

MATHS

BOOKS - CENGAGE

GRAPHS OF POLYNOMIAL AND RATIONAL FUNCTIONS

Illustrations

1. Draw the rough sketch of the curve $y=\left(x-1
ight)^2(x-3)^3$

Watch Video Solution

2. Draw the rough sketch of the curve $y=(x-1)^2(x-2)(x-3)^3$.

3. Draw the rough sketch of the curve $y = x^4 - x^2$.

4. Draw the graph of the function $y=3x^4-4x^3$. Discuss the points of local extremum, inflection and intervals of monotonicity.

5. Draw the graph of |y| = (x-1)(x-2)(x-3).

6. If $f(x) = 3\sqrt{1-x^2} + 3\sqrt{1-x^2}$, then f(x) is

7. Whether the given equation $\sqrt{\frac{\sec\theta-1}{\sec\theta+1}} = \cot\theta-\csc\theta$?

Watch Video Solution

8. Draw the graph of $y = x^4 + 2x^2 - 8x + 3$

Find the number of real roots of the equation $x^4 + 2x^2 - 8x + 3 = 0$.

Also find the sum of the integral parts of all real roots.

Watch Video Solution

- **9.** Let $\mathsf{a} \in \mathsf{R}$ and $\mathsf{f} \colon R \to R$ be given by $f(x) = x^5 5x + a$, then
- (a) f(x) = 0 has three real roots if a > 4
- (b) f(x) = 0 has only one real root if a > 4
- (c) f(x) = 0 has three real roots if a < -4
- (d) f(x) = 0 has three real roots if -4 < a < 4

10. If $\cos\theta = 3/5$ then the value of $(\sin\theta - \tan\theta + 1)/2\tan^2\theta$

11. Find the area bounded by the curves $y=\sqrt{1-x^2}$ and $y=x^3-x$ without using integration.

12. Draw the graph of $f(x)=4x^3-3x$ and hence draw the graph of $g(x)=\cos^{-1}\bigl(4x^3-3x\bigr).$

Let

13.

 $g(x)=\{max\!:\!f(t;x+1\leq t\leq x+2,\;-3\leq x\leq 01-x,x\geq\;\;$.Find continuity and differentiability of g(x) for x in [-3,1]

 $f(x) = x^3 - 3x^2 + 6 \forall x \in R$

and

14. Find the value of k if $x^3 = 3x + a = 0$ has three real distinct roots.

Watch Video Solution

15. If t is a real number satisfying the equation $2t^3-9t^2+30-a=0,$ then find the values of the parameter a for which the equation $x+\frac{1}{x}=t$ gives six real and distinct values of x.

- **16.** Let $f(x)=x^3-9x^2+24x+c=0$ have three real and distinct roots $lpha,\,eta$ and $\lambda.$
- (i) Find the possible values of c.
- (ii) If $[\alpha] + [\beta] + [\lambda] = 8$, then find the values of c, where $[\cdot]$ represents the greatest integer function.

(ii) If $[lpha]+[eta]+[\lambda]=7$, then find the values of c, where $[\ \cdot\]$ represents

the greatest integer function.s

17. Draw the graph of $f(x)=rac{x^2-5x+6}{x^2-x}$

18. Draw the graph of $y=rac{1}{x^2}$.

19. Write a possible rational function h with a hole at x=5, a vertical asymptote at x=-1, a horizontal asymptote at y=2 and x-intercept at x=2.

20. Write a rational function g with vertical asymptotes at x=3 and

$$x=-3$$
, a horizontal asymptote at $y=-4$ and with no x -intercept.

21. Draw the graph of $y=f(x)=rac{x+1}{x^2+1}$

22. Draw the graph of the function $f\colon R-\{-1,1\} o R.\ f(x)=rac{x}{1-|x|}.$

23. Draw the graph of $f(x)=rac{1}{x^2-2x+2}$.

24. From the graph of $y=x^2-4$, draw the graph of $y=\frac{1}{x^2-4}$.

25. Draw the graph of $y=x^2+rac{1}{x^2}, x
eq 0.$

26. Draw the graph of $f(x) = \left| \frac{x^2 - 2}{x^2 - 1} \right|$.

27. Draw the graph of $y=\frac{1-x^2}{1+x^2}$ and hence draw the graph of $y=\cos^{-1}.$ $\frac{1-x^2}{1+x^2}.$

28. Write a possible rational function h with a hole at x = 5, a vertical asymptote at x = -1, a horizontal asymptote at y = 2 and x-intercept at x = -1

2.

29. Draw the graph of $y = \frac{x-1}{x-2}$.

30. Draw the graph of
$$y=\frac{3x-x^3}{1-3x^2}$$
 and hence the graph of $y=\tan^{-1}.\,\frac{3x-x^3}{1-3x^2}.$

31. Draw the graph of
$$y=\dfrac{x^3}{3(x+1)}.$$

- **32.** Draw the graph of $y=\dfrac{1}{x+1}+\dfrac{1}{x}+\dfrac{1}{x-2}.$
 - Watch Video Solution

- **33.** Find the greatest value of $f(x) \frac{1}{2ax x^2 5a^2} \in [-3, 5]$ depending upon the parameter a
 - Watch Video Solution

Exercise

- **1.** Draw the graph of $y = (x 1)(x^2 x + 1)$.
 - Watch Video Solution

2. Draw the graph of $y=\left(x^2-x^5
ight)\left(x-2
ight)^3$.

3. Draw the graphs of

- (i) $y = x^2(x-1)|x-2|$
- (ii) $y = x^3(x-1)|x-2|$
 - Watch Video Solution

4. Write a possible rational function f that has a vertical asymptote at x = 2, a horizontal asymptote y = 3 and a zero at x = -5. Also draw the graph of the function.

- **5.** Draw the graph of $y=f(x)=rac{x^2}{x^2+1}$.
 - Watch Video Solution

Watch Video Solution

6. Draw graph of $y = \frac{x^2 - 6x + 4}{x^2 + 2x + 4}$.

7. Draw the graph of $f(x)=rac{x^2-8x+15}{x^2-2x}$.

8. Draw the graph of $y=f(x)=rac{x^2}{x^2-1}$.

Watch Video Solution

► Watch Video Solution

9. Draw the graph of $y = x + \frac{1}{x}$

11. Draw graph of
$$y=rac{x^3-2x^2}{3(x+1)^2}.$$

12. Draw graph of
$$y=rac{x^3-2x^2}{3{(x+1)}^2}.$$

13. If $x = a \cos^3 \theta$ and $y = a \sin^3 \theta t hen \frac{dy}{dx} =$

Exercises

1. Sketch the graph of an example of a rational function f that satisfies all the given conditions.

(i)
$$f(0) = 0, \, f(1), \, \lim_{x \, o \, \infty} \, f(x) = 0, f \, \, \, ext{is odd}$$

(ii)
$$\lim_{x o 0^+}f(x)=\infty,\ \lim_{x o 0^-}f(x)=-\infty,\ \lim_{x o \infty}f(x)=1,\ \lim_{x o -\infty}f(x)=$$
 (iii) $\lim_{x o -2}f(x)=\infty,\ \lim_{x o -\infty}f(x)=3,\ \lim_{x o \infty}f(x)=3, f(0)=0$

4. Draw the graph of $y=\left|x\right|+2$

