0$ cuts the circle $x^{2}+y^{2}+a^{\prime} x+b^{\prime} y+c^{\prime}=0$ at RandS. If P, Q, R, and S are concyclic, then show that $\left|a-a^{\prime} b-b^{\prime} c-c^{\prime} A B C A^{\prime} B^{\prime} C^{\prime}\right|=0$

- Watch Video Solution

103. Tangents are drawn to the circle $x^{2}+y^{2}=a^{2}$ from two points on the axis of x, equidistant from the point $(k, 0)$. Show that the locus of their intersection is $k y^{2}=a^{2}(k-x)$.

- Watch Video Solution

104. about to only mathematics

- Watch Video Solution

105. If eight distinct points can be found on the curve $|x|+|y|=1$ such that from eachpoint two mutually perpendicular tangents can be drawn to the circle $x^{2}+y^{2}=a^{2}$, then find the tange of a.

- Watch Video Solution

106. Let $A B$ be chord of contact of the point $(5,-5)$ w.r.t the circle $x^{2}+y^{2}=5$. Then find the locus of the orthocentre of the triangle $P A B$, where P is any point moving on the circle.

- Watch Video Solution

107. Let P be any moving point on the circle $x^{2}+y^{2}-2 x=1$. $A B$ be the chord of contact of this point w.r.t. the circle $x^{2}+y^{2}-2 x=0$. The locus of the circumcenter of triangle $C A B(C$ being the center of the circle) \quad is $\quad 2 x^{2}+2 y^{2}-4 x+1=0 \quad x^{2}+y^{2}-4 x+2=0$ $x^{2}+y^{2}-4 x+1=02 x^{2}+2 y^{2}-4 x+3=0$

- Watch Video Solution

108. AandB are two points in the xy-plane, which are $2 \sqrt{2}$ units distance apart and subtend an angle of 90° at the point $C(1,2)$ on the line $x-y+1=0$, which is larger than any angle subtended by the line
segment $A B$ at any other point on the line. Find the equation(s) of the circle through the points $A, B a n d C$.

- Watch Video Solution

109. about to only mathematics

- Watch Video Solution

110. about to only mathematics

- Watch Video Solution

111. Let a circle be given by $2 x(x-1)+y(2 y-b)=0,(a \neq 0, b \neq 0)$.

Find the condition on $a a n d b$ if two chords each bisected by the x-axis, can be drawn to the circle from $\left(a, \frac{b}{2}\right)$
112. about to only mathematics

- Watch Video Solution

113. For the circle $x^{2}+y^{2}=r^{2}$, find the value of r for which the area enclosed by the tangents drawn from the point $P(6,8)$ to the circle and the chord of contact and the chord of contact is maximum.

- View Text Solution

114. A circle of radius 1 unit touches the positive x-axis and the positive y axis at $A a n d B$, respectively. A variable line passing through the origin intersects the circle at two points $\operatorname{Dand} E$. If the area of triangle $D E B$ is maximum when the slope of the line is m, then find the value of m^{-2}

- Watch Video Solution

1. If a circle whose center is $(1,-3)$ touches the line $3 x-4 y-5=0$, then find its radius.

- Watch Video Solution

2. Find the equation of the circle which touches the x-axis and whose center is (1, 2).

- Watch Video Solution

3. Find the equation of the circle which touches both the axes and the line $x=c$

- Watch Video Solution

4. $2 x+y=0$ is the equation of a diameter of the circle which touches the lines $4 x-3 y+10=0$ and $4 x-3 y-30=0$. The centre and
radius of the circle are

- Watch Video Solution

5. Find the equation of the circle with center at $(3,-1)$ and which cuts off an intercept of length 6 from the line $2 x-5 y+18=0$

- Watch Video Solution

6. If one end of the diameter is $(1,1)$ and the other end lies on the line $x+y=3$, then find the locus of the center of the circle.

- Watch Video Solution

7. Tangent drawn from the point $P(4,0)$ to the circle $x^{2}+y^{2}=8$ touches it at the point A in the first quadrant. Find the coordinates of another point B on the circle such that $A B=4$.
8. If the line $x+2 b y+7=0$ is a diameter of the circle $x^{2}+y^{2}-6 x+2 y=0$, then find the value of b

- Watch Video Solution

9. Find the length of intercept, the circle $x^{2}+y^{2}+10 x-6 y+9=0$ makes on the x-axis.

- Watch Video Solution

10. If one end of the a diameter of the circle $2 x^{2}+2 y^{2}-4 x-8 y+2=0$ is $(3,2)$, then find the other end of the diameter.

- Watch Video Solution

11. Prove that the locus of the point that moves such that the sum of the squares of its distances from the three vertices of a triangle is constant is a circle.

- Watch Video Solution

12. Number of integral values of λ for which $x^{2}+y^{2}+7 x+(1-\lambda) y+5=0$ represents the equation of a circle whose radius cannot exceed 5 is

- View Text Solution

13. Prove that the locus of the centroid of the triangle whose vertices are $(a \cos t, a \sin t),(b \sin t,-b \cos t)$, and $(1,0)$, where t is a parameter, is circle.

- Watch Video Solution

14. Find the locus of center of circle of radius 2 units, if intercept cut on the x-axis is twice of intercept cut on the y-axis by the circle.

- Watch Video Solution

1. Find the radius of the circle $(x-5)(x-1)+(y-7)(y-4)=0$.

- Watch Video Solution

2. Find the equations of the circles which pass through the origin and cut off chords of length a from each of the lines $y=x a n d y=-x$

(Watch Video Solution

3. Find the equation of the circle passing through the origin and cutting intercepts of lengths 3 units and 4 unitss from the positive exes.

(D) Watch Video Solution

4. Find the values of k for which the points $(2 k, 3 k),(1,0),(0,1), \operatorname{and}(0,0)$ lie on a circle.

- Watch Video Solution

5. If points AandB are $(1,0)$ and $(0,1)$, respectively, and point C is on the circle $x^{2}+y^{2}=1$, then the locus of the orthocentre of triangle $A B C$ is (a) $x^{2}+y^{2}=4$ (b) $x^{2}+y^{2}-x-y=0$ (c) $x^{2}+y^{2}-2 x-2 y+1=0$ (d) $x^{2}+y^{2}+2 x-2 y+1=0$

- Watch Video Solution

1. Find the angle between the two tangents from the origin to the circle $(x-7)^{2}+(y+1)^{2}=25$

- Watch Video Solution

2. If the join of $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ makes on obtuse angle at $\left(x_{3}, y_{3}\right)$, then prove than $\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)+\left(y_{3}-y_{1}\right)\left(y_{3}-y_{2}\right)<0$

- Watch Video Solution

3. about to only mathematics

- Watch Video Solution

4. The locus of centre of a circle which passes through the origin and cuts off a length of 4 units on the line $x=3$ is
5. The least distance of the line $8 x-4 y+73=0$ from the circle $16 x^{2}+16 y^{2}+48 x-8 y-43=0$ is

- Watch Video Solution

6. If the length tangent drawn from the point $(5,3)$ to the circle $x^{2}+y^{2}+2 x+k y+17=0$ is 7 , then find the value of k.

- Watch Video Solution

7. The length of the tangent from any point on the circle to the circle $(x-3)^{2}+(y+2)^{2}=5 r^{2}$ to the circle $(x-3)^{2}+(y+2)^{2}=r^{2}$ is 4 units. Then the area between the circles is

- Watch Video Solution

8. Find the locus of a point which moves so that the ratio of the lengths of the tangents to the circles $x^{2}+y^{2}+4 x+3=0$ and $x^{2}+y^{2}-6 x+5=0$ is $2: 3$.

- Watch Video Solution

9. Find the length of the tangent drawn from any point on the circle $\begin{array}{lll}x^{2}+y^{2}+2 g x+2 f y+c_{1}=0 & \text { to the circle } \\ x^{2}+y^{2}+2 g x+2 f y+c_{2} & =0 & \end{array}$

- Watch Video Solution

10. A tangent is drawn to each of the circles $x^{2}+y^{2}=a^{2}$ and $x^{2}+y^{2}=b^{2}$. Show that if the two tangents are mutually perpendicular, the locus of their point of intersection is a circle concentric with the given circles.
11. The equation of chord AB of the circle $x^{2}+y^{2}=r^{2}$ passing through the point $\mathrm{P}(1,1)$ such that $\frac{P B}{P A}=\frac{\sqrt{2}+r}{\sqrt{2}-r},(0<r<\sqrt{2})$

- Watch Video Solution

12. If a circle passes through the point of intersection of the lines $\lambda x-y+1=0$ and $x-2 y+3=0$ with the coordinate axis, then value of λ is

- Watch Video Solution

13. Two variable chords $A B a n d B C$ of a circle $x^{2}+y^{2}=r^{2}$ are such that $A B=B C=r$. Find the locus of the point of intersection of tangents at $A a n d C$.

- Watch Video Solution

14. If the circle $x^{2}+y^{2}-4 x-8 y-5=0$ intersects the line $3 x-4 y=m$ at two distinct points, then find the values of m.

- Watch Video Solution

15. (C) 2 45. Three concentric circles of which the biggest is $x^{2}+y^{2}=1$, have their radii in A.P If the line $y=x+1$ cuts all the circles in real and distinct points. The interval in which the common difference of the A.P will lie is:

- View Text Solution

16. Find the middle point of the chord of the circle $x^{2}+y^{2}=25$ intercepted on the line $x-2 y=2$

- Watch Video Solution

17. Find the locus of the midpoint of the chord of the circle $x^{2}+y^{2}-2 x-2 y=0$, which makes an angle of 120^{0} at the center.

- Watch Video Solution

18. about to only mathematics

- Watch Video Solution

Exercise 4.4

1. Find the equation of the tangent to the circle $x^{2}+y^{2}+4 x-4 y+4=0$ which makes equal intercepts on the positive coordinates axes.

- Watch Video Solution

2. Find the equations of tangents to the circle $x^{2}+y^{2}-22 x-4 y+25=0$ which are perpendicular to the line $5 x+12 y+8=0$

- Watch Video Solution

3. If the line $l x+m y+n=0$ is tangent to the circle $x^{2}+y^{2}=a^{2}$, then find the condition.

- Watch Video Solution

4. A pair of tangents are drawn from the origin to the circle $x^{2}+y^{2}+20 x+20 y+20=0$, The equation of pair of tangent is

- Watch Video Solution

5. about to only mathematics
6. If the tangent at $(3,-4)$ to the circle $x^{2}+y^{2}-4 x+2 y-5=0$ cuts the circle $x^{2}+y^{2}+16 x+2 y+10=0$ in A and B then the midpoint of $A B$ is

- Watch Video Solution

7. If $3 x+y=0$ is a tangent to a circle whose center is $(2,-1)$, then find the equation of the other tangent to the circle from the origin.

- Watch Video Solution

8. about to only mathematics

- Watch Video Solution

9. An infinite number of tangents can be drawn from $(1,2)$ to the circle $x^{2}+y^{2}-2 x-4 y+\lambda=0$. Then find the value of λ

- Watch Video Solution

10. about to only mathematics

- Watch Video Solution

11. From the variable point A on circle $x^{2}+y^{2}=2 a^{2}$, two tangents are drawn to the circle $x^{2}+y^{2}=a^{2}$ which meet the curve at BandC. Find the locus of the circumcenter of $A B C$.

- Watch Video Solution

12. about to only mathematics
13. The point of which the line $9 x+y-28=0$ is the chord of contact of the circle $2 x^{2}+2 y^{2}-3 x+5 y-7=0$ is

- Watch Video Solution

14. Find the equation of the normal to the circle $x^{2}+y^{2}=9$ at the point $(1 / \sqrt{2}, 1 / \sqrt{2})$.

- Watch Video Solution

Exercise 4.5

1. How the following pair of circles are situated in the plane ? Als, find the number of common tangents . $(i) x^{2}+(y-1)^{2}=9$ and

$$
\begin{align*}
& (x-1)^{2}+y^{2}=25 \quad \text { (ii) } \quad x^{2}+y^{2}-12 x-12 y=0 \quad \text { and } \tag{ii}\\
& x^{2}+y^{2}+6 x+6 y=0
\end{align*}
$$

2. If the circles of same radius a and centers at $(2,3)$ and 5,6$)$ cut orthogonally, then find a.

- Watch Video Solution

3. Circles of radius 5 units intersects the circle $(x-1)^{2}+(x-2)^{2}=9$ in a such a way that the length of the common chord is of maximum length. If the slope of common chord is $\frac{3}{4}$, then find the centre of the circle.

- Watch Video Solution

4. about to only mathematics

- Watch Video Solution

5. Let two parallel lines L_{1} and L_{2} with positive slope are tangent to the circle $C_{1}: x^{2}+y^{2}-2 x 16 y+64=0$. If L_{1} is also tangent to the circle $C_{2}: x^{2}+y^{2}-2 x+2 y-2=0$ and the equation of L_{2} is $a \sqrt{a} x-b y+c-a \sqrt{a}=0$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ in N . then find the value of $\frac{a+b+c}{7}$

- Watch Video Solution

6. about to only mathematics

- Watch Video Solution

7. The equation of a circle is $x^{2}+y^{2}=4$. Find the center of the smallest circle touching the circle and the line $x+y=5 \sqrt{2}$

- Watch Video Solution

8. Consider four circles $(x \pm 1)^{2}+(y \pm 1)^{2}=1$. Find the equation of the smaller circle touching these four circles.

- Watch Video Solution

9. Find the equation of the circle whose radius is 3 and which touches internally the circle $x^{2}+y^{2}-4 x-6 y=-12=0$ at the point $(-1,-1)$.

- Watch Video Solution

10. Two circles with radii $a a n d b$ touch each other externally such that θ is the angle between the direct common tangents, $(a>b \geq 2)$. Then prove that $\theta=2 \sin ^{-1}\left(\frac{a-b}{a+b}\right)$.

- Watch Video Solution

11. If the radii of the circles $(x-1)^{2}+(y-2)^{2}=1$ and $(x-7)^{2}+(y-10)^{2}=4$ are increasing uniformly w.r.t. time as 0.3 units/s and $0.4 \mathrm{unit} / \mathrm{s}$, respectively, then at what value of t will they touch each other?

- Watch Video Solution

12. about to only mathematics

- Watch Video Solution

Exercise 4.6

1. If the circle $x^{2}+y^{2}+2 x+3 y+1=0 \quad$ cuts $x^{2}+y^{2}+4 x+3 y+2=0$ at $\operatorname{Aand} B$, then find the equation of the circle on $A B$ as diameter.
2. Find the radius of the smalles circle which touches the straight line $3 x-y=6$ at $(-,-3)$ and also touches the line $y=x$. Compute up to one place of decimal only.

- Watch Video Solution

3. Let S_{1} be a circle passing through $A(0,1)$ and $B(-2,2)$ and S_{2} be a circle of radius $\sqrt{10}$ units such that $A B$ is the common chord of S_{1} and S_{2}. Find the equation of S_{2}.

- Watch Video Solution

4. about to only mathematics

- Watch Video Solution

5. A variable circle which always touches the line $x+y-2=0$ at $(1,1)$ cuts the circle $x^{2}+y^{2}+4 x+5 y-6=0$. Prove that all the common chords of intersection pass through a fixed point. Find that points.

