©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - CENGAGE

COORDINATE SYSYEM

Examples

1. Find the coordinates of circumcentre of a triangle whose vertices are
$(-3,1),(0,-2)$ and $(1,3)$

- Watch Video Solution

2. about to only mathematics

Watch Video Solution
3. At what point should the origin be shifted if the coordinates of a point $(4,5)$ become $(-3,9)$?

- Watch Video Solution

4. If the origin is shifted to the point $(1,-2)$ without the rotation of the axes, what do the following equations become?

$$
2 x^{2}+y^{2}-4 x+4 y=0 \text { (ii) } y^{2}-4 x+4 y+8=0
$$

- Watch Video Solution

5. Shift the origin to a suitable point so that the equation $y^{2}+4 y+8 x-2=0$ will not contain a term in y and the constant term.

- Watch Video Solution

6. The equation of curve referred to the new axes, axes retaining their directions, and origin $(4,5)$ is $X^{2}+Y^{2}=36$. Find the equation referred to the original axes.

- Watch Video Solution

7. $A D$ is the median on $B C$. Find the coordinates of the point D

- Watch Video Solution

8. The equation of a curve referred to a given system of axes is $3 x^{2}+2 x y+3 y^{2}=10$. Find its equation if the axes are rotated through an angle 45°, the origin remaining unchanged.

- Watch Video Solution

9. If $h^{2}=a b$ then the angle between the pair of straight lines given by $a x^{2}+2 h x y+b y^{2}=0$ is

- Watch Video Solution

10. In $A D \perp B C$, prove that $A B^{2}+C D^{2}=B D^{2}+A C^{2}$

- Watch Video Solution

11. Find the coordinates of the circumcenter of the triangle whose vertices are $(A(5,-1), B(-1,5)$, and $C(6,6)$. Find its radius also.

- Watch Video Solution

12. Prove that the points $(0,0)(3, \sqrt{3})$ and $(3,-\sqrt{3})$ are the vertices of an equilateral triangle.

- Watch Video Solution

13. If O is the origin and if the coordinates of any two points $Q_{1} \operatorname{and} Q_{2}$ are $\quad\left(x_{1}, y_{1}\right) \operatorname{and}\left(x_{2}, y_{2}\right)$ respectively, prove that $O Q_{1} O Q_{2} \cos \angle Q_{1} O Q_{2}=x_{1} x_{2}+y_{1} y_{2}$.

- Watch Video Solution

14. Given that $P(3,1), Q(6.5)$, and $R(x, y)$ are three points such that the angle $P R Q$ is a right angle and the area of $R Q P$ is 7 , find the number of such points R.

- Watch Video Solution

15. Find the area of a triangle having vertices $A(3,2), B(11,8)$, and $C(8,12)$.

- Watch Video Solution

16. Prove that the area of the triangle whose vertices are $(t, t-2),(t+2, t+2)$, and $(t+3, t)$ is independent of t.

- Watch Video Solution

17. Find the area of the quadrilateral $A B C D$ having vertices $A(1,1), B(7,-3), C(12,2)$, and $D(7,21)$.

- Watch Video Solution

18. For what value of k are the points $(k, 2-2 k),(-k+1,2 k) \operatorname{and}(-4-k, 6-2 k)$ collinear?

- Watch Video Solution

19. If the coordiantes of two points A and B are $(3,4)$ and (5, -2) respectively. Find the coordinates of any point P if $P A=P B$ and area of $\Delta P A B=10$ sq. units.
20. If the vertices of a triangle have rational coordinates, then prove that the triangle cannot be equilateral.

- Watch Video Solution

21. A point R with x-coordinate 4 lies on the line segment joining the points $P(2,-3,4)$ and $Q(8,0,10)$. Find the coordinates of the point R .

- Watch Video Solution

22. The sequence $\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}+\sqrt{2}}, \frac{1}{\sqrt{3}+2 \sqrt{2}}$ form an

- Watch Video Solution

23. Find the coordinates of the point which divides the line segments joining the points $(6,3)$ and $(-4,5)$ in the ratio $3: 2$ (i) internally and (ii) externally.

- Watch Video Solution

24. Given that $A(1,1)$ and $B(2,-3)$ are two points and D is a point on $A B$ produced such that $A D=3 A B$. Find the coordinates of D.

- Watch Video Solution

25. Determine the ratio in which the line $3 x+y-9=0$ divides the segment joining the points (1,3) and (2, 7).

- Watch Video Solution

26. Prove that the points $(-2,-1),(1,0),(4,3)$, and $(1,2)$ are the vertices of a parallelogram. Is it a rectangle?

Watch Video Solution

27. Find the ratio in which the line segment joining the points $A(3,8)$ and $B(-9,3)$ is divided by the ' Y -axis.

- Watch Video Solution

28. If vertex A of triangle $A B C$ is $(3,5)$ and centroid is $(-1,2)$, then find the midpoint of side $B C$.

- Watch Video Solution

29. $\mathrm{P}(3,4), Q(7,2)$ and $R(-2,-1)$ are the vertices of $P Q R$. Write down the slope of each side of the triangle.
30. If $\left(x_{i}, y_{i}\right), i=1,2,3$, are the vertices of an equilateral triangle such that $\left(x_{1}+2\right)^{2}+\left(y_{1}-3\right)^{2}=\left(x_{2}+2\right)^{2}+\left(y_{2}-3\right)^{2}=\left(x_{3}+2\right)^{2}+\left(y_{2}-3\right)^{2}=$ then find the value of $\frac{x_{1}+x_{2}+x_{3}}{y_{1}+y_{2}+y_{3}}$.

(Watch Video Solution

31.

If
$A B C$
having
vertices
$A\left(a \cos \theta_{1}, a \sin \theta_{1}\right), B\left(a \cos \theta_{2} a \sin \theta_{2}\right), a n d C\left(a \cos \theta_{3}, a \sin \theta_{3}\right)$ is equilateral, then prove
that
$\cos \theta_{1}+\cos \theta_{2}+\cos \theta_{3}=\sin \theta_{1}+\sin \theta_{2}+\sin \theta_{3}=0$.

- Watch Video Solution

32. Find the orthocentre of the triangle whose vertices are $(0,0),(3,0)$, and $(0,4)$.

- Watch Video Solution

33. If circumcentre of a traingle is outside the traingle, then what is the type of traingle?

- Watch Video Solution

34. If the circumcenter of an acute-angled triangle lies at the origin and the centroid is the middle point of the line joining the points $\left(a^{2}+1, a^{2}+1\right)$ and $(2 a,-2 a)$, then find the orthocentre.

- Watch Video Solution

35. Orthocenter and circumcenter of a $\operatorname{Delta} A B C$ are $(a, b) \operatorname{and}(c, d)$, respectively. If the coordinates of the vertex A are $\left(x_{1}, y_{1}\right)$, then find the coordinates of the middle point of $B C$.
36. If a vertex of a triangle is $(1,1)$, and the middle points of two sides passing through it are $-2,3)$ and $(5,2)$, then find the centroid and the incenter of the triangle.

- Watch Video Solution

37. The vertices of a triangle are $A(-1,-7), B(5,1) \operatorname{and} C(1,4)$. If the internal angle bisector of $\angle B$ meets the side $A C$ in D, then find the length $A D$.

- Watch Video Solution

38. Determine x so that the line passing through 3,4$) \operatorname{and}(x, 5)$ makes an angle of 135^{0} with the positive direction of the x -axis.

- Watch Video Solution

39. Which line is having the greatest inclination with the positive direction of the x-axis? (a) Line joining the points $(1,3)$ and $(4,7)$ (b) Line (c)(d) $3 x-4 y+3=0(e)(\mathrm{f})$

- Watch Video Solution

40. If the point $(2,3),(1,1), \operatorname{and}(x, 3 x)$ are collinear, then find the value of x, using slope method.

- Watch Video Solution

41. If the points $(a, 0),(b, 0),(0, c) \operatorname{and}(0, d)$ are concyclic $(a, b, c, d>0)$, then prove that $a b=c$.

