

MATHS

BOOKS - CENGAGE

EQUATION OF PLANE AND ITS APPLICATIONS -I

1. Equation of the passing through the origin and perpendicular to the planes x + 2y + z = 1, 3x - 4y + z = 5 is

A. x+2y-5z=0

 $\mathsf{B}.\,x-2y-3z=0$

 $\mathsf{C}.\,x - 2y + 5z = 0$

D. 3x + y - 5z = 0

Answer: D

2. A vector \overrightarrow{n} is inclined to x-axis at 45° , to y-axis at 60° and at an angle to z-axis. If \overrightarrow{n} is a normal to the plane passing through the point $(\sqrt{2}, -1, 1)$, then the equation of plane is

A.
$$3\sqrt{2}x-4y-3z=7$$

B.
$$4\sqrt{2}x + 7y + z = 2$$

C.
$$\sqrt{2}x + y + z = 2$$

D.
$$\sqrt{2}x - y - z = 2$$

Answer: C

Watch Video Solution

3. If the perpendicular distance of a point A, other than the origin from the plane x + y + z = p is equal to the distance of the plane from the origin, then the coordinates of A are (A) (p, 2p, 0) (B) (0, 2p, -p) (C) (2p, p, -p) (D) (2p, -p, 2p)A. (p, 2p, 0)B. (0, 2p, -p)C. (2p, p, -p)D. (2p, -p, 2p)

Answer: C

Watch Video Solution

4. Show that the disease of the point of intersection of the line $\frac{x-2}{3} = \frac{y+1}{4} = \frac{z-2}{12}$ and the plane (x - y + z = 5) from the point (-1, -5, -10) is 13 units.

A. 10

B. 8

C. 21

Answer: D

5.	The	value	of	k	for	which	the	plan	es		
kx +	4y + z =	= 0, 4x + x	ky + 2z	x = 0n	d2x + 2	y + z = 0	intersec	t in	а		
straighat line is (A) 1 (B) 2 (C) 3 (D) 4											

A. 2

B. 4

C. 6

D. 8

Answer: C

Watch Video Solution

6. Let $P = -(1, 7, \sqrt{2})$ be a point and line L is $2\sqrt{2}(x-1) = y-2, z = 0$. If PQ is the distance of plane $\sqrt{2}x + y - z = 1$ from point P measured along a line inclined at an angle of 45° with the line L and is minimum then the value of PQ is

A. 3 B. 4

C. 6

D. 8

Answer: A

Watch Video Solution

7. Angle between the two planes of which one plane is 4x + y + 2z = 0

and another plane containing the lines
$$\frac{x-3}{2} = \frac{y-2}{3} = \frac{z-1}{\lambda}, \frac{x-2}{3} = \frac{y-3}{2} = \frac{z-2}{3}$$

A. $\frac{\pi}{3}$

B.
$$\frac{\pi}{2}$$

C. $\frac{\pi}{6}$
D. $\frac{2\pi}{3}$

Answer: B

View Text Solution

8. The distance of the point (1, -2, 3) from the plane x - y + z - 5 = 0, measured parallel to the line $\frac{x}{2} = \frac{y}{3} = \frac{z - 1}{-6}$ is equal to

A.1 unit

B. 2 unit

C. 3 units

D. none of these

Answer: A

9. The angle between the pair of planes represented by equation $2x^2 - 2y^2 + 4z^2 + 6xz + 2yz + 3xy = 0$ is

A. $\cos^{-1}\left(\frac{1}{3}\right)$ B. $\cos^{-1}\left(\frac{4}{21}\right)$ C. $\cos^{-1}\left(\frac{4}{9}\right)$ D. $\cos^{-1}(7\sqrt{84})$

Answer: C

Watch Video Solution

A. 2x + y = 5B. 2x - y = 5C. 2x + z = 5D. 2x - z = 5

Answer: C

11. The locus represented by xy + yz = 0 is a pair of

A. perpendicular lines

B. parallel lines

C. parallel lines

D. perpendicular planes

Answer: D

Watch Video Solution

12. Equation of line passing through A(1,0,3), intersecting the line

$$\left(\frac{x}{2} = \frac{y-1}{3} = \frac{z-2}{1}\right) \text{ and parallel to the plane } x + y + z = 2 \text{ is}$$
A. $\frac{3x-1}{2} = \frac{2y-3}{3} = \frac{2z-5}{-1}$
B. $\frac{x-1}{2} = \frac{y-0}{3} = \frac{z-3}{-1}$
C. $\frac{x-(2/3)}{1} = \frac{y-(3/2)}{0} = \frac{z+(1/2)}{3}$
D. $\frac{3x-1}{2} = \frac{2y-3}{-3} = \frac{6z-13}{5}$