- Watch Video Solution

Exercise (Single)

1. The number of rational point(s) [a point (a, b) is called rational, if $a a n d b$ both are rational numbers] on the circumference of a circle having center (π, e) is a)at most one b) at least two c)exactly two d) infinite
A. at most one
B. at least two
C. exactly two
D. inifinite

Answer: 1

(D) Watch Video Solution

2. The radius of the circle which has normals $x y-2 x-y+2=0$ and a tangent $3 x+4 y-6=0$ is
A. $x^{2}+y^{2}-2 x-4 y+4=0$
B. $x^{2}+y^{2}-2 x-4 y+5=0$
C. $x^{2}+y^{2}=5$
D. $(x-3)^{2}+(y-4)^{2}=5$

Answer: 1

- Watch Video Solution

3. In triangle $A B C$, the equation of side $B C$ is $x-y=0$. The circumcenter and orthocentre of triangle are $(2,3)$ and $(5,8)$, respectively. The equation of the circumcirle of the triangle is
A. $x^{2}+y^{2}-4 x-6 y-27=0$
B. $x^{2}+y^{2}-4 x-6 y-36=0$
C. $x^{2}+y^{2}-4 x-6 y-24=0$
D. $x^{\wedge}(2)+y^{\wedge}(2)-4 x-6 y-15=0^{`}$

Answer: 2

- Watch Video Solution

4. A rhombus is inscribed in the region common to the two circles $x^{2}+y^{2}-4 x-12=0$ and $x^{2}+y^{2}+4 x-12=0$ with two of its vertices on the line joining the centers of the circles. The are of the rhombus is $8 \sqrt{3}$ squinits (b) $4 \sqrt{3}$ squinits $6 \sqrt{3}$ squinits (d) none of these
A. $8 \sqrt{3}$ sq. units
B. $4 \sqrt{3}$ sq. units
C. $6 \sqrt{3}$ sq. units
D. none of these

- Watch Video Solution

5. The locus fo the center of the circles such that the point $(2,3)$ is the midpoint of the chord $5 x+2 y=16$ is $2 x-5 y+11=0$
$2 x+5 y-11=02 x+5 y+11=0$ (d) none of these
A. $2 x-5 y+11=0$
B. $2 x+5 y-11=0$
C. $2 x+5 y+11=0$
D. none of these

Answer: 1

6. Consider a family of circles which are passing through the point $(-1,1)$ and are tangent to the x-axis. If (h, k) are the coordinates of the center of the circles, then the set of values of k is given by the interval. (a) $k \geq \frac{1}{2}$ (b) $-\frac{1}{2} \leq k \leq \frac{1}{2}$ (c) $k \leq \frac{1}{2}$ (d) 'o
A. $k \geq \frac{1}{2}$
B. $-\frac{1}{2} \leq k \leq \frac{1}{2}$
C. $k \leq \frac{1}{2}$
D. $0<k<\frac{1}{2}$

Answer: 1

Watch Video Solution

7. The line $2 x-y+1=0$ is tangent to the circle at the point $(2,5)$ and the center of the circle lies on $x-2 y=4$. Then find the radius of the circle.
A. $3 \sqrt{5}$
B. $5 \sqrt{3}$
C. $2 \sqrt{5}$
D. $5 \sqrt{20}$

Answer: A

- Watch Video Solution

8. A right angled isosceles triangle is inscribed in the circle $x^{2}+y^{2}-4 x-2 y-4=0$ then length of its side is
A. $3 \sqrt{2}$
B. $2 \sqrt{2}$
C. $\sqrt{2}$
D. $4 \sqrt{2}$
9. $f(x, y)=x^{2}+y^{2}+2 a x+2 b y+c=0$ represents a circle. If $f(x, 0)=0$ has equal roots, each being 2 , and $f(0, y)=0$ has 2 and 3 as its roots, then the center of the circle is (a) $\left(2, \frac{5}{2}\right)$ (b) Data are not sufficient (c) $\left(-2,-\frac{5}{2}\right)$ (d) Data are inconsistent
A. $(2,5 / 2)$
B. Data are not sufficient
C. $(-2,-5 / 2)$
D. Data are inconsistent.

Answer: 3

- Watch Video Solution

10. The equation of the circumcircle of an equilateral triangle is $x^{2}+y^{2}+2 g x+2 f y+c=0$ and one vertex of the triangle in $(1,1)$. The
equation of the incircle of the triangle is (a) $4\left(x^{2}+y^{2}\right)=g^{2}+f^{2}$
$4\left(x^{2}+y^{2}\right)=8 g x+8 f y=(1-g)(1+3 g)+(1-f)(1+3 f)$
$4\left(x^{2}+y^{2}\right)=8 g x+8 f y=g^{2}+f^{2}(\mathrm{~d})$ none of these
A. $4\left(x^{2}+y^{2}\right)=g^{2}+f^{2}$
B. $4\left(x^{2}+y^{2}\right)+8 g x+8 f y=(1-g)(1+3 g)+(1-f)(1+3 f)$
C. $4\left(x^{2}+y^{2}\right)+8 g x+8 f y=g^{2}+f^{2}$
D. none of these

Answer: 2

(Watch Video Solution

11. If it is possible to draw a triangle which circumscribes the circle $(x-(a-2 b))^{2}+(y-(a+b))^{2}=1 \quad$ and \quad is inscribed by $x^{2}+y^{2}-2 x-4 y+1=0$ then
A. $\beta=-\frac{1}{3}$
B. $\beta=\frac{2}{3}$
C. $\alpha=\frac{5}{3}$
D. $\alpha=-\frac{5}{2}$

Answer: 3

- Watch Video Solution

12. The locus of the centre of the circle $(x \cos \alpha+y \sin \alpha-a)^{2}+(x \sin \alpha-y \cos \alpha-b)^{2}=k^{2}$ if α varies, is
A. $x^{2}-y^{2}=a^{2}+b^{2}$
B. $x^{2}-y^{2}=a^{2} b^{2}$
C. $x^{2}+y^{2}=a^{2}+b^{2}$
D. $x^{2}+y^{2}=a^{2} b^{2}$

Answer: 3

- Watch Video Solution

13. about to only mathematics
A. $(1,0)$
B. $(0,1)$
C. (0,-1)
D. $(-1,0)$

Answer: 4

- Watch Video Solution

14. $A B C D$ is a square of unit area. A circle is tangent to two sides of $A B C D$ and passes through exactly one of its vertices. The radius of the circle is a) $2-\sqrt{2}$ b) $\sqrt{2}-1$ c) $1 / 2$ d) $\frac{1}{\sqrt{2}}$
A. $2-\sqrt{2}$
B. $\sqrt{2}-1$
C. $1 / 2$
D. $\frac{1}{\sqrt{2}}$

Answer: 1

- Watch Video Solution

15. A circle of constant radius a passes through the origin O and cuts the axes of coordinates at points P and Q. Then the equation of the locus of the foot of perpendicular from O to $P Q$ is $\left(x^{2}+y^{2}\right)\left(\frac{1}{x^{2}}+\frac{1}{y^{2}}\right)=4 a^{2}$ $\begin{array}{ll}\left(x^{2}+y^{2}\right)^{2}\left(\frac{1}{x^{2}}+\frac{1}{y^{2}}\right)=a^{2} & \left(x^{2}+y^{2}\right)^{2}\left(\frac{1}{x^{2}}+\frac{1}{y^{2}}\right)=4 a^{2} \\ \left(x^{2}+y^{2}\right)\left(\frac{1}{x^{2}}+\frac{1}{y^{2}}\right)=a^{2} & \end{array}$
A. $\left(x^{2}+y^{2}\right)\left(\frac{1}{x^{2}}+\frac{1}{y^{2}}\right)=4 a^{2}$
B. $\left(x^{2}+y^{2}\right)^{2}\left(\frac{1}{x^{2}}+\frac{1}{y^{2}}\right)=a^{2}$
C. $\left(x^{2}+y^{2}\right)^{2}\left(\frac{1}{x^{2}}+\frac{1}{y^{2}}\right)=4 a^{2}$
D. $\left(x^{2}+y^{2}\right)\left(\frac{1}{x^{2}}+\frac{1}{y^{2}}\right)=a^{2}$

Answer: 3

16. The circle $x^{2}+y^{2}=4$ cuts the line joining the points $A(1,0)$ and $B(3,4)$ in two points P and Q. Let $B \frac{P}{P} A=\alpha$ and $B \frac{Q}{Q} A=\beta$. Then α and β are roots of the quadratic equation
A. $3 x^{2}-16 x+21=0$
B. $x^{2}-8 x+7=0$
C. $x^{2}-9 x+8=0$
D. none of these

Answer: 1

- Watch Video Solution

17. If a circle of radius R passes through the origin O and intersects the coordinate axes at A and B, then the locus of the foot of perpendicular from O on $A B$ is
A. $x^{2}+y^{2}=(2 k)^{2}$
B. $x^{2}+y^{2}=(3 k)^{2}$
C. $x^{2}+y^{2}=(4 k)^{2}$
D. $x^{2}+y^{2}=(6 k)^{2}$

Answer: 1

- Watch Video Solution

18. $(6,0),(0,6)$ and $(7,7)$ are the vertices of a triangle. The circle inscribed in the triangle has the equation
A. $x^{2}+y^{2}-9 x-9 y+36=0$
B. $x^{2}+y^{2}+9 x-9 y+36=0$
C. $x^{2}+y^{2}+9 x+9 y-36=0$
D. $x^{2}+y^{2}+18 x-18 y+36=0$
19. If O is the origin and $O P a n d O Q$ are the tangents from the origin to the circle $x^{2}+y^{2}-6 x+4 y+8-0$, then the circumcenter of triangle $O P Q$ is $(3,-2)$ (b) $\left(\frac{3}{2},-1\right)\left(\frac{3}{4},-\frac{1}{2}\right)$ (d) $\left(-\frac{3}{2}, 1\right)$
A. $(3,-2)$
B. $(3 / 2,-1)$
C. $(3 / 4,-1 / 2)$
D. $(-3 / 2,1)$

Answer: 2

- Watch Video Solution

20. about to only mathematics
B. $\sqrt{(a+1)^{2}+(b+2)^{2}}$
C. 3
D. $\sqrt{(a+1)^{2}+(b+2)^{2}}-3$

Answer: 1

- Watch Video Solution

21. If the conics whose equations are $S_{1}:\left(\sin ^{2} \theta\right) x^{2}+(2 h \tan \theta) x y+\left(\cos ^{2} \theta\right) y^{2}+32 x+16 y+19=0$ $S_{2}:\left(\cos ^{2} \theta\right) x^{2}-\left(2 h^{\prime} \cot \theta\right) x y+\left(\sin ^{2} \theta\right) y^{2}+16 x+32 y+19=0$ intersect at four concyclic points, where $\theta\left[0, \frac{\pi}{2}\right]$, then the correct statement(s) can be (a) $h+h^{\prime}=0$ (b) $h-h^{\prime}=0$ (c) $\theta=\frac{\pi}{4}$ (d) none of these
A. $h+h^{\prime}=0$
B. $h=h^{\prime}$
C. $h+h^{\prime}=1$
D. none of these

Answer: 1

- Watch Video Solution

22. From a point $R(5,8)$, two tangents $R P a n d R Q$ are drawn to a given circle $S=0$ whose radius is 5 . If the circumcenter of triangle $P Q R$ is (2, 3), then the equation of the circle $S=0$ is
$x^{2}+y^{2}+2 x+4 y-20=0$
(b) $x^{2}+y^{2}+x+2 y-10=0$
$x^{2}+y^{2}-x+2 y-20=0(\mathrm{~d}) x^{2}+y^{2}+4 x-6 y-12=0$
A. $x^{2}+y^{2}+2 x+4 y-20=0$
B. $x^{2}+y^{2}+x+2 y-10=0$
C. $x^{2}+y^{2}-x-2 y-20=0$
D. $x^{2}+y^{2}-4 x-6 y-12=0$

Answer: 1

23. The ends of a quadrant of a circle have the coordinates $(1,3)$ and $(3,1)$. Then the center of such a circle is $(2,2)(b)(1,1)(c)(4,4)(d)(2,6)$
A. $(2,2)$
B. $(1,1)$
C. $(4,4)$
D. $(2,6)$

Answer: 2

- Watch Video Solution

24. Let P be a point on the circle $x^{2}+y^{2}=9, Q$ a point on the line $7 x+y+3=0$, and the perpendicular bisector of $P Q$ be the line $x-y+1=0$. Then the coordinates of P are $(0,-3)$ (b) $(0,3)$

$$
\left(\frac{72}{25}, \frac{21}{35}\right) \text { (d) }\left(-\frac{72}{25}, \frac{21}{25}\right)
$$

A. $(0,-3)$
B. $(0,3)$
C. $(72 / 25,21 / 25)$
D. $(-72 / 25,21 / 25)$

Answer: 3

- Watch Video Solution

25. Find the equation of the circle which touch the line $2 x-y=1$ at $(1,1)$ and line $2 x+y=4$

- Watch Video Solution

26. about to only mathematics
A. 1
B. 2
C. $3 / 2$
D. 4

Answer: 3

- Watch Video Solution

27. The equation of the chord of the circle $x^{2}+y^{2}-3 x-4 y-4=0$, which passes through the origin such that the origin divides it in the ratio 4:1, is $x=0$ (b) $24 x+7 y=07 x+24=0$ (d) $7 x-24 y=0$
A. $x=0$
B. $24 x+7 y=0$
C. $7 x+24 y=0$
D. $7 x-24 y=0$

Answer: 2

28. If O Aand $O B$ are equal perpendicular chords of the circles $x^{2}+y^{2}-2 x+4 y=0$, then the equations of O Aand $O B$ are, where O is the origin.
A. $3 x+y=0$ and $3 x-y=0$
B. $3 x+y=0$ and $3 y-x=0$
C. $x+3 y=0$ and $y-3 x=0$
D. $x+y=0$ and $x-y=0$

Answer: 3

- Watch Video Solution

29. A region in the $x-y$ plane is bounded by the curve $y=\sqrt{25-x^{2}}$ and the line $y=0$. If the point $(a, a+1)$ lies in the interior of the region, then

$$
\text { A. } a \in(-4,3)
$$

B. $a \in(-\infty,-1) \in(3, \infty)$
C. $a \in(-1,3)$
D. none of these

Answer: 3

- Watch Video Solution

30. about to only mathematics
A. 12
B. 11
C. 9
D. none of these

Answer: 2

31. The equation of the line inclined at an angle of $\frac{\pi}{4}$ to the x-axis ,such that the two circles $x^{2}+y^{2}=4$ and $x^{2}+y^{2}-10 x-14 y+65=0$ intercept equal length on it, is (A) $2 x-2 y-3=0$ (B) $2 x-2 y+3=0$ (C) $x-y+6=0$ (D) $x-y-6=0$
A. $2 x-2 y-3=0$
B. $2 x-2 y+3=0$
C. $x-y+6=0$
D. $x-y-6=0$

Answer: 1

- Watch Video Solution

32. If the chord $y=m x+1$ of the circles $x^{2}+y^{2}=1$ subtends an angle of 45^{0} at the major segment of the circle, then the value of m is
A. 2
B. -2
C. -1
D. none of these

