© 'doubtnut

India's Number 1 Education App

MATHS

BOOKS - CENGAGE

CONTINUITY AND DIFFERENTIABILITY

Solved Examples And Exercises

1. Find $\quad x$ where $f(x)=m a \xi \mu m\{\sqrt{x(2-x)}, 2-x\} \quad$ is nondifferentiable.

- Watch Video Solution

2. Discuss the differentiability of $f(x)=\sin |x|$
3. Discuss the continuity and differentiability of $f(x)=|x+1|+|x|+|x-1| \forall x \in R ;$ also draw the graph of $f(x)$

- Watch Video Solution

4. Discuss the differentiability of $f(x)=\max \left\{\tan ^{-1} x, \cot ^{-1} x\right\}$.

- Watch Video Solution

5. Find the values of aandb if $f(x)=\left\{a x^{2}+1, x \leq 1, x^{2}+a x+b, x>1\right.$ i s differentiable at $x=1$

- Watch Video Solution

6. Discuss the differentiability of $f(x)=|p x[x]|,-1<x \leq 2$

- Watch Video Solution

$$
f(x)=\left\{a x^{2}+1, x \leq 1 x^{2}+a x+b, x>1 i s d \Leftrightarrow \text { erentiableatx }=1\right.
$$

- Watch Video Solution

8. Discuss the differentiability of $f\left(x=\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)\right.$

- Watch Video Solution

9. Which of the following function is non-differentiable in domain?
$f(x)=\frac{x-2}{x^{2}+3}$ (b) $f(x)=\log |x| f(x)=x^{3} \log x$ (d) $f(x)=(x-3)^{\frac{3}{5}}$

- Watch Video Solution

10. Discuss the continuity of $f(x)=\left\{\frac{1}{e^{x-1}}, x \neq 10, x=1\right.$

- Watch Video Solution

11. Which of the following functions is not continuous $\forall x \in R$? (a) $\sqrt{2 \sin x+3}$ (b) $\frac{e^{x}+1}{e^{x}+3}$ (c) $\left(\frac{2^{3 x}+1}{2^{3 x}+5}\right)^{\frac{5}{7}}$ (d) $\sqrt{\operatorname{sgn} x+1}$

- Watch Video Solution

12. Find the value of $f(0)$ so that the function.
$f(x)=\frac{\sqrt{1+x}-1+x 3}{x}$ becomescont \in uousat $x=0$

Watch Video Solution

13. $x=2$, then find the value of A.

- Watch Video Solution

14. If the function $f: R \backslash\{0\}^{\rightarrow}$ given by $f(x)=\frac{1}{x}-\frac{2}{e^{2 x}-1}$ is continuous at $x=0$, then find the value of $f(0)$

- Watch Video Solution

15. Let $f(x)=\frac{1-\tan x}{4 x-\pi}, x \neq \frac{\pi}{4}, x \in\left[0, \frac{\pi}{2}\right]$, If $f(x)$ is continuous in $\left[0, \frac{\pi}{4}\right]$, then find the value of $f\left(\frac{\pi}{4}\right)$.

- Watch Video Solution

16. If $f(x)=\left(\tan \left(\frac{\pi}{4}+(\log)_{e} x\right)\right)^{(\log)_{x} e}$ is to be made continuous at $x=1$, then what is the value of $f(1)$?

- Watch Video Solution

17.

$f(x)=\left\{2 x \tan x-\frac{\pi}{\cos x}, x \neq \frac{\pi}{2} k x=\frac{\pi}{2}\right.$ iscont \in uousat $x=\frac{\pi}{2}$,
then find the value of k.

- Watch Video Solution

18. Discuss the continuity of $f(x)=\left\{\frac{x^{2}}{|x|}, x \neq 00, x=0\right.$

- Watch Video Solution

19. Let $f(x)=\left\{(1+3 x)^{\frac{1}{x}}, x \neq 0 e^{3}, x=0\right.$ Discuss the continuity of $f(x)$ at (a) $x=0$, (b) $x=1$

- Watch Video Solution

20. Which of the following function is not differentiable at $x=0$?
$f(x)=\min \{x, \sin x\} f(x)=\left\{0, x \geq 0 x^{2}, x<0 f(x)=\mathrm{x}^{\wedge} 2 \operatorname{sgn}(\mathrm{x})\right.$

- Watch Video Solution

21. Discuss the differentiability of $f(x)=\left|\left|x^{2}-4\right|-12\right|$.

- Watch Video Solution

22. Find the value of x in $[1,3]$ where the function $\left[x^{2}+1\right]$ ([.] represents the greatest integer function) is discontinuous.

- Watch Video Solution

23. If $f(x)=\left\{x-2, x \leq 0\right.$ and $4-x^{2}, x>0$, then discuss the continuity of $y=f(f(x))$.

- Watch Video Solution

24. Discuss the continuity of $f(x)=\left[\tan ^{-1} x\right]([$.$] represents the$ greatest integer function).
25. Find the number of points of discontinuity for $f(x)=[6 \sin x], 0 \leq x \leq \pi$

- Watch Video Solution

26. Find the value of x where
$f(x)=\{x$, if ξ srational $1-x, \quad$ if ξ sirrationaliscont \in uous.

Watch Video Solution

27. Discuss the continuity of the following function : $f(x)=\{1$ if x rational ; 0 if x is irrational
28. If $f(x)=\frac{x+1}{x-1} \operatorname{andg}(x)=\frac{1}{x-2}$, then discuss the continuity of $f(x), g(x), \operatorname{andfog}(x)$.

Watch Video Solution

29. For $x>0$, leth $(x)=\left\{\frac{1}{q}\right.$, if $x=\frac{p}{q} 0$, if ξ sirrational where $p, q>0$ are relatively prime integers. Then prove that $f(x)$ is continuous for all irrational values of x.

Watch Video Solution

30. Discuss the continuity of $f(x)=(\lim)_{n} \vec{\infty} \cos ^{2 n} x$.

- Watch Video Solution

31. Find the values of a if $f(x)=(\lim)_{n \rightarrow \infty} \frac{a x^{2 n}+2}{x^{2 n}+a+1}$ is continuous at $x=1$.
32.

$f(x)=\left\{(\ln x) \cdot \operatorname{sgn}\left(\left\{x-\frac{1}{2}\right\}\right) ; 1<x \leq 3\right.$ and $\left\{x^{2}\right\} ; 3<x \leq 3.5$.
Find the pointswhere the continuity of $f(x)$, should be checked, where
[.] is greatest integer function and \{.\} fractional part function.

- Watch Video Solution

33. Discuss the continuity of $f(x)=(\lim)_{n \vec{\infty}} \frac{x^{2 n}-1}{x^{2 n}+1}$

- Watch Video Solution

34. If $f(x)=\operatorname{sgn}(2 \sin x+a)$ is continuous for all x, then find the possible values of a.

- Watch Video Solution

35. Discuss the continuity of $f(x)=\operatorname{sgn}\left(x^{3}-x\right)$

- Watch Video Solution

36. Discuss the continuity of $f(x)=\operatorname{sgn}(2 \cos x-1)$

- Watch Video Solution

37. Discuss the continuity of $f(x)=\operatorname{sgn}\left(x^{2}-2 x+3\right)$

- Watch Video Solution

38.

