©゙’ doubtnut

India's Number 1 Education App

MATHS

BOOKS - CENGAGE

EQUATION OF PLANE AND ITS APPLICATIONS -I

Dpp 33

1. Equation of the passing through the origin and perpendicular to the planes $x+2 y+z=1,3 x-4 y+z=5$ is
A. $x+2 y-5 z=0$
B. $x-2 y-3 z=0$
C. $x-2 y+5 z=0$
D. $3 x+y-5 z=0$

Watch Video Solution

2. A vector \vec{n} is inclined to x-axis at 45°, to y-axis at 60° and at an angle to z-axis. If \vec{n} is a normal to the plane passing through the point $(\sqrt{2},-1,1)$, then the equation of plane is
A. $3 \sqrt{2} x-4 y-3 z=7$
B. $4 \sqrt{2} x+7 y+z=2$
C. $\sqrt{2} x+y+z=2$
D. $\sqrt{2} x-y-z=2$

Answer: C

- Watch Video Solution

3. If the perpendicular distance of a point A, other than the origin from the plane $x+y+z=p$ is equal to the distance of the plane from the
origin, then the coordinates of A are (A) $(p, 2 p, 0)$ (B) $(0,2 p,-p)$
$(2 p, p,-p)$ (D) $(2 p,-p, 2 p)$
A. $(p, 2 p, 0)$
B. $(0,2 p,-p)$
C. $(2 p, p,-p)$
D. $(2 p,-p, 2 p)$

Answer: C

- Watch Video Solution

4. Show that the disease of the point of intersection of the line $\frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{12}$ and the plane $(x-y+z=5)$ from the point ($-1,-5,-10$) is 13 units.
A. 10
B. 8
C. 21
D. 13

Answer: D

- Watch Video Solution

5. The value of k for which the planes
$k x+4 y+z=0,4 x+k y+2 z=0 n d 2 x+2 y+z=0$ intersect in a
straighat line is (A) 1 (B) 2 (C) 3 (D) 4
A. 2
B. 4
C. 6
D. 8

Answer: C

- Watch Video Solution

6. Let $P=-(1,7, \sqrt{2})$ be a point and line L is $2 \sqrt{2}(x-1)=y-2, z=0$. If PQ is the distance of plane $\sqrt{2} x+y-z=1$ from point P measured along a line inclined at an angle of 45° with the line L and is minimum then the value of $P Q$ is
A. 3
B. 4
C. 6
D. 8

Answer: A

- Watch Video Solution

7. Angle between the two planes of which one plane is $4 x+y+2 z=0$
and another plane containing the lines
$\frac{x-3}{2}=\frac{y-2}{3}=\frac{z-1}{\lambda}, \frac{x-2}{3}=\frac{y-3}{2}=\frac{z-2}{3}$
A. $\frac{\pi}{3}$
B. $\frac{\pi}{2}$
C. $\frac{\pi}{6}$
D. $\frac{2 \pi}{3}$

Answer: B

- View Text Solution

8. The distance of the point $(1,-2,3)$ from the plane $x-y+z-5=0$, measured parallel to the line $\frac{x}{2}=\frac{y}{3}=\frac{z-1}{-6}$ is equal to
A. 1 unit
B. 2 unit
C. 3 units
D. none of these
9. The angle between the pair of planes represented by equation $2 x^{2}-2 y^{2}+4 z^{2}+6 x z+2 y z+3 x y=0$ is
A. $\cos ^{-1}\left(\frac{1}{3}\right)$
B. $\cos ^{-1}\left(\frac{4}{21}\right)$
C. $\cos ^{-1}\left(\frac{4}{9}\right)$
D. $\cos ^{-1}(7 \sqrt{84})$

Answer: C

- Watch Video Solution

10. The Cartesian equation of the plane

$$
\vec{r}=(1+\lambda-\mu) \hat{i}+(2-\lambda) \hat{j}+(3-2 \lambda+2 \mu) \hat{k} \text { is a. } 2 x+y=5 \mathrm{~b} .
$$

$$
2 x-y=5 \text { c. } 2 x+z=5 \text { d. } 2 x-z=5
$$

A. $2 x+y=5$
B. $2 x-y=5$
C. $2 x+z=5$
D. $2 x-z=5$

Answer: C

D Watch Video Solution

11. The locus represented by $x y+y z=0$ is a pair of
A. perpendicular lines
B. parallel lines
C. parallel lines
D. perpendicular planes