Answer: 3

- Watch Video Solution

33. A straight line l_{1} with equation $x-2 y+10=0$ meets the circle with equation $x^{2}+y^{2}=100$ at B in the first quadrant. A line through B perpendicular to l_{1} cuts the y-axis at $P(o, t)$. The value of t is 12 (b) 15 (c) 20 (d) 25
A. 12
B. 15
C. 20
D. 25

- Watch Video Solution

34. A variable chord of the circle $x^{2}+y^{2}=4$ is drawn from the point $P(3,5)$ meeting the circle at the point A and B. A point Q is taken on the chord such that $2 P Q=P A+P B$. The locus of Q is (a)
$x^{2}+y^{2}+3 x+4 y=0$
(b) $x^{2}+y^{2}=36$
(c) $x^{2}+y^{2}=16$
$x^{2}+y^{2}-3 x-5 y=0$
A. $x^{2}+y^{2}+3 x+4 y=0$
B. $x^{2}+y^{2}=36$
C. $x^{2}+y^{2}=16$
D. $x^{2}+y^{2}-3 x-5 y=0$

Answer: 4

35. about to only mathematics
A. $(-\infty, 5 \sqrt{2})$
B. $(4 \sqrt{2}-\sqrt{14}, 5 \sqrt{2})$
C. $(4 \sqrt{2}-\sqrt{14}, 4 \sqrt{2}+\sqrt{14})$
D. none of these

Answer: 2

- Watch Video Solution

36. A square is inscribed in the circle $x^{2}+y^{2}-2 x+4 y-93=0$ with its sides parallel to the coordinate axes. The coordinates of its vertices are $(-6,-9),(-6,5),(8,-9),(8,5)$
$(-6,-9),(-6,-5),(8,-9),(8,5)$
$(-6,-9),(-6,5),(8,9),(8,5)$
$(-6,-9),(-6,5),(8,-9),(8,-5)$

$$
\text { A. }(-6,-9),(-6,5),(8,-9),(8,5)
$$

B. $(-6,9),(-6,-5),(8,-9),(8,5)$
C. $(-6,-9),(-6,5),(8,9),(8,5)$
D. $(-6,-9),(-6,5),(8,-9),(8,-5)$

Answer: 1

- Watch Video Solution

37. If a line passes through the point $P(1,-2)$ and cuts the $x^{2}+y^{2}-x-y=0$ at A and B, then the maximum of $P A+P B$ is
A. $\sqrt{26}$
B. 8
C. $\sqrt{8}$
D. $2 \sqrt{8}$

Answer: 1

38. The area of the triangle formed by joining the origin to the point of intersection of the line $x \sqrt{5}+2 y=3 \sqrt{5}$ and the circle $x^{2}+y^{2}=10$ is 3 (b) 4 (c) 5 (d) 6
A. 3
B. 4
C. 5
D. 6

Answer: 3

- View Text Solution

39. If (α, β) is a point on the circle whose center is on the x-axis and which touches the line $x+y=0$ at $(2,-2)$, then the greatest value of α is $4-\sqrt{2}$ (b) $64+2 \sqrt{2}(\mathrm{~d})+\sqrt{2}$
A. $4-\sqrt{2}$
B. 6
C. $4+2 \sqrt{2}$
D. $4+\sqrt{2}$

Answer: 3

- Watch Video Solution

40. The area bounded by the circles $x^{2}+y^{2}=1, x^{2}+y^{2}=4$, and the pair of lines $\sqrt{3}\left(x^{2}+y^{2}\right)=4 x y$ is equal to $\frac{\pi}{2}$ (b) $\frac{5 \pi}{2}$ (c) 3π (d) $\frac{\pi}{4}$
A. $\pi / 2$
B. $5 \pi / 2$
C. 3π
D. $\pi / 4$
41. The number of intergral value of y for which the chord of the circle $x^{2}+y^{2}=125$ passing through the point $P(8, y)$ gets bisected at the point $P(8, y)$ and has integral slope is (a) 8 (b) 6 (c) 4 (d) 2
A. 8
B. 6
C. 4
D. 2

Answer: 2

Watch Video Solution

42. The straight line $x \cos \theta+y \sin \theta=2$ will touch the circle $x^{2}+y^{2}-2 x=0$ if (a) $\theta=n \pi, n \in I Q$ (b) $A=(2 n+1) \pi, n \in I$ (c) $\theta=2 n \pi, n \in I(\mathrm{~d})$ none of these
A. $\theta=n \pi, n \in I$
B. $A=(2 n+1) \pi, n \in I$
C. $\theta=2 n \pi, n \in I$
D. none of these

Answer: 3

- Watch Video Solution

43. The range of values of $\lambda, \lambda>0$ such that the angle θ between the pair of tangents drawn from $(\lambda, 0)$ to the circle $x^{2}+y^{2}=4$ lies in $\left(\frac{\pi}{2}, \frac{2 \pi}{3}\right)$ is $\left(\frac{4}{\sqrt{3}}, \frac{2}{\sqrt{2}}\right)$ (b) $(0, \sqrt{2})(1,2)$ (d) none of these
A. $(4 / \sqrt{3}, 2 \sqrt{2})$
B. $(0, \sqrt{2})$
C. $(1,2)$
D. none of these

Answer: 1

- Watch Video Solution

44. The circle which can be drawn to pass through $(1,0)$ and $(3,0)$ and to touch the y-axis intersect at angle θ. Then $\cos \theta$ is equal to (a) $\frac{1}{2}$ (b) $-\frac{1}{2}$ (c) $\frac{1}{4}$ (d) $-\frac{1}{4}$
A. $1 / 2$
B. $1 / 3$
C. $1 / 4$
D. $-1 / 4$

Answer: 1

45. The locus of the midpoints of the chords of contact of $x^{2}+y^{2}=2$ from the points on the line $3 x+4 y=10$ is a circle with center P. If O is the origin, then $O P$ is equal to 2 (b) 3 (c) $\frac{1}{2}$ (d) $\frac{1}{3}$
A. 2
B. 3
C. $1 / 2$
D. $1 / 3$

Answer: 3

- Watch Video Solution

46. If a circle of radius r is touching the lines $x^{2}-4 x y+y^{2}=0$ in the first quadrant at points AandB, then the area of triangle $O A B$ (O being the origin) is $3 \sqrt{3} \frac{r^{2}}{4}$ (b) $\frac{\sqrt{3} r^{2}}{4} \frac{3 r^{2}}{4}$ (d) r^{2}
A. $3 \sqrt{3} r^{2} / 4$
B. $\sqrt{3} r^{2} / 4$
C. $3 r^{2} / 4$
D. r^{2}

Answer: 1

- Watch Video Solution

47. The locus of the midpoints of the chords of the circle $x^{2}+y^{2}-a x-b y=0$ which subtend a right angle at $\left(\frac{a}{2}, \frac{b}{2}\right)$ is (a)
$a x+b y=0$
$a x+b y=a^{2}=b^{2}$
$x^{2}+y^{2}-a x-b y+\frac{a^{2}+b^{2}}{8}=0$
$x^{2}+y^{2}-a x-b y-\frac{a^{2}+b^{2}}{8}=0$
A. $a x+b y=0$
B. $a x+b y=a^{2}=b^{2}$
C. $x^{2}+y^{2}-a x-b y+\frac{a^{2}+b^{2}}{8}=0$
D. $x^{2}+y^{2}-a x-b y-\frac{a^{2}+b^{2}}{8}=0$

- Watch Video Solution

48. Any circle through the point of intersection of the lines $x+\sqrt{3} y=1$ and $\sqrt{3} x-y=2$ intersects these lines at points PandQ. Then the angle subtended by the arc $P Q$ at its center is (a) 180° (b) 90° (c) 120° depends on center and radius
A. 180°
B. 90°
C. 120°
D. Depends on centre and radius

Answer: 2

49. If the pair of straight lines $x y \sqrt{3}-x^{2}=0$ is tangent to the circle at PandQ from the origin O such that the area of the smaller sector formed by $C P a n d C Q$ is 3π squinit, where C is the center of the circle, the $O P$ equals (a) $\frac{(3 \sqrt{3})}{2}$ (b) $3 \sqrt{3}$ (c) 3 (d) $\sqrt{3}$
A. $(3 \sqrt{3}) / 2$
B. $3 \sqrt{3}$
C. 3
D. $\sqrt{3}$

Answer: 2

- Watch Video Solution

50. The condition that the chord $x \cos \alpha+y \sin \alpha=p=0$ of $x^{2}+y^{2}-a^{2}=0$ may subtend a right angle at the center of the circle is $a^{2}=2 p^{2}$ (b) $p^{2}=2 a^{2} a=2 p$ (d) $c^{2}=a^{2}(2 m+1$
A. $a^{2}=2 p^{2}$
B. $p^{2}=2 a^{2}$
C. $a=2 p$
D. $p=2 a$

Answer: 1

- Watch Video Solution

51. The centers of a set of circles, each of radius 3 , lie on the circle $x^{2}+y^{2}=25$. The locus of any point in the set is (a) $4 \leq x^{2}+y^{2} \leq 64$ (b) $x^{2}+y^{2} \leq 25$ (c) $x^{2}+y^{2} \geq 25$ (d) $3 \leq x^{2}+y^{2} \leq 9$
A. $4 \leq x^{2}+y^{2} \leq 64$
B. $x^{2}+y^{2} \leq 25$
C. $x^{2}+y^{2} \geq 25$
D. $3 \leq x^{2}+y^{2} \leq 9$

Answer: 1

D Watch Video Solution

52. The equation of the locus of the middle point of a chord of the circle $x^{2}+y^{2}=2(x+y)$ such that the pair of lines joining the origin to the point of intersection of the chord and the circle are equally inclined to the x -axis is $x+y=2$ (b) $x-y=22 x-y=1$ (d) none of these
A. $x+y=2$
B. $x-y=2$
C. $2 x-y=1$
D. none of these

Answer: 1

- Watch Video Solution

53. The angle between the pair of tangents drawn from a point P to the circle $x^{2}+y^{2}+4 x-6 y+9 \sin ^{2} \alpha+13 \cos ^{2} \alpha=0$ is 2α. then the equation of the locus of the point P is
A. $x^{2}+y^{2}+4 x-6 y+4=0$
B. $x^{2}+y^{2}+4 x-6 y-9=0$
C. $x^{2}+y^{2}+4 x-6 y-4=0$
D. $x^{2}+y^{2}+4 x-6 y+9=0$

Answer: 4

- Watch Video Solution

54. If two distinct chords, drawn from the point (p, q) on the circle $x^{2}+y^{2}=p x+q y$ (where $p q \neq q$) are bisected by the x-axis, then (a) $p^{2}=q^{2}$ (b) $p^{2}=8 q^{2}$ (c) $p^{2}<8 q^{2}$ (d) $p^{2}>8 q^{2}$
A. $p^{2}=q^{2}$
B. $p^{2}=8 q^{2}$
C. $p^{2}<8 q^{2}$
D. $p^{2}>8 q^{2}$

Answer: 4

- Watch Video Solution

55. If one of the diameters of the circle $x^{2}+y^{2}-2 x-6 y+6=0$ is a chord to the circle with centre at $(2,1)$ then the radius of the circle is equal to.
A. $\sqrt{3}$
B. $\sqrt{2}$
C. 3
D. 2
56. Through the point $\mathrm{P}(3,4)$ a pair of perpendicular lines are dranw which meet x-axis at the point A and B. The locus of incentre of triangle PAB is
A. $x^{2}-y^{2}-6 x-8 y+25=0$
B. $x^{2}+y^{2}-6 x-8 y+25=0$
C. $x^{2}-y^{2}+6 x+8 y+25=0$
D. $x^{2}+y^{2}+6 x+8 y+25=0$

Answer: 1

- Watch Video Solution

57. A circle with center (a, b) passes through the origin. The equation of the tangent to the circle at the origin is (a) $a x-b y=0$ (b) $a x+b y=0$

$$
\text { (c) } b x-a y=0 \text { (d) } b x+a y=0
$$

A. $a x-b y=0$
B. $a x+b y=0$
C. $b x-a y=0$
D. $b x+a y=0$

Answer: 2

- Watch Video Solution

58. A straight line with slope 2 and y-intercept 5 touches the circle $x^{2}+y^{2}+16 x+12 y+c=0$ at a point Q. Then the coordinates of Q are $(-6,11)(b)(-9,-13)(-10,-15)(d)(-6,-7)$
A. $(-6,11)$
B. $(-9,-13)$
C. $(-10,-15)$
D. $(-6,-7)$

D Watch Video Solution

59. The locus of the point from which the lengths of the tangents to the circles $x^{2}+y^{2}=4$ and $2\left(x^{2}+y^{2}\right)-10 x+3 y-2=0$ are equal is (a)a straight line inclined at $\frac{\pi}{4}$ with the line joining the centers of the circles (b)a circle (c) an ellipse (d)a straight line perpendicular to the line joining the centers of the circles.
A. a straight line inclined at $\pi / 4$ with the line joining the centers of the circles
B. a circle
C. an ellipse
D. a straight line perpendicular to the line joining the centers of the circles
60. about to only mathematics
A. 4
B. $2 \sqrt{5}$
C. 5
D. $3 \sqrt{5}$

Answer: 3

- Watch Video Solution

61. A line meets the coordinate axes at A and B. A circle is circumscribed about the triangle $O A B$. If $d_{1} a n d d_{2}$ are distances of the tangents to the circle at the origin O from the points $A a n d B$, respectively, then the diameter of the circle is $\frac{2 d_{1}+d_{2}}{2}$ (b) $\frac{d_{1}+2 d_{2}}{2} d_{1}+d_{2}$ (d) $\frac{d_{1} d_{2}}{d_{1}+d_{2}}$
A. $\frac{2 d_{1}+d_{2}}{2}$
B. $\frac{d_{1}+2 d_{2}}{2}$
C. $d_{1}+d_{2}$
D. $\frac{d_{1} d_{2}}{d_{1}+d_{2}}$

Answer: 3

- Watch Video Solution

62. The range of values of α for which the line $2 y=g x+\alpha$ is a normal to the circle $x^{2}=y^{2}+2 g x+2 g y-2=0$ for all values of g is $[1, \infty)$
$[-1, \infty)(0,1)(d)(-\infty, 1]$
A. $[1, \infty)$
B. $[-1, \infty)$
C. $(0,1)$
D. $(-\infty, 1]$

D Watch Video Solution

63. The equation of the tangent to the circle $x^{2}+y^{2}=a^{2}$, which makes a triangle of area a^{2} with the coordinate axes, is $x \pm y=a \sqrt{2}$ $x \pm y= \pm a \sqrt{2} x \pm y=2 a$ (d) $x+y= \pm 2 a$
A. $x \pm y= \pm a$
B. $x \pm y= \pm a \sqrt{2}$
C. $x \pm y=3 a$
D. $x \pm y= \pm 2 a$

