

MATHS

BOOKS - CENGAGE

CROSS PRODUCTS

1. Let \overrightarrow{a} and \overrightarrow{b} be two vectors of equal magnitude 5 units. Let \overrightarrow{p} , \overrightarrow{q} be vectors such that $\overrightarrow{p} = \overrightarrow{a} - \overrightarrow{b}$ and $\overrightarrow{q} = \overrightarrow{a} + \overrightarrow{b}$. If $|\overrightarrow{p} \times \overrightarrow{q}| = 2 \left\{ \lambda - \left(\overrightarrow{a} \cdot \overrightarrow{b}\right)^2 \right\}^{\frac{1}{2}}$, then value of λ is A. 25 B. 125 C. 625

D. none of these

Answer: C

2. Let
$$\overrightarrow{u} = 2\hat{i} - \hat{j} + \hat{k}$$
, $\overrightarrow{v} = -3\hat{j} + 2\hat{k}$ be vectors and \overrightarrow{w} be a unit vector in the xy-plane. Then the maximum possible value of $|(\overrightarrow{u} \times \overrightarrow{v})| \cdot |\overrightarrow{w}|$ is
A. $\sqrt{5}$
B. $\sqrt{12}$
C. $\sqrt{13}$
D. $\sqrt{17}$

Answer: D

3. Let \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are three unit vectors in a plane such that they are equally inclined to each other, then the value of $\left(\overrightarrow{a} \times \overrightarrow{b}\right)$. $\left(\overrightarrow{b} \times \overrightarrow{c}\right) + \left(\overrightarrow{b} \times \overrightarrow{c}\right)$. $\left(\overrightarrow{c} \times \overrightarrow{a}\right) + \left(\overrightarrow{c} \times \overrightarrow{a}\right)$. $\left(\overrightarrow{a} \times \overrightarrow{b}\right)$.

can be

A.
$$\frac{9}{4}$$

B. $-\frac{9}{4}$
C. $\frac{3}{4}$
D. $-\frac{3}{4}$

Answer: A

Watch Video Solution

4. The coordinates of the mid-points of the sides of ΔPQR , are (3a, 0, 0), (0, 3b, 0) and (0, 0, 3c) respectively, then the area of ΔPQR is

A.
$$18\sqrt{b^2c^2+c^2a^2+a^2b^2}$$

B.
$$9\sqrt{b^2c^2 + c^2a^2 + a^2b^2}$$

C. $\frac{9}{12}\sqrt{b^2c^2 + c^2a^2 + a^2b^2}$
D. $\frac{9}{2}\sqrt{b^2c^2 + c^2a^2 + a^2b^2}$

Answer: A

Watch Video Solution

5. If
$$\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}, \overrightarrow{a}$$
. $\overrightarrow{b} = 1$ and $\overrightarrow{a} imes \overrightarrow{b} = \hat{j} - \hat{k}$ then \overrightarrow{b}

A. 3

B. 9

C. 10

D. 12

Answer: A

6. If
$$\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$$
 are unit vectors such that
 $\overrightarrow{a}, \overrightarrow{b} = 0, (\overrightarrow{a} - \overrightarrow{c}), (\overrightarrow{b} + \overrightarrow{c}) = 0$ and
 $\overrightarrow{c} = \lambda \overrightarrow{a} + \mu \overrightarrow{b} + \omega (\overrightarrow{a} \times \overrightarrow{b}),$ where λ, μ, ω are scalars, then
A. $\mu^2 + \omega^2 = 1$

B. $\lambda + \mu = 1$

C.
$$\left(\mu+1
ight)^2+\mu^2+\omega^2=1$$

D.
$$\lambda^2 + \mu^2 = 1$$

Answer: C

Watch Video Solution

7. Let
$$\triangle ABC$$
 be a given triangle. If $\left|\overrightarrow{BA} - t\overrightarrow{BC}\right| \ge \left|\overrightarrow{AC}\right|$ for any $t \in R$, then $\triangle ABC$ is