Discuss
the continuity
of
$f(x)=\{x\{x\}+1,0 \leq x<1$ and $2-\{x\}, 1 \leq x<2 \quad$ where $\quad\{x\}$ denotes the fractional part function.

- Watch Video Solution

39. Discuss the continuity of $f(x)=\operatorname{sgn}\left(x^{3}-x\right)$

- Watch Video Solution

40. Show that the function $f(x)=(x-a)^{2}(x-b)^{2}+x$ takes the value $\frac{a+b}{2}$ for some value of $x \in[a, b]$.

- Watch Video Solution

41. Prove that $f(x)=\frac{x^{3}}{4}-\sin \pi x+3$ takes the value of $\frac{7}{3}$ for $x \in[-2,2]$.

- Watch Video Solution

42. Suppose f is a continuous map from R to R and $f(f(a))=a$ for some a. Show that there is some b such that $f(b)=b$.

- Watch Video Solution

43. Let $f:[0,1] \rightarrow[0,1]$ be a continuous function. Then prove that $f(x)=x$ for at least one $0 \leq x \leq 1$.

Watch Video Solution

44. Discuss the differentiability of $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{ll}x \sin \left(\ln x^{2}\right) & x \neq 0 \\ 0 & x=0\end{array}\right.$ at $\mathrm{x}=0$

- Watch Video Solution

45.

Discuss
the
differentiability
of
$f(x)=\left\{\frac{\sin x^{2}}{x}, x \neq 00, x=0 a t x=0\right.$

Watch Video Solution

46. If f is an even function such that $(\lim)_{h \overrightarrow{0}} \frac{f(h)-f(0)}{h}$ has some finite non-zero value, then prove that $f(x)$ is not differentiable at $x=0$.
47. Using intermediate value theorem, prove that there exists a number x such that $x^{2005}+\frac{1}{1+\sin ^{2} x}=2005$.

- Watch Video Solution

48. Which of the function is non-differential at $x=0 ? f(x)=|\mathrm{x}|$

- Watch Video Solution

49. Which of the function is non-differential at $x=0 ? f(x)=\cos |x|$

- Watch Video Solution

50. $f(x)=\left\{[\sin \pi x], 0 \leq x<1 \operatorname{sgn}\left(x-\frac{5}{4}\right) x\left\{x-\frac{2}{3}\right\}, 1 \leq x \leq 2\right.$
where [.] denotes the greatest integer function and \{.\} represents the
fractional part function. At what points should the continuity be checked? Hence, find the points of discontinuity.

- Watch Video Solution

51. Find the value of a for which $f(x)=\left\{x^{2}, x \in Q x+a, x \notin Q\right.$ is not continuous at any x.

- Watch Video Solution

52. Discuss the continuity of $f(x)=(\log |x|) \operatorname{sgn}\left(x^{2}-1\right), x \neq 0$.

- Watch Video Solution

53. Find the number of integers lying in the interval $(0,4)$ where the function $f(x)=(\lim)_{n \vec{\infty}}\left(\frac{\cos (\pi x)}{2}\right)^{2 n}$ is discontinuous

- Watch Video Solution

54. If $f(x)$ is continuous function $\forall x \in R$ and the range of $f(x) i s(2, \sqrt{26}) \operatorname{andg}(x)=\left[\frac{f(x)}{c}\right]$ is continuous $\forall x \in R$, then find the least positive integral value of c, where [.] denotes the greatest integer function.

- Watch Video Solution

55. Discuss the continuity of $f(x)=\left\{\mathrm{x}^{\wedge} 2, \mathrm{x}\right.$ is rational ${ }^{\wedge}$
$-x^{\wedge} 2, x$ is irrational

- Watch Video Solution

56. If $y=\frac{1}{t^{2}+t-2}$, wheret $=\frac{1}{x-1}$, then find the number of points where $f(x)$ is discontinuous.

- Watch Video Solution

57. Let f be a continuous function defined onto [0,1] with range $[0,1]$. Show that there is some c in $[0,1]$ such that $f(c)=1-c$

Watch Video Solution

58. Leg f be continuous on the interval $[0,1]$ to R such that $f(0)=f(1)$.

Prove that there exists a point c in $\left[\frac{0,1}{2}\right]$ such that $f(c)=f\left(c+\frac{1}{2}\right)$.

- Watch Video Solution

59.

$f(x)=\left\{a x(x-1)+b, x<1 x-1,1 \leq x \leq 3 \cdot p x^{2}+q x+2, x>3\right.$
Find the values of the constants $a, b, \operatorname{pandq}$ so that all the following conditions are satisfied $f(x)$ is continuous for all $x \cdot f(1)$ does not exist.
$f^{\prime}(x)$ is continuous at $x=3$
60.
Find
the
values
of $a a n d b$
$f(x)=\left\{a+\sin ^{-1}(x+b), x \geq 1\right.$ and $x, x<1$ is differentiable at $x=1$.

- Watch Video Solution

61. Discuss the differentiability of $y=\sin ^{-1}|\sin x|$

- Watch Video Solution

62. Discuss the differentiability of $y=\sin ^{-1}(\sin x)$

- Watch Video Solution

63. Discuss the differentiability of
$f(x)=\operatorname{ma\xi } \mu m\{2 \sin x, 1-\cos x\} \forall x \in(0, \pi)$.
64.

$f(x)=\max \left\{x^{2}-3 x+2,2-|x-1|\right\}$

Watch Video Solution

65. If $f(x)=\max \left\{x^{2}+2 a x+1, b\right\}$ has two points of nondifferentiability, then prove that $a^{2}>1-b$

- Watch Video Solution

66. Discuss the differentiability of $f(x)=e^{-|x|}$

- Watch Video Solution

67. If $f(x)=\left\{x, x \leq 1, x^{2}+b x+c, x>1\right.$ ' find b and c if function is continuous and differentiable at $x=1$

- Watch Video Solution

68. Test the continuity and differentiability of the function $f(x)=\left|\left(x+\frac{1}{2}\right)[x]\right|$ by drawing the graph of the function when $-2 \leq x<2$, where [.] represents the greatest integer function.

- Watch Video Solution

69. Let $f(x)=\left\{\frac{\log (1+x)^{1+x}-x}{x^{2}}\right\}$. Then find the value of $f(0)$ so that the function f is continuous at $x=0$.

- Watch Video Solution

70. Find the points of discontinuity of the function: $f(x)=[[x]]-[x-1]$, where $[$.$] represents the greatest integer$ function
71. let $f(x)=\frac{\ln \cos x}{\left(1+x^{2}\right)^{\frac{1}{4}}-1}$ if $x>0$ and $f(x)=\frac{e^{\sin 4 x}-1}{\ln (1+\tan 2 x)}$ if
$x<0$ Is it possible to difine $f(0)$ to make the function continuous at $x=0$. If yes what is.the value of $f(0)$, if not then indicate the nature of discontinuity.