Answer: D

12. Equation of line passing through $A(1,0,3)$, intersecting the line $\left(\frac{x}{2}=\frac{y-1}{3}=\frac{z-2}{1}\right)$ and parallel to the plane $x+y+z=2$ is
A. $\frac{3 x-1}{2}=\frac{2 y-3}{3}=\frac{2 z-5}{-1}$
B. $\frac{x-1}{2}=\frac{y-0}{3}=\frac{z-3}{-1}$
C. $\frac{x-(2 / 3)}{1}=\frac{y-(3 / 2)}{0}=\frac{z+(1 / 2)}{3}$
D. $\frac{3 x-1}{2}=\frac{2 y-3}{-3}=\frac{6 z-13}{5}$

Answer: D

- Watch Video Solution

13. If $P(\alpha, \beta, \gamma)$ is a vertex of an equilateral triangle $P Q R$ where vertex Q and R are $(-1,0,1)$ and $(1,0,-1)$ respectively, then P can lie on the plane
A. $x+y+z+6=0$
B. $2 x+4 y+3 z+20=0$
C. $x-y+z+12=0$
D. $x+y+z+3 \sqrt{2}=0$

Answer: D

- Watch Video Solution

14. The variable plane $(2 \lambda+1) x+(3-\lambda) y+z=4$ always passes through the line
A. $\frac{x}{0}=\frac{y}{0}=\frac{z-4}{1}$
B. $\frac{x}{1}=\frac{y}{2}=\frac{z-4}{-3}$
C. $\frac{x}{1}=\frac{y}{1}=\frac{z-4}{-7}$
D. $\frac{x}{1}=\frac{y}{2}=\frac{z-4}{-7}$

Answer: D

15. In $X-Y$ plane, the path defined by the equation $\frac{1}{x^{m}}+\frac{1}{y^{m}}+\frac{k}{(x+y)^{n}}=0$, is a parabola if $m=\frac{1}{2}, k=-1, n=0$

- Watch Video Solution

16. Consider the equation
$E_{1}: \vec{r} \times(2 \hat{i}-\hat{j}+3 \hat{k})=3 \hat{i}+\hat{k}$
$E_{2}: \vec{r} \times(\hat{i}+2 \hat{j}-3 \hat{k})=2 \hat{i}-\hat{j}$, then
A. a) E_{1} represents a line
B. b) E_{1} represents two parallel planes
C. c) E_{2} represents a line
D. d) E_{2} represents two parallel planes

Answer: B::C::D

$2 x-y-3 z=5$ and $A(1,1,1), B(2,1,-3), C(1,-2,-2)$ and $D(-$ are four points. Which of the following line segments are intersects by the plane? (A) $A D$ (B) $A B$ (C) $A C$ (D) $B C$
A. AD
B. $A B$
C. $A C$
D. $B C$

Answer: B::C::D

- Watch Video Solution

18. Let P denotes the plane consisting of all points that are equidistant from the points $A(-4,2,1)$ and $B(2,-4,3)$ and Q be the plane, $x-y+c z=1$ where $c \in R$.

The planar P is parallel to plane Q
A. for no value of c
B. if $\mathrm{c}=3$
C. if $c=1 / 3$
D. if $\mathrm{c}=1$

Answer: C

- Watch Video Solution

19. Let P denotes the plane consisting of all points that are equidistant from the points $A(-4,2,1)$ and $B(2,-4,3)$ and Q be the plane, $x-y+c z=1$ where $c \in R$.

If the angle between the planes P and Q is 45° then the product of all possible values of c is
A. -17
B. -2
C. 17

Answer: B

- Watch Video Solution

20. A line L_{1} with direction ratios $-3,2,4$ passes through the point
$\mathrm{A}(7,6,2)$ and a line L_{2} with directions ratios $2,1,3$ passes through the point
$\mathrm{B}(5,3,4)$. A line L_{3} with direction ratios $2,-2,-1$ intersects L_{1} and L_{3} at C and D, resectively.

The lenth CD is equal to
A. 4
B. 6
C. 9
D. 11

Answer: C

21. A line L_{1} with direction ratios $-3,2,4$ passes through the point $\mathrm{A}(7,6,2)$ and a line L_{2} with directions ratios $2,1,3$ passes through the point $\mathrm{B}(5,3,4)$. A line L_{3} with direction ratios $2,-2,-1$ intersects L_{1} and L_{3} at C and D , resectively. The equation of the plane parallel to line L_{1} and containing line L_{2} is equal to
A. $x+3 y+4 z=30$
B. $x+2 y+z=15$
C. $2 x-y+z=11$
D. $2 x+17 y-7 z=33$

Answer: D

- Watch Video Solution

22. A line L_{1} with direction ratios $-3,2,4$ passes through the point
$\mathrm{A}(7,6,2)$ and a line L_{2} with directions ratios $2,1,3$ passes through the point

B(5,3,4). A line L_{3} with direction ratios $2,-2,-1$ intersects L_{1} and L_{3} at C and D, resectively.

