©゙’ doubtnut

India's Number 1 Education App

MATHS

BOOKS - CENGAGE

JEE 2019

Chapter 2 Straight Lines

1. A line $4 x+3 y=24$ cut the x -axis at point A and cut the y -axis at point B then incentre of triangle $O A B$ is (a) $(4,4)(b)(4,3)(c)(3,4)(d)(2,2)$
A. $(3,4)$
B. $(2,2)$
C. $(4,4)$
D. $(4,3)$

(D) Watch Video Solution

2. A point P moves on line $2 x-3 y+4=0$ If $Q(1,4)$ and $R(3,-2)$ are fixed points, then the locus of the centroid of $\triangle P Q R$ is a line: (a) with slope $\frac{3}{2}$ (b) parallel to y-axis (c) with slope $\frac{2}{3}$ (d) parallel to x-axis
A. parallel to x-axis
B. with slope $\frac{2}{3}$
C. with slope $\frac{3}{2}$
D. parallel to y-axis

Answer: B

- Watch Video Solution

3. If in parallelogram $A B D C$, the coordinate of A, B and C are respectively $(1,2),(3,4)$ and $(2,5)$, then the equation of the diagonal $A D$ is
A. $5 x+3 y-11=0$
B. $3 x-5 y+7=0$
C. $3 x+5 y-13=0$
D. $5 x-3 y+1=0$

Answer: D

- Watch Video Solution

4. The tangent to the curve $y=x^{2}-5 x+5$. parallel to the line $2 y=4 x+1$, also passes through the point :
A. $\left(\frac{1}{4}, \frac{7}{2}\right)$
B. $\left(\frac{7}{2}, \frac{1}{4}\right)$
C. $\left(-\frac{1}{8}, 7\right)$
D. $\left(\frac{1}{8},-7\right)$

Chapter 4 Circle

1.3 circles of radii `a,b,c (a
A. $(1)(\sqrt{a})=\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}$
B. a, b, c are in A.P.
C. $\sqrt{a}, \sqrt{b}, \sqrt{c}$ are in A. P.
D. $\frac{1}{\sqrt{b}}=\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{c}}$

Answer: A

- Watch Video Solution

2. If the circles $x^{2}+y^{2}-16 x-20 y+164=r^{2} \quad$ and
$(x-4)^{2}+(y-7)^{2}=36$ intersect at two points then (a) $1<r<11$
(b) $r=11$ (c) $r>11$ (d) $0<r<1$
A. $0<r<1$
B. $1<r<11$
C. $r<11$
D. $r=11$

Answer: B

- Watch Video Solution

3. If a circle C passing through $(4,0)$ touches the circle $x^{2}+y^{2}+4 x-6 y-12=0$ externally at a point $(1,-1)$, then the radius of the circle C is :-
A. $\sqrt{57}$
B. 4
C. $2 \sqrt{5}$
D. 5

Answer: D

- Watch Video Solution

4. A square is incribed in a circle $x^{2}+y^{2}-6 x+8 y-103=0$ such that its sides are parallel to co-ordinate axis then the distance of the nearest vertex to origin, is equal to (A) 13 (B) $\sqrt{127}$ (C) $\sqrt{41}$ (D) 1
A. 13
B. $\sqrt{137}$
C. 6
D. $\sqrt{41}$

Answer: D

5. A line $2 x+y=1$ intersect co-ordinate axis at points A and B. A circle is drawn passing through origin and point $A \& B$. If perpendicular from point A and B are drawn on tangent to the circle at origin then sum of perpendicular distance is (A) $\frac{5}{\sqrt{2}}$ (B) $\frac{\sqrt{5}}{2}$ (C) $\frac{\sqrt{5}}{4}$ (D) $\frac{5}{2}$
A. $\frac{\sqrt{5}}{4}$
B. $\frac{\sqrt{5}}{2}$
C. $2 \sqrt{5}$
D. $24 \sqrt{5}$

Answer: B

- Watch Video Solution

6. Two circles with equal radii are intersecting at the points $(0,1)$ and $(0,-1)$. The tangent at the point $(0,1)$ to one of the circles passes through the centre of the other circle. Then the distance between the centres of these circles is.
A. 1
B. $\sqrt{2}$
C. $2 \sqrt{2}$
D. 2

Answer: D

- Watch Video Solution

7. A circle cuts the chord on x-axis of length $4 a$. If this circle cuts the y-axis at a point whose distance from origin is $2 b$. Locus of its centre is (A) Ellipse (B) Parabola (C) Hyperbola (D) Straight line
A. A hyperbola
B. A parabola
C. A straight line
D. An ellipse

- Watch Video Solution

8. Let $x^{2}+y^{2}-2 x-2 y-2=0$ and $x^{2}+y^{2}-6 x-6 y+14=0$ are two circles C_{1}, C_{2} are the centre of circles and circles intersect at P, Q find the area of quadrilateral $C_{1} P C_{2} Q$ (A) 12 (B) 6 (C) 8 (D) 4
A. 8
B. 6
C. 9
D. 4

Answer: D

9. A circle of radius 'r' passes through the origin O and cuts the axes at A and B,Locus of the centroid of triangle OAB is
A. $\left(x^{2}+y^{2}\right)^{2}=4 R x^{2} y^{2}$
B. $\left(x^{2}+y^{2}\right)(x+y)=R^{2} x y$
C. $\left(x^{2}+y^{2}\right)^{3}=4 R^{2} x^{2} y^{2}$
D. $\left(x^{2}+y^{2}\right)^{2}=4 R^{2} x^{2} y^{2}$

Answer: C

- Watch Video Solution

Chapter 5 Parabola

1. Let $A(4,-4)$ and $\mathrm{B}(9,6)$ be points on the parabola $y^{2}=4 x$. Let C be chosen on the on the arc AOB of the parabola where O is the origin such that the area of $\triangle A C B$ is maximum. Then the area (in sq. units) of $\triangle A C B$ is :
A. $31 \frac{3}{4}$
B. 32
C. $30 \frac{1}{2}$
D. $31 \frac{1}{4}$

Answer: D

- Watch Video Solution

2. If $y^{2}=4 b(x-c)$ and $y^{2}=8 a x$ having common normal then (a, b, c) is (a) $\left(\frac{1}{2}, 2,0\right)$ (b) $(1,1,3)$ (c) $(1,1,1)$ (d) $(1,3,2)$
A. $(1,1,0)$
B. $\left(\frac{1}{2}, 2,3\right)$
C. $\left(\frac{1}{2}, 2,0\right)$
D. $(1,1,3)$

Watch Video Solution

3. The length of the common chord of the two circles $x^{2}+y^{2}-4 y=0$ and $x^{2}+y^{2}-8 x-4 y+11=0$ is
A. $2 \sqrt{11}$
B. $3 \sqrt{2}$
C. $6 \sqrt{3}$
D. $8 \sqrt{2}$

Answer: C

- Watch Video Solution

4. If the area of the triangle whose one vertex is at the vertex of the parabola, $y^{2}+4\left(x-a^{2}\right)=0$ and the other two vertices are the points of intersection of the parabola and Y-axis, is 250 sq units, then a value of 'a' is
A. $5 \sqrt{5}$
B. $(10)^{2 / 3}$
C. $5\left(2^{1 / 3}\right)$
D. 5

Answer: D

- Watch Video Solution

5. Let $\mathrm{A}(4,-4)$ and $\mathrm{B}(9,6)$ be points on the parabola, $y^{2}=4 x$. Let C be chosen on the are $A O B$ of the parabola, where O is the origin, such that the area of $\triangle A C B$ is maximum. Then, the area (in sq. units) of $\triangle A C B$ is
A. $\frac{125}{4}$
B. $\frac{125}{2}$
C. $\frac{625}{4}$
D. $\frac{75}{2}$

Answer: A

D Watch Video Solution

6. A tangent is drawn to parabola $y^{2}=8 x$ which makes angle θ with positive direction of x-axis. The equation of tangent is (A) $y=x \tan \theta+2 \cot \theta$ (B) $y \cot \theta=x-2 \tan \theta$ (C) ycottheta=x+2tantheta $(D) y \operatorname{cottheta}=x-t a n t h e t a `$
A. $x=y \cot \theta+2 \tan \theta$
B. $x=y \cot \theta-2 \tan \theta$
C. $y=x \tan \theta-2 \cot \theta$
D. $y=x \tan \theta+2 \cot \theta$

Answer: A

D Watch Video Solution

1. If normals are drawn to the ellipse $x^{2}+2 y^{2}=2$ from the point $(2,3)$. then the co-normal points lie on the curve
A. $\frac{x^{2}}{2}+\frac{y^{2}}{4}=1$
B. $\frac{x^{2}}{4}+\frac{y^{2}}{2}=1$
C. $\frac{1}{2 x^{2}}+\frac{1}{4 y^{2}}=1$
D. $\frac{1}{4 x^{2}}+\frac{1}{2 y^{2}}=1$

Answer: C

- Watch Video Solution

2. Let the length of latus rectum of an ellipse with its major axis along x axis and center at the origin, be 8 . If the distance between the foci of this ellipse is equal to the length of the minor axis, then which of the
following points lies on it: (a) $(4 \sqrt{2}, 2 \sqrt{2})$ (b) $(4 \sqrt{3}, 2 \sqrt{2}) \quad$ (c)
$(4 \sqrt{3}, 2 \sqrt{3})(\mathrm{d})(4 \sqrt{2}, 2 \sqrt{3})$
A. $(4 \sqrt{3}, 2 \sqrt{3})$
B. $(4 \operatorname{sart}(3), 2 \sqrt{2})$
C. $(4 \sqrt{2}, 2 \sqrt{2})$
D. $(4 \sqrt{2}, 2 \sqrt{3})$

Answer: B

- Watch Video Solution

3. Let S and S^{\prime} be the foci of the ellipse and B be any one of the extremities of its minor axis. If $\Delta S^{\prime} B S=8 s q$. units, then the length of a latus rectum of the ellipse is
A. $2 \sqrt{2}$
B. 2
C. 4
D. $4 \sqrt{2}$

Answer: C

- Watch Video Solution

Chapter 7 Hyperbola

1. If eccentricity of the hyperbola $\frac{x^{2}}{\cos ^{2} \theta}-\frac{y^{2}}{\sin ^{2} \theta}=1$ is move than 2 when $\theta \in\left(0, \frac{\pi}{2}\right)$. Find the possible values of length of latus rectum (a) $(3, \infty)$ (b) $1,3 / 2)$ (c) $(2,3)$ (d) $(-3,-2)$
A. $(2,3)$
B. $(3, \infty)$
C. $(3 / 2,2)$
D. $(1,3 / 2)$

