MATHS

BOOKS - CENGAGE

DOT PRODUCT

Dpp 21

1. Let
$$a,b>0$$
 and $\overrightarrow{\alpha}=\left(\dfrac{\overrightarrow{i}}{a}+\dfrac{4\hat{j}}{b}+b\hat{k}\right)$ and $\overrightarrow{\beta}=b\hat{i}+a\hat{j}+\dfrac{1}{b}\hat{k}$, then the maximum value of $\dfrac{30}{5+\overrightarrow{\alpha},\overrightarrow{\beta}}$ is

Answer: A

Watch Video Solution

2. If a vector \overrightarrow{r} is equall inclined with the vectors

$$\overrightarrow{a} = \cos heta \hat{i} + \sin heta \hat{j}, \ \overrightarrow{b} = -\sin heta \hat{i} + \cos heta \hat{j}$$
 and

 $\overrightarrow{c}=\hat{k}$, then the angle between \overrightarrow{r} and \overrightarrow{a} is

A.
$$\cos^{-1}\left(\frac{1}{\sqrt{2}}\right)$$

B.
$$\cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$$
C. $\cos^{-1}\left(\frac{1}{3}\right)$
D. $\cos^{-1}\left(\frac{1}{2}\right)$

Watch Video Solution

3. Let G be the centroid of the $\triangle ABC$, whose sides are of lengths a,b,c. If P be a point in the plane of $\triangle ABC$, such that PA=1, PB=3, PC=4 and PG=2, then the value of $a^2+b^2+c^2$ is

A. 42

- B. 40
- C. 36
- D. 28

Answer: A

Watch Video Solution

4. If $\overrightarrow{a}=3\hat{i}-\hat{j}+5\hat{k}$ and $\overrightarrow{b}=\hat{i}+2\hat{j}-3\hat{k}$ are given vectors. A vector \overrightarrow{c} which is perpendicular to z-axis satisfying $\overrightarrow{c}.\overrightarrow{a}=9$ and $\overrightarrow{c}.\overrightarrow{b}=-4$. If inclination of \overrightarrow{c} with x-axis and y-axis and y-axis is α and β respectively, then which of the following is not true?

A.
$$lpha>rac{\pi}{4}$$

B.
$$eta>rac{\pi}{2}$$

C.
$$lpha>rac{\pi}{2}$$

D.
$$eta < rac{\pi}{2}$$

Answer: C

5. If
$$\overrightarrow{a}$$
, \overrightarrow{b} , \overrightarrow{c} are unit vectors such that \overrightarrow{a} is perpendicular to the plane of \overrightarrow{b} , \overrightarrow{c} and the angle between \overrightarrow{b} , \overrightarrow{c} is $\frac{\pi}{3}$, then $\left|\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}\right|=$

6. A unit vector
$$\overrightarrow{a}$$
 in the plane of $\overrightarrow{b}=2\hat{i}+\hat{j}$ and $\overrightarrow{c}=\hat{i}-\hat{j}+\hat{k}$ is such that angle between \overrightarrow{a} and \overrightarrow{d} where $\overrightarrow{d}=\overrightarrow{j}+2\overrightarrow{k}$ is

A.
$$\dfrac{\dfrac{\overrightarrow{i}+\dfrac{\overrightarrow{j}+\dfrac{\overrightarrow{k}}{k}}{\sqrt{3}}}{\sqrt{3}}$$
B. $\dfrac{\dfrac{\overrightarrow{i}-\dfrac{\overrightarrow{j}+\dfrac{\overrightarrow{k}}{k}}{\sqrt{3}}}{\sqrt{3}}$

C.
$$\dfrac{2~i~+~j}{\sqrt{5}}$$
D. $\dfrac{2~i~-~j}{\sqrt{5}}$

Watch Video Solution

$$|OA| = |BC| = a, |OB| = |AC| = b, |OC| = |AB| = a$$

7. In a tetrahedron OABC, the edges are of lengths,

$$|OA| = |BC| = a, |OB| = |AC| = b, |OC| = |AB| = c.$$

Let G_1 and G_2 be the centroids of the triangle ABC

and AOC such that $OG_1 \perp BG_2, \,\,$ then the value of $rac{a^2+c^2}{b^2}$ is

- B. 3
- C. 6
- D. 9

Watch Video Solution

8. The vectors \overrightarrow{x} and \overrightarrow{y} satisfy the equation

$$p\overrightarrow{x}+q\overrightarrow{y}=\overrightarrow{a}$$
 (where p,q are scalar constants and \overrightarrow{a}

is a known vector). It is given that \overrightarrow{x} . $\overrightarrow{y} \geq \frac{\left|\overrightarrow{a}\right|^2}{4pq}$, then

$$\dfrac{\left|\overrightarrow{x}
ight|}{\left|\overrightarrow{y}
ight|}$$
 is equal to $(pq>0)$