- Watch Video Solution

42. If three points are $A(-2,1) B(2,3)$, and $C(-2,-4)$, then find the angle between $A B a n d B C$.

- Watch Video Solution

43. Angle of a line with the positive direction of the x-axis is θ. The line is rotated about some point on it in anticlockwise direction by angle 45^{0} and its slope becomes 3 . Find the angle θ.

- Watch Video Solution

44. Let $A(6,4) \operatorname{and} B(2,12)$ be two given point. Find the slope of a line perpendicular to $A B$.

- Watch Video Solution

45. If line $3 x-a y-1=0$ is parallel to the line $(a+2) x-y+3=0$ then find the value of a.

- Watch Video Solution

46. If $A(2,-1) \operatorname{and} B(6,5)$ are two points, then find the ratio in which the food of the perpendicular from $(4,1)$ to $A B$ divides it.

- Watch Video Solution

47. If $\left(b_{2}-b_{1}\right)\left(b_{3}-b_{1}\right)+\left(a_{2}-a+1\right)\left(a_{3}-a_{1}\right)=0$, then prove that the circumcenter of the triangle having vertices $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)$ and $\left(a_{3}, b_{3}\right)$ is $\left(\frac{a_{2+a_{3}}}{2}, \frac{b_{2+} b_{3}}{2}\right)$

- Watch Video Solution

48. Find the orthocentre of $A B C$ with vertices $A(1,0), B(-2,1)$, and $C(5,2)$

Watch Video Solution

49. Two medians drawn from the acute angles of a right angled triangle intersect at an angle $\frac{\pi}{6}$. If the length of the hypotenuse of the triangle is 3 units, then the area of the triangle (in sq. units) is $\sqrt{3}$ (b) 3 (c) $\sqrt{2}$ (d) 9

- Watch Video Solution

50. State which of the following statements are true.
(i) $\}=\phi$
(ii) $\phi=0$
(iii) $0=\{0\}$
51. Convert the following polar coordinates to its equivalent Cartesian coordinates.
(i) $(2, \pi)$
(ii) $(\sqrt{3}, \pi / 6)$

- Watch Video Solution

52. Convert the following polar coordinates to its equivalent Cartesian coordinates.
(i) $(2, \pi)$
(ii) $(\sqrt{3}, \pi / 6)$

- Watch Video Solution

53. Convert $y=10$ into a polar equation.

- Watch Video Solution

54. Express the polar equation $r-2 \cos \theta$ in rectangular coordinates.

- Watch Video Solution

55. Convert $x^{2}-y^{2}=4$ into a polar equation.

- Watch Video Solution

56. Convert $r \sin \theta=r \cos \theta+4$ into its equivalent Cartesian equation.

- Watch Video Solution

57. Convert $r=\cos e c \theta e^{r \cos \theta}$ into its equivalent Cartesian equation.

- Watch Video Solution

58. Find the maximum distance of any point on the curve $x^{2}+2 y^{2}+2 x y=1$ from the origin.

- Watch Video Solution

59. The sum of the squares of the distances of a moving point from two fixed points $(\mathrm{a}, \mathrm{0})$ and $(-a, 0)$ is equal to a constant quantity $2 c^{2}$. Find the equation to its locus.

- Watch Video Solution

60. Find the locus of a point, so that the join of $(-5,1)$ and $(3,2)$ subtends a right angle at the moving point.

- Watch Video Solution

61. Find the locus of a point such that the sum of its distance from the points $(0,2)$ and $(0,-2)$ is 6 .

- Watch Video Solution

62. $A B$ is a variable line sliding between the coordinate axes in such a way that A lies on the x-axis and B lies on the y-axis. If P is a variable point on $A B$ such that $P A=b, P b=a$, and $A B=a+b$, find the equation of the locus of P.

- Watch Video Solution

63. Two points PandQ are given. R is a variable point on one side of the line $P Q$ such that $\angle R P Q-\angle R Q P$ is a positive constant 2α. Find the locus of the point R.

- Watch Video Solution

64. If the coordinates of a variable point P are $(a \cos \theta, b \sin \theta)$, where θ is a variable quantity, then find the locus of P.

- Watch Video Solution

65. Find the locus of the point $\left(t^{2}-t+1, t^{2}+t+1\right), t \in R$.

- Watch Video Solution

66. The locus of a moving point $P\left(a \cos ^{3} \theta, a \sin ^{3} \theta\right)$ is:

- Watch Video Solution

67. If $A(\cos \alpha, \sin \alpha), B(\sin \alpha,-\cos \alpha), C(1,2)$ are the vertices of $A B C$, then as α varies, find the locus of its centroid.

- Watch Video Solution

68. If a, b, c are the $p t h, q t h, r t h$ terms, respectively, of an $H P$, show that the points $(b c, p),(c a, q)$, and $(a b, r)$ are collinear.

- Watch Video Solution

69. Find the area of a triangle formed by the points $\mathrm{A}(5,2), \mathrm{B}(4,7)$ and $\mathrm{C}(7$, -4).

- Watch Video Solution

70. Find the coordinates of the foot of the perpendicular P from the origin to the plane $2 x-3 y+4 z-6=0$

- Watch Video Solution

71. M is the foot of the perpendicular from a point P on a parabola $y^{2}=4 a x$ to its directrix and $S P M$ is an equilateral triangle, where S is the focus. Then find $S P$.

\bullet Watch Video Solution

72. If (x, y) and (x, y) are the coordinates of the same point referred to two sets of rectangular axes with the same origin and it $u x+v y$, where u and v are independent of xandy, becomes $V X+U Y$, show that $u^{2}+v^{2}=U^{2}+V^{2}$.

- Watch Video Solution

73. What does the equation $2 x^{2}+4 x y-5 y^{2}+20 x-22 y-14=0$ become when referred to the rectangular axes through the point $(-2,-3)$, the new axes being inclined at an angle at 45^{0} with the old axes?

- Watch Video Solution

74. Prove the identitie $\frac{\cos \theta}{1+\sin \theta}=\sec \theta-\tan \theta$
75. about to only mathematics

- Watch Video Solution

76. Two rods are rotating about two fixed points in opposite directions. If they start from their position of coincidence and one rotates at the rate double that of the other, then find the locus of point of the intersection of the two rods.

- Watch Video Solution

Exercise 11

1. What is the minimum area of a triangle with integral vertices ?
2. What is length of the projection of line segment joining points $(2,3)$ and $(7,5)$ on x-axis.

- Watch Video Solution

3. about to only mathematics

- Watch Video Solution

4. Find the equation to which the equation $x^{2}+7 x y-2 y^{2}+17 x-26 y-60=0$ is transformed if the origin is shifted to the point $(2,-3)$, the axes remaining parallel to the original axies.

- Watch Video Solution

5. Show that the equation $3 x^{2}-x+7=0$ can not be satisfied by any real values of x.

- Watch Video Solution

6. Given the equation $4 x^{2}+2 \sqrt{3} x y+2 y^{2}=1$. Through what angle should the axes be rotated so that the term $x y$ is removed from the transformed equation.

- Watch Video Solution

Exercise 12

1. The distance between the points ($a \cos \alpha, a \sin \alpha$) and ($a \cos \beta, a \sin \beta$) is

- Watch Video Solution

2. If $X=\{-5,1,3,4\}$ and $Y=\{a, b, c\}$, then which of the following relations are function from X to Y ?
(i) $R_{1}=\{(-5, a),(1, a),(3, b)\}$
(ii) $R_{2}=\{(-5, b),(1, b),(3, a),(4, c)\}$
(iii) $R_{3}=\{(-5, a),(1, a),(3, b),(4, c),(1, b)\}$

- Watch Video Solution

3. If the points $(1,1):\left(0, \sec ^{2} \theta\right)$; and $\left(\operatorname{cosec}^{2} \theta, 0\right)$ are collinear, then find the value of θ

- Watch Video Solution

4. If the area of the circle is A_{1} and the area of the regular pentagon inscribed in the circle is A_{2}, then find the ratio $\frac{A_{1}}{A_{2}}$.