Answer: B

2. A hyperbola has its centre at the origin, passes through the point $(4,2)$ and has transverse axis of length 4 along the x-axis. Then the eccentricity of the hyperbola is
A. $\frac{2}{\sqrt{3}}$
B. $\frac{3}{2}$
C. $\sqrt{3}$
D. 2

Answer: A

Watch Video Solution

3. The equation of tangent to hyperbola $4 x^{2}-5 y^{2}=20$ which is parallel

$$
\begin{aligned}
& \text { to } x-y=2 \text { is (a) } x-y+3=0 \text { (b) } x-y+1=0 \text { (c) } x-y=0 \text { (d) } \\
& x-y-3=0
\end{aligned}
$$

A. $x-y+9=0$
B. $x-y+7=0$
C. $x-y+1=0$
D. $x-y-3=0$

Answer: C

D Watch Video Solution

4. Let $S=\left\{(x, y) \in R^{2}: \frac{y^{2}}{1+r}-\frac{x^{2}}{1-r}=1\right\}$, where $r \neq \pm 1$. Then S represents:
A. A hyperbolawhose eccentricity is $\frac{2}{\sqrt{r+1}}$, where $0<r<1$.
B. An ellipse whose eccentricity is $\frac{1}{\sqrt{r+1}}, \quad$ where $r>1$
C. A hyperbola whose eccentricity is $\frac{2}{\sqrt{1-r}}$, where $0<r<1$.
D. An ellipse whose eccentricity is $\sqrt{\frac{2}{r+1}}$, where $r>1$.
5. Equation of a common tangent to the parabola $y^{2}=4 x$ and the hyperbola $x y=2$ is
A. $x+2 y+4=0$
B. $x-2 y+4=0$
C. $x+y+1=0$
D. $4 x+2 y+1=0$

Answer: A

- Watch Video Solution

6. If a hyperbola has length of its conjugate axis equal to 5 and the distance between its foci is 13 , then the eccentricity of the hyperbola is
A. 2
B. $\frac{13}{6}$
C. $\frac{13}{8}$
D. $\frac{13}{12}$

Answer: D

- Watch Video Solution

7. If the vertices of the parabola be at $(-2,0)$ and $(2,0)$ and one of the foci be at $(-3,0)$ then which one of the following points does not lie on the hyperbola? (a) $(-6,2 \sqrt{10})$ (b) $(2 \sqrt{6}, 5)$ (c) $(4, \sqrt{15})$ (d) $(6,5 \sqrt{2})$
A. $(4, \sqrt{15})$
B. $(-6,2 \sqrt{10})$
C. $(6,5 \sqrt{2})$
D. $(2, \sqrt{6}, 5)$

Answer: B

Matching Coluumn Type

Columin I

```
In a triangle \(\Delta+Y \%\), let \(a, b\) and \(c\) be the lengths of the sides opposite to the angle i. \(Y\) and \(Z\) respectively. If \(2\left(a^{2}-b^{2}\right)=c^{2}\) and \(\lambda=\frac{\sin (X-Y)}{\sin Z}\) then possible values of \(n\) for which \(\cos (n \pi \lambda)=0\) is (are)
```

Column II
(p) 1
(s) 5
(d) Suppose that $F(\alpha)$ denotes the area of the region bounded by $x=0$, $x=2, y^{2}=4 x$ and $y=|\alpha x-1|+|\alpha x-2|+\alpha x$, where $\alpha \in\{0,1\}$. Then the value(s) of $F(\alpha)+\frac{8}{3} \sqrt{2}$, when $\alpha=0$ and $\alpha=1$, is (are)
c) In R^{2}, let $\sqrt{3} \hat{i}+\hat{j}, \hat{i}+\sqrt{3} \hat{j}$ and $\beta \hat{i}+(1-\beta) \hat{j}$ be the position vectors of X, Y and Z with respect of the origin O, respectively. If the distance of Z from the bisector of the acute angle of $\overrightarrow{O X}$ and $\overrightarrow{O Y}$ is $\frac{3}{\sqrt{2}}$, then possibie value(s) of $|\beta|$ is (are)
In a triangle $\triangle X Y Z$, let a, b and c be the lengths of the sides opposite to the angles X, Y and Z, respectively. If $1+\cos 2 X-2 \cos 2 Y=2 \sin X \sin Y$, then possible value(s) of $\frac{a}{b}$ is (are)

1. Suppose that \vec{p}, \vec{q} and \vec{r} are three non- coplaner in R^{3}, Let the components of a vector \vec{s} along \vec{p}, \vec{q} and \vec{r} be 4,3, and 5 , respectively if the components this vector \vec{s} along
$(-\vec{p}+\vec{q}+\vec{r}),(\vec{p}-\vec{q}+\vec{r})$ and $(-\vec{p}-\vec{q}+\vec{r})$ are x, y and z, respectively, then the value of $2 x+y+z$ is

- Watch Video Solution

2. Let \vec{a}, \vec{b}, and \vec{c} be three non coplanar unit vectors such that the angle between every pair of them is $\frac{\pi}{3}$. If $\vec{a} \times \vec{b}+\vec{b} \times \vec{x}=p \vec{a}+q \vec{b}+r \vec{c}$ where $\mathrm{p}, \mathrm{q}, \mathrm{r}$ are scalars then the value of $\frac{p^{2}+2 q^{2}+r^{2}}{q^{2}}$ is

- Watch Video Solution

Chapter 2 Multiple Correct Answers Type

1. Let \vec{x}, \vec{y} and \vec{z} be three vector each of magnitude $\sqrt{2}$ and the angle between each pair of them is $\frac{\pi}{3}$. if \vec{a} is a non - zero vector perpendicular to \vec{x} and $\vec{y} \times \vec{z}$ and \vec{b} is a non-zero vector perpendicular to \vec{y} and $\vec{z} \times \vec{x}$, then
A. $\vec{b}=(\vec{b} \cdot \vec{z})(\vec{z}-\vec{x})$
B. $\vec{a}=(\vec{a} \cdot \vec{y})(\vec{y}-\vec{z})$
c. $\vec{a} \cdot \vec{b}=-(\vec{a} \cdot \vec{y})(\vec{b} \cdot \vec{z})$
D. $\vec{a}=(\vec{a} \cdot \vec{y})(\vec{z}-\vec{y})$

Answer: A::B::C

- Watch Video Solution

$$
\begin{aligned}
& \text { 2. Let } \begin{array}{c}
\triangle P Q R
\end{array} \text { be }{ }^{\text {a }} \text { a triangle } \\
& \vec{a}=\overline{Q R}, \vec{b}=\overline{R P} \text { and } \vec{c}=\overline{P Q} \text { if }|\vec{a}|=12,|\vec{b}|=4 \sqrt{3} \text { and } \vec{b} \cdot \vec{c}
\end{aligned}
$$ then which of the following is (are) true ?

A. $\frac{|\vec{c}|^{2}}{2}-|\vec{a}|=12$
B. $\frac{|\vec{c}|^{2}}{2}-|\vec{a}|=30$
C. $|\vec{a} \times \vec{b}+\vec{c} \times \vec{a}|=48 \sqrt{3}$
D. $\vec{a} \cdot \vec{b}=-72$

Answer: A::C::D

D Watch Video Solution

Matching Column Type

Column I

(r) Let $u(x)=\cos \left(3 \cos ^{-1} x\right), x \in[-1,1], x \neq \pm \frac{\sqrt{3}}{2}$.

Then $\frac{1}{M(x)}\left\{\left(x^{2}-1\right) \frac{d^{2} y(x)}{d x^{2}}+x \frac{d y(x)}{d x}\right\}$ equals
1.

centre at the origin Let a_{a} be the persiom vectorot the pont A. k, , 2
$\sum_{i=1}^{n}\left(a_{k} \times a_{k-1}\right) \quad \sum_{k=1}^{n}\left(a_{i} a_{k-1}\right)$, then the minimum value of n is
(r) If the normal from the point $P(h, 1)$ on the ellipse $\frac{x^{2}}{6}+\frac{y^{2}}{3}=1$ is perpendicular to the line $x+y=8$, then the value of h is
(s) Number of positive solutions satisfying the equation $\tan ^{-1}\left(\frac{1}{2 x+1}\right)$
$+\tan ^{-1}\left(\frac{1}{4 x+1}\right)=\tan ^{-1}\left(\frac{2}{x^{2}}\right)$ is
A.
(p) $\quad(q) \quad(r) \quad(s)$
(4)
(3) (2)
(1)
B.
(p) $\quad(q) \quad(r) \quad(s)$
(2)
(4) (3) (1)
(p) $(q) \quad(r) \quad(s)$
(4)
(3) (1)
(2)
D.
(p)
(2) (4)
(1)
(3)

Answer: A

- View Text Solution

Column 1

(a) In R^{2}, if the magnitude of the projection vector of the vector Column II and if $\alpha=2+\sqrt{3} \beta$, then possible value(s) of $|\alpha|$ is (are)
(b) Let a and b be real numbers such that the function $f(x)=\left\{\begin{array}{ll}-3 a x^{2}-2, & x<1 \\ b x+a^{2}, & x \geq 1\end{array}\right.$ is \quad (q) 2 differentiable for all $x \in R$. Then possible value(s) of α is (are)
(c) Let $\omega \neq 1$ be a complex cube root of unity. If $\left(3-3 \omega+2 \omega^{2}\right)^{4 n+3}+(2+3 \omega-$ $\left.3 \omega^{2}\right)^{4 n+3}+\left(-3+2 \omega+3 \omega^{2}\right)^{4 n+3}=0$, then possible value(s) of n is (are)
(d) Let the harmonic mean of two positive real numbers a and b be 4 . If q is a positive real number such that $a, 5, q, b$ is an arithmetic progression, then the value(s) of $|q-a|$ is (are)

D View Text Solution

Chapter 3 Multiple Correct Answers Type

1. let L be a straight line passing through the origin. Suppose that all the points on L are at a constant distance from the two planes $P_{1}: x+2 y-z+1=0$ and $P_{2}: 2 x-y+z-1=0$, Let M be the locus of the feet of the perpendiculars drawn from the points on L to the plane

P_{1}. Which of the following points lie(s) on M ?