Answer: D

Watch Video Solution

13. If $P(\alpha, \beta, \gamma)$ is a vertex of an equilateral triangle PQR where vertex Q and R are (-1, 0, 1) and (1, 0, -1) respectively, then P can lie on the plane

A.
$$x+y+z+6=0$$

B.
$$2x + 4y + 3z + 20 = 0$$

C.
$$x - y + z + 12 = 0$$

D.
$$x+y+z+3\sqrt{2}=0$$

Answer: D

Watch Video Solution

14. The variable plane $(2\lambda+1)x+(3-\lambda)y+z=4$ always passes

through the line

A.
$$\frac{x}{0} = \frac{y}{0} = \frac{z-4}{1}$$

B. $\frac{x}{1} = \frac{y}{2} = \frac{z-4}{-3}$
C. $\frac{x}{1} = \frac{y}{1} = \frac{z-4}{-7}$
D. $\frac{x}{1} = \frac{y}{2} = \frac{z-4}{-7}$

Answer: D

Watch Video Solution

15. In X-Y plane, the path defined by the equation

$$\frac{1}{x^m} + \frac{1}{y^m} + \frac{k}{(x+y)^n} = 0$$
, is a parabola if $m = \frac{1}{2}$, $k = -1$, $n = 0$
Watch Video Solution

16. Consider the equation

$$egin{aligned} E_1 \colon \overrightarrow{r} \, imes \left(2 \hat{i} - \hat{j} + 3 \hat{k}
ight) &= 3 \hat{i} + \hat{k} & ext{and} \ E_2 \colon \overrightarrow{r} \, imes \left(\hat{i} + 2 \hat{j} - 3 \hat{k}
ight) &= 2 \hat{i} - \hat{j}, ext{then} \end{aligned}$$
 and

A. a) E_1 represents a line

B. b) E_1 represents two parallel planes

C. c) E_2 represents a line

D. d) E_2 represents two parallel planes

Answer: B::C::D

17.	the	equationof	а	plane	is
2x-y -	-3z = 5 ar	and $A(1, 1, 1), B(2, 1, 1)$	(-3), C((1, -2, -2) and	d $D(-$
are four	points. Wh	ich of the following li	ine segm	ents are intersed	ts by
the plan	e? (A) AD (B)	AB (C) AC (D) BC			

A. AD

B. AB

C. AC

D. BC

Answer: B::C::D

Watch Video Solution

18. Let P denotes the plane consisting of all points that are equidistant from the points A(-4,2,1) and B(2,-4,3) and Q be the plane, x-y+cz=1 where $c\in R.$

The planar P is parallel to plane Q

A. for no value of c

B. if c=3

C. if c = 1/3

D. if c=1

Answer: C

Watch Video Solution

19. Let P denotes the plane consisting of all points that are equidistant from the points A(-4, 2, 1) and B(2, -4, 3) and Q be the plane, x - y + cz = 1 where $c \in R$.

If the angle between the planes P and Q is 45° then the product of all possible values of c is

A. - 17

 $\mathsf{B.}-2$

C. 17

D. 24/27

Answer: B

Watch Video Solution

20. A line L_1 with direction ratios -3, 2, 4 passes through the point A(7,6,2) and a line L_2 with directions ratios 2,1,3 passes through the point B(5,3,4). A line L_3 with direction ratios 2, -2, -1 intersects L_1 and L_3 at C and D, resectively.

The lenth CD is equal to

A. 4

B. 6

C. 9

D. 11

Answer: C

21. A line L_1 with direction ratios -3, 2, 4 passes through the point A(7,6,2) and a line L_2 with directions ratios 2,1,3 passes through the point B(5,3,4). A line L_3 with direction ratios 2, -2, -1 intersects L_1 and L_3 at C and D, resectively. The equation of the plane parallel to line L_1 and containing line L_2 is equal to

A.
$$x + 3y + 4z = 30$$

B. x + 2y + z = 15

C.
$$2x-y+z=11$$

D. 2x + 17y - 7z = 33

Answer: D

22. A line L_1 with direction ratios -3, 2, 4 passes through the point A(7,6,2) and a line L_2 with directions ratios 2,1,3 passes through the point

B(5,3,4). A line L_3 with direction ratios 2, -2, -1 intersects L_1 and L_3 at C and D, resectively.