The volume of parallelopiped formed by $\overrightarrow{A B}, \overrightarrow{A C}$ and $\overrightarrow{A D}$ is equal to
A. 140
B. 138
C. 134
D. 130

Answer: B

- Watch Video Solution

Dpp 34

1. Let $A(0,6,6), B(6,6,0)$ and $C(6,0,6)$ are three points and point D is moving on the line $x+z-3=0=y$. If G is centroid of $\triangle A B C$, then minimum value of GD is
A. $\sqrt{\frac{47}{2}}$
B. $\sqrt{\frac{37}{2}}$
C. $\sqrt{\frac{57}{2}}$
D. $\sqrt{\frac{23}{2}}$

Answer: C

- Watch Video Solution

2. Equation of line of projection of the line $3 x-y+2 z-1=0=x+2 y-z=2$ on the plane $3 x+2 y+z=0$ is
A. $\frac{x+1}{11}=\frac{y-1}{-9}=\frac{z-1}{-15}$
B. $3 x-8 y+7 z+4=0=3 x+2 y+z$
C. $\frac{x+12}{11}=\frac{y+8}{-9}=\frac{z+14}{15}$
D. $\frac{x+12}{11}=\frac{y+8}{-9}=\frac{z+14}{-15}$

- Watch Video Solution

3. The orthocenter of triangle whose vertices are $A(a, 0,0), B(0, b, 0)$ and $C(0,0, c)$ is $\left(\frac{k}{a}, \frac{k}{b}, \frac{k}{c}\right)$ then k is equal to
A. $\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}\right)^{-1}$
B. $\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^{-1}$
C. $\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}\right)$
D. $\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)$

Answer: A

- Watch Video Solution

4. The shortest distance between the lines
$2 x+y+z-1=0=3 x+y+2 z-2$ and $x=y=z$, is
A. $\frac{1}{\sqrt{2}}$ units
B. $\sqrt{2}$ units
C. $\frac{3}{\sqrt{2}}$ units
D. $\frac{\sqrt{3}}{2}$ units

Answer: A

- Watch Video Solution

5. If plane $2 x+3 y+6 z+k=0$ is tangent to the sphere $x^{2}+y^{2}+z^{2}+2 x-2 y+2 z-6=0$, then a value of k is
A. 26
B. 16
C. -26
D. none of these
6. The shortest distance from $(1,1,1)$ to the line of intersection of the pair of planes $x y+y z+z x+y^{2}=0$ is
A. $\sqrt{\frac{8}{3}}$
B. $\frac{2}{\sqrt{3}}$
C. $\frac{1}{\sqrt{3}}$
D. $\frac{2}{3}$

Answer: A

- Watch Video Solution

7. A variable plane makes intercepts on x, y and z axes and it makes a tetrahedron of volume 64 cu . Units. The locus of foot of perpendicular from origin on the plane is
A. $\left(x^{2}+y^{2}+z^{2}\right)^{2}=384 x y z$
B. $x y z=681$
C. $(x+y+z)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^{2}=16$
D. $x y z(x+y+z)=81$

Answer: A

- Watch Video Solution

8. If the projection of the line $\frac{x}{2}=\frac{y-1}{2}=\frac{z-1}{1}$ on a plane P is $\frac{x}{1}=\frac{y-1}{1}=\frac{z-1}{-1}$. Then the distance of plane P from origin is
A. $\sqrt{3}$
B. $\sqrt{\frac{3}{2}}$
C. $\sqrt{6}$
D. $\frac{2}{\sqrt{3}}$
9. Image of sphere $x^{2}+y^{2}+z^{2}=9$ in plane $2 x+3 y+4 z-29=0$ is
A. $x^{2}+y^{2}+z^{2}-8 x-12 y-16 z+107=0$
B. $x^{2}+y^{2}+z^{2}+8 x-12 y-16 z+107=0$
C. $x^{2}+y^{2}+z^{2}-8 x+12 y-16 z+107=0$
D. $x^{2}+y^{2}+z^{2}-8 x-12 y+16 z+107=0$