Answer: 2

64. From an arbitrary point P on the circle $x^{2}+y^{2}=9$, tangents are drawn to the circle $x^{2}+y^{2}=1$, which meet $x^{2}+y^{2}=9$ at AandB. The locus of the point of intersection of tangents at AandB to the circle $x^{2}+y^{2}=9 \quad$ is $\quad x^{2}+y^{2}=\left(\frac{27}{7}\right)^{2} \quad$ (b) $\quad x^{2}-y^{2}\left(\frac{27}{7}\right)^{2}$
$y^{2}-x^{2}=\left(\frac{27}{7}\right)^{2}$ (d) none of these
A. $x^{2}+y^{2}=(27 / 7)^{2}$
B. $x^{2}-y^{2}=(27 / 7)^{2}$
C. $y^{2}-x^{2}=(27 / 7)^{2}$
D. none of these

Answer: 1

- Watch Video Solution

65. about to only mathematics
B. 12
C. $6 \sqrt{2}$
D. $12-4 \sqrt{2}$

Answer: 4

- Watch Video Solution

66. A straight line moves such that the algebraic sum of the perpendiculars drawn to it from two fixed points is equal to $2 k$. Then, then straight line always touches a fixed circle of radius. (a) $2 k$ (b) $\frac{k}{2}$ (c) k
(d) none of these
A. 2 k
B. $k / 2$
C. k
D. none of these

- Watch Video Solution

67. If the line $a x+b y=2$ is a normal to the circle $x^{2}+y^{2}-4 x-4 y=0$ and a tangent to the circle $x^{2}+y^{2}=1$, then
$a=\frac{1}{2}, b=\frac{1}{2} \quad a=\frac{1+\sqrt{7}}{2} \quad, \quad b=\frac{1+\sqrt{7}}{2} \quad a=\frac{1}{4}, b=\frac{3}{4}$
$a=1, b=\sqrt{3}$
A. $a=\frac{1}{2}, b=\frac{1}{2}$
B. $a=\frac{1+\sqrt{7}}{2}, b=\frac{1-\sqrt{7}}{2}$
C. $a=\frac{1}{4}, b=\frac{3}{4}$
D. $a=1, b=\sqrt{3}$

Answer: 2

68. 18) A light ray gets reflected from the $x=-2$. If the reflected ray touches the circle $x^{2}+y^{2}=4$ and point of incident is $(-2,-4)$, then equation of incident ray is A) $4 y+3 x+22=0$ B) $3 y+4 x+20=0$ C) $4 y+2 x+20=0$ D) $y+x+6-0$
A. $4 y+3 x+22=0$
B. $3 y+4 x+20=0$
C. $4 y+2 x+20=0$
D. $y+x+6=0$

Answer: 1

- Watch Video Solution

69. A tangent at a point on the circle $x^{2}+y^{2}=a^{2}$ intersects a concentric circle C at two points PandQ. The tangents to the circle X at $\operatorname{Pand} Q$ meet at a point on the circle $x^{2}+y^{2}=b^{2}$. Then the equation of the circle is
A. $x^{2}+y^{2}=a b$
B. $x^{2}+y^{2}=(a-b)^{2}$
C. $x^{2}+y^{2}=(a+b)^{2}$
D. $x^{2}+y^{2}=a^{2}=b^{2}$

Answer: 1

- Watch Video Solution

70. The greatest integral value of a such that $\sqrt{9-a^{2}+2 x-x^{2}} \geq \sqrt{16-x^{2}}$ for at least one positive value of x is
(a) 3 (b) 4 (c) 6 (d) 7
A. 8
B. 7
C. 6
D. 4

D Watch Video Solution

71. The chords of contact of tangents from three points $A, B a n d C$ to the circle $x^{2}+y^{2}=a^{2}$ are concurrent. Then $A, B a n d C$ will be concyclic (b) be collinear form the vertices of a triangle none of these
A. be concyclic
B. be collinear
C. form the vertices of a triangle
D. none of these

Answer: 2

72. The chord of contact of tangents from a point P to a circle passes through Q. If $l_{1} a n d l_{2}$ are the length of the tangents from $\operatorname{Pand} Q$ to the circle, then $P Q$ is equal to
A. $\frac{l_{1}+l_{2}}{2}$
B. $\frac{l_{1}-l_{2}}{2}$
C. $\sqrt{l_{1}^{2}+l_{2}^{2}}$
D. $2 \sqrt{l_{1}^{2}+l_{2}^{2}}$

Answer: 3

- Watch Video Solution

73. If the circle $x^{2}+y^{2}+2 g x+2 f y+c=0$ is touched by $y=x$ at P such that $O P=6 \sqrt{2}$, then the value of c is (a) 36 (b) 144 (c) 72 (d) none of these
A. 36
B. 144
C. 72
D. none of these

Answer: 3

D Watch Video Solution

74. Tangents PA and PB are drawn to the circle $x^{2}+y^{2}=8$ from any arbitrary point P on the line $x+y=4$. The locus of mid-point of chord of contact $A B$ is
A. $25\left(x^{2}+y^{2}\right)=9(x+y)$
B. $25\left(x^{2}+y^{2}\right)=3(x+y)$
C. $5\left(x^{2}+y^{2}\right)=3(x+y)$
D. none of these

Answer: 1

75. A circle with radius $|a|$ and center on the y-axis slied along it and a variable line through $(a, 0)$ cuts the circle at points PandQ. The region in which the point of intersection of the tangents to the circle at points P and Q lies is represented by (a) $y^{2} \geq 4\left(a x-a^{2}\right)$ (b) $y^{2} \leq 4\left(a x-a^{2}\right)$ (c) $y \geq 4\left(a x-a^{2}\right)$ (d) $y \leq 4\left(a x-a^{2}\right)$
A. $y^{2} \geq 4\left(a x-a^{2}\right)$
B. $y^{2} \leq 4\left(a x-a^{2}\right)$
C. $y \geq 4\left(a x-a^{2}\right)$
D. $y=4\left(a x-a^{2}\right)$

Answer: 1

- Watch Video Solution

76. Consider a circle $x^{2}+y^{2}+a x+b y+c=0$ lying completely in the first quadrant. If m_{1} and m_{2} are the maximum and minimum values of $\frac{y}{x}$ for all ordered pairs (x, y) on the circumference of the circle, then the value of $\left(m_{1}+m_{2}\right)$ is
A. $\frac{a^{2}-4 c}{b^{2}-4 c}$
B. $\frac{2 a b}{b^{2}-4 c}$
C. $\frac{2 a b}{4 c-b^{2}}$
D. $\frac{2 a b}{b^{2}-4 a c}$

Answer: 3

- Watch Video Solution

77. The squared length of the intercept made by the line $x=h$ on the pair of tangents drawn from the origin to the circle $x^{2}+y^{2}+2 g x+2 f y+c=0$ is
A. $\frac{4 c h^{2}}{\left(g^{2}-c^{2}\right)}\left(g^{2}+f^{2}-c\right)$
B. $\frac{4 c h^{2}}{\left(f^{2}-c^{2}\right)}\left(g^{2}+f^{2}-c\right)$
C. $\frac{4 c h^{2}}{\left(g^{2}-f^{2}\right)^{2}}\left(g^{2}+f^{2}-c\right)$
D. none of these

Answer: 2

- Watch Video Solution

78. Let $A B$ be chord of contact of the point $(5,-5)$ w.r.t the circle $x^{2}+y^{2}=5$. Then find the locus of the orthocentre of the triangle $P A B$, where P is any point moving on the circle.
A. $(x-3)^{2}+(y+3)^{2}=9$
B. $(x-3)^{2}+(y+3)^{2}=9 / 2$
C. $(x-3)^{2}+(y-3)^{2}=9$
D. $(x+3)^{2}+(y-3)^{2}=9 / 2$

- Watch Video Solution

79. Two congruent circles with centered at $(2,3)$ and $(5,6)$ which intersect at right angles, have radius equal to (a)2 $\sqrt{3}$ (b) 3 (c) 4 (d) (d) none of these
A. $2 \sqrt{2}$
B. 3
C. 4
D. none of these

Answer: 2

80. The distance from the center of the circle $x^{2}+y^{2}=2 x$ to the common chord of the circles $x^{2}+y^{2}+5 x-8 y+1=0$ and $x^{2}+y^{2}-3 x+7 y-25=0$ is (a)2 (b) 4 (c) $\frac{34}{13}$ (d) $\frac{26}{17}$
A. 2
B. 4
C. $34 / 13$
D. $26 / 17$

Answer: 1

- Watch Video Solution

81. A circle C_{1}, of radius 2 touches both x-axis and y - axis. Another circle C_{2} whose radius is greater than 2 touches circle and both the axes. Then the radius of circle is
A. $3-2 \sqrt{2}$
B. $3+2 \sqrt{2}$
C. $3+2 \sqrt{3}$
D. $6+\sqrt{3}$

Answer: 2

- Watch Video Solution

82. Suppose $a x+b y+c=0$, where $a, b a n d c$ are in $A P$ be normal to a family of circles. The equation of the circle of the family intersecting the circle

$$
\begin{aligned}
& x^{2}+y^{2}-4 x- \\
& x+4 y-3=0
\end{aligned}
$$ orthogonally is

$$
\begin{array}{ll}
x^{2}+y^{2}-2 x+4 y-3=0 & x^{2}+y^{2}+2 x-4 y-3=0 \\
x^{2}+y^{2}-2 x+4 y-5=0 x^{2}+y^{2}-2 x-4 y+3=0
\end{array}
$$

A. $x^{2}+y^{2}-2 x+4 y-3=0$
B. $x^{2}+y^{2}+2 x-4 y-3=0$
C. $x^{2}+y^{2}-2 x+4 y-5=0$
D. $x^{2}+y^{2}-2 x-4 y+3=0$

- Watch Video Solution

83. Two circles of radii $a a n d b$ touching each other externally, are inscribed in the area bounded by $y=\sqrt{1-x^{2}}$ and the x-axis. If $b=\frac{1}{2}$, then a is equal to (a) $\frac{1}{4}$ (b) $\frac{1}{8}$ (c) $\frac{1}{2}$ (d) $\frac{1}{\sqrt{2}}$
A. $1 / 4$
B. $1 / 8$
C. $1 / 2$
D. $1 / \sqrt{2}$

Answer: 1

- Watch Video Solution

84. If the length of the common chord of two circles $x^{2}+y^{2}+8 x+1=0$ and $x^{2}+y^{2}+2 \mu y-1=0$ is $2 \sqrt{6}$, then the values of μ are (a) ± 2 (b) ± 3 (c) ± 4 (d) none of these
A. ± 2
B. ± 3
C. ± 4
D. none of these

Answer: 2

- Watch Video Solution

85. If $r_{1} a n d r_{2}$ are the radii of the smallest and the largest circles, respectively, which pass though $(5,6)$ and touch the circle $(x-2)^{2}+y^{2}=4$, then $r_{1} r_{2}$ is (a) $\frac{4}{41}$ (b) $\frac{41}{4}$ (c) $\frac{5}{41}$ (d) $\frac{41}{6}$
A. $31 / 4$
B. $41 / 4$
C. $41 / 3$
D. 17

Answer: 2

- Watch Video Solution

86. If $C_{1}: x^{2}+y^{2}=(3+2 \sqrt{2})^{2}$ is a circle and $P A$ and $P B$ are a pair of tangents on C_{1}, where P is any point on the director circle of C_{1}, then the radius of the smallest circle which touches c_{1} externally and also the two tangents $P A$ and $P B$ is $2 \sqrt{3}-3$ (b) $2 \sqrt{2}-12 \sqrt{2}-1$ (d) 1
A. $2 \sqrt{3}-3$
B. $2 \sqrt{2}-1$
C. $2 \sqrt{2}-1$
D. 1

- Watch Video Solution

87. P is a point (a, b) in the first quadrant. If the two circles which pass through P and touch both the coordinates axes cut at right angles, then $a^{2}-6 a b+b^{2}=0 \quad a^{2}+2 a b-b^{2}=0 \quad a^{2}-4 a b+b^{2}=0$ $a^{2}-8 a b+b^{2}=0$
A. $a^{2}-6 a b+b^{2}=0$
B. $a^{2}+2 a b-b^{2}=0$
C. $a^{2}-4 a b+b^{2}=0$
D. $a^{2}-8 a b+b^{2}=0$

Answer: 3

- Watch Video Solution

88. Find the number of common tangent to the circles
$x^{2}+y^{2}+2 x+8 y-23=0$ and $x^{2}+y^{2}-4 x-10 y+9=0$
A. 1
B. 2
C. 3
D. 4

Answer: 3

- Watch Video Solution

89. Find the locus of the centres of the circle which cut the circles
$x^{2}+y^{2}+4 x-6 y+9=0 \quad$ and $\quad x^{2}+y^{2}-5 x+4 y-2=0$
orthogonally
A. $9 x+10 y-7=0$
B. $x-y+2=0$
C. $9 x-10 y-11=0$
D. $9 x+10 y+7=0$

Answer: 3

- Watch Video Solution

90. Tangent are drawn to the circle $x^{2}+y^{2}=1$ at the points where it is met by the circles $x^{2}+y^{2}-(\lambda+6) x+(8-2 \lambda) y-3=0, \lambda$ being the variable. The locus of the point of intersection of these tangents is
A. $2 x-y+10=0$
B. $x+2 y-10=0$
C. $x-2 y+10=0$
D. $2 x+y-10=0$

Answer: 1

91. If the line $x \cos \theta+y \sin \theta=2$ is the equation of a transverse common tangent to the circles $x^{2}+y^{2}=4$ and $x^{2}+y^{2}-6 \sqrt{3} x-6 y+20=0$, then the value of θ is (a) $\frac{5 \pi}{6}$ (b) $\frac{2 \pi}{3}$ (c) $\frac{\pi}{3}$ (d) $\frac{\pi}{6}$
A. $5 \pi / 6$
B. $2 \pi / 3$
C. $\pi / 3$
D. $\pi / 6$

Answer: 3

- Watch Video Solution

92. about to only mathematics
A. 20
B. 15
C. 22
D. 27

Answer: 1

- Watch Video Solution

93. The circles having radii $r_{1} a n d r_{2}$ intersect orthogonally. The length of
their common chord is $\frac{2 r_{1} r_{2}}{\sqrt{r 12+r 12}}$
(b) $\frac{\sqrt{r 12+r 12}}{2 r_{1} r_{2}} \frac{r_{1} r_{2}}{\sqrt{r 12+r 12}}$
$\frac{\sqrt{r 12+r 12}}{r_{1} r_{2}}$
A. $\frac{2 r_{1} r_{2}}{\sqrt{r_{1}^{2}+r_{2}^{2}}}$
B. $\frac{\sqrt{r_{2}^{2}+r_{1}^{2}}}{2 r_{1} r_{2}}$
C. $\frac{r_{1} r_{2}}{\sqrt{r_{1}^{2}+r_{2}^{2}}}$
D. $\frac{\sqrt{r_{2}^{2}+r_{1}^{2}}}{r_{1} r_{2}}$

- Watch Video Solution

94. The two circles which pass through $(0, a) \operatorname{and}(0,-a)$ and touch the line $y=m x+c$ will intersect each other at right angle if $a^{2}=c^{2}(2 m+1) \quad a^{2}=c^{2}\left(2+m^{2}\right) \quad c^{2}=a^{2}\left(2+m^{2}\right)$
$c^{2}=a^{2}(2 m+1)$
A. $a^{2}=c^{2}(2 m+1)$
B. $a^{2}=c^{2}\left(2+m^{2}\right)$
C. $c^{2}=a^{2}\left(2+m^{2}\right)$
D. $c^{2}=a^{2}(2 m+1)$