- Watch Video Solution

72. What value must be assigned to k so that the function $f(x)=\left\{\frac{x^{4}-256}{x-4}, x \neq 4\right.$ and $k, x=4$ is continuous at $\mathrm{x}=4$.

- Watch Video Solution

73. Let $f(x)$ be a function defined as $f(x)=\left\{\frac{x^{2}-1}{x^{2}-2|x-1|-1}, x \neq 1 \frac{1}{2}, x=1\right.$ Discuss the continuity of the function at $x=1$.

- Watch Video Solution

74. If the function $‘ f(x)=\{A x-B, x \mid t=13 x, 1$

- Watch Video Solution

75. Let : $f(x)=\left\{\frac{a+3 \cos x}{x^{2}}, x<0 b \tan \left(\frac{\pi}{[x+3]}\right), x \geq 0\right.$ If $f(x)$ is continuous at $x=0$, then find $a a n d b$, where [.] denotes the greatest integer function.

- Watch Video Solution

76. Let : $f(x)=\left\{\frac{\sin a x^{2}}{x^{2}}, x \neq 0 \frac{3}{4}+\frac{1}{4 a}, x=0\right.$ for what values of a is $f(x)$ continuous at $x=0$?

- Watch Video Solution

77.

$$
f(x)=\{|x+1| ; x \leq 0 x ; x>0
$$

and
$g(x)=\{|x|+1 ; x \leq 1-|x-2| ; x>1$ Draw its graph and discuss the
continuity of $f(x)+g(x)$.

- Watch Video Solution

78. $\mathrm{f}(\mathrm{x})=\left\{\cos ^{\wedge}(-1\{\cot \mathrm{x}), \mathrm{x}<\mathrm{pi} / 2 \quad \mathrm{pi}[\mathrm{x}]-1, \mathrm{x} \quad>\mathrm{pi} / 2 w h e r e[d o t]\right.$ representsthegreatestfunction and \{dot\} represents the fractional part function. Find the jump of discontinuity.

- Watch Video Solution

79. Discuss the differentiability of $f(x)=\left|(\log)_{e}\right| x| |$

- Watch Video Solution

80. Discuss the differentiability of $f(x)=\max \left\{\sec ^{-1} x, \cos e c^{-1} x\right\}$

- Watch Video Solution

81. A function $f(x)$ is such that $f\left(x+\frac{\pi}{2}\right)=\frac{\pi}{2}-|x| \forall x \dot{F} \in d f\left(\frac{\pi}{2}\right), \quad$ if ite ξ sts.

- Watch Video Solution

82. Discuss the differentiability of $f(x)=|x||x-1|$

- Watch Video Solution

83. Discuss the differentiability of $f(x)=\left|x^{3}\right|$ at $x=0$

- Watch Video Solution

84. Discuss the differentiability of $f(x)=|x||x-1|$

- Watch Video Solution

85. Discuss the differentiability of $f(x)=\sin |x|$

- Watch Video Solution

86.

Discuss
the
differentiability
of
$f(x)=[x]+|1-x|, x \in(-1,3)$, where $[$.$] \quad represents greatest$ integer function.

- Watch Video Solution

87. Discuss
the
differentiability
of
$f(x)=\left(x^{2}-1\right)\left|x^{2}-x-2\right|+\sin (|x|)$.

- Watch Video Solution

88. Let f be a function satisfying
$f(x+y)+\sqrt{6-f(y)}=f(x) f(y) \operatorname{andf}(h) \overrightarrow{6}$ ash $\overrightarrow{0}$. Discuss the
continuity of f.

- Watch Video Solution

89. Let $f(x+y)=f(x)+f(y)$ for all xandy. If the function $f(x)$ is continuous at $x=0$, show that $f(x)$ is continuous for all x.

- Watch Video Solution

90. A function $f(x)$ satisfies the following property: $f(x+y)=f(x) f(y)$. Show that the function is continuous for all values of x if its is continuous at $x=1$.

- Watch Video Solution

91. Find the points of discontinuity of the function: $f(x)=\frac{1}{2 \sin x-1}$
92. Find the points of discontinuity of the function:
$f(x)=\frac{1}{x^{2}-3|x|+2}$

- Watch Video Solution

93. A function $f(x)$ satisfies the following property: $f(x y)=f(x) f(y)$. Show that the function $f(x)$ is continuous for all values of x if it is continuous at $x=1$.

- Watch Video Solution

94. Find the points of discontinuity of the function: $f(x)=\frac{1}{x^{4}+x^{2}+1}$

- Watch Video Solution

95. Find the points of discontinuity of the function: $f(x)=\frac{1}{1-e^{\frac{x-1}{x-2}}}$
96. Draw the graph and find the points of discontinuity $f(x)=[2 \cos x]$, $x \in[0,2 \pi]$. ([.] represents the greatest integer function.)

(Watch Video Solution

97. Find the number of points where $f(x)=\left[\frac{x}{3}\right], x \in[0,30]$, is discontinuous (where [.] represents greatest integer function).

- Watch Video Solution

98. Discuss the continuity of the function ([.] represents the greatest integer function): $f(x)=\left[\frac{2}{1+x^{2}}\right], x \geq 0$

- Watch Video Solution

99. Discuss the continuity of the function ([.] represents the greatest integer function): $f(x)=\left[\sin ^{-1} x\right]$

Watch Video Solution

100. Discuss the continuity of the function ([.] represents the greatest integer function): $f(x)=\left[(\log)_{e} x\right]$

- Watch Video Solution

101. Match the following for the type of discontinuity at $x=1$ in column II for the function in column I. $f(x)=\frac{1}{x-1}$, p. Removable discontinuity $f(x)=\frac{x^{3}-x}{x^{2}-1} \quad$, q. Non-removable discontinuity $f(x)=\frac{|x-1|}{x-1}$, r. Jump of discontinuity $f(x)=\sin \left(\frac{1}{x-1}\right)$, s. Discontinuity due to vertical asymptote, t. Missing point discontinuity , u. Oscillating discontinuity
$f(x)=\left\{\frac{x^{4}-5 x^{2}+4}{|(x-1)(x-2)|}, x \neq 1,2,6, x=1,12, x=2\right.$

- Watch Video Solution

103. If $x=\sqrt{5}+2$, then find the value of $x^{2}+\frac{1}{x^{2}}$

- Watch Video Solution

104. If the function $f(x)=\left[\frac{(x-2)^{3}}{a}\right] \sin (x-2)+a \cos (x-2)$, [.] denotes the greatest integer function, is continuous in $[4,6]$, then find the values of a.

- Watch Video Solution

105. Draw the graph and discuss the continuity of $f(x)=[\sin x+\cos x], x \in[0,2 \pi)$, where [.] represents the greatest integer function.

