

MATHS

BOOKS - CENGAGE

GRAPHS OF TRIGONOMETRIC FUNCTIONS

Illustrations

1. Plot $y=\sin x$ and $y=\sin 2x$ ·

2. Plot
$$y = \sin x$$
 and $y = \frac{\sin x}{2}$
Watch Video Solution
3. Draw the graph of $y = \tan(3x)$.
Watch Video Solution
4. Draw the graph of $y = \sec^2 x - \tan^2 x$. Is $f(x)$
periodic? If yes, what is its fundamental period?
Watch Video Solution

7. Draw the graph of $y = \cos \pi x$.

10. Let $f(x) = x \sin \pi x$, x > 0. Then for all natural numbers n, f'(x) vanishes at a unique point in the interval $\left(n, n + \frac{1}{2}\right)$ a unique point in the interval $\left(n + \frac{1}{2}, n + 1\right)$ a unique point in the interval (n, n + 1) two points in the interval (n, n + 1)

Watch Video Solution

11. If
$$0 , then prove that $lpha(\seclpha)<rac{2\pi}{3}.$$$

12. Draw the graph and discuss the continuity of $f(x)=[\sin x+\cos x], x\in [0,2\pi],$ where [.] represents the greatest integer function.

13. Draw the graph of $y=[\cos x], x\in [0,2\pi], ext{ where }$

 $[\cdot]$ represents the greatest integer function.

Watch Video Solution

14. Draw the graph of $f(x) = e^{\sin x}$.

15. Draw the graph of $y = \sin 2^x$.

Watch Video Solution

16. Draw the graph of $y = (\sin 2x) \sqrt{1 + an^2 x}$, find

its domain and range.

Watch Video Solution

17. Draw the graph $y = \sin^2 x$.

20. Draw the graph of $f(x) = \sqrt{\sin x}$.

21. Draw the graph of $y = rac{\cos\left(|x| + rac{\pi}{2}
ight)}{\sin x}$. Is the

function periodic ?

Watch Video Solution

22. Draw the graph of $f(x) = \cos \pi[x]$, where $[\,\cdot\,]$

represents the greatest integer function. Find the period of the function.

23. Draw the graph of $f(x) = \sec x + \csc x, x \in (0, 2\pi) - \{\pi/2, \pi, 3\pi/2\}$ Also find the values of 'a' for which the equation $\sec x + \csc x = a$ has two distinct root and four distinct roots.

25. Find the area bounded by the following curve :

(i) $f(x)=\sin x, g(x)=\sin^2 x, 0\leq x\leq 2\pi$

(ii) $f(x)=\sin x, g(x)=\sin^4 x, 0\leq x\leq 2\pi$

Watch Video Solution

26. Write the equivalent (piecewise) definition of $f(x) = sgn(\sin x)$.

Watch Video Solution

27. Find the range of $f(x) = [\sin\{x\}]$, where $\{\}$ represents the fractional part function and []

represents the greatest integer function.

A. -1

B.0

C. 1

D. 0.5

28. Draw a graph of $f(x) = \sin\{x\}$, where $\{x\}$

represents the greatest integer function.

Watch Video Solution

30. Draw the graph of $y = \log_e(\sin x)$.

31. Draw the graph of $[y] = \sin x, x \in [0, 2\pi]$ where

 $\left[\ \cdot \ \right]$ denotes the greatest integer function

$$\sin x+2x\geq rac{3x(x+1)}{\pi},\,orall x\in \left[0,rac{\pi}{2}
ight]$$
 (Justify the

inequality, if any used).

40. Find the ratio of the areas of two regions of the curve $C_1 \equiv 4x^2 + \pi^2 y^2 = 4\pi^2$ divided by the curve $C_2 \equiv y = -\left(sgn\left(x - \frac{\pi}{2}\right)\right)\cos x$ (where sgn (x) = signum (x)).

Watch Video Solution

41. Solve $\tan x < 2$.

42. Solve
$$\sin x \succ \frac{1}{2}$$
 or find the domain of $f(x) = \frac{1}{\sqrt{1+2\sin x}}$
Watch Video Solution

43. Solve :
$$2\cos^2 heta+\sin heta\leq 2$$
, where

$$\pi/2 \leq heta \leq 3\pi/2.$$

Watch Video Solution

44. Solve `sintheta+sqrt(3)costhetageq1,-pi

$$\textbf{45. Let} \quad f(x) = \begin{cases} x^2 + 3x, & -1 \leq x < 0 \\ -\sin x, & 0 \leq x < \pi/2 \\ -1 - \cos x, & \frac{\pi}{2} \leq x \leq \pi \end{cases}$$

Draw the graph of the function and find the following

- (a) Range of the function
- (b) Point of inflection
- (c) Point of local minima

46. Evaluate
$$\int_0^2 x(2-x)^3 dx$$

1. Draw the graph of $y = \csc^2 x - \cot^2 x$. Is f(x)

periodic ? If yes, what is its fundamental period ?

3. Draw the graph of $y = \cos^2 x$.

5. Draw the graph of $y = \tan^2 x$.

Watch Video Solution

6. Draw the graph of $y=\sin x+\cos x, x\in [0,2\pi].$

7. Draw the graph of $y = [\cos x], x \in [0, 2\pi],$ where $[\cdot]$ represents the greatest integer function. Watch Video Solution **8.** Draw the graph of $y = \sin \pi \sqrt{x}$. Watch Video Solution 9. The number of roots of the equation $x\sin x=1, x\in [-2\pi,0)\cup (0,2\pi)$ is 2 (b) 3 (c) 4 (d) 0

10. Evaluate :
$$\left[\lim_{x \to 0} \frac{\tan x}{x}\right]$$
, where $[\cdot]$ represents

the greatest integer function.

Watch Video Solution

11. For $f(x) = \sin x - x^2 + 1$, check weather the function is increasing, decreasing or has a point of extremum ?

12. Draw the graph of the function $f(x) = \max(\sin x, \cos 2x), x \in [0, 2\pi]$. Write the equivalent definition of f(x) and find the range of the function.

13. Draw the graph of $y = \cos x, x \in [0, 2\pi], \,$ where

 $[\cdot]$ denotes the greatest integer function.

14. The total number of solution of $sin\{x\} = cos\{x\}$ (where $\{\}$ denotes the fractional part) in $[0, 2\pi]$ is equal to 5 (b) 6 (c) 8 (d) none of these

16. Find the number of solutions to
$$\cos x = \frac{x}{10}, x > 0.$$

Watch Video Solution

21. Draw the graph of
$$y=rac{x^2}{10}{
m sin}\,x.$$

22. Draw the graph of $y=rac{\sin x}{x}$