A. $\left(0,-\frac{5}{6},-\frac{2}{3}\right)$
B. $\left(-\frac{1}{6},-\frac{1}{3}, \frac{1}{6}\right)$
C. $\left(-\frac{5}{6}, 0, \frac{1}{6}\right)$
D. $\left(-\frac{1}{3}, 0, \frac{2}{3}\right)$

Answer: A: B

- Watch Video Solution

2. In R^{3}, consider the planes $P_{1}: y=0$ and $P_{2}, x+z=1$. Let P_{3} be a plane, different from P_{1} and P_{2} which passes through the intersection of P_{1} and P_{2}, If the distance of the point $(0,1,0)$ from P_{3} is 1 and the distance of a point (α, β, γ) from P_{3} is 2 , then which of the following relation(s) is/are true?
A. $2 \alpha+\beta+2 \gamma+2=0$
B. $2 \alpha+\beta+2 \gamma+4=0$
C. $2 \alpha+\beta+2 \gamma-10=0$
D. $2 \alpha+\beta+2 \gamma-8=0$

D Watch Video Solution

Chapter 2

1. Let $\vec{u}=u_{1} \hat{i}+u_{2} \hat{j}+u_{3} \hat{k}$ be a unit vector in R^{3} and $\vec{w}=\frac{1}{\sqrt{6}}(\hat{i}+\hat{j}+2 \hat{k})$, Given that there exists a vector \vec{v} in R^{3} such that $|\vec{u} \times \vec{v}|=1$ and $\vec{w} \cdot(\vec{u} \times \vec{v})=1$ which of the following statements is correct ?
A. there is exactly one choice for such \vec{v}
B. there are infinitely many choices for such \vec{v}
C. if \widehat{u} lies in the xy - plane then $\left|u_{1}\right|=\left|u_{2}\right|$
D. if \widehat{u} lies in the xz-plane then $2\left|u_{1}\right|=\left|u_{3}\right|$

Answer: B::C

Single Correct Answer Type

1. the mirror image of point $(3,1,7)$ with respect to the plane $x-y+z=3$ is P. then equation plane which is passes through the point P and contains the line $\frac{x}{1}=\frac{y}{2}=\frac{z}{1}$.
A. $x+y-3 z=0$
B. $3 x+z=0$
C. $x-4 y+7 z=0$
D. $2 x-y=0$

Answer: C

- Watch Video Solution

1. Consider a pyramid $O P Q R S$ located in the first octant $(x \geq 0, y \geq 0, z \geq 0)$ with O as origin, and OP and OR along the x-axis and the y-axis,respectively. The base $O P Q R$ of the pyramid is asqu are with $O P=3$. The point S is directly above the mid-point T of diagonal OQ such that $T S=3$.Then
A. the acute angle between OQ and OS is $\pi / 3$
B. the equataion of the plane containing thetriangle $O Q S$ is $x-y=0$
C. the length of the perpendicular from P to the plane containing the triagle OQS is $\frac{3}{\sqrt{2}}$
D. the perpendcular distance from O to the straight line containing RS is $\sqrt{\frac{15}{2}}$

Answer: b.,c.,d

- Watch Video Solution

1. Let O be the origin and let $P Q R$ be an arbitrary triangle. The point S is such that
$\overline{O P} \cdot \overline{O Q}+\overline{O R} \cdot \overline{O S}=\overline{O R} \cdot \overline{O P}+\overline{O Q} \cdot \overline{O S}=\overline{O Q} \cdot \overline{O R}+\overline{O P} \cdot \overline{O S}$ Then the triangle $P Q R$ has S as its
A. centriod
B. circumectre
C. incente
D. orthocenter

Answer: D

- Watch Video Solution

Linked Comprehesion Type

1. Let O be the origin and $\overrightarrow{O X}, \overrightarrow{O Y}, \overrightarrow{O Z}$ be three unit vector in the directions of the sides $\overrightarrow{Q R}, \overrightarrow{R P}, \overrightarrow{P Q}$ respectively, of a triangle PQR.
$|\overrightarrow{O X} \times \overrightarrow{O Y}|=$
A. $\sin (P+Q)$
B. $\sin 2 R$
C. $\sin (P+R)$
D. $\sin (Q+R)$

Answer: A

- Watch Video Solution

2. Let O be the origin, and $O X x O Y, O Z$ be three unit vectors in the direction of the sides $Q R, R P, P Q$, respectively of a triangle $P Q R$. If the triangle $P Q R$ varies, then the minimum value of

$$
\cos (P+Q)+\cos (Q+R)+\cos (R+P) \text { is: }-\frac{3}{2} \text { (b) } \frac{5}{3} \text { (c) } \frac{3}{2} \text { (d) }-\frac{5}{3}
$$

A. $-\frac{5}{3}$
B. $-\frac{3}{2}$
C. $\frac{3}{2}$
D. $\frac{5}{3}$

Answer: B

- Watch Video Solution

Chapter 3

1. The equation of the plane passing through the point $1,1,1$) and perpendicular to the planes $2 x+y-2 z=5 a n d 3 x-6 y-2 z=7$, is $14 x+2 y+15 z=3 \quad 14 x+2 y-15 z=1 \quad 14 x+2 y+15 z=31$ $14 x-2 y+15 z=27$
A. $14 x+2 y+15 x=31$
B. $14 x+2 y-15 z=1$
C. $14 x+2 y+15 x=3$
D. $14 x-2 y+15 z=27$

Mcq

1. In a class 140 students numbered 1 to 140 , all even numbered students opted Mathematics course, those whose number is divisible by 3 opted Physics course and those whose number is divisible by 5 opted Chemistry course. Then the number of students who did not opt for any of the three courses is (a) 38 (b) 1 (c) 42 (d) 102
A. 102
B. 42
C. 1
D. 38

Answer: D

2. Let α and β two roots of the equatins $x^{2}+2 x+2=0$. then $\alpha^{15}+\beta^{15}$ is equal to
A. 512
B. -512
C. -256
D. 256

Answer: C

- Watch Video Solution

3. If both the roots of the quadratic equation $x^{2}-m x+4=0$ are real and distinct and they lie in the interval $[1,5]$ then m lies in the interval
A. $(4,5]$
B. $(3,4)$
C. $(5,6)$
D. $(-5,-4)$

Answer: A

- Watch Video Solution

4. The number of all possivle positive integral values of α for which the roots of the quadratic equation, $6 x^{2}-11 x+\alpha=0$ are rational numbers is
A. 2
B. 5
C. 3
D. 4

Answer: C

- Watch Video Solution

$(c-5) x^{2}-2 c x+(c-4)=0, c \neq 5$. Let S be the set of all integral values for c for which one root of the equation lies in the interval $(0,2)$ and its other root lies in the interval $(2,3)$. Then, the number of elements in S is
A. 11
B. 18
C. 10
D. 12

Answer: A

- Watch Video Solution

6. The value of λ such that sum of the squares of the roots of the quadratic equation, $x^{2}+(3-\lambda) x+2=\lambda$ had the leadt value is
A. 2
B. $\frac{4}{9}$
C. $\frac{15}{8}$
D. 1

Answer: A

- Watch Video Solution

7. If one real root of the quadratic equation $81 x^{2}+k x+256=0$ is cube of the other root, then a value of k is
A. -81
B. 100
C. -300
D. 144

Answer: C

8. Let α and β be the roots of the quadratic equation x^{2} sin $\theta-x(\sin \theta \cos \theta+1)+\cos \theta=0\left(0<\theta<45^{\circ}\right)$, and $\alpha<\beta$.
Then $\Sigma_{n=0}^{\infty}\left(\alpha^{n}+\frac{(-1)^{n}}{\beta^{n}}\right)$ is equal to
A. $\frac{1}{1-\cos \theta}+\frac{1}{1+\sin \theta}$
B. $\frac{1}{1+\cos \theta}+\frac{1}{1-\sin \theta}$
C. $\frac{1}{1-\cos \theta}-\frac{1}{1+\sin \theta}$
D. $\frac{1}{1+\cos \theta}-\frac{1}{1-\sin \theta}$

Answer: A

- Watch Video Solution

9. If λ be the ratio of the roots of the quadratic equation in $x, 3 m^{2} x^{2}+m(m-4) x+2=0$, then the least value of m for which $\lambda+\frac{1}{\lambda}=1$, is
A. $2-\sqrt{3}$
B. $4-3 \sqrt{2}$
C. $-2+\sqrt{2}$
D. $4-2 \sqrt{3}$

Answer: B

- Watch Video Solution

10. The number of integral values of m for which the quadratic expression
$(1+2 m) x^{2}-2(1+3 m) x+4(1+m), x \in R$, is always positive is
A. 8
B. 7
C. 6
D. 3
11. Let $A=\left\{\theta \in\left(-\frac{\pi}{2}, \pi\right): \frac{3+2 i \sin \theta}{1-2 \sin \theta}\right.$ is purely imaginary $\}$

Then the sum of the elements in A is
A. $\frac{5 \pi}{6}$
B. $\frac{2 \pi}{3}$
C. $\frac{3 \pi}{4}$
D. π

Answer: B

- Watch Video Solution

12. Let Z_{0} is the root of equation $x^{2}+x+1=0$ and $Z=3+6 i\left(Z_{0}\right)^{81}-3 i\left(Z_{0}\right)^{93}$ Then $\arg (Z)$ is equal to (a) $\frac{\pi}{4}$ (b) $\frac{\pi}{3}$ (c) π (d) $\frac{\pi}{6}$
A. $\frac{\pi}{4}$
B. $\frac{\pi}{3}$
C. 0
D. $\frac{\pi}{6}$

Answer: A

- Watch Video Solution

13. Let z_{1} and z_{2} be any two non-zero complex numbers such that $3\left|z_{1}\right|=2\left|z_{2}\right|$. If $z=\frac{3 z_{1}}{2 z_{2}}+\frac{2 z_{2}}{3 z_{1}}$, then
A. $|z|=\frac{1}{2} \sqrt{\frac{17}{2}}$
B. $\operatorname{Re}(z)=0$
C. $|z|=\sqrt{\frac{5}{2}}$
D. $\operatorname{lm}(z)=0$
14. If $z=\left(\frac{\sqrt{3}}{2}+\frac{i}{2}\right)^{5}+\left(\frac{\sqrt{3}}{2}-\frac{i}{2}\right)^{5}$, then prove that $\operatorname{Im}(z)=0$
A. $\mathrm{R}(\mathrm{z})>0$ and $I(z)>0$
B. $R(z)<0$ and $I(z)>0$
C. $R(z)=-3$
D. $1(z)=0$

Answer: D

- Watch Video Solution

15. Let $\left(-2-\frac{1}{3} i\right)^{3}=\frac{x+i y}{27}(i=\sqrt{-1})$ where x and y are real numbers then y-x equals
A. 85
B. 85
C. -91
D. 91