- Watch Video Solution

Single Correct Answer Type

1. If $f(x)=\left\{\left(\frac{\sin \left(2 x^{2}\right)}{a}+\cos \left(\frac{3 x}{b}\right)\right)^{a} b / x^{2}, x \neq 0 e^{3}, x=0 \quad\right.$ is continuous at $x=0 \forall b \in R$ then minimum value of a is $-1 / 8 \mathrm{~b} .-1 / 4$ c. $-1 / 2$ d. 0
A. $-1 / 8$
B. $-1 / 4$
C. $-1 / 2$
D. 0

Answer: B

- Watch Video Solution

2. Let $f: R \vec{R}$ be any function. Also $g: R \vec{R}$ is defined by $g(x)=|f(x)|$ for all x. Then is Onto if f is onto One-one if f is one-one Continuous if f is continuous None of these
A. onto if f is onto
B. one-one if f is one-one
C. continuous if f is continuous
D. None of these

Answer: C

- Watch Video Solution

3. about to only mathematics
A. 1
B. $1 / 4$
C. 4
D. none of these

Answer: D

- Watch Video Solution

4. Let $f(x)=x^{3}-x^{2}-3 x-1, g(x)=(x+1) a$ and $h(x)=\frac{f(x)}{g(x)}$ where h is a rational function such that
(i) It is continuous everywhere except when $x=-1$,
(ii) $\lim _{x \rightarrow \infty} h(x)=\frac{1}{2}$.

The value of $h(1)$ is
A. $1 / 2$
B. $1 / 4$
C. $-1 / 2$
D. 1

Answer: C

- View Text Solution

5. If the function $f(x)=\frac{3 x^{2} a x+a+3}{x^{2}+x-2}$ is continuous at $x=-2$, then the value of $f(-2)$ is
A. 0
B. -1
C. 1
D. 2

Answer: B

- View Text Solution

6. Let $f(x)=\left\{\begin{array}{ll}8^{\frac{1}{x}}, & x<0 \\ a[x], & a \in R-\{0\}, \quad x \geq 0\end{array}\right.$ (where [.] denotes the greatest integer function).

Then $f(x)$ is
A. continuous only at a finite number of points.
B. discontinuous at a finite number of points.
C. discontinuous at an infinite number of points.
D. discontinuous at $\mathrm{x}=0$.

Answer: C

- View Text Solution

7. If $f(x)=\left\{\frac{2 \cos x, s \in 2 x}{(\pi-2 x)^{2}}, x \leq \frac{\pi}{2} \frac{e^{-\cot x}-1}{8 x-4 \pi}, x>\frac{\pi}{2}\right.$, then which of the following holds? f is continuous at $x=\pi / 2 f$ has an irremovable discontinuity at $x=\pi / 2 f$ has a removable discontinuity at $x=\pi / 2$ None of these
A. f is continuous at $x=\pi / 2$
B. f has an irremovable discontinuity at $x=\pi / 2$
C. f has a removable discontinuity at $x=\pi / 2$
D. none of these

Answer: B

- View Text Solution

8.

$$
f(x)=\left\{\sin \left(\frac{\pi}{2}\right)(x-[x]), x<55(b-1), x=5 \frac{a b^{2}\left|x^{2}-11 x+24\right|}{x-3}, x>\right.
$$ is continuous at $x=5, a, b \in R$ then ([.] denotes the greatest integer function) $a=\frac{25}{108}, b=\frac{6}{5}$ b. $a=\frac{6}{13}, b=\frac{17}{29}$ c. $a=\frac{1}{2}, b=\frac{25}{36}$ d. $a=\frac{23}{100}, b=\frac{6}{5}$

A. $a=\frac{25}{108}, b=\frac{6}{5}$
B. $a=\frac{6}{13}, b=\frac{17}{29}$
C. $a=\frac{1}{2}, b=\frac{25}{36}$
D. $a=(23),(100), b=\frac{6}{5}$

Answer: A

- Watch Video Solution

9. The function $f(x)$ is discontinuous only at $x=0$ such that $f^{2}(x)=1 \forall x \in R$. The total number of such functions is
A. 2
B. 3
C. 6
D. none of these

Answer: C

10. $f(x)=\left\{\left(x^{2}+e^{\frac{1}{2-x}}\right)^{-1} k, x=2, x \neq 2\right.$ is continuous from right at the point $x=2$, then k equals $0 \mathrm{~b} .1 / 4 \mathrm{c} .-1 / 4 \mathrm{~d}$. none of these
A. 0
B. $1 \backslash 4$
C. $-1 / 4$
D. none of these

Answer: B

- Watch Video Solution

11. Let

$$
g(x)=f(f(x))
$$

where
$f(x)=\{1+x ; 0 \leq x \leq 2\}$ and $f(x)=\{3-x ; 2<x \leq 3\}$ then the number of points of discontinuity of $g(x)$ in $[0,3]$ is:
A. 0
B. 1
C. 2
D. gt 2

Answer: C

- View Text Solution

12. If the function $f(x)=\frac{(128 a+a x)^{1 / 8}-2}{(32+b x)^{1 / 5}-2}$ is continuous at $x=0$, then the value of a / b is $\frac{3}{5} f(0)$ b. $2^{8 / 5} f(0)$ c. $\frac{64}{5} f(0)$ d. none of these
A. $\frac{3}{5} f(0)$
B. $2^{8 / 5} f(0)$
C. $\frac{64}{5} f(0)$
D. none of these

Answer: C

- Watch Video Solution

13. If $f(x)=\left\{\frac{1-\cos \left(1-\frac{\cos x}{2}\right)}{2^{m} x^{n}} 1 x=0, x \neq 0\right.$ is continous at $x=0$ then the value of $m+n$ is a. $2 \mathrm{~b} .3 \mathrm{c} .-3 \mathrm{~d} .7$
A. 2
B. 3
C. -3
D. 7

Answer: C

- View Text Solution

14. Let $f(x)= \begin{cases}\frac{\alpha \cot x}{x}+\frac{\beta}{x^{2}}, & 0<x \leq 1 \\ \frac{1}{3}, & x=0\end{cases}$

If $f(x)$ is continuous at $x=0$, then the value of $\alpha^{2}+\beta^{2}$ is
A. 1
B. 2
C. 5
D. 9

Answer: B

- View Text Solution

15. Let $f(x)=\left\{\frac{2}{1+x^{2}}, \xi\right.$ srationalb, ξ srational has exactly two points of continuity then the value of b are $(0,3]$ b. $[0,1] \mathrm{c} .(0,2]$ d. φ
A. $(0,3]$
B. [0,1]
C. $(0,2]$
D. ϕ

Answer: C

16. If ${ }^{\prime} f(x)=\{\sin ((a-x) / 2) t h$ a $n[(p i x) /(2 a)] f o r x>a([\cos ((p i x) / 2)]) /(a-x) f o r x 0$, thenf($\mathrm{a}^{\wedge}-$-)<Ob. f hasaremovab \leq discont \in uityatx=ac. f hasanirremovab \leq discont \in uityat $\mathrm{x}=\mathrm{ad} . \mathrm{f}\left(\mathrm{a}^{\wedge}+\right)<\mathrm{O}^{`}$
A. $f\left(a^{-}\right)<0$
B. f has a removable discontinuity at $x=a$
C. f has an irremovable discontinuity at $x=a$
D. $f\left(a^{+}\right)<0$