The volume of parallelopiped formed by $\overrightarrow{AB}, \overrightarrow{AC}$ and \overrightarrow{AD} is equal to

A. 140

B. 138

C. 134

D. 130

Answer: B

Watch Video Solution

Dpp 3 4

1. Let A(0, 6, 6), B(6,6,0) and C(6,0,6) are three points and point D is moving on the line x+z-3=0=y. If G is centroid of ΔABC , then minimum value of GD is

A.
$$\sqrt{\frac{47}{2}}$$

B. $\sqrt{\frac{37}{2}}$
C. $\sqrt{\frac{57}{2}}$
D. $\sqrt{\frac{23}{2}}$

Answer: C

Watch Video Solution

2. Equation of line of projection of the line 3x - y + 2z - 1 = 0 = x + 2y - z = 2 on the plane 3x + 2y + z = 0 is

A.
$$\frac{x+1}{11} = \frac{y-1}{-9} = \frac{z-1}{-15}$$

B. $3x - 8y + 7z + 4 = 0 = 3x + 2y + z$
C. $\frac{x+12}{11} = \frac{y+8}{-9} = \frac{z+14}{15}$
D. $\frac{x+12}{11} = \frac{y+8}{-9} = \frac{z+14}{-15}$

Answer: B

3. The orthocenter of triangle whose vertices are
$$A(a, 0, 0), B(0, b, 0)$$

and
$$C(0, 0, c)$$
 is $\left(\frac{k}{a}, \frac{k}{b}, \frac{k}{c}\right)$ then k is equal to
A. $\left(\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}\right)^{-1}$
B. $\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right)^{-1}$
C. $\left(\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}\right)$
D. $\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right)$

Answer: A

A.
$$\frac{1}{\sqrt{2}}$$
 units
B. $\sqrt{2}$ units
C. $\frac{3}{\sqrt{2}}$ units
D. $\frac{\sqrt{3}}{2}$ units

Answer: A

5. If plane 2x + 3y + 6z + k = 0 is tangent to the sphere $x^2 + y^2 + z^2 + 2x - 2y + 2z - 6 = 0$, then a value of k is

A. 26

B. 16

 $\mathsf{C}.-26$

D. none of these

Answer: A

6. The shortest distance from (1,1,1) to the line of intersection of the pair

of planes $xy + yz + zx + y^2 = 0$ is

A.
$$\sqrt{\frac{8}{3}}$$

B. $\frac{2}{\sqrt{3}}$
C. $\frac{1}{\sqrt{3}}$
D. $\frac{2}{3}$

Answer: A

Watch Video Solution

7. A variable plane makes intercepts on x, y and z axes and it makes a tetrahedron of volume 64 cu. Units. The locus of foot of perpendicular from origin on the plane is

A.
$$(x^2 + y^2 + z^2)^2 = 384xyz$$

B. $xyz = 681$
C. $(x + y + z) \left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right)^2 = 16$
D. $xyz(x + y + z) = 81$

Answer: A

Watch Video Solution

8. If the projection of the line $\frac{x}{2} = \frac{y-1}{2} = \frac{z-1}{1}$ on a plane P is $\frac{x}{1} = \frac{y-1}{1} = \frac{z-1}{-1}$. Then the distance of plane P from origin is

A.
$$\sqrt{3}$$

B. $\sqrt{\frac{3}{2}}$
C. $\sqrt{6}$
D. $\frac{2}{\sqrt{3}}$

Answer: B

9. Image of sphere $x^2+y^2+z^2=9$ in plane 2x+3y+4z-29=0 is

A.
$$x^2 + y^2 + z^2 - 8x - 12y - 16z + 107 = 0$$

B. $x^2 + y^2 + z^2 + 8x - 12y - 16z + 107 = 0$
C. $x^2 + y^2 + z^2 - 8x + 12y - 16z + 107 = 0$
D. $x^2 + y^2 + z^2 - 8x - 12y + 16z + 107 = 0$

Answer: A

Watch Video Solution

10. The locus of point which moves in such a way that its distance from the line (x)/(1)=(y)/(1)=(z)/(-1) is twice the distance from the plane x+y+z=0.