- Watch Video Solution

5. Let $A B C D$ be a rectangle and P be any point in its plane. Show that $A P^{2}+P C^{2}=P B^{2}+P D^{2}$.

Watch Video Solution

6. Find the length of altitude through A of the triangle $A B C$, where $A \equiv(-3,0) B \equiv(4,-1), C \equiv(5,2)$

- Watch Video Solution

7. Find the area of the pentagon whose vertices are $A(1,1), B(7,21), C(7,-3), D(12,2)$, and $E(0,-3)$

- Watch Video Solution

8. Four points $A(6,3), B(-3,5), C(4,-2)$ and $D(x, 2 x)$ are given in such a way that $\frac{(\text { Areaof } D B C)}{(\text { Areaof } A B C)}=\frac{1}{2}$.

Exercise 13

1. If point $P(3,2)$ divides the line segment $A B$ internally in the ratio of 3:2 and point $Q(-2,3)$ divides AB externally in the ratio 4:3 then find the coordinates of points A and B.

- Watch Video Solution

2. If the point $(x,-1),(3, y),(-2,3)$, and $(-3,-2)$ taken in order are the vertices of a parallelogram, then find the values of xandy.

- Watch Video Solution

3. If the midpoints of the sides of a triangle are
$(2,1),(-1,-3), \operatorname{and}(4,5)$, then find the coordinates of its vertices.
4. The line joining $A(b \cos \alpha b \sin \alpha)$ and $B(a \cos \beta, a \sin \beta)$ is produced to the point $M(x, y)$ so that $A M$ and $B M$ are in the ratio $b: a$. Then prove that $x+y \tan \left(\alpha+\frac{\beta}{2}\right)=0$.

- Watch Video Solution

5. If the middle points of the sides of a triangle are $(-2,3),(4,-3), \operatorname{and}(4,5)$, then find the centroid of the triangle.

- Watch Video Solution

6. The incentre of the triangle with vertices $(1, \sqrt{3})(0,0)(2,0)$ is

- Watch Video Solution

7. If $(1,4)$ is the centroid of a triangle and the coordinates of its any two vertices are $(4,-8)$ and $(-9,7)$, find the area of the triangle.

Watch Video Solution

8.

If
$A B C$
having
vertices
$A\left(a \cos \theta_{1}, a \sin \theta_{1}\right), B\left(a \cos \theta_{2} a \sin \theta_{2}\right), a n d C\left(a \cos \theta_{3}, a \sin \theta_{3}\right)$
equilateral, then prove that
$\cos \theta_{1}+\cos \theta_{2}+\cos \theta_{3}=\sin \theta_{1}+\sin \theta_{2}+\sin \theta_{3}=0$.

- Watch Video Solution

9. If $\left(x_{i}, y_{i}\right), i=1,2,3$, are the vertices of an equilateral triangle such that
$\left(x_{1}+2\right)^{2}+\left(y_{1}-3\right)^{2}=\left(x_{2}+2\right)^{2}+\left(y_{2}-3\right)^{2}=\left(x_{3}+2\right)^{2}+\left(y_{2}-3\right)^{2}=$ then find the value of $\frac{x_{1}+x_{2}+x_{3}}{y_{1}+y_{2}+y_{3}}$.
10. about to only mathematics

- Watch Video Solution

Exercise 14

1. The line joining the points $(x, 2 x) \operatorname{and}(3,5)$ makes an obtuse angle with the positive direction of the x-axis. Then find the values of x.

- Watch Video Solution

2. If the line passing through $(4,3) \operatorname{and}(2, k)$ is parallel to the line $y=2 x+3$, then find the value of k.

- Watch Video Solution

3. The centroid of a triangle ABC is at the point $(1,1,1)$. If the coordinates of A and B are $(3,-5,7)$ and $(-1,7,-6)$, respectively, find the coordinates of the point C .

- Watch Video Solution

4. For a given point $A(0,0), A B C D$ is a rhombus of side 10 units where slope of $A B$ is $\frac{4}{3}$ and slope of $A D$ is $\frac{3}{4}$. The sum of abscissa and ordinate of point C (where C lies in first quadrant) is

- Watch Video Solution

5. The line joining the points $A(2,1), \operatorname{and} B(3,2)$ is perpendicular to the line $\left(a^{2}\right) x+(a+2) y+2=0$. Find the values of a.

- Watch Video Solution

6. Find the angle between the line joining the points $(1,-2),(3,2)$ and the line $x+2 y-7=0$.

Watch Video Solution

7. The othocenter of $\triangle A B C$ with vertices $B(1,-2)$ and $C(-2,0)$ is $H(3,-1)$.Find the vertex A .

- Watch Video Solution

8. Find the area of the triangle with vertices $\mathrm{A}(1,1,2) \mathrm{B}(2,3,5)$ and $\mathrm{C}(1,5,5)$.

- Watch Video Solution

1. Convert the following polar coordinates to its equivalent Cartesian coordinates.
(i) $(2, \pi)$
(ii) $(\sqrt{3}, \pi / 6)$

- Watch Video Solution

2. Convert the following Cartesian coordinates to the cooresponding polar coordinates using positive r.
(i) $(1,-1)$
(ii) $(-3,-4)$

- Watch Video Solution

3. Convert $2 x^{2}+3 y^{2}=6$ into the polar equation.

- Watch Video Solution

4. Convert $r=4 \tan \theta \sec \theta$ into its equivalent Cartesian equation.

- Watch Video Solution

5. Find the minimum distance of any point on the line $3 x+4 y-10=0$ from the origin using polar coordinates.

- Watch Video Solution

Exercise 16

1. Find the locus of a point whose distance from $(a, 0)$ is equal to its distance from the y -axis.

- Watch Video Solution

2. The coordinates of the point $\operatorname{Aand} B$ are $(a, 0)$ and $(-a, 0)$, respectively. If a point P moves so that $P A^{2}-P B^{2}=2 k^{2}$, when k is
constant, then find the equation to the locus of the point P.

- Watch Video Solution

3. Let $A(2,-3)$ and $B(-2,1)$ be vertices of a triangle $A B C$. If the centroid of this triangle moves on the line $2 x+3 y=1$, then the locus of the vertex C is the line

- Watch Video Solution

4. Q is a variable point whose locus is $2 x+3 y+4=0$; corresponding to a particular position of Q, P is the point of section of $O Q, O$ being the origin, such that $O P: P Q=3: 1$. Find the locus of P.

- Watch Video Solution

5. Find the locus of the middle point of the portion of the line $x \cos \alpha+y \sin \alpha=p$ which is intercepted between the axes, given that p
remains constant.

- Watch Video Solution

6. Find the locus of the point of intersection of lines $x \cos \alpha+y \sin \alpha=a$ and $x \sin \alpha-y \cos \alpha=b(\alpha$ is a variable $)$.

- Watch Video Solution

7. A point moves such that the area of the triangle formed by it with the points $(1,5)$ and $(3,-7)$ is 21 sq. units. Then locus of the point is

- Watch Video Solution

8. A variable line through point $P(2,1)$ meets the axes at AandB. Find the locus of the circumcenter of triangle $O A B$ (where O is the origin).
9. A straight line is drawn through $P(3,4)$ to meet the axis of x and y at AandB , respectively. If the rectangle $O A C B$ is completed, then find the locus of C.