Answer: B

- Watch Video Solution

17. Let $f(x)=[\tan x[\cot x]], x\left[\frac{\pi}{12}, \frac{\pi}{12}\right]$, (where [.] denotes the greatest integer less than or equal to x). Then the number of points, where $f(x)$ is discontinuous is a. one b. zero c. three d. infinite
A. one
B. zero
C. three
D. infinite

Answer: C

- View Text Solution

18. Let $f:[a, b] \rightarrow R$ be any function which is such that $f(x)$ is rational for irrational x and that $f(x)$ is iirrational for rational x , then in $[\mathrm{a}, \mathrm{b}]$
A. f is discontinuous everywhere
B. f is discontinuous only at $\mathrm{x}=0$ and discontinuous everywhere
C. f is continuous for all irrational x and discontinuous for rational x
D. f is continuous for rational x and discontinuous for irrational x

Answer: A

- View Text Solution

19. If $f(x)=[x](\sin k x)^{p}$ is continuous for real x , then (where [.] represents the greatest integer function)
A. $k \in[n \pi, n \in I], p>0$
B. $k \in\{2 n \pi, n \in I\}, p>0$
C. $k \in\{n \pi, n \in I\}, p \in R-\{0\}$
D. $k \in\{n \pi, n I, n \neq 0\}, p \in R-\{0\}$

Answer: A

D View Text Solution

20. Statement 1: Minimum number of points of discontinuity of the function $f(x)=(g(x)[2 x-1] \forall x \in(-3,-1)$, where [.] denotes the greatest integer function and $g(x)=a x^{3}=x^{2}+1$ is zero. Statement 2 : $f(x)$ can be continuous at a point of discontinuity, say $x=c_{1} o f[2 x-1]$ if $g\left(c_{1}\right)=0$. Statement 1 is True, Statement 2 is

True, Statement 2 isa correct explanation for Statement 1 . Statement 1 is True, Statement 2 is True, Statement 2 is NOT a correct explanation for statement 1. Statement 1 is True, Statement 2 is False Statement 1 is False, Statement 2 is True.
A. Statement 1 is True, Statement 2 is True, Statement 2 is a correct explaination for Statement 1.
B. Statement 1 is True, Statement 2 is True, Statement 2 is NOT a correct explanation for Statement 1/
C. Statement 1 is True, Statement 2 is False.
D. Statement 1 is False, Statement 2 is True.

Answer: D

- View Text Solution

21. Number of points of discontinuity of $f(x)=\left[\sin ^{-1} x\right]-[x]$ in its domain is equal to (where [.] denotes the greatest integer function) a. 0
b. 1 c. 2 d. 3
A. 0
B. 1
C. 2
D. 3

Answer: D

- Watch Video Solution

22. If $g(x)=(\lim)_{m \vec{\infty}} \frac{x^{m} f(x)+h(x)+3}{2 x^{m}+4 x+1}$ when $x \neq \operatorname{1and} g(1)=e^{3}$ such that $f(x), g(x) \operatorname{andh}(x)$ are continuous functions at $x=1$ then the value of $5 f(1)-2 h(1)$ is 7 b. 6 c. 9 d. 8
A. 7
B. 6
C. 9
D. 8

Answer: B

- Watch Video Solution

23. The number of points of discontinuity of $f x)=\left[2 x^{2}\right]-\{2 x 2\}^{2}$ (where [] denotes the greatest integer function and $\}$ is fractional part of $x)$ in the interval $(-2,2)$, is 1 b. 6 c. 2 d. 4
A. 1
B. 6
C. 2
D. 5

Answer: B

- Watch Video Solution

24. Let $f(x)=\left\{\begin{array}{ll}-3+|x|, & -\infty<x<1 \\ a+|2-x|, & 1 \leq x<\infty\end{array}\right.$ and
$g(x)= \begin{cases}2-|-x|, & -\infty<x<2 \\ -b+\operatorname{sgn}(\mathrm{x}), & 2 \leq x<\infty\end{cases}$
where $\operatorname{sgn}(\mathrm{x})$ denotes signum function of x . If $h(x)=f(x)+g(x)$ is discontinuous at exactly one point, then which of the following is not possible?
A. $a=-3, b=0$
B. $a=0, b=1$
C. $a=2, b=1$
D. $a=-3, b=1$

Answer: D

- View Text Solution

25. The function $f(x)=\frac{x^{3}}{8}-s \in \pi x+4 \in[-4,4]$ does not take the value -4 b. 10 c. 18 d. 12
B. 10
C. 18
D. 12

Answer: C

- View Text Solution

26. Let $f(x)$ be continuous functions $f: R \vec{R}$ satisfying $f(0)=1 \operatorname{and} f(2 x)-f(x)=x$. Then the value of $f(3)$ is 2 b. 3 c. 4 d. 5
A. 2
B. 3
C. 4
D. 5

Answer: C

27. about to only mathematics
A. $a=b=4$
B. $a=b=-4$
C. $a=4$ and $b=-4$
D. $a=-4$ and $b=4$

Answer: C

- Watch Video Solution

28. If $f(x)=\left\{[x]+\sqrt{\{x\}}, x<1 \frac{1}{[x]+\{x\}^{2}}, x \geq 1\right.$, then [where [.] and \{.] represent the greatest integer and fractional part functions respectively] $f(x)$ is continuous at $x=1 f(x)$ is not continuous at $x=1 f(x)$ is differentiable at $x=1(\lim)_{x \rightarrow 1} f(x)$ does not exist A. $f(x)$ is continuous at $x=1$ but not differentiable
B. $f(x)$ is not continuous at $x=1$
C. $f(x)$ is differentiable at $x=1$
D. $\lim _{x \rightarrow 1} f(x)$ does not exist

Answer: A

- Watch Video Solution

29. If f is an even function such that $(\lim)_{h \rightarrow} \frac{f(h)-f(0)}{h}$ has some finite non-zero value, then prove that $f(x)$ is not differentiable at $x=0$.
A. f is continuous and derivable at $\mathrm{x}=0$
B. f is continuous but not differentiable at $x=0$
C. f may be discontinuous at $\mathrm{x}=0$
D. None of these

Answer: B

30. Let $f(x)$ be differentiable for real x such that $f^{\prime}(x)>0 o n(-\infty,-4)$,

$$
f^{\prime}(x)<0 o n(-4,6),
$$ $f^{\prime}(x)>0 o n(6, \infty)$, If $g(x)=f(10-2 x)$, then the value of $g^{\prime}(2)$ is a.