is

A.
$$x^2 + y^2 + z^2 - -5x - 3y - 3z = 0$$

B.
$$x^2 + y^2 + z^2 - 5x + 3y + 3z = 0$$

C. $x^2 + y^2 + z^2 + 5xy + 3yz + zx = 0$
D. $x^2 + y^2 + z^2 + 5xy + 3yz + 3zx = 0$

Answer: C

Watch Video Solution

11. A plane cutting the axes in P,Q,R passes through $(lpha,eta,eta-\lambda,\lambda-lpha).$

If O is origin, then locus of center of sphere OPQR is

A.
$$lpha x + eta y + \lambda z = 4$$

B.
$$(lpha-eta)x+(eta-\lambda)y+(y-lpha)z=0$$

C.
$$(lpha-eta)yz+(eta-y)zx+(\lambda-lpha)xy=2xyz$$

D. $igg(rac{1}{lpha^2}+rac{1}{eta^2}+rac{1}{\lambda^2}igg)igg(x^{2+y^2+z^2}igg)=xyz$

Answer: C

Watch Video Solution

12. Let a plane pass through origin and be parallel to the line $\frac{x-1}{2} = \frac{y_3}{-1} = \frac{z+1}{-2}$ is such that distance between the plane and the line is $\frac{5}{3}$. Then equation of the plane is/are

A.
$$x-2y+2z=0$$

 $\mathsf{B}.\,x-2y-2z=0$

C.
$$2x+2y+z=0$$

D. x + y + z = 0

Answer: A::C

Watch Video Solution

13. The planes ax + 4y + z = 0, 2y + 3z - 1 = 0 and 3x - bz + 2 = 0

will

A. a) meet at a point if $ab \neq 15$.

B. b) meet on a line if ab =15, a=3

C. c) have no common point if ab=15, $a \neq 3$.

D. d) have no common point if ab=15, a
eq 5

Answer: A::B::C

Watch Video Solution

14. If the line
$$\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$$
 intersects the the line
 $3\beta^2 + 3(1-2\alpha)y + z = 3 - \frac{1}{2}\{6\alpha^2x + 3(1-2\beta)y + 2z\}$ then point
 $(\alpha, \beta, 1)$ lies on the plane
A. $2x - y + z = 4$

B. x + y - z = 0

 $\mathsf{C}.\,x-2y=0$

D. 2x - y = 0

Answer: A::B::C

15. Let $A=(1,1,\ -1), B=(0,2,1)$ be two given points. Also, let P:x+y+z=0 be a plane.

If A' and B' are the feet of perpendicular from A and B, respectively, on the plane 'P' then A'B' equals

A. $\frac{\sqrt{14}}{3}$ B. $\sqrt{\frac{5}{3}}$ C. $\sqrt{3}$ D. $\sqrt{\frac{2}{3}}$

Answer: A

16. Let A = (1,1,-1) and B = (0, 2,1) be two given points .Also, let P:x+y+z=0 be

a plane. The equation of the line perpendicular to \overrightarrow{AB} and lying

completely in the plane 'P' is

A. (a)
$$\frac{x - \frac{2}{3}}{1} = \frac{y - \frac{1}{2}}{-3} = \frac{z + 2}{2}$$

B. (b) $\frac{x - 3}{2} = \frac{y - 1}{-6} = \frac{z + 2}{2}$
C. (c) $x = y = z$
D. (d) $x - 3 = y - 1 = z = 2$

Answer: A

Watch Video Solution

17. Let $P_1: x + y + 2z - 3 = 0$ and $P_2 = x - 2y + z = 4$ be two planes. Also, let A(1, 3, 4) and B(3, 2, 7) be two points in space. The equation of plane which passes through line of intersection of P_1 and P_2 and upon which length of projection of the line segment AB is the greatest, is

A. (a)
$$2x + 3y + z + 4 = 0$$

B. (b) 3x - 3y + 4z - 11 = 0

C. (c)
$$x + 3y + z + 2 = 0$$

D. (d)
$$3y + z + 1 = 0$$

Answer: D

Watch Video Solution

18. Let $P_1: x + y + 2z - 3 = 0$ and $P_2 = x - 2y + z = 4$ be two planes. Also, let A(1, 3, 4) and B(3, 2, 7) be two points in space.

The equation of plane which passes through line of intersection of P_1 and P_2 upon which length of projection of the line segment AB is the least, is

A. a) x + 3y + z + 2 = 0

B. b)
$$3y + z + 1 = 0$$

C. c)
$$2x-y+3z-7=0$$

D. d)
$$3x - 3y + 4z - 11 = 0$$

Answer: C