- Watch Video Solution

Exercise Single

1. $A B C$ is an isosceles triangle. If the coordinates of the base are $B(1,3)$ and $C(-2,7)$, the coordinates of vertex A can be (a) $(1,6)$ (b) $\left(-\frac{1}{2}, 5\right)$ (c) $\left(\frac{5}{6}, 6\right)$ (d) none of these
A. $(1,6)$
B. $(-1 / 2,5)$
C. $(-5 / 6,6)$
D. none of these

Answer: C

Watch Video Solution

2. about to only mathematics
A. $\left(0, \frac{\tan ^{-1.5}}{4}\right]$
B. $\left(0, \frac{\tan ^{-1.5}}{4}\right)$
C. $\left(2 \tan ^{-1} \frac{5}{4}, 2\right)$
D. none of these

Answer: A

- Watch Video Solution

3. Which of the following sets of points form an equilateral triangle? (a)
$(1,0),(4,0),(7,-1)$
(b)
$(0,0),\left(\frac{3}{2}, \frac{4}{3}\right),\left(\frac{4}{3}, \frac{3}{2}\right)$
$\left(\frac{2}{3},\right),\left(0, \frac{2}{3}\right),(1,1)$ (d) None of these
A. $(1,0),(4,0),(7,-1)$
B. $(0,0),(3 / 2,4 / 3), 4 / 3,3 / 2)$
C. $(2 / 3,0),(0,2 / 3),(1,1)$
D. none of these

Answer: D

- Watch Video Solution

4. A particle p moves from the point $A(0,4)$ to the point $10,-4)$. The particle P can travel the upper-half plane $\{(x, y) \mid y \geq 0\}$ at the speed of $1 \mathrm{~m} / \mathrm{s}$ and the lower-half plane $\{(x, y) \mid y \leq 0\}$ at the speed of $2 \mathrm{~m} / \mathrm{s}$. The coordinates of a point on the x-axis, if the sum of the squares of the travel times of the upper- and lower-half planes is minimum, are $(a)(1,0)$ (b) $(2,0)(c)(4,0)(d)(5,0)$
A. $(1,0)$
B. $(2,0)$
C. $(4,0)$
D. $(5,0)$

Answer: B

- Watch Video Solution

5. if x_{1}, x_{2}, x_{3} as well as y_{1}, y_{2}, y_{3} are in G.P. with same common ratio then prove that the points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$ are collinear.
A. equal in area
B. similar
C. congruent
D. none of these

Answer: A

- Watch Video Solution

6. $O P Q R$ is a square and M, N are the middle points of the sides $P Q a n d Q R$, respectively. Then the ratio of the area of the square to that of triangle $O M N$ is (a)4:1 (b) 2:1 (c) 8:3 (d) 7:3
A. $4: 1$
B. 2:1
C. 8:3
D. 7:3

Answer: C

- Watch Video Solution

7. A straight line passing through $P(3,1)$ meets the coordinate axes at AandB. It is given that the distance of this straight line from the origin O is maximum. The area of triangle $O A B$ is equal to $\frac{50}{3}$ squinits $\frac{25}{3}$ squinits $\frac{20}{3}$ sqünits (d) $\frac{100}{3}$ squinits
A. $50 / 3$ sq.units
B. $25 / 3$ sq.units
C. $20 / 3$ sq.units
D. $100 / 3$ sq.units

Answer: A

- Watch Video Solution

8. Let $A \equiv(3,-4), B \equiv(1,2)$. Let $P \equiv(2 k-1,2 k+1)$ be a variable point such that $P A+P B$ is the minimum. Then k is (a)7/9 (b) 0 (c) $7 / 8$
(d) none of these
A. $7 / 9$
B. 0
C. $7 / 8$
D. none of these

- Watch Video Solution

9. The polar coordinates equivalent to $(-3, \sqrt{3})$ are
A. $\left(2 \sqrt{3}, \frac{\pi}{6}\right)$
B. $\left(-2 \sqrt{3}, \frac{5 \pi}{6}\right)$
C. $\left(2 \sqrt{3}, \frac{7 \pi}{6}\right)$
D. $\left(2 \sqrt{3}, \frac{5 \pi}{6}\right)$

Answer: D

- Watch Video Solution

10. If the point $\left(x_{1}+t\left(x_{2}-x_{1}\right), y_{1}+t\left(y_{2}-y_{1}\right)\right)$ divides the join of $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ internally, then $t<0(b){ }^{\prime} 01(d) \mathrm{t}=1^{`}$
A. $t<0$
B. $0<t<1$
C. $t>1$
D. $t=1$

Answer: B

- Watch Video Solution

11. P and Q are points on the line joining $A(-2,5)$ and $B(3,1)$ such that $A P=P Q=Q B$. Then, the distance of the midpoint of $P Q$ from the origin is 3 (b) $\frac{\sqrt{37}}{2}$ (b) 4 (d) 3.5
A. 3
B. $\sqrt{37 / 2}$
C. 4
D. 3.5

- Watch Video Solution

12. In triangle ABC , angle B is right angled, $A C=2$ and $A(2,2), B(1,3)$ then the length of the median AD is
A. $\left(\frac{1}{2}\right)$
B. $\sqrt{\frac{5}{2}}$
C. $\frac{5}{\sqrt{2}}$
D. $\frac{1}{\sqrt{2}}$

Answer: B

- Watch Video Solution

13. One vertex of an equilateral triangle is $(2,2)$ and its centroid is $\left(-\frac{2}{\sqrt{3}}, \frac{2}{\sqrt{3}}\right)$ then length of its side is
A. $4 \sqrt{2}$
B. $4 \sqrt{3}$
C. $3 \sqrt{2}$
D. $5 \sqrt{2}$

Answer: A

- Watch Video Solution

14. ABCD is a rectangle with $A(-1,2), B(3,7)$ and $A B: B C=4: 3$. If P is the centre of the rectangle, then the distance of P from each corner is equal to
A. $\frac{\sqrt{14}}{2}$
B. $3 \frac{\sqrt{41}}{4}$
C. $2 \frac{\sqrt{41}}{3}$
D. $5 \frac{\sqrt{41}}{8}$

Answer: D

- Watch Video Solution

15. If $(2,-3),(6,-5)$ and $(-2,1)$ are three consecutive vetcies of a rohombus, then its area is
A. 24
B. 36
C. 18
D. 48

Answer: D

D Watch Video Solution

16. If A and B are square matrix of same order then $(A-B)^{T}$ is:
A. $\sqrt{7}$
B. $\sqrt{(3-\sqrt{2})^{2}+(5-\sqrt{5})^{2}}$
C. $s \sqrt{34}$
D. none of these

Answer: D

- Watch Video Solution

17. Le n be the number of points having rational coordinates equidistant from the point $(0, \sqrt{3})$, the
A. $n>2$
B. $n \leq 1$
C. $n \leq 2$
D. $n=1$

Answer: C

18. Draw a triangle ABC of base $B C=5.6 \mathrm{~cm}, \angle A=40^{\circ}$ and the bisector of $\angle A$ meets BC at D such that $\mathrm{CD}=4 \mathrm{~cm}$.
A. $(2,2)$
B. $(3,2)$
C. $(2,3)$
D. $(1,1)$

Answer: D

- Watch Video Solution

19. If $A(0,0), B(1,0)$ and $C\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ then the centre of the circle for which the lines $A B, B C, C A$ are tangents is
A. $\left(\frac{1}{2}, \frac{1}{4}\right)$
B. $\left(\frac{3}{2}, \frac{\sqrt{3}}{2}\right)$
C. $\left(\frac{1}{2}, \frac{1}{2 \sqrt{3}}\right)$
D. $\left(\frac{1}{2},-\frac{1}{\sqrt{3}}\right)$

Answer: C

- Watch Video Solution

20. Statement 1: If in a triangle, orthocentre, circumcentre and centroid are rational points, then its vertices must also be rational points.

Statement : 2 If the vertices of a triangle are rational points, then the centroid, circumcentre and orthocentre are also rational points.
A. Statement 1 is true, Statement 2 is true and Statement 2 is correct explanation for Statement 1.
B. Statement 1 is true, Statement 2 is true and Statement 2 is not the correct exlpanation for Statement 1.
C. Statement 1 is true, Statement 2 is false.
D. Statement 1 is false, Statement 2 is true.