1 b. 2 c. 0 d. 4
A. 1
B. 2
C. 0
D. 4

Answer: C

- Watch Video Solution

$f(x)=x^{2}-\left|x^{2}-1\right|+2| | x|-1|+2|x|-7$ is non-differentiable is a.
ob. 1 c. 2 d. 3
A. 0
B. 1
C. 2
D. 3

Answer: A

- View Text Solution

32. If $f(x)=|x-1| .([x]=[-x])$, then (where [.] represents greatest integer function)
A. $f(a)$ is continuous and differentiable at $x=1$
B. $f(x)$ is discontinuous at $x=1$
C. $f(x)$ is continuous at $x=2$
D. $f(x)$ is continuous but non-differentiable at $x=1$

Answer: D

- View Text Solution

33. Number of points where function $f(x)$ defined as $f:[0,2] \pi \vec{R}, f(x)=\left\{3-\left|\cos x-\frac{1}{\sqrt{2}}\right|,\left|\sin x<\frac{1}{\sqrt{2}}\right| 2+\left|\cos x+\frac{1}{\sqrt{2}}\right|\right.$, is non-differentiable is a. 2 b. 4 c. 6 d. 0
A. 2
B. 4
C. 6
D. 0

Answer: B

- Watch Video Solution

34. Let $f(x)=\left\{\begin{array}{ll}{[x]} & x \not \subset I \\ x-1 & x \in I\end{array}\right.$ (where, [.] denotes the greatest integer function) and $g(x)=\left\{\begin{array}{ll}\sin x+\cos x, & x<0 \\ 1, & x \geq 0\end{array}\right.$ Then for $\mathrm{f}(\mathrm{g}(\mathrm{x}))$ at $\mathrm{x}=0$
A. $\lim _{x \rightarrow 0} g(g(x))$ exists but not continuous
B. continuous but not differentiable at $\mathrm{x}=0$
C. differentiable at $\mathrm{x}=0$
D. $\lim _{x \rightarrow 0} f(g(x))$ does not exist

Answer: C

- View Text Solution

35. If $f(x)=\left\{\begin{array}{ll}\sin \left(\cos ^{-1} x\right)+\cos \left(\sin ^{-1} x\right), & x \leq 0 \\ \sin \left(\cos ^{-1} x\right)-\cos \left(\sin ^{-1} x\right), & x>0\end{array}\right.$ then at $x=0$
A. $f(x)$ is continuous and differentiable
B. $f(x)$ is continuous but not differentiable
C. $f(x)$ not continuous but differentiable
D. $f(x)$ is neither continuous nor differentiable
36. If $f(x)=\max \{\tan x, \sin x, \cos x\}$ where $x \in\left[-\frac{\pi}{2}, \frac{3 \pi}{2}\right)$ then the number of points, where $f(x)$ is non -differentiable, is
A. 2
B. 3
C. 4
D. 5

Answer: B

- View Text Solution

37. The number of points at which $g(x)=\frac{1}{1+\frac{2}{f(x)}}$ is not differentiable, where $f(x)=\frac{1}{1+\frac{1}{x}}$, is 1 b. 2 c. 3 d. 4
A. 1
B. 2
C. 3
D. 4

Answer: C

- Watch Video Solution

38. Let $f(x)=\lim _{n \rightarrow \infty} \sum_{r=0}^{n-1} \frac{x}{(r x+1)\{(r+1) x+1\}}$. Then
A. $f(x)$ is continuous but not differentiable at $x=0$
B. $f(x)$ is both continuous and differentiable at $x=0$
C. $f(x)$ is neither continuous not differentiable at $x=0$
D. $f(x)$ is a periodic function

Answer: C

39. Let the given function is differentiable at $\mathrm{x}=1$.
$f(x)= \begin{cases}\lim _{n \rightarrow \infty} \frac{a x(x-1)\left(\cot \frac{\pi x}{4}\right)^{n}+\left(p x^{2}+2\right)}{\left(\cot , \frac{\pi x}{4}\right)^{n}+1}, & x \in(0,1) \cup(1,2) \\ 0, & x=1\end{cases}$
Then the value of $|a+q|$ is
A. 4
B. 6
C. 8
D. 10

Answer: B

- Watch Video Solution

Multiple Correct Answer Type

1. Which of the following functions is/are not discontinuous at $x=1$?
A. $f(x)=\frac{1}{1+2^{\tan x}}$
B. $g(x)=\lim _{n \rightarrow \infty} \frac{1}{1+n \sin ^{2}(\pi x)}$
C. $h(x)=2^{-2^{\left(\frac{1}{1-X}\right)}}, x \neq 1$ and $h(1)=1$
D. $\phi(x)=\frac{x-1}{|x-1|+2(x-1)^{2}}, x \neq 1$ and $\phi(1)=1$

Answer: A

- Watch Video Solution

2. about to only mathematics
A. $h(x)$ may or may not be continuous in $[a, c]$
B. $h\left(b^{+}\right)=g\left(b^{-}\right)$and $h\left(b^{-}\right)=f\left(b^{+}\right)$
C. $h\left(b^{-}\right)=g\left(b^{+}\right)$and $h\left(b^{+}\right)=f\left(b^{-}\right)$
D. $h(x)$ has a removable discontinuity at $x=b$

Answer: C::D

3. If the function $f(x)$ defined as $f(x)$ defined as $f(x)=\left\{3, x=0\left(1+\frac{a x+b x^{3}}{x^{2}}\right), x>0\right.$ is continuous at $x=0$, then $a=0$ b. $b=e^{3}$ c. $a=1$ d. $b=(\log)_{e} 3$
A. $a=0$
B. $b=e^{3}$
C. $a=1$
D. $b=\log _{e} 3$

Answer: A: D

- View Text Solution

4.

Given
$f(x)=\left\{3-\left[\cot ^{-1}\left(\frac{2 x^{3}-3}{x^{2}}\right)\right] f\right.$ or $x>0\left\{x^{2}\right\} \cos \left(e^{\frac{1}{x}}\right) f$ or $x<0$
(where $\}$ and [] denotes the fractional part and the integral part functions respectively). Then which of the following statements do/does
not hold good? $f\left(0^{-}\right)=0$ b. $f\left(0^{+}\right)=3$ c. if $f(0)=0$, then $f(x)$ is continuous at $x=0 \mathrm{~d}$. irremovable discontinuity of f at $x=0$
A. $f\left(0^{-}\right)=0$
B. $f\left(0^{+}\right)=3$
C. If $f(0)=0$, then $\mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{x}=0$
D. Irremovable discontinuity of f at $x=0$

Answer: B::D

- View Text Solution

5. Let $f(x)=\left\{\begin{array}{ll}x\left[\frac{1}{x}\right]+x[x] & \text { if } \quad x \neq 0 \\ 0 & \text { if } \quad x=0\end{array}\right.$ (where $[\mathrm{x}]$ denotes the greatest integer function). Then the correct statement is/are
A. Limit exists for $x=-1$.
B. $f(x)$ has a removable discontinuity at $x=1$.
C. $f(x)$ has a non removable discontinuity at $x=2$.
D. $f(x)$ is discontinuous at all positive integers.