Answer: D

D Watch Video Solution

16. Let $\frac{z-\alpha}{z+\alpha}$ is purely imaginary and $|z|=2, \alpha \varepsilon R$ then α is equal to (A) 2 (B) 1 (C) $\sqrt{2}$ (D) $\sqrt{3}$
A. 1
B. 2
C. $\sqrt{2}$
D. $\frac{1}{2}$

Answer: B

17. Let Z_{1} and Z_{2} be two complex numbers satisfying $\left|Z_{1}\right|=9$ and $\left|Z_{2}-3-4 i\right|=4$. Then the minimum value of $\left|Z_{1}-Z_{2}\right|$ is
A. 0
B. 1
C. $\sqrt{2}$
D. 2

Answer: A

- Watch Video Solution

18. Consider the statement : $P(n): n^{2}-n+41$ is prime." Then, which one of the following is true?
A. $P(5)$ is false but $P(3)$ is true
B. Both $P(3)$ and $P(5)$ are false
C. $P(3)$ is false but $P(5)$ is true
D. Both $P(3)$ and $P(5)$ are true

Answer: D

- Watch Video Solution

19. If a, b, c are three distinct real numbers in G.P. and $a+b+c=x b$, then prove that either $x\langle-1$ or $x\rangle 3$.
A. 4
B. -3
C. -2
D. 2

Answer: D

20. Let $a_{1}, a_{2}, \ldots . a_{3}$ be an AP, $S=\sum_{i=1}^{30} a_{i}$ and $T=\sum_{i=1}^{15} a_{(2 i-1)}$. If $a_{5}=27$ and $S-2 T=75$, then a_{10} is equal to
A. 57
B. 47
C. 42
D. 52

Answer: D

- Watch Video Solution

21. The sum of series
$1+6+\frac{9\left(1^{2}+2^{2}+3^{2}\right)}{7}+\frac{12\left(1^{2}+2^{2}+3^{2}+4^{2}\right)}{9}+\frac{15\left(1^{2}+2^{2}+\ldots+5\right.}{11}$
up to 15 terms is
A. 7820
B. 7830
C. 7520
D. 7510

Answer: A

- Watch Video Solution

22. Let a, b and c be the 7th, 11th and 13th terms, respectively, of a nonconstant A.P.. If these are also the three consecutive terms of a G.P., then $\frac{a}{c}$ is equal to
A. $1 / 2$
B. 4
C. 2
D. $7 / 13$

Answer: B

23. The sum of all two digit positive numbers which when divided by 7 yield 2 or 5 as remainder is
A. 1365
B. 1256
C. 1465
D. 1356

Answer: D

- Watch Video Solution

24. If $5,5 r$ and $5 r^{2}$ are the lengths of the sides of a triangle, then r cannot be equal to
A. $\frac{3}{2}$
B. $\frac{3}{4}$
C. $\frac{5}{4}$
D. $\frac{7}{4}$

Answer: D

- Watch Video Solution

25. The sum of an infinite geometric series with positive terms is 3 and the sums of the cubes of its terms is $\frac{27}{19}$. Then the common ratio of this series is
A. $\frac{4}{9}$
B. $\frac{2}{9}$
C. $\frac{2}{3}$
D. $\frac{1}{3}$

Answer: C

26. Let $a_{1}, a_{2}, a_{3}, ? a_{10}$ are in G.P. if $\frac{a_{3}}{a_{1}}=25$ then $\frac{a_{9}}{a_{5}}$ is equal to (A) 5^{4} (B) 4.5^{4} (C) 4.5^{3} (D) 5^{3}
A. $2\left(5^{2}\right)$
B. $4\left(5^{2}\right)$
C. 5^{4}
D. 5^{3}

Answer: C

- Watch Video Solution

27. If 19th term of a non-zero AP is zero, then its (49th term) : (29 th term)
is
A. 3:1
B. $4: 1$
C. $2: 1$
D. 1:3

Answer: A

- Watch Video Solution

28. The product of three consecutive terms of a GP is 512 . If 4 is added to each of the first and the second of these terms, the three terms now form an AP. Then the sum of the original three terms of the given GP is: (a) 36
(b) 32 (c) 24 (d) 28
A. 36
B. 24
C. 32
D. 28

Answer: D

29. Let $S_{k}=\frac{1+2+3+\ldots+k}{k}$. If $S_{1}^{2}+s_{2}^{2}+\ldots+S_{10}^{2}=\frac{5}{12} A$, then A is equal to
A. 303
B. 283
C. 156
D. 301

Answer: A

- Watch Video Solution

30. If the sum of the first 15 terms of the series $\left(\frac{3}{4}\right)^{3}+\left(1 \frac{1}{2}\right)^{3}+\left(2 \frac{1}{4}\right)^{3}+3^{3}+\left(3 \frac{3}{4}\right)^{3}+\ldots$ is equal to $225 k$, then k is equal to
B. 27
C. 108
D. 54

Answer: B

- Watch Video Solution

31. Let x, y be positive real numbers and m, n be positive integers, The maximum value of the expression
$\frac{x^{m} y^{n}}{\left(1+x^{2 m}\right)\left(1+y^{2 n}\right)}$ is
A. $\frac{1}{2}$
B. $\frac{1}{4}$
C. $\frac{m+n}{6 m n}$
D. 1

Answer: B

32. Consider a class of 5 girls and 7 boys. The number of different teams consisting of 2 girls and 3 boys that can be formed from this class, if there are two specific boys A and B, who refuse to be the members of the same team, is
A. 200
B. 300
C. 500
D. 350

Answer: B

- Watch Video Solution

33. Let S be the set of all triangles in the xy-plane, each having one vertex at the origin and the other two vertices lie on coordinate axes with
integral coordinates. If each triangle in S has area 50 eq. units, then the number of elements in the set S is
A. 9
B. 18
C. 32
D. 36

Answer: D

(Watch Video Solution

34. The number of natural numbers less than 7,000 which can be formed by using the digits $0,1,3,7,9$ (repetition of digits allowed) is equal to
A. 250
B. 374
C. 372
D. 375

Answer: B

- Watch Video Solution

35. If set $A=\{1,2,3,2\}$, then the find the number of onto functions from $A \rightarrow A$ such that $f(k)$ is a multiple of 3 , whenever k is a multiple of 4.
(A) $6^{5} \times 15$!
(B) $5^{6} \times 15$!
(C) $6!\times 5!$
(D) $6!\times 15!$
A. $(15)!\times 6!$
B. $5^{6} \times 15$
C. $5!X x 6$!
D. $6^{5} \times(15)!$

- Watch Video Solution

36. Let $S=\{1,2,3, \ldots, 100\}$. The number of non-empty subsets A to S such that the product of elements in A is even is
A. $2^{50}\left(2^{50}-1\right)$
B. $2^{100}-1$
C. $2^{50}-1$
D. $2^{50}+1$

Answer: A

- Watch Video Solution

37. Consider three boxes, each containing 10 balls labelled 1, 2, ..., 10.

Suppose one ball is randomly drawn from each of the boxes denoted by
n_{i}, the label of the ball drawn from the $i^{\text {th }}$ box, $(I=1,2,3)$. Then, the number of ways in which the balls can be chosen such that $n_{1}<n_{2}<n_{3}$ is
A. 82
B. 240
C. 164
D. 120

Answer: D

- Watch Video Solution

38. Let Z be the set of integers. If $A=\left\{x \in Z: 2^{(x+2)\left(x^{2}-5 x+6\right)}=1\right.$ and $B=\{x \in Z:-3<2 x-1<9\}$, then the number of subsets of the set $A \times B$ is
A. 2^{18}
B. 2^{10}
C. 2^{15}
D. 2^{12}

Answer: C

- Watch Video Solution

39. There are m men and two women participating in a chess tournament. Each participant plays two games with every other participant. If the number of games played by the men between themselves exceeds the number of games played between the men and the women by 84 , then teh value of m is
A. 9
B. 11
C. 12
D. 7

Answer: C

40. If the fractional part of the number $\frac{2^{403}}{15}$ is $\frac{k}{15}$ then k is equal to
A. 14
B. 6
C. 4
D. 8

Answer: D

- Watch Video Solution

41. The coefficient of t^{4} in $\left(\frac{1-t^{6}}{1-t}\right)^{3}$ (a) 18 (b) 12 (c) 9 (d) 15
A. 12
B. 15
C. 10
D. 14

Answer: B

- Watch Video Solution

42. If $\Sigma_{i=1}^{20}\left(\frac{{ }^{20} C_{i-1}}{{ }^{20} C_{i}+{ }^{20} C_{i-1}}\right)^{3}=\frac{k}{21}$, then kequals
A. 200
B. 50
C. 100
D. 400

Answer: C
43. If the third term in expansion of $\left(1+x^{\log _{2} x}\right)^{5}$ is 2560 then x is equal to (a) $2 \sqrt{2}$ (b) $\frac{1}{8}$ (c) $\frac{1}{4}$ (d) $4 \sqrt{2}$
A. $2 \sqrt{2}$
B. $\frac{1}{8}$
C. $4 \sqrt{2}$
D. $\frac{1}{4}$

Answer: D

- Watch Video Solution

44. The positive value of λ for which the coefficient of x^{2} in the expression $x^{2}\left(\sqrt{2}+\frac{\lambda}{x^{2}}\right)^{10}$ is 720 is
A. $\sqrt{5}$
B. 4
C. $2 \sqrt{2}$
D. 3

Answer: B

- Watch Video Solution

45. If $\Sigma_{r=0}^{25}\left({ }^{50} C_{r}^{50-r} C_{25-r}\right)=K\left({ }^{50} C_{25}\right)$, then K is equal to
A. $2^{25}-1$
B. $(25)^{2}$
C. 2^{25}
D. 2^{24}

Answer: C

- Watch Video Solution

46. If the middle term of the expansion of $\left(\frac{x^{3}}{3}+\frac{3}{x}\right)^{8}$ is 5670 then sum of all real values of x is equal to (A) 6 (B) 3 (C) 0 (D) 2
A. 6
B. 8
C. 0
D. 4

Answer: C

- Watch Video Solution

47. The value of r for which
$.{ }^{20} C_{r}, \cdot{ }^{20} C_{r-1} \cdot{ }^{20} C_{1}+.{ }^{20} C_{2}+\ldots \ldots+.{ }^{20} C_{0} \cdot{ }^{20} C_{r}$ is maximum, is
A. 20
B. 15
C. 11
D. 10

Answer: A

- Watch Video Solution

48. Let $(x+10)^{50}+(x-10)^{50}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{50} x^{50}$ for all $x \in R$, then $\frac{a_{2}}{a_{0}}$ is equal to
A. 12.5
B. 12
C. 12.75
D. 12.25

Answer: D

49.