A. Equilateral

B. Right angled

C. Isosceles

D. None of these

Answer: B

8. If
$$\overrightarrow{a}, \overrightarrow{b}$$
 are vectors perpendicular to each other and
 $\left|\overrightarrow{a}\right| = 2, \left|\overrightarrow{b}\right| = 3, \overrightarrow{c} \times \overrightarrow{a} = \overrightarrow{b}$, then the least value of $2\left|\overrightarrow{c} - \overrightarrow{a}\right|$ is
A.1
B.2
C.3
D.4

Answer: C

9. \overrightarrow{a} and \overrightarrow{b} are two vectors such that $\left|\overrightarrow{a}\right| = 1, \left|\overrightarrow{b}\right| = 4$ and \overrightarrow{a} . Vecb = 2. $If\overrightarrow{c} = \left(2\overrightarrow{a} \times \overrightarrow{b}\right) - 3\overrightarrow{b}$ then find angle between \overrightarrow{b} and \overrightarrow{c} .

A.
$$\frac{\pi}{3}$$

B. $\frac{\pi}{6}$
C. $\frac{3\pi}{4}$
D. $\frac{5\pi}{6}$

Answer: D

10. If
$$\overrightarrow{a}$$
 and \overrightarrow{b} are non-zero, non parallel vectors, then the value of
 $\left|\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{a} \times \overrightarrow{b}\right|^2 + \left|\overrightarrow{a} + \overrightarrow{b} - \overrightarrow{a} \times \overrightarrow{b}\right|^2$ equals
A. $\left(1 + \overrightarrow{a} \cdot \overrightarrow{a}\right) \left(1 + \overrightarrow{b} \cdot \overrightarrow{c}\right)$

$$\mathsf{B}.\,2\Big(1+\overrightarrow{a}.\,\overrightarrow{a}\Big)\Big(1+\overrightarrow{b}.\,\overrightarrow{b}\Big)$$

$$C. 2\left\{ \left(1 + \overrightarrow{a} \cdot \overrightarrow{a}\right) \left(1 + \overrightarrow{b} \cdot \overrightarrow{b}\right) - \left(1 - \overrightarrow{a} \cdot \overrightarrow{b}\right)^{2} \right\}$$
$$D. 2\left\{ \left(1 - \overrightarrow{a} \cdot \overrightarrow{a}\right) \left(1 - \overrightarrow{b} \cdot \overrightarrow{b}\right) + \left(1 - \overrightarrow{a} \cdot \overrightarrow{b}\right)^{2} \right\}$$

Answer: C

Watch Video Solution

11. If $a^2+b^2+c^2=1$ where, a,b, $c\in R$, then the maximum value of $(4a-3b)^2+(5b-4c)^2+(3c-5a)^2$ is

A. 25

B. 50

C. 144

D. none of these

Answer: B

12. Three vectors $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are such that $\overrightarrow{a} \times \overrightarrow{b} = 4(\overrightarrow{a} \times \overrightarrow{c})$ and $|\overrightarrow{a}| = |\overrightarrow{b}| = 1$ and $|\overrightarrow{c}| = \frac{1}{4}$. If the angle between \overrightarrow{b} and \overrightarrow{c} is $\frac{\pi}{3}$ then \overrightarrow{b} is

A. $\overrightarrow{a} + 4\overrightarrow{c}$ B. $\overrightarrow{a} - 4\overrightarrow{c}$ C. $4\overrightarrow{c} - \overrightarrow{a}$

 $\mathsf{D}.\, 2\overrightarrow{c} - \overrightarrow{a}$

Answer: A::C

13. If $2\overrightarrow{a}, 3\overrightarrow{b}, 2\left(\overrightarrow{a}\times\overrightarrow{b}\right)$ are position vectors of the vectors A,B,C, of $\triangle ABC$ and $\left|\overrightarrow{a}\right| = \left|\overrightarrow{b}\right| = 1, \overrightarrow{OA}, \overrightarrow{OB} = -3$ (where O is the origin),

then

A. Triangle ABC is right-angled triangle

B. Angle B is 90°

$$\mathsf{C.}\,A = \cos^{-1}\!\left(\sqrt{\frac{7}{19}}\right)$$

D. The position vector of orthocenter is $2\left(\overrightarrow{a}\times\overrightarrow{b}\right)$

Answer: A::C::D