B.
$$\frac{p^2}{q^2}$$

C.
$$\frac{p}{q}$$

D.
$$\frac{q}{p}$$

Answer: D

Watch Video Solution

9. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} non-zero vectors such that \overrightarrow{a} is perpendicular to $\overset{
ightarrow}{b}$ and $\overset{
ightarrow}{c}$ and $\left|\overrightarrow{a}
ight|=1,\left|\overrightarrow{b}
ight|=2,\left|\overrightarrow{c}
ight|=1,\overrightarrow{b}.\overrightarrow{c}=1$. There is a non-zero vector coplanar with $\overrightarrow{a} + \overrightarrow{b}$ and $2\overrightarrow{b} - \overrightarrow{c}$ and \overrightarrow{d} . $\overrightarrow{a}=1$, then the minimum value of $|\overrightarrow{d}|$ is

A.
$$\frac{2}{\sqrt{13}}$$

A.
$$\dfrac{2}{\sqrt{13}}$$
B. $\dfrac{3}{\sqrt{3}}$
C. $\dfrac{4}{\sqrt{5}}$

$$\therefore \frac{4}{\sqrt{5}}$$

$$\text{D.}~\frac{4}{\sqrt{13}}$$

Answer: D

View Text Solution

10. Let two non-collinear vectors \overrightarrow{a} and \overrightarrow{b} inclined at an angle $\dfrac{2\pi}{3}$ be such that $\left|\overrightarrow{a}\right|=3$ and $\left|\overrightarrow{b}\right|=2$. If a point P moves so that at any time t its position vector \overrightarrow{OP} (where O is the origin) is given as

$$\overrightarrow{OP}=\left(t+rac{1}{t}
ight)\overrightarrow{a}+\left(t-rac{1}{t}
ight)\overrightarrow{b}$$
 then least distance of P from the origin is

B.
$$\sqrt{2\sqrt{133}+10}$$

A. $\sqrt{2\sqrt{133}-10}$

C. $\sqrt{5 + \sqrt{133}}$

Answer: B

11. Four vectors
$$\overrightarrow{a}$$
, \overrightarrow{b} , \overrightarrow{c} and \overrightarrow{x} satisfy the relation $\left(\overrightarrow{a}.\overrightarrow{x}\right)\overrightarrow{b}=\overrightarrow{c}+\overrightarrow{x}$ where $\overrightarrow{b}.\overrightarrow{a}\neq 1$. The value of

 \overrightarrow{x} in terms of \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} is equal to

A.
$$\dfrac{\left(\overrightarrow{a}.\overrightarrow{c}\right)\overrightarrow{b}-\overrightarrow{c}\left(\overrightarrow{a}.\overrightarrow{b}-1\right)}{\left(\overrightarrow{a}.\overrightarrow{b}-1\right)}$$

B.
$$\frac{\overrightarrow{c}}{\overrightarrow{a}.\overrightarrow{b}-1}$$
C. $\frac{2(\overrightarrow{a}.\overrightarrow{c})\overrightarrow{b}+\overrightarrow{c}}{\overrightarrow{a}.\overrightarrow{b}-1}$

D.
$$\frac{2\left(\overrightarrow{a} \cdot \overrightarrow{c}\right)\overrightarrow{c} + \overrightarrow{c}}{\left(\overrightarrow{a} \cdot \overrightarrow{b}\right) - 1}$$

Answer: A

iew Text Solution

12. If area of a triangular face BCD of a regular tetrahdedron ABCD is $4\sqrt{3}$ sq. units, then the area of a triangle whose two sides are represented by vectors \overrightarrow{AB} and \overrightarrow{CD} is

- A. 6 sq. units
- B. 8 sq.units
- C. 12 sq. units
- D. 16 sq.units

Answer: B

13. If OABC is a tetrahedron such that

$$OA^2+BC^2=OB^2+CA^2=OC^2+AB^2$$
 then

A.
$$OA \perp BC$$

B.
$$OB \perp AC$$

C.
$$OC \perp AB$$

D.
$$AB \perp AC$$

Answer: C

Watch Video Solution

14. If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are three units vectors equally inclined to each other at an angle α . Then the angle

between \overrightarrow{a} and plane of \overrightarrow{b} and \overrightarrow{c} is

A.
$$heta = \cos^{-1}\left(\frac{\coslpha}{\cos\left(rac{lpha}{2}
ight)}
ight)$$

$$\mathsf{B.}\,\theta = \sin^{-1}\!\left(\frac{\cos\alpha}{\cos\left(\frac{\alpha}{2}\right)}\right)$$

$$\mathsf{C.}\,\theta = \cos^{-1}\left(\frac{\sin\left(\frac{\alpha}{2}\right)}{\sin\alpha}\right)$$

D.
$$heta = \sin^{-1} \left(rac{\sin \left(rac{lpha}{2}
ight)}{\sin lpha}
ight)$$

Answer: A

15. If a,b,c and A,B,C
$$\in$$
 R-{0} such that $aA+bB+cC-\sqrt{\left(a^2+b^2+c^2
ight)\left(A^2+B^2+C^2
ight)}=0$

, then value of
$$\dfrac{aB}{bA}+\dfrac{bC}{cB}+\dfrac{cA}{aC}$$
 is

A. 3

Answer: A