Answer: D

- View Text Solution

21. about to only mathematics
A. Plies on the line segment RQ
B. Q lies on the segment PR
C. R lies on the line segment PR
D. P,Q,R are non-collinear

Answer: D

- Watch Video Solution

22. If two vertices of a triangle are $(-2,3)$ and $(5,-1)$ the orthocentre lies at the origin, and the centroid on the line $x+y=7$, then the third vertex lies at $(7,4)$ (b) 8,14$)(12,21)$ (d) none of these
A. $(7,4)$
B. $(8,14)$
C. $(12,21)$
D. none of these

Answer: D

- Watch Video Solution

23. The vertices of a triangle are $\left.\left(p q, \frac{1}{p q}\right),(p q)\right),\left(q r, \frac{1}{q r}\right)$, and $\left(r q, \frac{1}{r p}\right)$, where p, q and r are the roots of the equation $y^{3}=3 y^{2}+6 y+1=0$. The coordinates of its centroid are $(1,2)$
$2,-1)(1,-1)(d) 2,3)$
A. $(1,2)$
B. $(2,-1)$
C. $(1,-1)$
D. $(2,3)$

Answer: B

- Watch Video Solution

24. If the vertices of a triangle are $(\sqrt{5,0}),(\sqrt{3}, \sqrt{2})$, and $(2,1)$, then the orthocentre of the triangle is $(\sqrt{5}, 0)$ (b) $(0,0)$ (c) $(\sqrt{5}+\sqrt{3}+2, \sqrt{2}+1)$ (d) none of these
A. $(\sqrt{5}, 0)$
B. $(0,0)$
C. $(\sqrt{5}+\sqrt{3}+2, \sqrt{2}+1)$
D. none of these

- Watch Video Solution

25. Two vertices of a triangle are $(4,-3) \&(-2,5)$. If the orthocentre of the triangle is at $(1,2)$, find coordinates of the third vertex.
A. $(-33,-26)$
B. $(33,26)$
C. $(26,33)$
D. none of these

Answer: B

- Watch Video Solution

26. In $A B C$, if the orthocentre is $(1,2)$ and the circumcenter is $(0,0)$, then centroid of $A B C$) is $\left(\frac{1}{2}, \frac{2}{3}\right)$ (b) $\left(\frac{1}{3}, \frac{2}{3}\right)\left(\frac{2}{3}, 1\right)$ (d) none of
these
A. $(1 / 2,2 / 3)$
B. $(1 / 3,2 / 3)$
C. $(2 / 3,1)$
D. none of these

Answer: B

- Watch Video Solution

27. A triangle $A B C$ with vertices $A(-1,0), B\left(-2, \frac{3}{4}\right)$, and $C\left(-3,-\frac{7}{6}\right)$ has its orthocentre at H. Then, the orthocentre of triangle $B C H$ will be $(-3,-2)$ (b) 1,3$)(-1,2)$ (d) none of these
A. $(-3,-2)$
B. $(1,3)$
C. $(-1,2)$
D. none of these

Answer: D

- Watch Video Solution

28. If a triangle $A B C, A \equiv(1,10)$, circumcenter $\equiv\left(-\frac{1}{3}, \frac{2}{3}\right)$, and orthocentre $\equiv\left(\frac{11}{4}, \frac{4}{3}\right)$, then the coordinates of the midpoint of the side opposite to A are $\left(1,-\frac{11}{3}\right)$ (b) $(1,5)(1,-3)$ (d) $(1,6)$
A. $(1,-11 / 3)$
B. $(1 / 5)$
C. $(1,-3)$
D. $(1,6)$

Answer: A

29. In $A B C$, the coordinates of B are $(0,0), A B=2, \angle A B C=\frac{\pi}{3}$, and the middle point of $B C$ has coordinates $(2,0)$. The centroid o the triangle is $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ (b) $\left(\frac{5}{3}, \frac{1}{\sqrt{3}}\right)\left(4+\frac{\sqrt{3}}{3}, \frac{1}{3}\right)$ (d) none of these
A. $(1 / 2, \sqrt{3} / 2)$
B. $(5 / 3,1 / \sqrt{3})$
C. $(4+\sqrt{3} / 3,1 / 3)$
D. none of these

Answer: B

- Watch Video Solution

30. If the origin is shifted to the point $\left(\frac{a b}{a-b}, 0\right)$ without rotation, then the equation $\quad(a-b)\left(x^{2}+y^{2}\right)-2 a b x=0 \quad$ becomes
$(a-b)\left(x^{2}+y^{2}\right)-(a+b) x y+a b x=a^{2} \quad(a+b)\left(x^{2}+y^{2}\right)=2 a b$
$\left(x^{2}+y^{2}\right)=\left(a^{2}+b^{2}\right)(a-b)^{2}\left(x^{2}+y^{2}\right)=a^{2} b^{2}$
A. $(a-b)\left(x^{2}+y^{2}\right)-(a+b) x y+a b x=a^{2}$
B. $(a+b)\left(x^{2}+y^{2}\right)=2 a b$
C. $\left(x^{2}+y^{2}\right)=\left(a^{2}+b^{2}\right)$
D. $(a-b)^{2}\left(x^{2}+y^{2}\right)=a^{2} b^{2}$

Answer: D

- Watch Video Solution

31. A light ray emerging from the point source placed at $P(2,3)$ is reflected at a point Q on the y-axis. It then passes through the point $R(5,10)$. The coordinates of Q are $(0,3)$ (b) $(0,2)(0,5)$ (d) none of these
A. $(0,3)$
B. $(0,2)$
C. $(0,5)$
D. none of these

Answer: C

- Watch Video Solution

32. Point $\quad P(p, 0), Q(q, 0), R(0, p), S(0, q) \quad$ from \quad (a)parallelogram
(b)rhombus (c)cyclic quadrilateral (d) none of these
A. parallelogram
B. rhombus
C. cyclic quadrilateral
D. none of these

Answer: C

D Watch Video Solution

33. A rectangular billiard table has vertices at $P(0,0), Q(0,7), R(10,7)$, and $S(10,0)$. A small billiard ball starts at $M(3,4)$, moves in a straight
line to the top of the table, bounces to the right side of the table, and then comes to rest at $N(7,1)$. The y - coordinate of the point where it hits the right side is 3.7 (b) 3.8 (c) 3.9 (d) 4
A. 3.7
B. 3.8
C. 3.9
D. 4

Answer: A

- Watch Video Solution

34. ABCD is a square Points $E(4,3)$ and $F(2,5)$ lie on AB and CD , respectively,such that EF divides the square in two equal parts. If the coordinates of A are (7,3),then the coordinates of other vertices can be
A. $(7,2)$
B. $(7,5)$
C. $(-1,3)$
D. $(-1,5)$

Answer: D

- Watch Video Solution

35. If one side of a rhombus has endpoints $(4,5)$ and $(1,1)$, then the maximum area of the rhombus is 50 sq . units (b) 25 sq. units 30 sq. units (d) 20 sq. units
A. 50 sq.units
B. 25 sq.units
C. 30 sq.units
D. 20 sq.units

Answer: B

36.

$A \equiv(0,0), B \equiv(4,0), C \equiv(4,2) D \equiv(0,2)$, undergoes the following transformations successively: $\quad f_{1}(x, y) \overrightarrow{y, x} \quad f_{2}(x, y) \overrightarrow{x+3 y, y}$ $\left.f_{3}(x, y) \overrightarrow{(x-y) / 2},(x+y) / 2\right)$ The final figure will be
A. a square
B. a rhombus
C. a rectangle
D. a parallelogram

Answer: D

- Watch Video Solution

37. If a straight line through the origin bisects the line passing through the given points $(a \cos \alpha, a \sin \alpha)$ and $(a \cos \beta, a \sin \beta)$, then the lines

[^0]B. are parallel
C. have an angle between them of $\pi / 4$
D. none of these

Answer: A

D Watch Video Solution

38. Let $A_{r}, r=1,2,3$, be the points on the number line such that $O A_{1}, O A_{2}, O A_{3}$. are in $G P$, where O is the origin, and the common ratio of the $G P$ be a positive proper fraction. Let M, be the middle point of the line segment $A_{r} A_{r+1}$. Then the value of $\sum_{r=1}^{\infty} O M_{r}$ is equal to $\frac{O A_{1}\left(O S A_{1}-O A_{2}\right)}{2\left(O A_{1}+O A_{2}\right)}$ (b) $\frac{O A_{1}\left(O A_{1}-O A_{2}\right)}{2\left(O A_{1}+O A_{2}\right)} \frac{O A_{1}}{2\left(O A_{1}-O A_{2}\right)}$ (d) ∞
A. $\frac{O A_{1}\left(O A_{1}-O A_{2}\right)}{2\left(O A_{1}+O A_{2}\right)}$
B. $\frac{O A_{1}\left(O A_{1}+O A_{2}\right)}{2\left(O A_{1}-O A_{2}\right)}$
C. $\frac{O A_{1}}{2\left(O A_{1}-O A_{2}\right)}$
D. \propto