Answer: A

- Watch Video Solution

10. The locus of point which moves in such a way that its distance from the line $(\mathrm{x}) /(1)=(\mathrm{y}) /(1)=(\mathrm{z}) /(-1)$ is twice the distance from the plane $\mathrm{x}+\mathrm{y}+\mathrm{z}=0$ is
A. $x^{2}+y^{2}+z^{2}--5 x-3 y-3 z=0$
B. $x^{2}+y^{2}+z^{2}-5 x+3 y+3 z=0$
C. $x^{2}+y^{2}+z^{2}+5 x y+3 y z+z x=0$
D. $x^{2}+y^{2}+z^{2}+5 x y+3 y z+3 z x=0$

Answer: C

- Watch Video Solution

11. A plane cutting the axes in $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ passes through $(\alpha, \beta, \beta-\lambda, \lambda-\alpha)$. If O is origin, then locus of center of sphere OPQR is
A. $\alpha x+\beta y+\lambda z=4$
B. $(\alpha-\beta) x+(\beta-\lambda) y+(y-\alpha) z=0$
C. $(\alpha-\beta) y z+(\beta-y) z x+(\lambda-\alpha) x y=2 x y z$
D. $\left(\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}+\frac{1}{\lambda^{2}}\right)\left(x^{2+y^{2}+z^{2}}\right)=x y z$

Answer: C

12. Let a plane pass through origin and be parallel to the line $\frac{x-1}{2}=\frac{y_{3}}{-1}=\frac{z+1}{-2}$ is such that distance between the plane and the line is $\frac{5}{3}$. Then equation of the plane is/are
A. $x-2 y+2 z=0$
B. $x-2 y-2 z=0$
C. $2 x+2 y+z=0$
D. $x+y+z=0$

Answer: A:C

- Watch Video Solution

13. The planes $a x+4 y+z=0,2 y+3 z-1=0$ and $3 x-b z+2=0$ will
A. a) meet at a point if $a b \neq 15$.
B. b) meet on a line if $a b=15, a=3$
C. c) have no common point if $a b=15, a \neq 3$.
D. d) have no common point if $a b=15, a \neq 5$

Answer: A::B::C

D Watch Video Solution

14. If the line $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ intersects the the line $3 \beta^{2}+3(1-2 \alpha) y+z=3-\frac{1}{2}\left\{6 \alpha^{2} x+3(1-2 \beta) y+2 z\right\}$ then point $(\alpha, \beta, 1)$ lies on the plane
A. $2 x-y+z=4$
B. $x+y-z=0$
C. $x-2 y=0$
D. $2 x-y=0$
15. Let $A=(1,1,-1), B=(0,2,1)$ be two given points. Also, let P : $x+y+z=0$ be a plane.

If A^{\prime} and B^{\prime} are the feet of perpendicular from A and B , respectively, on the plane ' P ' then $A^{\prime} B^{\prime}$ equals
A. $\frac{\sqrt{14}}{3}$
B. $\sqrt{\frac{5}{3}}$
C. $\sqrt{3}$
D. $\sqrt{\frac{2}{3}}$

Answer: A

- Watch Video Solution

16. Let $A=(1,1,-1)$ and $B=(0,2,1)$ be two given points .Also, let $P: x+y+z=0$ be a plane. The equation of the line perpendicular to $\overrightarrow{A B}$ and lying
completely in the plane ' P ' is
A. (a) $\frac{x-\frac{2}{3}}{1}=\frac{y-\frac{1}{2}}{-3}=\frac{z+2}{2}$
В. (b) $\frac{x-3}{2}=\frac{y-1}{-6}=\frac{z+2}{2}$
C. (c) $x=y=z$
D. (d) $x-3=y-1=z=2$

Answer: A

D Watch Video Solution

17. Let $P_{1}: x+y+2 z-3=0$ and $P_{2}=x-2 y+z=4$ be two planes.

Also, let $A(1,3,4)$ and $B(3,2,7)$ be two points in space.

The equation of plane which passes through line of intersection of P_{1} and P_{2} and upon which length of projection of the line segment $A B$ is the greatest, is
A. (a) $2 x+3 y+z+4=0$
B. (b) $3 x-3 y+4 z-11=0$
C. (c) $x+3 y+z+2=0$
D. (d) $3 y+z+1=0$

Answer: D

- Watch Video Solution

18. Let $P_{1}: x+y+2 z-3=0$ and $P_{2}=x-2 y+z=4$ be two planes.

Also, let $A(1,3,4)$ and $B(3,2,7)$ be two points in space.
The equation of plane which passes through line of intersection of P_{1} and P_{2} upon which length of projection of the line segment AB is the least, is
A. a) $x+3 y+z+2=0$
B. b) $3 y+z+1=0$
C. c) $2 x-y+3 z-7=0$
D. d) $3 x-3 y+4 z-11=0$

Answer: C

