

MATHS

BOOKS - CENGAGE

EQUATION OF PLANE AND ITS APPLICATIONS -II

1. Let A(0, 6, 6), B(6,6,0) and C(6,0,6) are three points and point D is moving on the line x + z - 3 = 0 = y. If G is centroid of ΔABC , then minimum value of GD is

A.
$$\sqrt{\frac{47}{2}}$$

B.
$$\sqrt{\frac{37}{2}}$$

C. $\sqrt{\frac{57}{2}}$
D. $\sqrt{\frac{23}{2}}$

Answer: C

Watch Video Solution

2. Equation of line of projection of the line

$$3x - y + 2z - 1 = 0 = x + 2y - z = 2$$
 on the plane
 $3x + 2y + z = 0$ is
A. $\frac{x + 1}{11} = \frac{y - 1}{-9} = \frac{z - 1}{-15}$
B. $3x - 8y + 7z + 4 = 0 = 3x + 2y + z$

C.
$$\frac{x+12}{11} = \frac{y+8}{-9} = \frac{z+14}{15}$$

D. $\frac{x+12}{11} = \frac{y+8}{-9} = \frac{z+14}{-15}$

Answer: B

Watch Video Solution

3. The orthocenter of triangle whose vertices are A(a, 0, 0), B(0, b, 0) and C(0, 0, c) is $\left(\frac{k}{a}, \frac{k}{b}, \frac{k}{c}\right)$ then k is equal to

A.
$$\left(\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}\right)^{-1}$$

B. $\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right)^{-1}$
C. $\left(\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}\right)$

$$\mathsf{D}.\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right)$$

Answer: A

Watch Video Solution

4. The shortest distance between the lines 2x + y + z - 1 = 0 = 3x + y + 2z - 2 and x = y = z, is

A.
$$\frac{1}{\sqrt{2}}$$
 units

B. $\sqrt{2}$ units

C.
$$\frac{3}{\sqrt{2}}$$
 units
D. $\frac{\sqrt{3}}{2}$ units

Answer: A

A. 26

B. 16

 $\mathsf{C.}-26$

D. none of these

Answer: A

6. The shortest distance from (1,1,1) to the line of intersection of the pair of planes $xy + yz + zx + y^2 = 0$ is

A.
$$\sqrt{\frac{8}{3}}$$

B. $\frac{2}{\sqrt{3}}$
C. $\frac{1}{\sqrt{3}}$
D. $\frac{2}{3}$

Answer: A

Watch Video Solution

7. A variable plane makes intercepts on x, y and z axes and it makes a tetrahedron of volume 64 cu. Units. The locus of foot of perpendicular from origin on the plane is

A.
$$\left(x^2+y^2+z^2
ight)^2=384xyz$$

 $\mathsf{B.} xyz = 681$

C.
$$(x+y+z)\left(rac{1}{x}+rac{1}{y}+rac{1}{z}
ight)^2 = 16$$

D.
$$xyz(x+y+z)=81$$

Answer: A

Watch Video Solution

8. If the projection of the line $\frac{x}{2} = \frac{y-1}{2} = \frac{z-1}{1}$ on a plane P is $\frac{x}{1} = \frac{y-1}{1} = \frac{z-1}{-1}$. Then the distance of

plane P from origin is

A.
$$\sqrt{3}$$

B. $\sqrt{\frac{3}{2}}$
C. $\sqrt{6}$
D. $\frac{2}{\sqrt{3}}$

Answer: B

View Text Solution

9. Image of sphere
$$x^2 + y^2 + z^2 = 9$$
 in plane $2x + 3y + 4z - 29 = 0$ is
A. $x^2 + y^2 + z^2 - 8x - 12y - 16z + 107 = 0$

B.
$$x^2 + y^2 + z^2 + 8x - 12y - 16z + 107 = 0$$

C. $x^2 + y^2 + z^2 - 8x + 12y - 16z + 107 = 0$
D. $x^2 + y^2 + z^2 - 8x - 12y + 16z + 107 = 0$

Answer: A

Watch Video Solution

10. The locus of point which moves in such a way that its distance from the line (x)/(1)=(y)/(1)=(z)/(-1) is twice the distance from the plane x+y+z=0 is