- Watch Video Solution

39. The vertices of a parallelogram $A B C D$ are $A(3,1), B(13,6), C(13,21)$, and $D(3,16)$. If a line passing through the origin divides the parallelogram into two congruent parts, then the slope of the line is
A. $11 / 12$
B. $11 / 8$
C. $25 / 8$
D. $13 / 8$

Answer: B

40. Point A and B are in the first quadrant; point O is the origin. If the slope of $O A$ is 1 , the slope of $O B$ is 7 , and $O A=O B$, then the slope of $A B$ is a. $-\frac{1}{5}$ (b) $-\frac{1}{4}$ (c) $-\frac{1}{3}$ (d) $-\frac{1}{2}$
A. $-1 / 5$
B. $-1 / 4$
C. $-1 / 3$
D. $-1 / 2$

Answer: D

- Watch Video Solution

41. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be in A.P and $\mathrm{x}, \mathrm{y}, \mathrm{z}$ be in G.P.. Then the points $(a, x),(b, y)$ and (c, z) will be collinear if
A. $x^{2}=y$
B. $x=y=z$
C. $y^{2}=z$
D. $x=z^{2}$

Answer: B

- Watch Video Solution

42. If $\sum_{i-1}^{4}(\xi 2+y i 2) \leq 2 x_{1} x_{3}+2 x_{2} x_{4}+2 y_{2} y_{3}+2 y_{1} y_{4}$, the points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right),\left(x_{4}, y_{4}\right)$ are the vertices of a rectangle collinear the vertices of a trapezium none of these
A. the vertices of a rectangle
B. collinear
C. the vertices of a trapezium
D. none of these

Answer: A

43. The vertices A and D of square $A B C D$ lie on the positive sides of x - and $y-a \xi s$, respectively. If the vertex C is the point $(12,17)$, then the coordinates of vertex B are $(14,16)(b)(15,3) 17,5)$ (d) $(17,12)$
A. $(14,16)$
B. $(15,3)$
C. $(17,5)$
D. $(17,12)$

Answer: C

- Watch Video Solution

44. Through the point $P(\alpha, \beta)$, where $\alpha \beta>0$, the straight line $\frac{x}{a}+\frac{y}{b}=1$ is drawn so as to form a triangle of area S with the axes. If $a b>0$, then the least value of S is $\alpha \beta$ (b) $2 \alpha \beta$ (c) $3 \alpha \beta$ (d) none
A. $\alpha \beta$
B. $2 \alpha \beta$
C. $3 \alpha \beta$
D. none

Answer: B

- Watch Video Solution

45. The locus of the moving point whose coordinates are given by $\left(e^{t}+e^{-t}, e^{t}-e^{-t}\right)$ where t is a parameter, is $x y=1$ (b) $x+y=2$ $x^{2}-y^{2}=4$ (d) $x^{2}-y^{2}=2$
A. $x y=1$
B. $x+y=2$
C. $x^{2}-y^{2}=4$
D. $x^{2}-y^{2}=2$

- Watch Video Solution

46. The locus of a point reprersented by
$x=\frac{a}{2}\left(\frac{t+1}{t}\right), y=\frac{a}{2}\left(\frac{t-1}{1}\right) \quad, \quad$ where $\quad t \in R-\{0\}, \quad$ is
$x^{2}+y^{2}=a^{2}(\mathrm{~b}) x^{2}-y^{2}=a^{2} x+y=a$ (d) $x-y=a$
A. $x^{2}+y^{2}=a^{2}$
B. $x^{2}-y^{2}=a^{2}$
C. $x+y=a$
D. $x-y=a$

Answer: C

- Watch Video Solution

47. The maximum area of the triangle whose sides a, b and $5 \sin \theta$), and ($5 \sin \theta,-5 \cos \theta$), where $\theta \in R$. The locus of its orthocentre is $(x+y-1)^{2}+(x-y-7)^{2}=100(x+y-7)^{2}+(x-y-1)^{2}=100$ $(x+y-7)^{2}+(x+y-1)^{2}=100(x+y-7)^{2}+(x-y+1)^{2}=100$
A. 1
B. $1 / 2$
C. 2
D. $3 / 2$

Answer: A

- View Text Solution

48. Vertices of a variable triangle are $(3,4) ;(5 \cos \theta, 5 \sin \theta)$ and $(5 \sin \theta,-5 \cos \theta)$ where θ is a parameter then the locus of its circumcentre is
A. $(x+y-1)^{2}+(x-y-7)^{2}=100$
B. $(x+y-7)^{2}+(x-y-1)^{2}=100$
C. $(x+y-7)^{2}+(x+y-1)^{2}=100$
D. $(x+y-7)^{2}+(x-y+1)^{2}=100$

Answer: D

- View Text Solution

49. From a point, P perpendicular $P M$ and $P N$ are drawn to x and y axes, respectively. If $M N$ passes through fixed point (a, b), then locus of P is
A. $x y=a x+b y$
B. $x y=a b$
C. $x y=b x+a y$
D. $x+y=x y$

Answer: C

50. The locus of point of intersection of the lines $y+m x=\sqrt{a^{2} m^{2}+b^{2}}$ and $m y-x=\sqrt{a^{2}+b^{2} m^{2}}$ is
A. $x^{2}+y^{2}=\frac{1}{a^{2}}+\frac{1}{b^{2}}$
B. $x^{2}+y^{2}=a^{2}+b^{2}$
C. $x^{2}+y^{2}=a^{2}-b^{2}$
D. $\frac{1}{x^{2}}+\frac{1}{y^{2}}=a^{2}-b^{2}$

Answer: B

- Watch Video Solution

51. If the roots of the equation
$\left(x_{1}^{2}-a^{2}\right) m^{2}-2 x_{1} y_{1} m+y_{1}^{2}+b^{2}=0(a>b)$ are the slopes of two perpendicular lies intersecting at $P\left(x_{1}, y_{1}\right)$, then the locus of P is
A. $x^{2}+y^{2}=a^{2}+b^{2}$
B. $x^{2}+y^{2}=a^{2}-b^{2}$
C. $x^{2}-y^{2}=a^{2}+b^{2}$
D. $x^{2}-y^{2}=a^{2}-b^{2}$

Answer: B

- Watch Video Solution

52. Through point $P(-1,4)$, two perpendicular lines are drawn which intersect x -axis at Q and R . find the locus of incentre of $\triangle P Q R$.
A. $x^{2}+y^{2}+2 x-8 y-17=0$
B. $x^{2}-y^{2}+2 x-8 y+17=0$
C. $x^{2}+y^{2}-2 x-8 y-17=0$
D. $x^{2}-y^{2}+8 x-2 y-17=0$
53. The number of integral points (x, y) (i.e, x and y both are integers) which lie in the first quadrant but not on the coordinate axes and also on the straight line $3 x+5 y=2007$ is equal to
A. 133
B. 135
C. 138
D. 140

Answer: A

Watch Video Solution

54. The foot of the perpendicular on the line $3 x+y=\lambda$ drawn from the origin is C. If the line cuts the x and the y-axis at $\operatorname{Aand} B$, respectively, then $B C: C A$ is
(a) $1: 3$
(b) $3: 1$
(c) $1: 9$
(d) $9: 1$
A. 1:3
B. 3:1
C. 1: 9
D. 9:1

Answer: D

- Watch Video Solution

55. The image of $P(a, b)$ on the line $y=-x$ is Q and the image of Q on the line $y=x$ is R. Then the midpoint of $P R$ is $(a+b, b+a)$ $\left(\frac{a+b}{2}, \frac{b+2}{2}\right)(a-b, b-a)$ (d) $(0,0)$
A. $(a+b, b+a)$
B. $((a+b) / 2,(b+2) / 2)$
C. $(a-b, b-a)$
D. $(0,0)$