$S_{n}=1+q+q^{2}+\ldots+q^{n}$ and $T_{n}=1+\left(\frac{q+1}{2}\right)+\left(\frac{q+1}{2}\right)+\ldots+$, where q is a real number and $q \neq 1$. If
$.{ }^{101} C_{1}+.{ }^{101} C_{2} \cdot S_{1}+\ldots+.{ }^{101} C_{101} \cdot S_{100}=\alpha T_{100}$, then α is equal to
A. 2^{100}
B. 200
C. 2^{99}
D. 202

Answer: A

- Watch Video Solution

50. Ratio of the $5^{\text {th }}$ term from the beginning to the $5^{\text {th }}$ term from the end in the binomial expansion of $\left(2^{1 / 3}+\frac{1}{2(3)^{1 / 3}}\right)^{10}$ is
A. $1: 4(16)^{\frac{1}{3}}$
B. $1: 2(6)^{\frac{1}{3}}$
C. $2(36)^{\frac{1}{3}}: 1$
D. $4(36)^{\frac{1}{3}}: 1$

Answer: D

- Watch Video Solution

51. If ${ }^{n} C_{4},{ }^{n} C_{5}$ and ${ }^{n} C_{6}$ are in A.P. then find n .
A. 14
B. 11
C. 9
D. 12

Answer: A

52. Number of irrational terms in expansion of $\left(2^{\frac{1}{5}}+3^{\frac{1}{10}}\right)^{60}$ is
A. 55
B. 49
C. 48
D. 54

Answer: D

- Watch Video Solution

53. Two integers are selected at random from the set $\{1,2, \ldots, 11\}$. Given that the sum of selected numbers is even, the conditional probability that both the numbers are even is
A. $\frac{2}{5}$
B. $\frac{1}{2}$
C. $\frac{3}{5}$
D. $\frac{7}{10}$

Answer: A

- Watch Video Solution

54. Let $S=\{1,2, \ldots, 20\}$ A subset B of S is said to be nice, if the sum of the elements of B is 203 . Then the probability that a randomly chosen subset of S is nice is: (a) $\frac{7}{2^{20}}$ (b) $\frac{5}{2^{20}}$ (c) $\frac{4}{2^{20}}$ (d) $\frac{6}{2^{20}}$
A. $\frac{6}{2^{20}}$
B. $\frac{5}{2^{20}}$
C. $\frac{4}{2^{20}}$
D. $\frac{7}{2^{20}}$

Answer: B

55. In a class of 60 students, 40 opted for NCC, 30 opted for NSS and 20 opted for both NCC and NSS. If one of these students is selected at random, then the probability that the student selected has opted neither for NCC nor for NSS is
A. $\frac{2}{3}$
B. $\frac{1}{6}$
C. $\frac{1}{3}$
D. $\frac{5}{6}$

Answer: B

- Watch Video Solution

56. In a game, a man wins Rs 100 if he gets 5 or 6 on a throw of a fair die and loses Rs 50 for getting any other number on the die. If he decides to throw the die either till he gets a five or a six or to a maximum of three throws, then his expected gain/loss (in rupees) is: (a) $\frac{400}{3}$ gain (b) $\frac{400}{9}$ loss (c) 0 (d) $\frac{400}{3}$ loss
A. $\frac{400}{3}$ gain
B. $\frac{400}{3}$ loss
C. 0
D. $\frac{400}{9}$ loss

Answer: C

- Watch Video Solution

57. If the Boolean expression $(p \oplus q) \wedge(\sim p \Theta q)$ is equivalent to $p \wedge q$, where $\oplus, \Theta \in\{\vee, \wedge\}$, then the ordered pair (oplus, Theta)' is
A. (\wedge, \vee)
B. (\vee, V)
C. (\wedge, \wedge)
D. (\vee, \wedge)
58. The logical statement $[\sim(\sim p \vee q) \vee(p \wedge r)] \wedge(\sim q \wedge r)$ is equivalent to (a) $(\sim p \wedge \sim q) \wedge r$ (b) $\sim p \vee r$ (c) $(p \wedge r) \wedge \sim q$ (d) $(p \wedge \sim q) \vee r$
A. $(p \wedge r) \wedge \sim q$
B. $(\sim p \wedge \sim q) \wedge r$
C. $\sim p \vee r$
D. $(p \wedge \sim q) \vee r$

Answer: A

- Watch Video Solution

59. Given three statements $P: 5$ is a prime number, $Q: 7$ is a factor of 192 , R:The LCM of 5 \& 7 is 35 Then which of the following statements are true (a) $P v(\sim Q \wedge R)$ (b) $\sim P \wedge(\sim Q \wedge R)$ (c) $(P v Q) \wedge \sim R$ (d) $\sim P \wedge(\sim Q \wedge R)$
A. $(p \wedge q) \vee(\sim r)$
B. $(\sim p) \wedge(\sim q \wedge r)$
C. $(\sim p) \vee(q \wedge r)$
D. $p \vee(\sim q \wedge r)$

Answer: D

- Watch Video Solution

60. $(\sim p \vee \sim q)$ is logically equivalent to
A. $\sim p \wedge \sim q$
B. $p \wedge q$
C. $\sim p \wedge q$
D. $p \wedge \sim q$

Answer: A

61. Average height \& variance of 5 students in a class is 150 and 18 respectively. A new student whose height is 156 cm is added to the group. Find new variance. (a) 20 (b) 22 (c) 16 (d) 14
A. 22
B. 20
C. 16
D. 18

Answer: B

- Watch Video Solution

62. A data consists of n observations $x_{1}, x_{2}, \ldots, x_{n} . I f \Sigma_{i=1}^{n}\left(x_{i}+1\right)^{2}=9 n$ and $\Sigma_{i=1}^{n}\left(x_{i}-1\right)^{2}=5 n, \quad$ then the standard deviation of this data is
A. 5
B. $\sqrt{5}$
C. $\sqrt{7}$
D. 2

Answer: B

- Watch Video Solution

63. The mean of five observations is 5 and their variance is 9.20 . If three of the given five observations are 1,3 and 8 , then a ratio of other two observations is
A. $4: 9$
B. 6: 7
C. $5: 8$
D. 10:3

D Watch Video Solution

64. The mean and standart deviation of five observations $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ and are 10 and 3 respectively, then variance of the observation $x_{1}, x_{2}, x_{3}, x_{4}, x_{5},-50$ is equal to (a) 437.5 (b) 507.5 (c) 537.5 (d) 487.5
A. 582.5
B. 507.5
C. 586.5
D. 509.5

Answer: B

65. The outcome of each of 30 items was observed, 10 items gave an outcome $\frac{1}{2}-d$ each, 10 items gave outcome $\frac{1}{2}$ each and the remaining 10 items gave outcome $\frac{1}{2}+d$ each. If the variance of this outcome data is $\frac{4}{3}$, then $|\mathrm{d}|$ equals
A. 2
B. $\frac{\sqrt{5}}{2}$
C. $\frac{2}{3}$
D. $\sqrt{2}$

Answer: D

- Watch Video Solution

66. Contrapositive of the statement "If two numbers are not equal, then their squares are not equal." is
A. If the squares of two numbers are equal, then the numbers are equal.
B. If the squares of two numbers are equal, then the numbers are not equal.
C. If the squares of two numbers are not equal, then the numbers are equal
D. If the squares of two numbers are not equal, then the numbers are not equal.

Answer: A

D Watch Video Solution

67. There are 30 white balls and 10 red balls in bag. 16 balls are drawn with replacement from the bag. If X be the number of white balls drawn then the value of $\frac{\operatorname{mean}(X)}{s \operatorname{tandarddeviation}(X)}$ is equal to (A) $4 \sqrt{3}$ (B) $2 \sqrt{3}$ (C) $3 \sqrt{3}$ (D) $3 \sqrt{2}$
A. 4
B. $\frac{4 \sqrt{3}}{3}$
C. $4 \sqrt{3}$
D. $3 \sqrt{2}$

Answer: C

- Watch Video Solution

68. If the sum of the deviations of 50 observations from 30 is 50 , then the mean of these observations is
A. 50
B. 51
C. 30
D. 31
69. Mean and variance of five observations are 4 and 5.2 respectively. If three of these observations are $3,4,4$ then find absolute difference between the other two observations (A) 3 (B) 7 (C) 2 (D) 5
A. 1
B. 3
C. 7
D. 5

Answer: C

Watch Video Solution

70. The system of linear equations
$x+y+z=2$
$2 x+3 y+2 z=5$
$2 x+3 y+\left(a^{2}-1\right) z=a+1$
A. has infinitely many solutions for $\mathrm{a}=4$
B. is inconsisten when $|a|=\sqrt{3}$
C. is inconsistent when $\mathrm{a}=4$
D. has a unique solution for $|a|=\sqrt{3}$

Answer: B

- Watch Video Solution

71. If the system of linear equations $x-4 y+7 z=g, 3 y-5 z=h$, $-2 x+5 y-9 z=k \quad$ is consistent, then (a) $g+2 h+k=0$
$g+h+2 k=0$ (c) $2 g+h+k=0$ (d) $g+h+k=0$
A. $g+h+k=0$
B. $2 \mathrm{~g}+\mathrm{h}+\mathrm{k}=0$
C. $g+h+2 k=0$
D. $g+2 h+k=0$

Answer: B

- Watch Video Solution

72. If the system fo equations
$x+y+z=5$
$x+2 y+3 z=9$
$x+3 y+\alpha z=\beta$
has infinitely many solution, then $\beta-\alpha$ equals
A. 5
B. 18
C. 21
D. 8

Answer: D

73. Let $a_{1}, a_{2}, a_{3}, \ldots, a_{10}$ be in G.P. with $a_{i}>0$ for $\mathrm{i}=1,2, \ldots, 10$ and S be te set of pairs (r, k), $r, k \in N$ (the set of natural numbers)
for which $\left|\begin{array}{lll}\log _{e} a_{1}^{r} a_{2}^{k} & \log _{e} a_{2}^{r} a_{3}^{k} & \log _{e} a_{3}^{r} a_{4}^{k} \\ \log _{e} a_{4}^{r} a_{5}^{k} & \log _{e} a_{5}^{r} a_{6}^{k} & \log _{e} a_{6}^{r} a_{7}^{k} \\ \log _{e} a_{7}^{r} a_{8}^{k} & \log _{e} a_{8}^{r} a_{9}^{k} & \log _{e} a_{9}^{r} a_{10}^{k}\end{array}\right|=0$. Then the number of elements in S is
A. Infinitely many
B. 4
C. 10
D. 2

Answer: A

- Watch Video Solution

74. If the system of linear equations
$2 x+2 y+3 z=a$

$3 x-y+5 z=b$

$x-3 y+2 z=c$
where a, b and c are non-zero real numbers, has more than one solution, then
A. $b-c-a=0$
B. $a+b+c=0$
C. $b+c-a=0$
D. $b-c+a=0$.