Answer: 3

95. Locus of thews of the centre of the circle which touches $x^{2}+y^{2}-6 x-6 y+14=0$ externally and also y-axis is:
A. $x^{2}-6 x-10 y-14=0$
B. $x^{2}-10 x-6 y-14=0$
C. $y^{2}-6 x-10 y+14=0$
D. $y^{2}-10 x-6 y+14=0$

Answer: 4

- View Text Solution

96. If the chord of contact of tangents from a point P to a given circle passes through Q, then the circle on $P Q$ as diameter.
A. cuts the given circle orthogonally
B. touches the given circle externally
C. touches the given circle internally
D. none of these

Answer: 1

- Watch Video Solution

97. If the angle of intersection of the circle $x^{2}+y^{2}+x+y=0$ and $x^{2}+y^{2}+x-y=0$ is θ, then the equation of the line passing through (1,2) and making an angle θ with the y-axis is (a) $x=1$ (b) $y=2$ (c)
$x+y=3$ (d) $x-y=3$
A. $x=1$
B. $y=2$
C. $x+y=3$
D. $x-y=3$

Answer: 2

98. The coordinates of two points PandQ are $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ and O is the origin. If the circles are described on $O P a n d O Q$ as diameters, then the length of their common chord is (a) $\frac{\left|x_{1} y_{2}+x_{2} y_{1}\right|}{P Q}$ (b) $\frac{\left|x_{1} y_{2}-x_{2} y_{1}\right|}{P Q}$ $\frac{\left|x_{1} x_{2}+y_{1} y_{2}\right|}{P Q}$ (d) $\frac{\left|x_{1} x_{2}-y_{1} y_{2}\right|}{P Q}$
A. $\frac{\left|x_{1} y_{2}+x_{2} y_{1}\right|}{P Q}$
B. $\frac{\left|x_{1} y_{2}-x_{2} y_{1}\right|}{P Q}$
C. $\frac{\left|x_{1} x_{2}-y_{2} y_{1}\right|}{P Q}$
D. $\frac{\left|x_{1} x_{2}+y_{2} y_{1}\right|}{P Q}$

Answer: 2

- Watch Video Solution

99. If the circumference of the circle $x^{2}+y^{2}+8 x+8 y-b=0$ is bisected by the circle $x^{2}+y^{2}-2 x+4 y+a=0$ then $a+b=$ (A) 50
(B) 56 (C) -56 (D) -34
A. 50
B. 56
C. -56
D. -34

Answer: 3

- Watch Video Solution

100. Equation of the circle which cuts the circle $x^{2}+y^{2}+2 x+4 y-4=0$ and the lines $x y-2 x-y+2=0$ orthogonally, is
A. $x^{2}+y^{2}-2 x-4 y-6=0$
B. $x^{2}+y^{2}-2 x-4 y+6=0$
C. $x^{2}+y^{2}-2 x-4 y-12=0$
D. none of these

- Watch Video Solution

101. The minimum radius of the circle which contains the three circles,
$x^{2}+y^{2}-4 y-5=0, x^{2}+y^{2}+12 x+4 y+31=0$
$x^{2}+y^{2}+6 x+12 y+36=0$ is
A. $\frac{7}{18} \sqrt{900}+3$
B. $\frac{\sqrt{845}}{9}+4$
C. $\frac{5}{36} \sqrt{949}+3$
D. none of these

Answer: 3

102. A circle C_{1} of radius b touches the circle $x^{2}+y^{2}=a^{2}$ externally and has its centre on the positiveX-axis; another circle C_{2} of radius c touches the circle C_{1}, externally and has its centre on the positive x-axis. Given $a<b<c$ then three circles have a common tangent if a,b,c are in
A. AP
B. GP
C. HP
D. none of these

Answer: 2

- Watch Video Solution

103. Find the locus of centre of variable circle C, that rouches the circle $x^{2}+y^{2}=4$ internally and passes through the point $(1,0)$.
A. $2 a x+2 b y-\left(a^{2}+b^{2}+k^{2}\right)=0$
B. $2 a x+2 b y-\left(a^{2}-b^{2}+k^{2}\right)=0$
C. $x^{2}+y^{2}-3 a x-4 b y+\left(a^{2}+b^{2}-k^{2}\right)=0$
D. $x^{2}+y^{2}-2 a x-3 b y+\left(a^{2}-b^{2}-k^{2}\right)=0$

Answer: 1

- Watch Video Solution

104. The centre of the smallest circle touching the circles $x^{2}+y^{2}-2 y-3=0$ and $x^{2}+y^{2}-8 x-18 y+93=0$ is:
A. $(3,2)$
B. $(4,4)$
C. $(2,5)$
D. $(2,7)$

Answer: 3

105. Two circle with radii r_{1} and r_{2} respectively touch each other externally. Let r_{3} be the radius of a circle that touches these two circle as well as a common tangents to two circles then which of the following relation is true
A. $\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{b}}=\frac{1}{\sqrt{c}}$
B. $c=\frac{2 a b}{a+b}$
C. $\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}=\frac{1}{\sqrt{c}}$
D. $c=\frac{2 a b}{\sqrt{a}+\sqrt{b}}$

Answer: 3

- Watch Video Solution

106. Consider points $A(\sqrt{13}, 0)$ and $B(2 \sqrt{13}, 0)$ lying on x-axis. These points are rotated anticlockwise direction about the origin through an angle of $\tan ^{-1}\left(\frac{2}{3}\right)$. Let the new position of A and B be A^{\prime} and B^{\prime}
respectively. With A^{\prime} as centre and radius $2 \frac{\sqrt{13}}{3}$ a circle C_{1} is drawn and with B^{\prime} as centre and radius $\frac{\sqrt{13}}{3}$ circle C_{2}, is drawn. The radical axis of C_{1} and C_{2} is
A. $3 x+2 y=20$
B. $3 x+2 y=10$
C. $9 x+6 y=65$
D. none of these

Answer: 3

- Watch Video Solution

107. The common chord of the circle $x^{2}+y^{2}+6 x+8 y-7=0$ and a circle passing through the origin and touching the line $y=x$ always passes through the point. $\left(-\frac{1}{2}, \frac{1}{2}\right)$ (b) (1, 1) $\left(\frac{1}{2}, \frac{1}{2}\right)$ (d) none of these

$$
\text { A. }(-1 / 2,1 / 2)
$$

B. $(1,1)$
C. $(1 / 2,1 / 2)$
D. none of these

Answer: 3

- Watch Video Solution

108. If the circumference of the circle $x^{2}+y^{2}+8 x+8 y-b=0$ is bisected by the circle $x^{2}+y^{2}=4$ and the line $2 x+y=1$ and having minimum possible radius is
A. a) $5 x^{2}+5 y^{2}+18 x+6 y-5=0$
B. b) $5 x^{2}+5 y^{2}+9 x+8 y-15=0$
C. c) $5 x^{2}+5 y^{2}+4 x+9 y-5=0$
D. d) $5 x^{2}+5 y^{2}-4 x-2 y-18=0$
109. The equation of the circle passing through the point of intersection of the circles $x^{2}+y^{2}-4 x-2 y=8$ and $x^{2}+y^{2}-2 x-4 y=8$ and the point $(-1,4)$ is (a) $x^{2}+y^{2}+4 x+4 y-8=0$
$x^{2}+y^{2}-3 x+4 y+8=0$
(c) $\quad x^{2}+y^{2}+x+y=0$
$x^{2}+y^{2}-3 x-3 y-8=0$
A. $x^{2}+y^{2}+4 x+4 y-8=0$
B. $x^{2}+y^{2}-3 x+4 y+8=0$
C. $x^{2}+y^{2}+x+y-8=0$
D. $x^{2}+y^{2}-3 x-3 y-8=0$

Answer: 4

- Watch Video Solution

1. about to only mathematics
A. $a_{1} a_{2}>0$
B. $a_{2} a_{2}<0$
C. $c>0$
D. $c>0$

Answer: 1,3

- Watch Video Solution

2. Consider the circle $x^{2}+y^{2}-10 x-6 y+30=0$. Let O be the centre of the circle and tangent at $A(7,3)$ and $B(5,1)$ meet at C. Let $S=0$ represents family of circles passing through A and B, then
A. the area of quadrilateral OACB is 4
B. the radical axis for the famil of circles of $S=0$ is $x+y=0$
C. the smallest possible circle of the family $S=0$ is

$$
x+y-12 x-4+38=0
$$

D. the coordinates of point C are $(7,1)$

Answer: 1,3,4

- View Text Solution

3. Tangent drawn from the point $(a, 3)$ to the circle $2 x^{2}+2 y^{2}=25$ will be perpendicular to each other if a equals a)5
(b) -4 (c) 4 (d) -5
A. 5
B. -4
C. 4
D. -5

Answer: 2,3

4. ABC is any triagnel inscribed in the circle $x^{2}+y^{2}=r^{2}$ such that A is fixed point. If the external and internal bisectors of $\angle A$ intersect the circle at D and E , respectively, then which of the following statements is true $\triangle A D E$?
A. Its centroid is a fixed point.
B. Its circumcentre is a fixed point.
C. Its orthocentre is a fixed point.
D. none of these

Answer: 1,2,3

- View Text Solution

5. The equation of tangents drawn from the origin to the circle $x^{2}+y^{2}-2 r x-2 h y+h^{2}=0$
A. $x=0$
B. $y=0$
C. $\left(h^{2}-r^{2}\right) x-2 r h y=0$
D. $\left(h^{2}-r^{2}\right) x+2 h y=0$

Answer: 1,3

- Watch Video Solution

6. If the circle $x^{2}+y^{2}=a^{2}$ intersects the hyperbola $x y=c^{2}$ at four points $\quad P\left(x_{1}, y_{1}\right), Q\left(x_{2}, y_{2}\right), R\left(x_{3}, y_{3}\right), \quad$ and $\quad S\left(x_{4}, y_{4}\right)$, then $x_{1}+x_{2}+x_{3}+x_{4}=0 \quad y_{1}+y_{2}+y_{3}+y_{4}=0 \quad x_{1} x_{2} x_{3} x_{4}=C^{4}$ $y_{1} y_{2} y_{3} y_{4}=C^{4}$
A. $x_{1}+x_{2}+x_{3}+x_{4}=0$
B. $y_{1}+y_{2}+y_{3}+y_{4}=0$
C. $x_{1} x_{2} x_{3} x_{4}=c^{4}$
D. $y_{1} y_{2} y_{3} y_{4}=c^{4}$

- View Text Solution

7. Let $x a n d y$ be real variables satisfying $x^{2}+y^{2}+8 x-10 y-40=0$.

Let

$$
a=\max \left\{\sqrt{(x+2)^{2}+(y-3)^{2}}\right\} \quad \text { and }
$$

$b=\min \left\{\sqrt{(x+2)^{2}+(y-3)^{2}}\right\}$. Then $a+b=18$ (b) $a+b=\sqrt{2}$ $a-b=4 \sqrt{2}$ (d) $a \dot{b}=73$
A. $a+b=18$
B. $a+b=\sqrt{2}$
C. $a-b=4 \sqrt{2}$
D. $a . b=72$

Answer: 1,3,4
8. If the equation $x^{2}+y^{2}+2 h x y+2 g x+2 f y+c=0$ represents a circle, then the condition for that circle to pass through three quadrants only but not passing through the origin is $f^{2}>c$ (b) $g^{2}>2 c>0$ (d) $h=0$
A. $f^{2}<c$
B. $g^{2}>c$
C. $c>0$
D. $h=0$

Answer: 1,2,3,4

- View Text Solution

9. A point on the line $x=3$ from which the tangents drawn to the circle $x^{2}+y^{2}=8$ are at right angles is
A. $(2,2 \sqrt{7})$
B. $(2,2 \sqrt{5})$
C. $(2,-2 \sqrt{7})$
D. $(2,-2 \sqrt{5})$

Answer: 1,3

- View Text Solution

10. about to only mathematics
A. $(4,0)$
B. $(1+2 \sqrt{2}, 0)$
C. $(4,1)$
D. $(1,2 \sqrt{2})$

Answer: 2,4

11. If the circles $x^{2}+y^{2}-9=0$ and $x^{2}+y^{2}+2 a x+2 y+1=0$ touch each other, then α is $-\frac{4}{3}$ (b) 0 (c) 1 (d) $\frac{4}{3}$
A. $-4 / 3$
B. 0
C. 1
D. $4 / 3$

Answer: 1,4

Watch Video Solution
12. about to only mathematics
A. $(4 / 2,36 / 5)$
B. $(-2 / 5,44 / 5)$
C. $(6,4)$
D. $(2,4)$

- Watch Video Solution

13. The equation of the tangent to the circle $x^{2}+y^{2}=25$ passing through $\quad(-2,11) \quad$ is \quad (a) $4 x+3 y=25 \quad$ (b) $\quad 3 x+4 y=38$
$24 x-7 y+125=0$ (d) $7 x+24 y=250$
A. $4 x+3 y=25$
B. $3 x+4 y=38$
C. $24 x-7 y+125=0$
D. $7 x+24 y=250$

Answer: 1,3

14. If the area of the quadrilateral by the tangents from the origin to the circle $x^{2}+y^{2}+6 x-10 y+c=0$ and the radii corresponding to the points of contact is 15 , then a value of c is (a) 9 (b) 4 (c) 5 (d) 25
A. 9
B. 4
C. 5
D. 25

Answer: 1,4

- Watch Video Solution

15. The equation of the circle which touches the axes of coordinates and the line $\frac{x}{3}+\frac{y}{4}=1$ and whose center lies in the first quadrant is $x^{2}+y^{2}-2 c x-2 c y+c^{2}=0$, where c is (a) 1 (b) 2 (c) 3 (d) 6
A. 1
B. 2
C. 3
D. 6

Answer: 1,4

- Watch Video Solution

16. Which of the following lines have the intercepts of equal lengths on the circle, $x^{2}+y^{2}-2 x+4 y=0$ (A) $3 x-y=0$ (B) $x+3 y=0$ (C) $x+3 y+10=0$ (D) $3 x-y-10=0$
A. $3 x-y=0$
B. $x+3 y=0$
C. $x+3 y+10=0$
D. $3 x-y-10=0$
17. The equation of the line(s) parallel to $x-2 y=1$ which touch(es) the circle $\quad x^{2}+y^{2}-4 x-2 y-15=0 \quad$ is (are) $\quad x-2 y+2=0$
$x-2 y-10=0 x-2 y-5=0$ (d) $3 x-y-10=0$
A. $x-2 y+2=0$
B. $x-2 y-10=0$
C. $x-2 y-5=0$
D. $x-2 y+10=0$

Answer: 2,4

- Watch Video Solution

18. The circles

$$
x^{2}+y^{2}-2 x-4 y+1=0
$$

and
$x^{2}+y^{2}+4 x+4 y-1=0$
(a)touch internally
(b)touch externally
(c)have $3 x+4 y-1=0$ as the common tangent at the point of contact
(d)have $3 x+4 y+1=0$ as the common tangent at the point of contact
A. touch internally
B. touch externally
C. have $3 x+4 y-1=0$ as the common tangent at the point of contact
D. have $3 x+4 y+1=0$ as the common tangent at the point of contanct.