Answer: D

(Watch Video Solution

56. If the equation of the locus of a point equidistant from the points $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$ is $\left(a_{1}-a_{2}\right) x+\left(b_{1}-b_{2}\right) y+c=0$, then the value of $c \quad$ is $\quad a a 2-a 22+b 12-b 22 \quad \sqrt{a 12+b 12-a 22-b 22}$ $\frac{1}{2}(a 12+a 22+b 12+b 22) \frac{1}{2}(a 22+b 22-a 12-b 12)$
A. $a_{1}^{2}-a_{2}^{2}+b_{1}^{2}-b_{2}^{2}$
B. $\sqrt{a_{1}^{2}+b_{1}^{2}-a_{2}^{2}-b_{2}^{2}}$
C. $\frac{1}{2}\left(a_{1}^{2}+a_{2}^{2}+b_{1}^{2}+b_{2}^{2}\right)$
D. $\frac{1}{2}\left(a_{1}^{2}+b_{2}^{2}+a_{1}^{2}+b_{2}^{2}\right)$

Answer: D

D Watch Video Solution

57. Consider three lines as follows. $L_{1}: 5 x-y+4=0$ $L_{2}: 3 x-y+5=0 L_{3}: x+y+8=0$ If these lines enclose a triangle $A B C$ and the sum of the squares of the tangent to the interior angles can be expressed in the form $\frac{p}{q}$, where pandq are relatively prime numbers, then the value of $p+q$ is 500 (b) 450 (c) 230 (d) 565
A. 500
B. 450
C. 230
D. 465

Answer: D

- Watch Video Solution

58. Consider a point $A(m, n)$, where m and n are positve intergers. B is the reflection of A in the line $y=x, \mathrm{C}$ is the reflaction of B in the y axis, D is the reflection of C in the x axis and E is the reflection of D is the y axis. The area of the pentagon $A B C D E$ is.
A. $2 m(m+n)$
B. $m(m+3 n)$
C. $m(2 m+3 n)$
D. $2 m(m+3 n)$

Answer: B

- Watch Video Solution

59. In the given figure, $O A B C$ is a rectangle. Slope of $O B$ is

A. $1 / 4$
B. $1 / 3$
C. $1 / 2$
D. Cannot be determined

Answer: C

1. If $(-6,-4),(3,5),(-2,1)$ are the vertices of a parallelogram, then the remaining vertex can be $(0,-1)(b) 7,9)(-1,0)$ (d) $(-11,-8)$
A. $(0,-1)$
B. $(7,10)$
C. $(-1,0)$
D. $(-11,-8)$

Answer: B::C::D

- Watch Video Solution

2. Let $0 \equiv(0,0), A \equiv(0,4), B \equiv(6,0)$. Let P be a moving point such that the area of triangle $P O A$ is two times the area of triangle $P O B$. The locus of P will be a straight line whose equation can be $x+3 y=0$ (b) $x+2 y=02 x-3 y=0$ (d) $3 y-x=0$
A. $x+3 y=0$
B. $x+2 y=0$
C. $2 x-3 y=0$
D. $3 y-x=0$

Answer: A::D

- Watch Video Solution

3. If $(-4,0)$ and $(1,-1)$ are two vertices of a triangle of area 4squinits, then its third vertex lies on $y=x$ (b) $5 x+y+12=0$ (c) $x+5 y-4=0$ (d) $x+5 y+12=0$
A. $y=x$
B. $5 x+y+12=0$
C. $x+5 y-4=0$
D. $x+5 y+12=0$

- Watch Video Solution

4. The area of triangle $A B C$ is $20 \mathrm{~cm}^{2}$. The coordinates of vertex A are $-5,0)$ and those of B are $(3,0)$. The vertex C lies on the line $x-y=2$.

The coordinates of C are $(5,3)(\mathrm{b})(-3,-5)(-5,-7)$ (d) $(7,5)$
A. $(5,3)$
B. $(-3,-5)$
C. $(-5,-7)$
D. $(7,5)$

Answer: B

5.

$A\left(a \cos \theta_{1}, a \sin \theta_{1}\right), B\left(a \cos \theta_{2} a \sin \theta_{2}\right), a n d C\left(a \cos \theta_{3}, a \sin \theta_{3}\right)$ equilateral, then prove
$\cos \theta_{1}+\cos \theta_{2}+\cos \theta_{3}=\sin \theta_{1}+\sin \theta_{2}+\sin \theta_{3}=0$.
A. $\cos \theta_{1}+\cos \theta_{2}+\cos \theta+3=0$
B. $\sin \theta_{1}+\sin \theta_{2}+\sin \theta_{3}=0$
C. $\tan \theta_{1}+\tan \theta_{2}+\tan \theta_{3}=0$
D. $\cot \theta_{1}+\cot \theta_{2}+\cot \theta_{3}=0$

Answer: A:B

- Watch Video Solution

6. The points $A(0,0), B(\cos \alpha, \sin \alpha)$ and $C(\cos \beta, \sin \beta)$ are the vertices of a right-angled triangle if $\frac{\sin (\alpha-\beta)}{2}=\frac{1}{\sqrt{2}}$

$$
\begin{equation*}
\frac{\cos (\alpha-\beta)}{2}=-\frac{1}{\sqrt{2}} \frac{\cos (\alpha-\beta)}{2}=\frac{1}{\sqrt{2}} \text { (d) } \frac{\sin (\alpha-\beta)}{2}=-\frac{1}{\sqrt{2}} \tag{b}
\end{equation*}
$$

A. $\sin \frac{\alpha-\beta}{2}=\frac{1}{\sqrt{2}}$
B. $\cos \frac{\alpha-\beta}{2}=\frac{1}{\sqrt{2}}$
C. $\cos \frac{\alpha-\beta}{2}=-\frac{1}{\sqrt{2}}$
D. $\sin \frac{\alpha-\beta}{2}=-\frac{1}{\sqrt{2}}$

Answer: A::C::D

- Watch Video Solution

7. The ends of a diagonal of a square are $(2,-3)$ and $(-1,1)$. Another vertex of the square can be a. $\left(-\frac{3}{2},-\frac{5}{2}\right)$ (b) $\left(\frac{5}{2}, \frac{1}{2}\right)\left(\frac{1}{2}, \frac{5}{2}\right)$
none of these
A. $(-3, / 2,-5 / 2)$
B. $(5 / 2,1 / 2)$
C. $(1 / 2,5 / 2)$
D. none of these

- Watch Video Solution

8. If all the vertices of a triangle have integral coordinates, then the triangle may be (a) right-angled (b) equilateral (c) isosceles (d) none of these
A. right-angled
B. equilateral
C. isosceles
D. none of these

Answer: A:C

9. In a $A B C, A \equiv(\alpha, \beta), B \equiv(1,2), C \equiv(2,3)$, point A lies on the line $y=2 x+3$, where α, β are integers, and the area of the triangle is S such that $[S]=2$ where [.] denotes the greatest integer function. Then the possible coordinates of A can be $(-7,-11)$ (b) $(-6,-9)$ $(2,7)(\mathrm{d})(3,9)$
A. $(-7,-11)$
B. $(-6,-9)$
C. $(2,7)$
D. $(3,9)$

Answer: A::B::C::D

- Watch Video Solution

10. In an acute triangle $A B C$, if the coordinates of orthocentre H are $(4, b)$, of centroid G are $(b, 2 b-8)$, and of circumcenter S are ($-4,8$), then b cannot be .
A. 4
B. 8
C. 12
D. -12

Answer: A::B::C::D

- Watch Video Solution

11. Evaluate $\int_{-1}^{3}[x] d x$, where [.] denotes the greatest integer function.

- Watch Video Solution

12. about to only mathematics
A. $(0,3)$
B. $(0,5 / 2)$
C. $(0,0)$
D. $(0,6)$

Answer: B::C

- Watch Video Solution

13. A right angled triangle $A B C$ having a right angle at $C, C A=b$ and $C B=a$, move such that h angular points A and B slide along x-axis and y-axis respectively. Find the locus of C
A. $a x+b y+1=0$
B. $a x+b y=0$
C. $a x^{2} \pm 2 b t+y^{2}=0$
D. $a x-b y=0$