Answer: A

- Watch Video Solution

75. prove that $\left[\begin{array}{ccc}a-b-c & 2 a & 2 a \\ 2 b & b-c-a & 2 b \\ 2 c & 2 c & c-a-b\end{array}\right]=(a+b+c)^{3}$
A. $-(a+b+c)$
B. $2(a+b+c)$
C. abc
D. $-2(a+b+c)$

Answer: D

- Watch Video Solution

76. An ordered pair (α, β) for which the system of linear equations $(1+\alpha) x+\beta y+z=2, \alpha x+(1+\beta) y+z=3$ and $\alpha x+\beta y+2 z=2$ has unique solution is: (a) (2,4) (b) (-3,1) (c) (-4,2) (d) (1,-3)
A. $(1,-3)$
B. $(-3,1)$
C. $(2,4)$
D. $(-4,2)$

Answer: C

77. The set of all values of λ for which the system of linear equations $x-2 y-2 z=\lambda x$
$x+2 y+z=\lambda y$
$-x-y=\lambda z$
has a non-trivial solution
A. contains more than two elements
B. is a singleton
C. is an empty set
D. contains exactly two elements

Answer: B

- Watch Video Solution

78. If $A=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$, then the matrix A^{-50}, when $\theta=\frac{\pi}{12}$, is equal to
A. $\left[\begin{array}{cc}\frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2}\end{array}\right]$
B. $\left[\begin{array}{cc}\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2}\end{array}\right]$
C. $\left[\begin{array}{cc}\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2}\end{array}\right]$
D. $\left[\begin{array}{cc}\frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2}\end{array}\right]$

Answer: A

D Watch Video Solution

79. Matrix $=\left[\begin{array}{ccc}e^{t} & e^{-t}(\sin t-2 \cos t) & e^{-t}(-2 \sin t-\cos t) \\ e^{t} & -e^{-t}(2 \sin t+\cos t) & e^{-t}(\sin t-2 \cos t) \\ e^{t} & e^{t} \cos t & e^{-t} \sin t\end{array}\right]$
invertible. (a) only if $t=\frac{\pi}{2}$ (b) only $y=\pi$ (c) $t \varepsilon R$ (d) $t \notin R$
A. invertible only if $t=\frac{\pi}{2}$
B. not invertible for any $t \in R$
C. invertible for all $t \in R$
D. invertible only if $t=\pi$

- Watch Video Solution

80. Let $d \in R$ and $A=\left(\begin{array}{ccc}-2 & 4+d & \sin \theta-2 \\ 1 & \sin \theta+2 & d \\ 5 & 2 \sin \theta-d & (-\sin \theta)+2+2 d\end{array}\right)$
where $\theta \in[0, \pi]$. If the minimum value of $\operatorname{det}(A)$ is 8 , then the value of d is (a) -7 (b) -5 (c) $2(\sqrt{2}+1)$ (d) $2(\sqrt{2}+2)$
A. -7
B. $2(\sqrt{2}+2)$
C. -5
D. $2(\sqrt{2}+1)$

Answer: C

- Watch Video Solution

81. Let $A=\left[\begin{array}{ccc}2 & b & 1 \\ b & b^{2}+1 & b \\ 1 & b & 2\end{array}\right]$ where $b>0$. Then the minimum value of $\frac{\operatorname{det} .(\mathrm{A})}{b}$ is
A. $\sqrt{3}$
B. $-\sqrt{3}$
C. $-2 \sqrt{3}$
D. $2 \sqrt{3}$

Answer: D

- Watch Video Solution

82. Let $A=\left[\begin{array}{ccc}0 & 2 q & r \\ p & q & -r \\ p & -q & r\end{array}\right]$ If $A A^{T}=I_{3}$ then $|p|=$
A. $\frac{1}{\sqrt{2}}$
B. $\frac{1}{\sqrt{5}}$
C. $\frac{1}{\sqrt{6}}$
D. $\frac{1}{\sqrt{3}}$

Answer: A

- Watch Video Solution

83. Let A and B be two invertible matrices of order 3×3. If det. $\left(A B A^{T}\right)$
$=8$ and det. $\left(A B^{-1}\right)=8$, then $\operatorname{det} .\left(B A^{-1} B^{T}\right)$ is equal to
A. 16
B. $\frac{1}{16}$
C. $\frac{1}{4}$
D. 1

Answer: B

84. Let $P=\left[\begin{array}{ccc}1 & 0 & 0 \\ 4 & 1 & 0 \\ 16 & 4 & 1\end{array}\right]$ and I be the identity matrix of order 3. If
$Q=\left[q_{\mathrm{ij}}\right]$ is a matrix such that $P^{50}-Q=I$, then $\frac{q_{31}+q_{32}}{q_{21}}$ equals
A. 15
B. 9
C. 135
D. 10

Answer: D

D Watch Video Solution

85. If $A=\left[\begin{array}{ccc}1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1\end{array}\right]$, then for all
$\theta \in\left(\frac{3 \pi}{4}, \frac{5 \pi}{4}\right)$, det. (A) lies in the interval
A. $\left[\frac{5}{2}, 4\right)$
B. $\left(\frac{3}{2}, 3\right]$
C. $\left(0, \frac{3}{2}\right]$
D. $\left(1, \frac{5}{2}\right]$

Answer: B

- Watch Video Solution

86. Two cards are drawn successively with replacement from a wellshuffled deck of 52 cards. Let X denote the random variable of number of aces obtained in the two drawn cards. Then $P(X=1)+P(X=2)$ equals
A. $52 / 169$
B. $25 / 169$
C. $49 / 169$
D. $24 / 169$

Answer: B

87. An urn contains 5 red and 2 green balls. A ball is drawn at random from the urn. If the drawn ball is green, then a red ball is added to the urn and if the drawn ball is red, then a green ball is added to the urn, the original ball is not returned to the urn. Now, a second ball is drawn at random from it. The probability that the second ball is red is
A. $\frac{26}{49}$
B. $\frac{32}{49}$
C. $\frac{27}{49}$
D. $\frac{21}{49}$

Answer: B

- Watch Video Solution

88. An unbiased coin is tossed. If the result is a head, a pair of unbiased dice is rolled and the number obtained by adding the numbers on two
faces is noted. If the result is a tail, a card from a well-shuffled pack of 11 cards numbered $2,3,4, \ldots, 12$ is picked and the number on the card is noted. What is the probability that the noted number is either 7 or 8 ?
A. $\frac{13}{36}$
B. $\frac{19}{36}$
C. $\frac{19}{72}$
D. $\frac{15}{72}$

Answer: C

- Watch Video Solution

89. If the probability of hitting a target by a shooter, in any shot is $1 / 3$, then the minimum number of independent shots at the target required by him so that the probability of hitting the target at least once is greater than $\frac{5}{6}$ is
A. 6
B. 5
C. 4
D. 3

Answer: B

- Watch Video Solution

90. In a random experiment, a fair die is rolled until two fours are obtained in succession.The probability that the experiment will end in the fifth throw of the die is equal to
A. $\frac{150}{6^{5}}$
B. $\frac{175}{6^{5}}$
C. $\frac{200}{6^{5}}$
D. $\frac{225}{6^{5}}$

Answer: B

Chapter 1

1.

$x \in R-\{0,1\}$, let $f_{1}(x)=\frac{1}{x}, f_{2}(x)=1-x$ and $f_{3}(x)=\frac{1}{1-x}$ be three given functions. If a function, $J(x)$ satisfies $\left(f_{2} \circ J \circ f_{1}\right)(x)=f_{3}(x)$, then $J(x)$ is equal to
A. $f_{3}(x)$
B. $f_{1}(x)$
C. $f_{2}(x)$
D. $\frac{1}{x} f_{3}(x)$

Answer: A

2. Let $A=\{\xi n R: x$ is not a positive integer $\}$ define a function $f: A \rightarrow R$ such that $f(x)=\frac{2 x}{x-1}$. Then f is
A. injective but not surjective
B. not injective
C. surjective but not injective
D. neither inhective nor surjective

Answer: A

- Watch Video Solution

3. Let N be the set of numbers and two functions f and g be defined as
$f, g: N \rightarrow N$ such that
$f(n)= \begin{cases}\frac{n+1}{2} & \text { if } \mathrm{n} \text { is odd } \\ \frac{n}{2} & \text { if } \mathrm{n} \text { is even }\end{cases}$
and $g(n)=n-(-1)^{n}$. Then, fog is
A. both one-one and onto
B. one-one but not onto
C. neither one-one nor onto
D. onto but not one-one

Answer: D

- Watch Video Solution

4. Let $f: R \rightarrow R$ be defined by $f(x)=\frac{x}{1+x^{2}}, x \in R$. Then the range of f is
A. $(-1,1)-\{0\}$
B. $\left[-\frac{1}{2}, \frac{1}{2}\right]$
C. $R-\left[-\frac{1}{2}, \frac{1}{2}\right]$
D. $\mathrm{R}-[-1,1]$

Answer: B

5. Let a function $f:(0, \infty) \rightarrow[0, \infty)$ be defined by $f(x)=\left|1-\frac{1}{x}\right|$. Then f is
A. injective only
B. not injective but it is surjective
C. both injective nor surjective
D. injective only

Answer: B

- Watch Video Solution

Chapter 2

1. $\lim _{y \rightarrow 0} \frac{\sqrt{1+\sqrt{1+y^{4}}}-\sqrt{2}}{y^{4}}$
A. exists and equals $\frac{1}{4 \sqrt{2}}$
B. does not exist
C. exists and equals $\frac{1}{2 \sqrt{2}}$
D. exists and equals $\frac{1}{2 \sqrt{2}(\sqrt{2}+1)}$

Answer: A

Watch Video Solution

2. For each $x \in R$, let [x]be the greatest integer less than or equal to x .

Then $\lim _{x \rightarrow 1^{+}} \frac{x([x]+|x|) \sin [x]}{|x|}$ is equal to
A. $-\sin 1$
B. 0
C. 1
D. $\sin 1$