Answer: A::B::C::D

- View Text Solution

6. A function $f: R \rightarrow R$ is defined as
$f(x)=\lim _{n \rightarrow \infty} \frac{a x^{2}+b x+c+e^{n x}}{1+c . e^{n x}}$ where f is continuous on R , then
A. point (a, b, c) lies on line in space
B. point (a, b) represents the 2-dimensional Cartesian plane
C. Locus of point (a, c) and (c, b) intersect at one point
D. point (a, b, c) lies on the plane in space

Answer: A::B::C

- View Text Solution

7. Let f be a function with continuous second derivative and $f(0)=f^{\prime}(0)=0 . \quad$ Determine a function g by $g(x)=\left\{\frac{f(x)}{x}, x \neq 00, x=0\right.$ Then which of the following statements is correct? g has a continuous first derivative g has a first derivative g is continuous but g fails to have a derivative g has a first derivative but the first derivative is not continuous
A. g has a continuous first derivative
B. g has a first derivative
C. g is continuous but g fails to have a derivative
D. g has a first derivative but the first derivative is not continuous

Answer: A: B

- Watch Video Solution

8. Let $f(x)$ be a function defined on $(-a, a)$ with $a>0$. Assume that
$x=0 \operatorname{and}(\lim)_{x \rightarrow 0} \frac{f(x)-f(k x)}{x}=\alpha$, wherek $\in(0,1)$
$f^{\prime}\left(0^{+}\right)=0$ b. $f^{\prime}\left(0^{-}\right)=\frac{\alpha}{1-k}$ c. $f(x)$ is differentiable at $x=0 \mathrm{~d}$.
$f(x)$ is non-differentiable at $x=0$
A. $f^{\prime}\left(0^{+}\right)=0$
B. $f^{\prime}\left(0^{-}\right)=\frac{\alpha}{1-k}$
C. $\mathrm{f}(\mathrm{x})$ is defferentiable at $\mathrm{x}=0$
D. $f(x)$ is non-differentiable at $x=0$

Answer: B::C::D

- Watch Video Solution

9. If $f(x)=x^{1 / 3}(x-2)^{2 / 3}$ for all x, then the domain of f^{\prime} is $x \in R-\{0\}$ b. $\{x|x\rangle 0\}$ c. $x \in R-\{0,2\}$ d. $x \in R$
A. $x \in R-\{0\}$
B. $\{x \mid x>0\}$
C. $x \in R-\{0,2\}$
D. $x \in R$

Answer: C

- Watch Video Solution

Comprehension Type

1. Consider two function $y=f(x)$ and $y=g(x)$ defined as
$f(x)= \begin{cases}a x^{2}+b & 0 \leq x \leq 1 \\ b x+2 b & 1<x \leq 3 \\ (a-1) x+2 c-3 & 3<x \leq 4\end{cases}$
and $\quad g(x)= \begin{cases}c x+d & 0 \leq x \leq 2 \\ a x+3-c & 2<x<3 \\ x^{2}+b+1 & 3 \geq x \leq 4\end{cases}$
Let f be differentiable at $\mathrm{x}=1$ and $\mathrm{g}(\mathrm{x})$ be continuous at $\mathrm{x}=3$. If the roots of the quadratic equation $x^{2}+(a+b+c) \alpha x+49(k+k \alpha)=0$ are real distinct for all values of α then possible values of k will be
A. $k \in(-1,0)$
B. $k \in(\infty, 0)$
C. $k \in(1,5)$
D. $k \in(-1,1)$

Answer: A

- Watch Video Solution

2. Consider two function $y=f(x)$ and $y=g(x)$ defined as
$f(x)= \begin{cases}a x^{2}+b & 0 \leq x \leq 1 \\ b x+2 b & 1<x \leq 3 \\ (a-1) x+2 c-3 & 3<x \leq 4\end{cases}$
and $\quad g(x)= \begin{cases}c x+d & 0 \leq x \leq 2 \\ a x+3-c & 2<x<3 \\ x^{2}+b+1 & 3 \geq x \leq 4\end{cases}$
$\lim _{x \rightarrow 2} \frac{f(x)}{|g(x)|+1}$ exists and f is differentiable at $\mathrm{x}=1$. The value of limit will be
A. -2
B. -1
C. 0
D. 2

Answer: C

- Watch Video Solution

Examples

1. A function $f(x)$ satisfies the following property: $f(x y)=f(x) f(y)$. Show that the function $f(x)$ is continuous for all values of x if it is continuous at $x=1$.

- Watch Video Solution

2. Let $f(x)=\left\{\frac{\log (1+x)^{1+x}-x}{x^{2}}\right\}$. Then find the value of $f(0)$ so that the function f is continuous at $x=0$.

- Watch Video Solution

3. Let : $f(x)=\left\{\frac{a+3 \cos x}{x^{2}}, x<0 b \tan \left(\frac{\pi}{[x+3]}\right), x \geq 0\right.$ If $f(x)$ is continuous at $x=0$, then find $a a n d b$, where [.] denotes the greatest integer function.

- Watch Video Solution

4. Let $f(x)$ be a function defined as $f(x)=\left\{\frac{x^{2}-1}{x^{2}-2|x-1|-1}, x \neq 1 \frac{1}{2}, x=1\right.$ Discuss the continuity of the function at $x=1$.

- Watch Video Solution

5. about to only mathematics

- Watch Video Solution

6. Draw the graph and discuss the continuity of $f(x)=[\sin x+\cos x], x \in[0,2 \pi]$, where [.] represents the greatest integer function.

- Watch Video Solution

7. If the function $f(x)=\left[\frac{(x-2)^{3}}{a}\right] \sin (x-2)+a \cos (x-2)$, [.] denotes the greatest integer function, is continuous in $[4,6]$, then find the values of a.

- Watch Video Solution

8. If $f(x)=\operatorname{sgn}(2 \sin x+a)$ is continuous for all x, then find the possible values of a.

- Watch Video Solution

9. Discuss the continuity of $f(x)=(\lim)_{n} \rightarrow \frac{x^{2 n}-1}{x^{2 n}+1}$

- Watch Video Solution

10. Find the values of a if $f(x)=(\lim)_{n} \underset{\infty}{ } \frac{a x^{2 n}+2}{x^{2 n}+a+1}$ is continuous at $x=1$.

(D) Watch Video Solution

11. For $x>0$, leth $(x)=\left\{\frac{1}{q}\right.$, if $x=\frac{p}{q} 0$, if ξ sirrational where
$p, q>0$ are relatively prime integers. Then prove that $f(x)$ is continuous for all irrational values of x.

- Watch Video Solution

12. If $f(x)=\frac{x+1}{x-1} \operatorname{andg}(x)=\frac{1}{x-2}$, then discuss the continuity of $f(x), g(x), \operatorname{andfog}(x)$.
13. Show that the function $f(x)=(x-a)^{2}(x-b)^{2}+x$ takes the value $\frac{a+b}{2}$ for some value of $x \in[a, b]$.

- Watch Video Solution

14. Using intermediate value theorem, prove that there exists a number x such that $x^{2005}+\frac{1}{1+\sin ^{2} x}=2005$.

- Watch Video Solution

15. $\begin{array}{cc}\text { Discuss } & \text { the } \\ f(x)=\left\{\frac{\sin x^{2}}{x}, x \neq 00, x=\right. & 0 a t x=0\end{array}$

- Watch Video Solution

16.

$f(x)=\left\{x \sin \left(1 n x^{2}\right), x \neq 00, x=0 a t x=0\right.$

Watch Video Solution

17. If $f(x)=\left\{x, x \leq 1 x^{2}+b x+c, x>1\right.$,

- Watch Video Solution

18. Find the values of aandb if
$f(x)=\left\{a+\sin ^{-1}(x+b), x \geq 1 x, x<1\right.$ is differentiable at $x=1$.

- Watch Video Solution

19.