Answer: 2,3

- Watch Video Solution

19. about to only mathematics
A. are such that the number of common tangents on them is 2
B. are orthogonal
C. are such that the length of their common tangent is $5(12 / 5)^{1 / 4}$
D. are such that the length of their common chord is $5 \sqrt{3 / 2}$

Answer: 1,2,3,4

- Watch Video Solution

20. about to only mathematics
A. $y=\sqrt{3} x+4$
B. $\sqrt{3} y=x+4$
C. $y=\sqrt{3} x-4$
D. $\sqrt{3} y=x-4$

Answer: 2,4
21. The equation of a circle of radius 1 touching the circles
$x^{2}+y^{2}-2|x|=0 \quad$ is
(a) $x^{2}+y^{2}+2 \sqrt{2} x+1=0$
$x^{2}+y^{2}-2 \sqrt{3} y+2=0$
(c) $\quad x^{2}+y^{2}+2 \sqrt{3} y+2=0$
$x^{2}+y^{2}-2 \sqrt{2}+1=0$
A. $x^{2}+y^{2}+2 \sqrt{2} x+1=0$
B. $x^{2}+y^{2}-2 \sqrt{3} y+2=0$
C. $x^{2}+y^{2}+2 \sqrt{3} y+2=0$
D. $x^{2}+y^{2}-2 \sqrt{2}+1=0$

Answer: 2,3

- Watch Video Solution

22. The center(s) of the circle(s) passing through the points $(0,0)$ and (1 , 0) and touching the circle $x^{2}+y^{2}=9$ is (are)
A. $(3 / 2,1 / 2)$
B. $(1 / 2,3 / 2)$
C. $\left(1 / 2,2^{1 / 2}\right)$
D. $\left(1 / 2,-2^{1 / 2}\right)$

Answer: 3,4

- Watch Video Solution

23. Find the equations of straight lines which pass through the intersection of the lines $x-2 y-5=0,7 x+y=50 \&$ divide the circumference of the circle $x^{2}+y^{2}=100$ into two arcs whose lengths are in the ratio 2:1.
A. $3 x+4 y-25=0$
B. $4 x-3 y-25=0$
C. $3 x+2 y-23=0$
D. $2 x-3 y-11=0$

D Watch Video Solution

24. Two lines through $(2,3)$ from which the circle $x^{2}+y^{2}=25$ intercepts chords of length 8 units have equations
(A) $2 x+3 y=13, x+5 y=17$
(B) $y=3,12 x+5 y=39$
(C) $x=2,9 x-11 y=51$
(D) $y=0,12 x+5 y=39$
A. $y=3$
B. $12 x+5 y=39$
C. $x=2$
D. $9 x-11 y=51$

Answer: 1,2

25. Normal to the circle $x^{2}+y^{2}=4$ divides the circle having centre at $(2,4)$ and radius 2 in the ares of ratio $(\pi-2):(3 \pi+2)$. Then the normal can be
A. $y=x$
B. $y=3 x$
C. $y=5 x$
D. $y=7 x$

Answer: 1,4

- Watch Video Solution

Exercise (Comprehension)

1. Each side of a square is of length 6 units and the centre of the square is
$(-1,2)$. One of its diagonals is parallel to $x+y=0$. Find the co-ordinates
of the vertices of the square.
A. $(1,6)$
B. $(5,2)$
C. $(1,2)$
D. $(4,6)$

Answer: 4

- View Text Solution

2. Each side of a square has length 4 units and its center is at (3,4). If one of the diagonals is parallel to the line $y=x$, then anser the following questions.

The radius of the circle inscribed in the triangle formed by any three vertices is
A. $2 \sqrt{2}(\sqrt{2}+1)$
B. $2 \sqrt{2}(\sqrt{2}-1)$
C. $2(\sqrt{2}+1)$
D. none of these

Answer: 2

- Watch Video Solution

3. Each side of a square has length 4 units and its center is at (3,4). If one of the diagonals is parallel to the line $y=x$, then anser the following questions. ,brgt The radius of the circle inscribed in the triangle formed by any two vertices of the square and the center is
A. $2(\sqrt{2}-1)$
B. $2(\sqrt{2}+1)$
C. $\sqrt{2}(\sqrt{2}-1)$
D. none of these

Answer: 1

4. Tangents PA and PB are drawn to the circle $(x-4)^{2}+(y-5)^{2}=4$ from the point P on the curve $y=\sin x$, where A and B lie on the circle. Consider the function $y=f(x)$ represented by the locus of the center of the circumcircle of triangle PAB. Then answer the following questions. The range of $y=f(x)$ is
A. $[-2,1]$
B. $[-1,4]$
C. $[0,2]$
D. $[2,3]$

Answer: 4

- Watch Video Solution

5. Tangents PA and PB are drawn to the circle $(x-4)^{2}+(y-5)^{2}=4$ from the point P on the curve $y=\sin x$, where A and B lie on the circle. Consider the function $y=f(x)$ represented by the locus of the center of the circumcircle of triangle PAB. Then answer the following questions. The range of $y=f(x)$ is
A. 2π
B. 3π
C. π
D. not defined

Answer: 3

- Watch Video Solution

6. Tangents PA and PB are drawn to the circle $(x-4)^{2}+(y-5)^{2}=4$ from the point P on the curve $y=\sin x$, where A and B lie on the circle.

Consider the function $y=f(x)$ represented by the locus of the center of
the circumcircle of triangle PAB. Then answer the following questions.
Which of the following is true?
A. $f(x)=4$ has real roots.
B. $f(x)=1$ has real roots.
C. The range of $y=f^{-1}$ is $\left[-\frac{\pi}{4}+2, \frac{\pi}{4}+2\right]$
D. None of these

Answer: 3

- Watch Video Solution

7. about to only mathematics
A. 0
B. 1
C. 2
D. infinite

- Watch Video Solution

8. Consider a family of circles passing through the point $(3,7)$ and $(6,5)$.

Answer the following questions.
If each circle in the family cuts the circle $x^{2}+y^{2}-4 x-6 y-3=0$, then all the common chords pass through the fixed point which is
A. $(1,23)$
B. $(2,23 / 2)$
C. $(-3,3 / 2)$
D. none of these

Answer: 2

9. Consider a family of circles passing through the point $(3,7)$ and $(6,5)$.

Answer the following questions.
If the circle which belongs to the given family cuts the circle $x^{2}+y^{20=29}$ orthogonally, then the center of that circle is
A. $(1 / 2,3 / 2)$
B. $(9 / 2,7 / 2)$
C. $(7 / 2,9 / 2)$
D. $(3,-7 / 9)$

Answer: 3

- View Text Solution

10. If $4 l^{2}-5 m^{2}+6 l+1=0$. Prove that $l x+m y+1=0$ touches a definite circle. Find the centre \& radius of the circle.
A. $(2,0), 3$
B. $(-3,0), \sqrt{3}$
C. $(3,0), \sqrt{5}$
D. none of these

Answer: 3

- Watch Video Solution

11. Consider the relation $4 l^{2}-5 m^{2}+6 l+1=0$, where $l, m \in R$ Tangents PA and PB are drawn to the above fixed circle from the points P on the line $x+y-1=0$. Then the chord of contact AP passes through the fixed point.
A. $(1 / 2,-5 / 2)$
B. $\left(\frac{1}{3}, 4 / 3\right)$
C. $(-1 / 2,3 / 2)$
D. none of these

- View Text Solution

12. Consider the relation $4 l^{2}-5 m^{2}+6 l+1=0$, where $l, m \in R$ The number of tangents which can be drawn from the point $(2,-3)$ to the above fixed circle are
A. 0
B. 1
C. 2
D. 1 or 2

Answer: 3

13. A circle C whose radius is 1 unit, touches the x-axis at point A. The centre Q of C lies in first quadrant. The tangent from origin O to the circie touches it at T and a point P lies on it such that $\triangle O A P$ is a right angled triangle at A and its perimeter is 8 units. The length of $Q P$ is
A. $1 / 2$
B. $4 / 3$
C. $5 / 3$
D. none of these

Answer: 3

- View Text Solution

14. A circle C whose radius is 1 unit, touches the x-axis at point A. The centre Q of C lies in first quadrant. The tangent from origin O to the circie touches it at T and a point P lies on it such that $\Delta O A P$ is a right angled triangle at A and its perimeter is 8 units. The length of $Q P$ is

Watch Video Solution

15. Find the derivative of $y=\ln 4 x$

- Watch Video Solution

16. P is a variable point of the line $L=0$. Tangents are drawn to the circle $x^{2}+y^{2}=4$ from P to touch it at Q and R . The parallelogram PQSR is completed. If $L=2 x+y-6=0$, then the locus of circumcetre of $\triangle P Q R$ is -
A. $2 x-y=4$
B. $2 x+y=3$
C. $x-2 y=4$
D. $x+2 y=3$

Answer: 2

17. P is a variable point on the line $L=0$. Tangents are drawn to the circles $x^{2}+y^{2}=4$ from P to touch it at Q and R . The parallelogram PQSR is completed.

If $P \equiv(6,8)$, then the area of $\Delta Q R S$ is
A. $\frac{3 \sqrt{6}}{25}$ sq. units
B. $\frac{3 \sqrt{24}}{25}$ sq. units
C. $\frac{48 \sqrt{6}}{25}$ sq. units
D. $\frac{192 \sqrt{6}}{25}$ sq. units

Answer: 4

- View Text Solution

18. P is a variable point on the line $L=0$. Tangents are drawn to the circles $x^{2}+y^{2}=4$ from P to touch it at Q and R . The parallelogram PQSR
is completed.
If $P \equiv(3,4)$, then the coordinates of S are
A. $(-46 / 25,63 / 25)$
B. $(-51 / 25,-68 / 25)$
C. $(-46 / 25,68 / 25)$
D. $(-68 / 25,51 / 25)$

Answer: 2

- Watch Video Solution

19. To the circle $x^{2}+y^{2}=4$, two tangents are drawn from $P(-4,0)$, which touch the circle at T_{1} and T_{2}. A rhomus $P T_{1} P^{\prime} T_{2}$ s completed. If P is taken to be at $(h, 0)$ such that P^{\prime} lies on the circle, the area of the rhombus is
A. $(-2,0)$
B. $(2,0)$
C. $(\sqrt{3} / 2,0)$
D. none of these

Answer: 1

- Watch Video Solution

20. To the circle $x^{2}+y^{2}=4$, two tangents are drawn from $P(-4,0)$, which touch the circle at T_{1} and T_{2}. A rhomus $P T_{1} P^{\prime} T_{2}$ s completed. If P is taken to be at $(h, 0)$ such that P^{\prime} lies on the circle, the area of the rhombus is
A. 2:1
B. 1:2
C. $\sqrt{3}: 2$
D. none of these

Answer: 4

21. To the circle $x^{2}+y^{2}=4$, two tangents are drawn from $P(-4,0)$, which touch the circle at T_{1} and T_{2}. A rhomus $P T_{1} P^{\prime} T_{2}$ s completed. If P is taken to be at $(h, 0)$ such that P^{\prime} lies on the circle, the area of the rhombus is
A. $6 \sqrt{3}$
B. $2 \sqrt{3}$
C. $3 \sqrt{3}$
D. none of these

Answer: 1

- Watch Video Solution

22. Let α chord of a circle be that chord of the circle which subtends an angle α at the center.

If the slope of a $\pi / 3$ chord of $x^{2}+y^{2}=4$ is 1 , then its equation is
A. $\pi / 4$
B. $\pi / 2$
C. $\pi / 6$
D. $x+y=1$ is not a chord

Answer: 2

- Watch Video Solution

23. Let α chord of a circle be that chord of the circle which subtends an angle α at the center.

If the slope of a $\pi / 3$ chord of $x^{2}+y^{2}=4$ is 1 , then its equation is
A. $x-y+\sqrt{6}=0$
B. $x-y=2 \sqrt{3}$
C. $x-y=\sqrt{3}$
D. $x-y+\sqrt{3}=0$

Answer: 1

- Watch Video Solution

24. Let α chord of a circle be that chord of the circle which subtends an angle α at the center.

The distance of $2 \pi / 3$ chord of $x^{2}+y^{2}+2 x+4 y+1=0$ from the center is
A. 1
B. 2
C. $\sqrt{2}$
D. $1 / \sqrt{2}$

Answer: 1

25. Two variable chords AB and BC of a circle $x^{2}+y^{2}=a^{2}$ are such that $A B=B C=a . \mathrm{M}$ and N are the midpoints of AB and BC , respectively, such that the line joining $M N$ intersects the circles at P and Q, where P is closer to $A B$ and O is the center of the circle.
$\angle O A B$ is
A. 30°
B. 60°
C. 45°
D. 15°

Answer: 2

- Watch Video Solution

26. Two variable chords $A B$ and $B C$ of a circle $x^{2}+y^{2}=a^{2}$ are such that $A B=B C=a . \mathrm{M}$ and N are the midpoints of AB and BC , respectively, such that the line joining MN intersects the circles at P and Q, where P is
closer to $A B$ and O is the center of the circle.
The angle between the tangents at A and C is
A. 90°
B. 120°
C. 60°
D. 150°

Answer: 3

- Watch Video Solution

27. Two variable chords AB and BC of a circle $x^{2}+y^{2}=a^{2}$ are such that $A B=B C=a . \mathrm{M}$ and N are the midpoints of AB and BC , respectively, such that the line joining MN intersects the circles at P and Q, where P is closer to $A B$ and O is the center of the circle.

The locus of the points of intersection of tangents at A and C is

$$
\text { A. } x^{2}+y^{2}=a^{2}
$$

B. $x^{2}+y^{2}=2 a^{2}$
C. $x^{2}+y^{2}=4 a^{2}$
D. $x^{2}+y^{2}=8 a^{2}$

Answer: 3

- Watch Video Solution

28. Give two circles intersecting orthogonally having the length of common chord $24 / 5$ units. The radius of one of the circles is 3 units.

The radius of other circle is
A. 6 units
B. 4 units
C. 2 units
D. 4units
29. Give two circles intersecting orthogonally having the length of common chord $24 / 5$ units. The radius of one of the circles is 3 units.

The angle between direct common tangents is
A. $\sin ^{-1} \cdot \frac{24}{25}$
B. $\sin ^{-1} \cdot \frac{4 \sqrt{6}}{25}$
C. $\sin ^{-1} \cdot \frac{4}{5}$
D. $\sin ^{-1} \cdot \frac{12}{25}$

Answer: 2

- Watch Video Solution

30. Give two circles intersecting orthogonally having the length of common chord $24 / 5$ units. The radius of one of the circles is 3 units.