A.
$$x^2+y^2+z^2--5x-3y-3z=0$$

B. $x^2+y^2+z^2-5x+3y+3z=0$

C.
$$x^2 + y^2 + z^2 + 5xy + 3yz + zx = 0$$

D.
$$x^2 + y^2 + z^2 + 5xy + 3yz + 3zx = 0$$

Answer: C

Watch Video Solution

11. A plane cutting the axes in P,Q,R passes through $(\alpha, \beta, \beta - \lambda, \lambda - \alpha)$. If O is origin, then locus of center of sphere OPQR is

A.
$$lpha x + eta y + \lambda z = 4$$

$$\mathsf{B}.\,(\alpha-\beta)x+(\beta-\lambda)y+(y-\alpha)z=0$$

C. $(lpha-eta)yz+(eta-y)zx+(\lambda-lpha)xy=2xyz$

$$\mathsf{D}.\, \bigg(\frac{1}{\alpha^2}+\frac{1}{\beta^2}+\frac{1}{\lambda^2}\bigg)\Big(x^{2+y^2+z^2}\Big)=xyz$$

Answer: C

Watch Video Solution

12. Let a plane pass through origin and be parallel to the line $\frac{x-1}{2} = \frac{y_3}{-1} = \frac{z+1}{-2}$ is such that distance between the plane and the line is $\frac{5}{3}$. Then equation of the plane is/are

A.
$$x - 2y + 2z = 0$$

B.
$$x - 2y - 2z = 0$$

C.
$$2x + 2y + z = 0$$

D. x + y + z = 0

Answer: A::C

13. The planes ax + 4y + z = 0, 2y + 3z - 1 = 0 and 3x - bz + 2 = 0 will

A. a) meet at a point if $ab \neq 15$.

B. b) meet on a line if ab =15, a=3

C. c) have no common point if ab=15, $a \neq 3$.

D. d) have no common point if ab=15, a
eq 5

Answer: A::B::C

14. If the line $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ intersects the the line $3\beta^2 + 3(1-2\alpha)y + z = 3 - \frac{1}{2} \{ 6\alpha^2 x + 3(1-2\beta)y + 2z \}$

then point (lpha,eta,1) lies on the plane

A.
$$2x-y+z=4$$

B.
$$x + y - z = 0$$

$$\mathsf{C.}\,x-2y=0$$

D.
$$2x - y = 0$$

Answer: A::B::C

15. Let A = (1, 1, -1), B = (0, 2, 1) be two given points. Also, let P:x + y + z = 0 be a plane. If A' and B' are the feet of perpendicular from A and B, respectively, on the plane 'P' then A'B' equals

A.
$$\frac{\sqrt{14}}{3}$$

B.
$$\sqrt{\frac{5}{3}}$$

C.
$$\sqrt{3}$$

D.
$$\sqrt{\frac{2}{3}}$$

Answer: A

16. Let A = (1,1,-1) and B = (0, 2,1) be two given points .Also, let P:x+y+z=0 be a plane. The equation of the line perpendicular to \overrightarrow{AB} and lying completely in the plane 'P' is

A. (a)
$$\frac{x - \frac{2}{3}}{1} = \frac{y - \frac{1}{2}}{-3} = \frac{z + 2}{2}$$

B. (b) $\frac{x - 3}{2} = \frac{y - 1}{-6} = \frac{z + 2}{2}$

C. (c)
$$x=y=z$$

D. (d)
$$x-3=y-1=z=2$$

Answer: A

Watch Video Solution

17. Let $P_1: x + y + 2z - 3 = 0$ and $P_2 = x - 2y + z = 4$ be two planes. Also, let A(1, 3, 4) and B(3, 2, 7) be two points in space.

The equation of plane which passes through line of intersection of P_1 and P_2 and upon which length of projection of the line segment AB is the greatest, is

A. (a)
$$2x + 3y + z + 4 = 0$$

B. (b)
$$3x - 3y + 4z - 11 = 0$$

C. (c)
$$x+3y+z+2=0$$

D. (d)
$$3y + z + 1 = 0$$

Answer: D

18. Let $P_1: x + y + 2z - 3 = 0$ and $P_2 = x - 2y + z = 4$ be two planes. Also, let A(1, 3, 4) and B(3, 2, 7) be two points in space.

The equation of plane which passes through line of intersection of P_1 and P_2 upon which length of projection of the line segment AB is the least, is

A. a)
$$x+3y+z+2=0$$

B. b)
$$3y+z+1=0$$

- C. c) 2x y + 3z 7 = 0
- D. d) 3x 3y + 4z 11 = 0

Answer: C