$f(x)=\left\{a x(x-1)+b, x<1 x-1,1 \leq x \leq 3 \cdot p x^{2}+q x+2, x>3\right.$
Find the values of the constants $a, b, p a n d q$ so that all the following
conditions are satisfied $f(x)$ is continuous for all $x \cdot f(1)$ does not exist. $f^{\prime}(x)$ is continuous at $x=3$

- Watch Video Solution

20. If $f(x)=\max \left\{x^{2}+2 a x+1, b\right\}$ has two points of nondifferentiability, then prove that $a^{2}>1-b$

- Watch Video Solution

21. Test the continuity and differentiability of the function $f(x)=\left|\left(x+\frac{1}{2}\right)[x]\right|$ by drawing the graph of the function when $-2 \leq x<2$, where [.] represents the greatest integer function.

- Watch Video Solution

22.

Discuss
the
differentiability
of
$f(x)=[x]+\backslash 1-x \mid \dot{x} \in(-1,3)$, where $[$.$] \quad represents greatest$
integer function.

- Watch Video Solution

23. Discuss the differentiability of
$f(x)=\left(x^{2}-1\right)\left|x^{2}-x-2\right|+\sin (|x|)$.

- Watch Video Solution

24.

$f(x-y)=f(x) \cdot g(y)-f(y) \cdot g(x)$ and $g(x-y)=g(x) \cdot g(y)-f(x) \cdot g(?$
for all $x, y \in R$. If right hand derivative at $\mathrm{x}=0$ exists for $\mathrm{f}(\mathrm{x})$, then
derivative of $g(x)$ at $x=0$
(Watch Video Solution

Illustration

1. Discuss the continuity of the following function : $f(x)=\{1$ if x rational ; 0 if x is irrational

- Watch Video Solution

Exercise 41

1. A function $f(x)$ satisfies the following property: $f(x \dot{y})=f(x) f(y)$. Show that the function $f(x)$ is continuous for all values of x if it is continuous at $x=1$.

- Watch Video Solution

Exercise Single

1. If $f(x)=\frac{a \cos x-\cos b x}{x^{2}}, x \neq 0 \operatorname{and} f(0)=4$ is continous at $x=0$, then the ordered pair (a, b) is $(\pm 1,3)$ b. $(1, \pm 3)$ c. $(-1,-3) \mathrm{d}$.
$(-1,3)$
A. $\pm 1,3$)
B. $(1, \pm 3)$
C. $(-1,-3)$
D. $(1,3)$

Answer: B

- Watch Video Solution

2. Let f be a continuous function on R such that $f\left(\frac{1}{4 n}\right)=\frac{\sin e^{n}}{e^{n^{2}}}+\frac{n^{2}}{n^{2}+1}$ Then the value of $f(0)$ is
A. 1
B. $1 / 2$
C. 0
D. none of these

- Watch Video Solution

3. If $f(x)=\frac{x^{2}-b x+25}{x^{2}-7 x+10}$ for $x \neq 5$ and f is continuous at $x=5$ then $f(5)=$
A. 0
B. 5
C. 10
D. 25

Answer: A

Watch Video Solution

4. The function $f(x)=\frac{\tan |\pi[x-\pi]|}{1+[x]^{2}}$, where $[\mathrm{x}]$ denotes the greatest integer less than or equal to x, is
A. $f(x)$ is discontinuous at some x
B. $f(x)$ is continuous at all x, but the derivative $f^{\prime}(x)$ does not exist for some x
C. $f^{\prime}(x)$ exists for all x , but $\mathrm{f}^{\prime \prime}(\mathrm{x})$ does not exist for some x
D. $f^{\prime}(x)$ exists for all x

Answer: D

- Watch Video Solution

5. if $f(x)=\left\{\begin{array}{ll}\frac{1-|x|}{1+x} & x \neq-1 \\ 1 & x=-1\end{array}\right.$ then $\mathrm{f}([2 \mathrm{x}])$, where [.] represents the greatest integer function , is
A. discontinuous at $x=-1$
B. continuous at $\mathrm{x}=0$
C. continuous at $\mathrm{x}=1 / 2$
D. continuous at $\mathrm{x}=1$

Answer: B

- Watch Video Solution

6. Let $f(x)=\left\{\frac{x-4}{|x-4|}+a, x<4 a+b, \frac{x-4}{|x-4|}+b, x>4\right.$ Then $f(x)$ is continous at $\quad x=4 \quad$ when $\quad a=0, b=0 \quad$ b. $\quad a=1, b=1 \quad$ c. $a=-1, b=1$ d. $a=-1, b=-1$
A. $a=0, b=0$
B. $a=1, b=1$
C. $a=-1, b=1$
D. $a=1, b=-1$

Answer: D

7. Which of the following is true about
$\operatorname{Let} f(x)=\left\{\begin{array}{ll}\frac{x-2}{|x-2|}\left(\frac{x^{2}-1}{x^{2}+1}\right) & x \neq 2 \\ \frac{3}{5} & x=2\end{array} ?\right.$
A. $f(X)$ is continuous at $x=2$
B. $f(x)$ has removable discontinuity ata $x=2$.
C. $f(x)$ has non-removable discontinuity at $x=2$.
D. Discontiuity at $\mathrm{x}=2$ can be removed by redefining the function at $\mathrm{x}=2$.

Answer: C

- Watch Video Solution

8. If $f(x)= \begin{cases}x+2 & x<0 \\ -x^{2}-2 & 0 \leq x<1 \\ x & x \geq 1\end{cases}$
then the number of points of discontinuity of $\mid \mathrm{f}(\mathrm{x})$ is
A. 1
B. 2
C. 3
D. none of these

Answer: A

D Watch Video Solution

9. Which of the following statements is always true? ([.] represents the greatest integer function. a) If $f(x)$ is discontinuous then $|f(x)|$ is discontinuous b) If $f(x)$ is discontinuous then $\mathrm{f}(|\mathrm{x}|)$ is discontinuous c) $f(x)=[g(x)]$ is discontinous when ${ }^{\prime} g(x)$ is an integer d) none of these
A. if $f(x)$ is discontinuous then $|f(x)|$ is discontinuous
B. if $f(x)$ is discontinuous, then $f(|x|)$ is discontinuous .
C. $f(x)=[g(x)]$ is discontinuous, when $g(x)$ is an integer
D. none of these

- Watch Video Solution

10. The number of point $f(x)=\left\{\begin{array}{ll}{[\cos \pi x]} & 0 \leq x<1 \\ |2 x-3|[x-2] & 1<x \leq 2\end{array}\right.$ is discontinuous at Is ([.] denotes the greatest intgreal function)
A. two
B. three
C. four
D. zero

Answer: B

- Watch Video Solution

Question Bank

1. Let $f(x)=\frac{\sqrt{x^{2}+p x+1}}{x^{2}-p}$. If $\mathrm{f}(\mathrm{x})$ is discontinuous at exactly 2 values of x then number of integers in the range of p is

D Watch Video Solution