The angle between direct common tangents is
A. $\sqrt{12}$
B. $4 \sqrt{3}$
C. $2 \sqrt{6}$
D. $3 \sqrt{6}$

Answer: 3

- Watch Video Solution

31. In the given figure, there are two circles with centers A and B. The common tangent to the circles touches them, respectively,at P and Q. AR is 40 cm and $A B$ is divided by the point of contact of the circles in the ratio 5:3 What is the ratio of the length of $A B$ to that of $B R$?
A. 1: 4
B. 2: 3
C. 2:5
D. 7: 4

D Watch Video Solution

32. In the given figure, there are two circles with centers A and B. The common tangent to the circles touches them, respectively,at P and $Q . A R$ is 40 cm and $A B$ is divided by the point of contact of the circles in the ratio 5:3

The radius of the circle with center B is
A. 10 cm
B. 3 cm
C. 6 cm
D. 8 cm

Answer: 3

- Watch Video Solution

33. In the given figure, there are two circles with centers A and B. The common tangent to the circles touches them, respectively, at P and Q. AR is 40 cm and $A B$ is divided by the point of contact of the circles in the ratio 5: 3

The length of $Q R$ is
A. $10 \sqrt{15} \mathrm{~cm}$
B. $5 \sqrt{15} \mathrm{~cm}$
C. $4 \sqrt{15} \mathrm{~cm}$
D. $6 \sqrt{15} \mathrm{~cm}$

Answer: 4

- Watch Video Solution

34. Let each of the circles
$S_{1} \equiv x^{2}+y^{2}+4 y-1=0$
$S_{1} \equiv x^{2}+y^{2}+6 x+y+8=0$
$S_{3} \equiv x^{2}+y^{2}-4 x-4 y-37=0$
touch the other two. Also, let P_{1}, P_{2} and P_{3} be the points of contact of S_{1} and S_{2}, S_{2} and S_{3}, and S_{3}, respectively, C_{1}, C_{2} and C_{3} are the centres of S_{1}, S_{2} and S_{3} respectively.

The coordinates of P_{1} are
A. $(2,-1)$
B. $(-2,-1)$
C. $(-2,1)$
D. $(2,1)$

Answer: 2

- View Text Solution

35. Let each of the circles
$S_{1} \equiv x^{2}+y^{2}+4 y-1=0$
$S_{1} \equiv x^{2}+y^{2}+6 x+y+8=0$
$S_{3} \equiv x^{2}+y^{2}-4 x-4 y-37=0$
touch the other two. Also, let P_{1}, P_{2} and P_{3} be the points of contact of
S_{1} and S_{2}, S_{2} and S_{3}, and S_{3}, respectively, C_{1}, C_{2} and C_{3} are the centres of S_{1}, S_{2} and S_{3} respectively.
The ratio $\frac{\operatorname{area}\left(\Delta P_{1} P_{2} P_{3}\right)}{\operatorname{area}\left(\Delta C_{1} C_{2} C_{3}\right)}$ is equal to
A. 3:2
B. 2: 3
C. 5:3
D. 2: 5

Answer: 4

- Watch Video Solution

36. Let each of the circles
$S_{1} \equiv x^{2}+y^{2}+4 y-1=0$
$S_{1} \equiv x^{2}+y^{2}+6 x+y+8=0$
$S_{3} \equiv x^{2}+y^{2}-4 x-4 y-37=0$
touch the other two. Also, let P_{1}, P_{2} and P_{3} be the points of contact of S_{1} and S_{2}, S_{2} and S_{3}, and S_{3}, respectively, C_{1}, C_{2} and C_{3} are the centres of S_{1}, S_{2} and S_{3} respectively.
P_{2} and P_{3} are images of each other with respect to the line
A. $y=x$
B. $y=-x$
C. $y=x+1$
D. $y=-x+2$

Answer: 1

- Watch Video Solution

37. The line $x+2 y=a$ intersects the circle $x^{2}+y^{2}=4$ at two distinct points A and B Another line $12 x-6 y-41=0$ intersects the circle $x^{2}+y^{2}-4 x-2 y+1=0$ at two C and D. The value of 'a' for which the points A, B, C and D are concyclic -
A. 1
B. 3
C. 4
D. 2

Answer: 4

38. The line $x+2 y=a$ intersects the circle $x^{2}+y^{2}=4$ at two distinct points A and B Another line $12 x-6 y-41=0$ intersects the circle $x^{2}+y^{2}-4 x-2 y+1=0$ at two C and D. The value of 'a' for which the points A, B, C and D are concyclic -
A. $5 x^{2}+5 y^{2}-8 x-16 y-36=0$
B. $5 x^{2}+5 y^{2}+8 x-16 y-36=0$
C. $5 x^{2}+5 y^{2}+8 x+16 y-36=0$
D. $5 x^{2}+5 y^{2}-8 x-16 y+36=0$

Answer: 1

- View Text Solution

39. Let A, B, and C be three sets such that
$A=\left\{(x, y) \left\lvert\, \frac{x}{\cos \theta}=\frac{y}{\sin \theta}=5\right.\right.$, where' θ 'is parameter $\}$
$B=\left\{(x, y) \left\lvert\, \frac{x-3}{\cos \phi}=\frac{y-4}{\sin \phi}=r\right.\right\}$
$C=\left\{(x, y) \mid(x-3)^{2}+(y-4)^{2} \leq R^{2}\right\}$
If $A \cap C=A$, then minimum value of R is
A. 5
B. 6
C. 10
D. 11

Answer: 3

- Watch Video Solution

40. Let A, B, and C be three sets such that
$A=\left\{(x, y) \left\lvert\, \frac{x}{\cos \theta}=\frac{y}{\sin \theta}=5\right.\right.$, where' θ 'is parameter $\}$
$B=\left\{(x, y) \left\lvert\, \frac{x-3}{\cos \phi}=\frac{y-4}{\sin \phi}=r\right.\right\}$
$C=\left\{(x, y) \mid(x-3)^{2}+(y-4)^{2} \leq R^{2}\right\}$
If ϕ is fixed and r varies and $(A \cap B)=1$, then $\sec \phi$ is equal to
A. $\frac{5}{4}$
B. $\frac{-5}{4}$
C. $\frac{5}{3}$
D. $\frac{-5}{3}$

Answer: 2

- Watch Video Solution

41. Consider the family of circles $x^{2}+y^{2}-2 x-2 a y-8=0$ passing through two fixed points A and B. Also, $S=0$ is a cricle of this family, the tangent to which at A and B intersect on the line $x+2 y+5=0$. The distance between the points A and B, is
A. 4
B. $4 \sqrt{2}$
C. 6
D. 8

- Watch Video Solution

42. Show that equation $x^{2}+y^{2}-2 a y-8=0$ represents, for different values of 'a, asystem of circles"passing through two fixed points A, B on the X-axis, and find the equation ofthat circle of the system the tangents to which at AB meet on the line $x+2 y+5=0$.
A. 3
B. 6
C. $2 \sqrt{3}$
D. $3 \sqrt{2}$

Answer: 4

43. Consider the family of circles $x^{2}+y^{2}-2 x-6 y-8=0$ passing through two fixed points A and B. Also, $S=0$ is a cricle of this family, the tangent to which at A and B intersect on the line $x+2 y+5=0$. If the circle $x^{2}+y^{2}-10 x+2 y+c=0$ is orthogonal to $S=0$, then the value of c is
A. 8
B. 9
C. 10
D. 12

Answer: 4

- Watch Video Solution

44. A circle C of radius 1 is inscribed in an equilateral triangle $P Q R$. The points of contact of C with the sides $P Q, Q R, R P$ are D, E, F, respectively. The line PQ is given by the equation $\sqrt{3} x+y-6=0$ and the point D is
(3 `sqrt $3 / 2,3 / 2$). Further, it is given that the origin and the centre of C are on the same side of the line PQ . The equation of circle C is
A. a) $(x-2 \sqrt{3})^{2}+(y-1)^{2}=1$
B. b) $(x-2 \sqrt{3})^{2}+\left(y+\frac{1}{2}\right)^{2}=1$
C. c) $(x-\sqrt{3})^{2}+(y+1)^{2}=1$
D. d) $(x-\sqrt{3})^{2}+(y-1)^{2}=1$

Answer: 4

- Watch Video Solution

45. A circle C of radius 1 is inscribed in an equilateral triangle $P Q R$. The points of contact of C with the sides $P Q, Q R, R P$ are D, E, F, respectively. The line PQ is given by the equation $\sqrt{3} x+y-6=0$ and the point D is (3 sqrt3/2,3/2). Further, it is given that the origin and the centre of C are on the same side of the line $P Q$.Points E and F are given by
A. a) $\left(\frac{\sqrt{3}}{2}, \frac{3}{2}\right),(\sqrt{3}, 0)$
B. b) $\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right),(\sqrt{3}, 0)$
C. c) $\left(\frac{\sqrt{3}}{2}, \frac{3}{2}\right),\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$
D. d) $\left(\frac{3}{2}, \frac{\sqrt{3}}{2}\right),\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$

Answer: 1

- Watch Video Solution

46. A circle C of radius 1 is inscribed in an equilateral triangle $P Q R$. The points of contact of C with the sides $P Q, Q R, R P$ are D, E, F, respectively. The line $P Q$ is given by the equation $\sqrt{3} x+y-6=0$ and the point D is (3 sqrt $3 / 2,3 / 2$). Further, it is given that the origin and the centre of C are on the same side of the line $P Q$. Equation of the sides $Q R, R P$ are
A. a) $y=\frac{2}{\sqrt{3}} x+1, y=-\frac{2}{\sqrt{2}} x-1$
B. b) $y=\frac{1}{\sqrt{3}} x, y=0$
C. c) $y=\frac{\sqrt{3}}{2} x+1, y=-\frac{\sqrt{3}}{2} x-1$
D. d) $y=\sqrt{3} x, y=0$

- Watch Video Solution

MATRIX MATCH TYPE

1. Find the derivative of $y=\ln \left(\cos x^{2}\right)$.

- Watch Video Solution

2. Let $x^{2}+y^{2}+2 g x+2 f y+c=0$ be an equation of circle. Match the following lists:

List I	List II
a. If the circle lies in the first quadrant, then	p. $g<0$
b. If the circle lies above the x-axis, then	q. $g>0$
c. If the circle lies on the left of the y-axis, then	r. $g^{2}-c<0$
d. If the circle touches the positive x-axis and does not intersect the y-axis, then	s. $c>0$

3. Match the following lists.

- Watch Video Solution

4. Find the derivative of $y=\ln \left(2 x^{3}-x\right)^{2}$
5. Find the derivative of $y=x \ln ^{3} x$.

- Watch Video Solution

6. Match the conics in List I with the statements / expressions in List II.

List I	List II
a. Circle	p. The locus of the point (h, k) for which the line $h x+k y=1$ touches the circle $x^{2}+y^{2}=4$
b. Parabola	q. Points z in the complex plane satisfying $\|z+2\|-\|z-2\|= \pm 3$
c. Ellipse	r. Points of the conic have parametric
representation $x=\sqrt{3}\left(\frac{1-t^{2}}{1+t^{2}}\right)$,	
$y=\frac{2 t}{1+t^{2}}$	

- View Text Solution

1. Let C_{1} and C_{2} be two circles whose equations are $x^{2}+y^{2}-2 x=0$ and $x^{2}+y^{2}+2 x=0$ and $P(\lambda, \lambda)$ is a variable point

- Watch Video Solution

Exercise (Numerical)

1. Let the lines $(y-2)=m_{1}(x-5)$ and $(y+4)=m_{2}(x-3)$ intersect at right angles at P (where m_{1} andm m_{2} are parameters). If the locus of P is $x^{2}+y^{2} g x+f y+7=0$, then the value of $|f+g|$ is \qquad

- View Text Solution

2. Consider the family of circles $x^{2}+y^{2}-2 x-2 \lambda-8=0$ passing through two fixed points $A a n d B$. Then the distance between the points AandB is \qquad

- View Text Solution

3. The number of points $P(x, y)$ lying inside or on the circle $x^{2}+y^{2}=9$ and satisfying the equation $\tan ^{4} x+\cot ^{4} x+2=4 \sin ^{2} y$ is \qquad

- View Text Solution

4. If real numbers xandy satisfy $(x+5)^{2}+(y-12)^{2}=(14)^{2}$, then the minimum value of $\sqrt{x^{2}+y^{2}}$ is \qquad

- View Text Solution

5. The line $3 x+6 y=k$ intersects the curve $2 x^{2}+3 y^{2}=1$ at points AandB. The circle on $A B$ as diameter passes through the origin. Then the value of k^{2} is \qquad

- View Text Solution

6. The sum of the slopes of the lines tangent to both the circles $x^{2}+y^{2}=1$ and $(x-6)^{2}+y^{2}=4$ is \qquad

- Watch Video Solution

7. A circle $x^{2}+y^{2}+4 x-2 \sqrt{2} y+c=0$ is the director circle of the circle S_{1} and S_{1} is the director circle of circle S_{2}, and so on. If the sum of radii of all these circles is 2 , then the value of c is $k \sqrt{2}$, where the value of k is \qquad

- View Text Solution

8. Two circle are externally tangent. Lines $P A B$ and $P A^{\prime} B^{\prime}$ are common tangents with $A a n d A^{\prime}$ on the smaller circle and $B^{\prime} a n d B^{\prime}$ the on the larger circle. If $P A=A B=4$, then the square of the radius of the circle is \qquad
9. The length of common internal tangent to two circles is 7 and that of a common external tangent is 11 . Then the product of the radii of the two circles is

- View Text Solution

10. Line segments $A C$ and $B D$ are diameters of the circle of radius one. If $\angle B D C=60^{\circ}$, the length of line segment $A B$ is \qquad

- View Text Solution

11. As shown in the figure, three circles which have the same radius r,have centres at $(0,0) ;(1,1)$ and $(2,1)$. If they have a common tangentline, as shown then, their radius ' r ' is -

- View Text Solution

12. The acute angle between the line $3 x-4 y=5$ and the circle $x^{2}+y^{2}-4 x+2 y-4=0$ is θ. Then $9 \cos \theta=$

- View Text Solution

13. If two perpendicular tangents can be drawn from the origin to the circle $x^{2}-6 x+y^{2}-2 p y+17=0$, then the value of $|p|$ is

- View Text Solution

14. Let $A(-4,0), B(4,0)$ Number of points $c=(x, y)$ on circle $x^{2}+y^{2}=16$ such that area of triangle whose verties are $\mathrm{A}, \mathrm{B}, \mathrm{C}$ is positive integer is:

- View Text Solution

15. If the circle $x^{2}+y^{2}+(3+\sin \beta) x+2 \cos \alpha y=0 \quad$ and $x^{2}+y^{2}+2 \cos \alpha x+2 c y=0$ touch each other, then the maximum value of c is

- View Text Solution

16. Two circles C_{1} and C_{2} both pass through the points $A(1,2) \operatorname{and} E(2,1)$ and touch the line $4 x-2 y=9$ at BandD, respectively. The possible coordinates of a point C, such that the quadrilateral $A B C D$ is a parallelogram, are (a, b). Then the value of $|a b|$ is \qquad

- Watch Video Solution

17. Difference in values of the radius of a circle whose center is at the origin and which touches the circle $x^{2}+y^{2}-6 x-8 y+21=0$ is \qquad
18. The length of common internal tangent to two circles is 7 and that of a common external tangent is 11 . Then the product of the radii of the two circles is