Answer: B::D

1. Study the diagram. The line I is perpendicular to line m Does $P E$ bisect $C G$?

- Watch Video Solution

2. For points $P \equiv\left(x_{1}, y_{1}\right)$ and $Q \equiv\left(x_{2}, y_{2}\right)$ of the coordinate plane, a new distance $d(P, Q)=\left|x_{1} x_{1}\right|+\left|y_{1}-y_{2}\right|$. Let $O=(0,0)$ and $A=(3,2)$. Prove that the set of points in the first quadrant which are equidistant (with respect to the new distance) from O and A consists of the union of a line segment of finite length and an infinite ray. Sketch this set in a labelled diagram.
A. 2sq.units
B. 4 sq.units
C. 6 sq.units
D. noen of these

Answer: B

- Watch Video Solution

3. Evaluate $\int_{0}^{3}[x] d x$,where [.] denotes the greatest integer function.

- Watch Video Solution

4. Evaluate $\int \frac{x}{5 x^{2}-2} d x$

- Watch Video Solution

5. Evaluate $\int \frac{x-1}{x+1} d x$

- Watch Video Solution

6. Let $A B C D$ is a square with sides of unit length. Points E and F are taken om sides $A B$ and $A D$ respectively so that $A E=A F$. Let P be a point inside the square $A B C D$.The maximum possible area of quadrilateral CDFE is-
A. $1 / 8$
B. $1 / 4$
C. $5 / 8$
D. $3 / 8$

Answer: C

- Watch Video Solution

7. Let $A B C D$ be a square with sides of unit lenght. Points E and F are taken on sides AB and AD , respectively,so that $A E=A F$. Let P be a point inside the squre $A B C D$.

The value of $(P A)^{2}-(P B)^{2}+(P C)^{2}-(P D)^{2}$ is equal to
A. 3
B. 2
C. 1
D. 0

Answer: D

- Watch Video Solution

8. Let $A B C D$ be a square with sides of unit lenght. Points E and F are taken on sides AB and AD , respectively,so that $A E=A F$. Let P be a point inside the squre $A B C D$.

Let a line passing through point A divides the sqaure ABD into two parts so that the area of one portion is double the other then the length of the protion of line inside the square is
A. $\sqrt{10} / 3$
B. $\sqrt{13} / 3$
C. $\sqrt{11} / 3$
D. $2 / \sqrt{3}$

Answer: B

- View Text Solution

9. Let $A B C$ be an acute- angled triangle and $A D, B E$, and $C F$ be its medians, where E and F are at $(3,4)$ and $(1,2)$ respectively. The centroid of $\triangle A B C$, $G(3,2)$.

The coordinates of D are
A. $(7,-4)$
B. $(5,0)$
C. $(7,4)$
D. $(-3,0)$

Answer: B

10. Let $A B C$ be an acute- angled triangle and $A D, B E$, and $C F$ be its medians, where E and F are at $(3,4)$ and $(1,2)$ respectively. The centroid of $\triangle A B C$, $G(3,2)$.

The coordinates of D are
A. $4 \sqrt{2}$
B. $3 \sqrt{2}$
C. $6 \sqrt{2}$
D. $2 \sqrt{3}$

Answer: C

- Watch Video Solution

1. Consider the triangle whose vertices are (-1,0),(5,-2) and (8,2). Find the centroid of the triangle.

D Watch Video Solution

2. Consider the triangle whose vertices are $(0,6),(8,12)$ and $(8,0)$. Find the centroid of the triangle.

- Watch Video Solution

3. Evaluate $\int(3 x+2)^{5} d x$

- Watch Video Solution

4. Evaluate $\int_{0}^{2}\left(4 x^{2}+3 x+2\right) d x$
5. Line $A B$ passes through point (2,3) and intersects the positive x and y axes at $\mathrm{A}(\mathrm{a}, 0)$ and $\mathrm{B}(0, \mathrm{~b})$ respectively. If the area of $\triangle A O B$ is 11 . then the value of $4 b^{2}+9 a^{2}$ is

- Watch Video Solution

2. A point A divides the join of $P(-5,1)$ and $Q(3,5)$ in the ratio $k: 1$. Then the integral value of k for which the area of $A B C$, where B is $(1,5)$ and C is $(7,-2)$, is equal to 2 units in magnitude is

- Watch Video Solution

3. The distance between the circumcenter and the orthocentre of the triangle whose vertices are $(0,0),(6,8)$, and $(-4,3)$ is L. Then the value of $\frac{2}{\sqrt{5}} L$ is
4. A man starts from the point $P(-3,4)$ and reaches the point $Q(0,1)$ touching the x -axis at $R(\alpha, 0)$ such that $P R+R Q$ is minimum. Then α and $|\alpha|$.

- Watch Video Solution

5. Let $A(0,1), B(1,1), C(1,-1), D(-1,0)$ be four points. If P is any other point, then $P A+P B+P C P D \geq d$, when $[d]$ is where [.] represents greatest integer.

- View Text Solution

6. Differentiate $y=4 \cos \left(6 x^{2}+5\right)$.

- Watch Video Solution

7. If the area of the triangle formed by the points $(2 a, b)(a+b, 2 b+a)$, and $(2 b, 2 a)$ is 2 quinits, then the area of the triangle whose $(1+b, a-b),(3 b-a, b+3 a)$, and $(3 a-b, 3 b-a)$ will be \qquad

- Watch Video Solution

8. Lines L_{1} and L_{2} have slopes m and n , respectively, suppose L_{1} makes twice as large angle with the horizontal (mesured counter clockwise from the positive x -axis as does L_{2} and L_{1} has 4 times the slope of L_{2}. If L_{1} is not horizontal, then the value of the proudct mn equals.

- Watch Video Solution

9. If lines $2 x-3 y+6=0$ and $k x+2 y+12=0$ cut the coordinate axes in concyclic points, then the value of $|k|$ is

- Watch Video Solution

10. Evaluate $\int_{0}^{8} x^{\frac{5}{3}} d x$

- Watch Video Solution

11. The value of a for which the image of the point ($a, a-1$) w.r.t the line mirror $3 x+y=6 a$ is the point $\left(a^{2}+1, a\right)$ is (A) 0 (B) 1 (C) 2 (D) none of these

- Watch Video Solution

12. The maximum area of the convex polyon formed by joining the points $A(0,0), B\left(2 t^{2}, 0\right), C(18,2), D\left(\frac{8}{r^{2}}, 4\right)$ and $E(0,2)$ where $t \in R-\{0\}$ and interior angle at vertex B is greater than or equal to 90° is

- Watch Video Solution

1. for
A. no value of p.
B. exactly one value of p.
C. exactly two values of p.
D. more than two values of p.

Answer: B

- Watch Video Solution

2. If the line $2 x+y=k$ passes through the point which divides the line segment joining the points $(1,1)$ and $(2,4)$ in the ratio $3: 2$, then k equals
A. $\frac{29}{5}$
B. 5
C. 6
D. $\frac{11}{5}$

Answer: C

- Watch Video Solution

3. Evaluate $\int \frac{2^{x}+3^{x}}{5^{x}} d x$

- Watch Video Solution

4. Let k be an integer such that the triangle with vertices $(k,-3 k),(5, k)$ and $(-k, 2)$ has area $28 s q$ units. Then the orthocentre of this triangle is at the point : $\left(1,-\frac{3}{4}\right)$ (2) $\left(2, \frac{1}{2}\right)$
$\left(2,-\frac{1}{2}\right)(4)\left(1, \frac{3}{4}\right)$
A. $\left(2, \frac{1}{2}\right)$
B. $\left(2,-\frac{1}{2}\right)$
C. $\left(1, \frac{3}{4}\right)$
D. $\left(1,-\frac{3}{4}\right)$

Answer: A

- Watch Video Solution

5. In $\triangle A B C$, then show that $r\left(r_{1}+r_{2}+r_{3}\right)=a b+b c+a c-s^{2}$.

- Watch Video Solution

6. Find the LCM and GCD for the following and verify that $p(x) \times q(x)=L C M \times G C D, 7 x^{2} y, 28 x y^{2}$

- Watch Video Solution

[^0]: A. are perpendicular