Answer: A

3. For each $\mathrm{t} \in R$, let[t]be the greatest integer less than or equal to t .

Then
\lim

$$
\frac{(1-|x|+\sin |1-x|) \sin \left(\frac{\pi}{2}[1-x]\right)}{|1-x|[1-x]}
$$

A. equals-1
B. equals 1
C. does not exist
D. equals 0

Answer: D

- Watch Video Solution

4. $\lim _{x \rightarrow 0} \frac{x \cot (4 x)}{\sin ^{2} x \cot ^{2}(2 x)}$ is equal to
A. 2
B. 0
C. 4
D. 1

Answer: D

- Watch Video Solution

5. $\lim _{x \rightarrow \frac{\pi}{4}} \frac{\cot ^{3} x-\tan x}{\cos \left(x+\frac{\pi}{4}\right)}$ is
A. 4
B. $8 \sqrt{2}$
C. 8
D. $4 \sqrt{2}$

Answer: C

6. $\lim _{x \rightarrow 1^{-}} \frac{\sqrt{\pi}-\sqrt{2 \sin ^{-1} x}}{\sqrt{1-x}}$ is equal to
A. $\frac{1}{\sqrt{2 \pi}}$
B. $\frac{\sqrt{\pi}}{2}$
C. $\sqrt{\frac{2}{\pi}}$
D. $\sqrt{\pi}$

Answer: C

D Watch Video Solution

Chapter 3

1. If $x=3$ tant and $y=3 \sec t$, then the value of $\frac{d^{2} y}{d x^{2}}$ at $t=\frac{\pi}{4}$ is
A. $\frac{3}{2 \sqrt{2}}$
B. $\frac{1}{3 \sqrt{2}}$
C. $\frac{1}{6}$
D. $\frac{1}{6 \sqrt{2}}$

Answer: D

- Watch Video Solution

2. Let $f: R \rightarrow R$ be a function such that $f(x)=x^{3}+x^{2} f^{\prime}(1)+x f^{\prime \prime}(2)+f^{\prime \prime \prime}(3), x \in R$. Then $\mathrm{f}(2)$ equals
A. 8
B. -2
C. -4
D. 30

Answer: B

3. If $x \log _{e}\left(\log _{e} x\right)-x^{2}+y^{2}=4(y>0)$, then $d y / d x$ at $x=e$ is equal to
A. $\frac{e}{4+e^{2}}$
B. $\frac{(1+2 e)}{2 \sqrt{4+e^{2}}}$
C. $\frac{(2 e-1)}{2 \sqrt{4+e^{2}}}$
D. $\frac{(1+2 e)}{\sqrt{4+e^{2}}}$

Answer: C

- Watch Video Solution

4. for $x>1$ if $(2 x)^{2 y}=4 e^{2 x-2 y}$ then $\left(1+\log _{e} 2 x\right)^{2} \frac{d y}{d x}$
A. $\log _{e} 2 x$
B. $\frac{x \log _{e} 2 x+\log _{e} 2}{x}$
C. $x \log _{e} 2 x$
D. $\frac{x \log _{e} 2 x-\log _{e} 2}{x}$

Answer: D

D Watch Video Solution

5. Let f be a differentiable function such that $f(1)=2$ and $f^{\prime}(x)=f(x)$ for all $x \in R$. If $\mathrm{h}(\mathrm{x})=\mathrm{f}(\mathrm{f}(\mathrm{x}))$, then $\mathrm{h}^{\prime}(1)$ is equal to
A. 4 e
B. $4 e^{2}$
C. 2e
D. $2 e^{2}$

Answer: A

D Watch Video Solution

Chapter 4

1. Let $f(x)\left\{\begin{array}{cl}\max \cdot\left\{|x|, x^{2}\right\}, & |x| \leq 2 \\ 8-2|x|, & 2<|x| \leq 4\end{array}\right.$.Let S be the set of points in the intercal $(-4,4)$ at which f is not differentible. Then S
A. is an empty set
B. equals $\{-2,-1,1,2\}$
C. equals $\{-2,-1,0,1,2\}$
D. equals $\{-2,2\}$

Answer: C

- Watch Video Solution

2. Let $f:(-1,1) \rightarrow R$ be a function defind by $\mathrm{f}(\mathrm{x})=\max$. $\left\{-|x|,-\sqrt{1-x^{2}}\right\}$. If K is the set of all points at which f is not differentiable, then K has set of all points at which f is not differentiable, then K has exactly
A. three elements
B. one element
C. five elements
D. two elements

Answer: A

- Watch Video Solution

3. Let $f(x)=\left\{\begin{array}{lll}- & 1 & -2 \leq x<0 \\ x^{2} & -1 & 0 \leq x<2\end{array}\right.$ if $g(x)=|f(x)|+f(|x|)$ then $g(x)$ in $(-2,2)(\mathrm{A})$ not continuous (B) not differential at one point (C) differential at all points (D) not differential at two points
A. Differentiable at all points
B. not differentiable at two points
C. Not continuous
D. not differentiable at one point

Answer: D

4. Let K be the set of all values of x, where the function $f(x)=\sin |x|-|x|+2(x-\pi) \cos |x|$ is not differentiable. Then, the set K is equal to
A. $\{\pi\}$
B. $\{0\}$
C. ϕ (an empty set)
D. $\{0, \pi\}$

Answer: C

Watch Video Solution

5. Let S be the set of all points in $(-\pi, \pi)$ at which the Then, S is a subset of which of the following?
A. $\left\{-\frac{3 \pi}{4},-\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{\pi}{4}\right\}$
B. $\left\{-\frac{3 \pi}{4},-\frac{\pi}{2}, \frac{\pi}{2}, \frac{3 \pi}{4}\right\}$
C. $\left\{-\frac{\pi}{2},-\frac{\pi}{4}, \frac{\pi}{4}, \frac{\pi}{2}\right\}$
D. $\left\{-\frac{\pi}{4}, 0, \frac{\pi}{4}\right\}$

Answer: A

- Watch Video Solution

Chapter 5

1. if θ denotes the acute angle between the curves, $y=10-x^{2}$ and $y=2+x^{2}$ at a point of their intersection, then $|\tan \theta|$ is equal to
A. $4 / 9$
B. $7 / 17$
C. $8 / 17$
D. $8 / 15$

Answer: D

- Watch Video Solution

2. The tangent to the curve $y=x e^{x^{2}}$ passing through the point (1,e) also passes through the point
A. $\left(\frac{4}{3}, 2 e\right)$
B. $(2,3 e)$
C. $\left(\frac{5}{3}, 2 e\right)$
D. $(3,6 e)$

Answer: A

- Watch Video Solution

3. A helicopter flying along the path $y=7+x^{\frac{3}{2}}$, A soldier standint at point $\left(\frac{1}{2}, 7\right)$ wants to hit the helicopter when it is closest from him, then minimum distance is equal to (a) $\frac{1}{6} \frac{\sqrt{2}}{3}$ (b) $\frac{1}{2}$ (c) $\frac{1}{3} \sqrt{\frac{2}{3}}$ (d) $\sqrt{\frac{5}{2}}$
A. $\frac{1}{2}$
B. $\frac{1}{3} \sqrt{\frac{7}{3}}$
C. $\frac{1}{6} \sqrt{\frac{7}{3}}$
D. $\frac{\sqrt{5}}{6}$

Answer: C

- Watch Video Solution

Chapter 6

1. The maximum volume (in cu.m) of the right circular cone having slant height 3 m is
A. $3 \sqrt{3} \pi$
B. 6π
C. $2 \sqrt{3} \pi$
D. $\frac{4}{3} \pi$

Answer: C

- Watch Video Solution

2. The shortest distance between the point $\left(\frac{3}{2}, 0\right)$ and the curve $y=\sqrt{x},(x>0)$, is
A. $\frac{\sqrt{5}}{2}$
B. $\frac{5}{4}$
C. $\frac{3}{2}$
D. $\frac{\sqrt{3}}{2}$

Watch Video Solution

3. If x satisfies the condition $f(x)=\left\{x: x^{2}+30 \leq 11 x\right\}$ then maximum value of function $f(x)=3 x^{3}-18 x^{2}-27 x-40$ is equal to (A) -122 (B) 122 (C) 222 (D) -222
A. 122
B. -222
C. -122
D. 222

Answer: A

- Watch Video Solution

4. Let $f(x)=-\frac{x}{\sqrt{a^{2}+x^{2}}}-\frac{d-x}{\sqrt{b^{2}+(d-x)^{2}}}, x \in R$, where a, b and d are non-zero real constants. Then,
A. f is a decreasing function of x
B. f is neither increasing nor decreasing function of x
C. f^{\prime} is not a continuous function of x
D. f is an increasing function of x

Answer: D

- Watch Video Solution

5. Let a parabola be $y=12-x^{2}$. Find the maximum area of rectangle whose base lie on x-axis and two points lie on parabola. (A) 8 (B) 4 (C) 32 (D) 34
A. $20 \sqrt{2}$
B. $18 \sqrt{2}$
C. 32
D. 36

D Watch Video Solution

6. Let $f(x)=x^{3}-3(a-2) x^{2}+3 a x+7$ and $f(x)$ is increasing in $(0,1]$ and decreasing is $[1,5)$, then roots of the equation $\frac{f(x)-14}{(x-1)^{2}}=0$ is (A)

1 (B) 3 (C) 7 (D) -2
A. 6
B. 5
C. 7
D. -7

Answer: C

- Watch Video Solution

1. For $x^{2} \neq n \pi+1, n \in N$ (the set of natural numbers), the integral $\int x \sqrt{\frac{2 \sin \left(x^{2}-1\right)-\sin 2\left(x^{2}-1\right)}{2 \sin \left(x^{2}-1\right)+\sin 2\left(x^{2}-1\right)}} d x$ is equal to (where C is a constant of integration)
A. $\log _{e}\left|\left(\sec \cdot \frac{x^{2}-1}{2}\right)\right|+c$
B. $\log _{e}\left|\frac{1}{2} \sec ^{2} .\left(x^{2}-1\right)\right|+c$
C. $\frac{1}{2} \log _{e}\left|\sec ^{2} \cdot\left(\frac{x^{2}-1}{2}\right)\right|+c$
D. $\frac{1}{2} \log _{e}\left|\sec .\left(x^{2}-1\right)\right|+c$

Answer: A

- Watch Video Solution

2. If $f(x)=\int \frac{5 x^{8}+7 x^{6}}{\left(x^{2}+1+2 x^{7}\right)^{2}} d x,(x \geq 0)$, and $\mathrm{f}(0)=0$, then the value of $f(1)$ is
A. $-\frac{1}{2}$
B. $\frac{1}{2}$
C. $-\frac{1}{4}$
D. $\frac{1}{4}$