- View Text Solution

JEE Main Previous Year

1. If P and Q are the points of intersection of the circles $x^{2}+y^{2}+3 x+7 y+2 p=0$ and $x^{2}+y^{2}+2 x+2 y-p^{2}=0$ then there is a circle passing through P, Q and $(1,1)$ for
A. all values of p
B. all except one value of p
C. all except two values of p
D. exactly one value of p

Answer: 2

- View Text Solution

2. Three distinct points A, B and C are given in the 2ấ "dimensional coordinate plane such that the ratio of the distance of any one of them from the point $(1,0)$ to the distance from the point ($\hat{\mathrm{a}} \epsilon^{\prime \prime} 1,0$) is equal to $\frac{1}{3}$.Then the circumcentre of the triangle $A B C$ is at the point :
A. $(0,0)$
B. $\left(\frac{5}{4}, 0\right)$
C. $\left(\frac{5}{2}, 0\right)$
D. $\left(\frac{5}{3}, 0\right)$

Answer: 2

- View Text Solution

3. If the circle $x^{2}+y^{2}-4 x-8 y-5=0$ intersects the line $3 x-4 y=m$ at two distinct points, then find the values of m.
A. $35<m<85$
B. $-85<m<-35$
C. $-35<m<15$
D. $15<m<65$

Answer: C

- View Text Solution

4. The two circles $x^{2}+y^{2}=a x$ and $x^{2}+y^{2}=c^{2}(c>0)$ touch each other if (1) $a=2 c$ (2) $|a|=2 c$ (3) $2|a|=c(4)|a|=c$
A. $|a|=2 c$
B. $2|a|=c$
C. $|a|=c$
D. $a=2 c$
5. The length of the diameter of the circle which touches the x-axis at the point $(1,0)$ and passes through the point $(2,3)$
A. $\frac{10}{3}$
B. $\frac{3}{5}$
C. $\frac{6}{5}$
D. $\frac{5}{3}$

Answer: A

- View Text Solution

6. The circle passing through the point $(1,-2)$ and touching the x-axis at $(3,0)$ also passes through the point:

$$
\text { A. }(-5,2)
$$

B. $(2,-5)$
C. $(5,-2)$
D. $(-2,5)$

Answer: C

- View Text Solution

7. Let C be the circle with centre at $(1,1)$ and radius $=1$. If T is the circle centred at ($0, \mathrm{y}$), passing through origin and touching the circle C externally, then the radius of T is equal to (1) $\frac{\sqrt{3}}{\sqrt{2}}$ (2) $\frac{\sqrt{3}}{2}$ (3) $\frac{1}{2}$ (3) $\frac{1}{4}$
A. $\frac{\sqrt{3}}{\sqrt{2}}$
B. $\frac{\sqrt{3}}{2}$
C. $\frac{1}{2}$
D. $\frac{1}{4}$
8. Find the equations to the common tangents of the circles $x^{2}+y^{2}-2 x-6 y+9=0$ and $x^{2}+y^{2}+6 x-2 y+1=0$
A. 1
B. 2
C. 3
D. 4

Answer: 3

- View Text Solution

9. The centres of those circles which touch the circle, $x^{2}+y^{2}-8 x-8 y-4=0$, externally and also touch the x-axis, lie on :
(1) a circle. (2) an ellipse which is not a circle. (3) a hyperbola. (4) a parabola.
A. an ellipse which is not a circle
B. a hyperbola
C. a parabola
D. a circle

Answer: 3

- Watch Video Solution

10. If one of the diameters of the circle, given by the equation, $x^{2}+y^{2}-4 x+6 y-12=0$, is a chord of a circle S , whose centre is at $(-3,2)$, then the radius of S is : (1) $5 \sqrt{2}$ (2) $5 \sqrt{3}$ (3) 5 (4) 10
A. $5 \sqrt{3}$
B. 5
C. 10
D. $5 \sqrt{2}$

Answer: 1

- Watch Video Solution

JEE Advanced (Single Correct Answer Type)

1. Tangents drawn from the point $P(1,8)$ to the circle $x^{2}+y^{2}-6 x-4 y-11=0$ touch the circle at the points $\mathrm{A} \& \mathrm{~B}$ ifR is the radius of circum circle of triangle PAB then [R]-

- Watch Video Solution

2. The circle passing through the point $(-1,0)$ and touching the y-axis at
$(0,2)$ also passes through the point:
A. $(-3 / 2,0)$
B. $(-5 / 2,2)$
C. $(-3 / 2,5 / 2)$
D. $(-4,0)$

Answer: D

- Watch Video Solution

3. The locus of the middle point of the chord of contact of tangents drawn from points lying on the straight line $4 x-5 y=20$ to the circle $x^{2}+y^{2}=9$ is
A. $20\left(x^{2}+y^{2}\right)-36+45 y=0$
B. $20\left(x^{2}+y^{2}\right)+36-45 y=0$
C. $36\left(x^{2}+y^{2}\right)-20 x+45 y=0$
D. $36\left(x^{2}+y^{2}\right)+20 x-45 y=0$

Answer: A

- View Text Solution

4. Circle(s) touching x-axis at a distance 3 from the origin and having an intercept of length $2 \sqrt{7}$ on y -axis is (are)
A. $x^{2}+y^{2}-6 x+8 y+9=0$
B. $x^{2}+y^{2}-6 x+7 y+9=0$
C. $x^{2}+y^{2}-6 x-8 y+9=0$
D. $x^{2}=y^{2}-6 x-7 y+9=0$

Answer: 1,3

- View Text Solution

5. A circle S passes through the point $(0,1)$ and is orthogonal to the circles $(x-1)^{2}+y^{2}=16$ and $x^{2}+y^{2}=1$. Then (A) radius of S is 8 (B) radius of S is $7(C)$ center of S is ($-7,1$) (D) center of S is $(-8,1)$
A. radius of S is 8
B. radius of S is 7
C. centre of S is $(-7,1)$
D. centre of S is $(-8,1)$

Answer: 2,3

- View Text Solution

6. Let RS be the diameter of the circle $x^{2}+y^{2}=1$, where S is the point $(1,0)$ Let P be a variable apoint (other than R and S) on the circle and tangents to the circle at S and P meet at the point Q . The normal to the circle at P intersects a line drawn through Q parallel to $R S$ at point E. then the locus of E passes through the point(s)- (A) $\left(\frac{1}{3}, \frac{1}{\sqrt{3}}\right)$ (B) $\left(\frac{1}{4}, \frac{1}{2}\right)$
(C) $\left(\frac{1}{3},-\frac{1}{\sqrt{3}}\right)$
(D) $\left(\frac{1}{4},-\frac{1}{2}\right)$
A. $\left(\frac{1}{3}, \frac{1}{\sqrt{3}}\right)$
B. $\left(\frac{1}{4}, \frac{1}{2}\right)$
C. $\left(\frac{1}{3},-\frac{1}{\sqrt{3}}\right)$
D. $\left(\frac{1}{4},-\frac{1}{2}\right)$

Answer: 1,3

- View Text Solution

7. Let T be the line passing through the points $P(-2,7)$ and $Q(2,-5)$. Let F_{1} be the set of all pairs of circles $\left(S_{1}, S_{2}\right)$ such that T is tangent to S_{1} at P and tangent to S_{2} at Q, and also such that S_{1} and S_{2} touch each other at a point, say, M. Let E_{1} be the set representing the locus of M as the pair $\left(S_{1}, S_{2}\right)$ varies in F_{1}. Let the set of all straight lines segments joining a pair of distinct points of E_{1} and passing through the point $R(1,1)$ be F_{2}. Let E_{2} be the set of the mid-points of the line segments in the set F_{2}. Then, which of the following statement(s) is (are) TRUE? The point $(-2,7)$ lies in $E_{1}(b)$ The point $\left(\frac{4}{5}, \frac{7}{5}\right)$ does NOT lie in E_{2} (c) The point $\left(\frac{1}{2}, 1\right)$ lies in E_{2} (d) The point $\left(0, \frac{3}{2}\right)$ does NOT lie in E_{1}
A. The point $(-2,7)$ lies in E_{1}
B. The point $(4 / 5,7 / 5)$ does NOT lie in E_{2}
C. The point $(1 / 2,1)$ lie in E_{2}
D. The point $(0,3 / 2)$ does NOT lie in E_{1}

Answer: 2,4

- Watch Video Solution

8. A possible equation of L is (A) $\times 3 y 1$ (B) $\times 3 y 1$ (C) $\times 3 y 1$ (D) $\times 3 y 5$
A. $x-\sqrt{3} y=1$
B. $x+\sqrt{3} y=1$
C. $x-\sqrt{3} y=-1$
D. $x+\sqrt{3} y=5$

Answer: 1

9. A tangent PT is drawn to the circle $x^{2}+y^{2}=4$ at the point $P(\sqrt{3}, 1)$.

A straight line L, perpendicular to $P T$ is a tangent to the circle $(x-3)^{2}+y^{2}=1$ then find a common tangent of the two circles
A. $x=4$
B. $y=2$
C. $x+\sqrt{3} y=4$
D. $x+2 \sqrt{2} y=6$

Answer: D

- Watch Video Solution

10. PARAGRAPH X Let S be the circle in the $x y$-plane defined by the equation $x^{2}+y^{2}=4$. (For Ques. No 15 and 16) Let $E_{1} E_{2}$ and $F_{1} F_{2}$ be the chords of S passing through the point $P_{0}(1,1)$ and parallel to the x axis and the y-axis, respectively. Let $G_{1} G_{2}$ be the chord of S passing through P_{0} and having slope -1 . Let the tangents to S at E_{1} and E_{2}
meet at E_{3}, the tangents to S at F_{1} and F_{2} meet at F_{3}, and the tangents to S at G_{1} and G_{2} meet at G_{3}. Then, the points E_{3}, F_{3} and G_{3} lie on the curve $x+y=4$ (b) $(x-4)^{2}+(y-4)^{2}=16$
$(x-4)(y-4)=4(\mathrm{~d}) x y=4$
A. $x+y=4$
B. $(x-4)^{2}+(y-4)^{2}=16$
C. $(x-4)(y-4)=4$
D. $x y=4$

Answer: A

- Watch Video Solution

11. Let S be the circle in the $x y$-plane defined by the equation $x^{2}+y^{2}=4$. (For Ques. No 15 and 16) Let P be a point on the circle S with both coordinates being positive. Let the tangent to S at P intersect the coordinate axes at the points M and N. Then, the mid-point of the
line segment $M N$ must lie on the curve $(\mathrm{a})(x+y)^{2}=3 x y$ $x^{2 / 3}+y^{2 / 3}=2^{4 / 3}$ (c) $x^{2}+y^{2}=2 x y$ (d) $x^{2}+y^{2}=x^{2} y^{2}$
A. $(x+y)^{2}=3 x y$
B. $x^{2 / 3}+y^{2 / 3}=2^{4 / 3}$
C. $x^{2}+y^{2}=2 x y$
D. $x^{2}+y^{2}=x^{2} y^{2}$

Answer: 4

- Watch Video Solution

12. The centres of two circles C_{1} and C_{2} each of unit radius are at a distance of 6 unit from each other. Let P be the mid-point of the line segment joining the centres of C_{1} and C_{2} and C be a circle touching circles C_{1} and C_{2} externally. If a common tangent to C_{1} and C passing through P is also a common tangent to C_{2} and C , then the radius of the circle C, is
13. The straight line $2 x-3 y=1$ divides the circular region $x^{2}+y^{2} \leq 6$ into two parts. If $\mathrm{S}=\left\{\left(2, \frac{3}{4}\right),\left(\frac{5}{2}, \frac{3}{4}\right),\left(\frac{1}{4},-\frac{1}{4}\right),\left(\frac{1}{8}, \frac{1}{4}\right)\right\}$, then the number of point(s) in S lying inside the smaller part is

- View Text Solution

14. For how many values of p , the circle $x^{2}+y^{2}+2 x+4 y-p=0$ and the coordinate axes have exactly three common points?

- Watch Video Solution

Question Bank

1. If $a x+b y=10$ is the chord of minimum length of the circle $(x-10)^{2}+(y-20)^{2}=729$ and the chord passes through $(5,15)$ then the value of $(4 a+2 b)$ is
2. Locus of the poirit of intersection of the pair of perpendicular tangents to the circles $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=7$ is the director circle of the circle with radius equal to

- Watch Video Solution

3. Let $A B$ and $C D$ are two parallel chords of circle whose radius is 5 units. If P and Q are mid points of $A B$ and $C D$ respectively such that $P A \cdot P B=9, Q C \cdot Q D=16$, then distance between $A B$ and $C D$ is

- Watch Video Solution

4. about to only mathematics

- Watch Video Solution

5. A straight line l_{1} with equation $x-2 y+10=0$ meets the circle with equation $x^{2}+y^{2}=100$ at B in the first quadrant. A line through B perpendicular to l_{1} cuts the y-axis at $P(o, t)$. The value of t is 12 (b) 15 (c) 20 (d) 25

- Watch Video Solution

6. If the tangent at the point P on the circle $x^{2}+y^{2}+6 x+6 y=2$ meets the straight line $5 x-2 y+6=0$ at a point Q on the y-axis, then the length of $P Q$ is

- Watch Video Solution

7. The radius of the circle whose two normals are represented by the equation $x^{2}-5 x y-5 x+25 y=0$ and which touches externally the circle $x^{2}+y^{2}-2 x+4 y-4=0$ is equal to
8. If the diagram, $D C$ is a diameter of the large circle centered at A, and $A C$ is a diameter of the smaller circle centered at B. If $D E$ is tangent to the smaller circle at F and $D C=12$ then the length of $D E$ is

- Watch Video Solution

9. If $2 x-3 y=0$ is the equation of the common chord of the circles, $x^{2}+y^{2}+4 x=0$ and $x^{2}+y^{2}+2 \lambda y=0$, then the value of λ is

- Watch Video Solution

10. If one of the diameters of the circle $x^{2}+y^{2}-2 x-6 y+6=0$ is a chord to the circle with centre at $(2,1)$ then the radius of the circle is equal to.

- Watch Video Solution

11. A circle touches the y-axis at the point $(0,4)$ and cuts the x-axis in a chord of length 6 units. Then find the radius of the circle.

- Watch Video Solution

12. In the figure given, two circles with centres C_{t} and C_{2} are 35 units apart, i.e. $C_{1} C_{2}=35$. The radii of the circles with centres C_{1} and C_{2} are 12 and 9 respectively. If P is the intersection of $C_{1} C_{2}$ and a common internal tangent to the circles, then $l\left(C_{1} P\right)$ equals

- Watch Video Solution

13. If the lines $3 x-4 y+4=0$ and $6 x-8 y-7=0$ are tangents to a circle, then find the radius of the circle.

- Watch Video Solution

14. The maximum distance of the point $(4,4)$ from the circle $x^{2}+y^{2}-2 x-15=0$ is

- Watch Video Solution

15. If the circle $(x-a)^{2}+y^{2}=25$ intersects the circle $x^{2}+(y-b)^{2}=16$ in such a way that common chord is of maximum length, then value of $a^{2}+b^{2}$ is

- Watch Video Solution

16. If a circle $S(x, y)=0$ touches at the point $(2,3)$ of the line $x+y=5$ and $S(1,2)=0$, then $(\sqrt{2} \times \text { Radius })^{\prime}$ of such circle is