Answer: D

- Watch Video Solution

3. Let $n \geq 2$ be a natural number and $0<\theta<\frac{\pi}{2}$, Then, $\int \frac{\left(\sin ^{n} \theta-\sin \theta\right)^{\frac{1}{n}} \cos \theta}{\sin ^{n+1} \theta} d \theta$ is equal to (where C is a constant of integration)
A. $\frac{n}{n^{2}-1}\left(1-\frac{1}{\sin ^{n+1} \theta}\right)^{\frac{n+1}{n}}+C$
B. $\frac{n}{n^{2}+1}\left(1-\frac{1}{\sin ^{n-1} \theta}\right)^{\frac{n+1}{n}}+C$
C. $\frac{n}{n^{2}-1}\left(1-\frac{1}{\sin ^{n-1} \theta}\right)^{\frac{n+1}{n}}+C$
D. $\frac{n}{n^{2}-1}\left(1+\frac{1}{\sin ^{n-1} \theta}\right)^{\frac{n+1}{n}}+C$

Answer: C

(D) Watch Video Solution

4. If $\int x^{5} e^{-4 x^{3}} d x=\frac{1}{48} e^{-4 x^{3}}(f(x))+c$, where c is contant of intergration then $f(x)$ equals to (a) $-4 x^{3}-1$ (b) $-1-2 x^{3}$ (c) $4 x^{3}+1$
(d) $1-2 x^{3}$
A. $-4 x^{3}-1$
B. $4 x^{3}+1$
C. $-2 x^{3}-1$
D. $-2 x^{3}+1$

Answer: A

- Watch Video Solution

5. If $\int \frac{\sqrt{1-x^{2}}}{x^{4}} d x=A(x)\left(\sqrt{1-x^{2}}\right)^{m}+C$,for a suitable chosen integer m and a function $A(x)$, where C is a constant of integration, then $(A(x))^{m}$ equals
A. $\frac{-1}{3 x^{3}}$
B. $\frac{-1}{27 x^{9}}$
C. $\frac{1}{9 x^{4}}$
D. $\frac{1}{27 x^{6}}$

Answer: B

- Watch Video Solution

6. If $\int \frac{x+1}{\sqrt{2 x-1}} d x=f(x) \sqrt{2 x-1}+C$, where C is a constant of integration, then $\mathrm{f}(\mathrm{x})$ is equal to
A. $\frac{1}{3}(x+4)$
B. $\frac{1}{3}(x+1)$
C. $\frac{2}{3}(x+2)$
D. $\frac{2}{3}(x-4)$
7. The integral $\int \cos \left(\log _{e} x\right) d x$ is equal to: (where C is a constant of integration)
A. $\frac{x}{2}\left[\sin \left(\log _{e} x-\cos \left(\log _{e} x\right)\right]+C\right.$
B. $\frac{x}{2}\left[\cos \left(\log _{e} x+\sin \left(\log _{e} x\right)\right]+C\right.$
C. $x\left[\cos \left(\log _{e} x+\sin \left(\log _{e} x\right)\right]+C\right.$
D. $x\left[\cos \left(\log _{e} x-\sin \left(\log _{e} x\right)\right]+C\right.$

Answer: B

- Watch Video Solution

8. The integral $\int \frac{3 x^{13}+2 x^{11}}{\left(2 x^{4}+3 x^{2}+1\right)^{4}} d x$ is equal to (where C is a constant of integration)
A. $\frac{x^{4}}{\left(2 x^{4}+3 x^{2}+1\right)^{3}}+C$
B. $\frac{x^{12}}{6\left(2 x^{4}+3 x^{2}+1\right)^{3}}+C$
C. $\frac{x^{4}}{6\left(2 x^{4}+3 x^{2}+1\right)^{3}}+C$
D. $\frac{x^{12}}{\left(2 x^{4}+3 x^{2}+1\right)^{3}}+C$

Answer: B

Chapter 8

1. The value of $\int_{0}^{\pi}|\cos x|^{3} d x$ is
A. $2 / 3$
B. 0
C. $-4 / 3$
D. $4 / 3$
2. Let f be a differentiable function from R to R such that $|f(x)-f(y)||\leq 2||x-y|^{3 / 2}$,for \quad all $\quad x, y \in R$.lf $\quad f(0)=1$,then $\int_{0}^{1} f^{2}(x) d x$ is equal to
A. 0
B. $\frac{1}{2}$
C. 2
D. 1

Answer: D

D Watch Video Solution

3. $\int_{0}^{\frac{\pi}{3}} \frac{\tan \theta}{\sqrt{2 k \sec \theta}} d \theta=1-\frac{1}{\sqrt{2}},(k>0)$, then the value of k is
A. 2
B. $\frac{1}{2}$
C. 4
D. 1

Answer: A

- Watch Video Solution

4. Let $I=\int_{a}^{b}\left(x^{4}-2 x^{2}\right) d x$. If is minimum, then the ordered pair (a, b) is
A. $(-\sqrt{2}, 0)$
B. $(-\sqrt{2}, \sqrt{2})$
C. $(0, \sqrt{2})$
D. $(\sqrt{2},-\sqrt{2})$

Answer: B

5. The value of $\int_{-\pi / 2}^{\pi / 2} \frac{d x}{[x]+[\sin x]+4}$ where [t$]$ denotes the greatest integer less or equal to t, is
A. $\frac{1}{12}(7 \pi+5)$
B. $\frac{3}{10}(4 \pi-3)$
C. $\frac{1}{12}(7 \pi-5)$
D. $\frac{3}{20}(4 \pi-3)$

Answer: D

- Watch Video Solution

6. If $\int_{0}^{x} f(t) d t=x^{2}+\int_{x}^{1} t^{2} f(t) d t$, then $f^{\prime}\left(\frac{1}{2}\right)$ is
A. $\frac{6}{25}$
B. $\frac{24}{25}$
C. $\frac{18}{25}$
D. $\frac{4}{5}$

Answer: B

- Watch Video Solution

7. The value of the integral $\int_{-2}^{2} \frac{\sin ^{2} x}{-2\left[\frac{x}{\pi}\right]+\frac{1}{2}} d x$ (where $[\mathrm{x}]$ denotes the greatest integer less then or equal to x) is
A. 4
B. $4-\sin 4$
C. $\sin 4$
D. 0

Answer: D

8. The integral $\int_{\pi / 6}^{\pi / 4} \frac{d x}{\sin 2 x\left(\tan ^{5} x+\cot ^{5} x\right)}$ equals
A. $\frac{1}{10}\left(\frac{\pi}{4}-\tan ^{-1}\left(\frac{1}{9 \sqrt{3}}\right)\right)$
B. $\frac{1}{5}\left(\frac{\pi}{4}-\tan ^{-1}\left(\frac{1}{3 \sqrt{3}}\right)\right)$
C. $\frac{\pi}{10}$
D. $\frac{1}{20}-\tan ^{-1}\left(\frac{1}{9 \sqrt{3}}\right)$

Answer: A

- Watch Video Solution

9. Let f and g be continuous fuctions on $[0, a]$ such that $f(x)=f(a-x)$ and $g(x)+g(a-x)=4$ then $\int_{0}^{a} f(x) g(x) d x$ is equal to
A. $4 \int_{0}^{a} f(x) d x$
B. $2 \int^{a} f(x) d x$
C. $-3 \int_{0}^{a} f(x) d x$
D. $\int_{0}^{a} f(x) d x$

Answer: B

- Watch Video Solution

10. The integral $\int_{1}^{e}\left\{\left(\frac{x}{e}\right)^{2 x}-\left(\frac{e}{x}\right)^{x}\right\} \log _{e} x d x$ is equal to
A. $\frac{1}{2}-e-\frac{1}{e^{2}}$
B. $\frac{3}{2}-\frac{1}{e}-\frac{1}{2 e^{2}}$
C. $-\frac{1}{2}+\frac{1}{e}-\frac{1}{2 e^{2}}$
D. $\frac{3}{2}-e-\frac{1}{2 e^{2}}$

Answer: D

- Watch Video Solution

11. $\lim _{n \rightarrow \infty}\left(\frac{n}{n^{2}+1^{2}}+\frac{n}{n^{2}+2^{2}}+\frac{n}{n^{2}+3^{2}}+\ldots+\frac{1}{2 n}\right)$ is equal to
A. $\frac{\pi}{4}$
B. $\tan ^{-1}(2)$
C. $\tan ^{-1}(3)$
D. $\frac{\pi}{2}$

Answer: B

Watch Video Solution

Chapter 9

1. The area (in sq. units) bounded by the parabola $y=x^{2}-1$, the tangent at the point $(2,3)$ to it and the y-axis is
A. $\frac{14}{3}$
B. $\frac{56}{3}$
C. $\frac{8}{3}$
D. $\frac{32}{3}$

Answer: C

- Watch Video Solution

2. The area (in sq. units) of the region
$A=[(x, y): 0 \leq y \leq x|x|+1$ and $-1 \leq x \leq x]$ is
A. $\frac{1}{3}$
B. $\frac{1}{3}$
C. 2
D. $\frac{4}{3}$

Answer: C

3. If the area enclosed between the curves $y=k x^{2}$ and $x=k y^{2}$, where $k>0$, is 1 square unit. Then k is: (a) $\frac{1}{\sqrt{3}}$ (b) $\frac{\sqrt{3}}{2}$ (c) $\frac{2}{\sqrt{3}}$ (d) $\sqrt{3}$
A. $\frac{1}{\sqrt{3}}$
B. $\frac{2}{\sqrt{3}}$
C. $\frac{\sqrt{3}}{2}$
D. $\sqrt{3}$

Answer: A

- Watch Video Solution

4. The area (in sq. units) in the first quadrant bounded by the parabola $y=x^{2}+1$, the tangent to it at the point $(2,5)$ and the coordinate axes is
A. $\frac{14}{3}$
B. $\frac{187}{24}$
C. $\frac{37}{24}$
D. $\frac{8}{3}$

Answer: C

- Watch Video Solution

5. The area (in sq. units) of the region bounded by the parabola $y=x^{2}+2$ and the lines $y=x+1, x=0$ and $x=3$, is
A. $\frac{15}{4}$
B. $\frac{15}{2}$
C. $\frac{21}{2}$
D. $\frac{17}{4}$

Answer: B

- Watch Video Solution

1. If $\mathrm{y}=\mathrm{y}(\mathrm{x})$ is the solution of the differential equation, $x \frac{d y}{d x}+2 y=x^{2}$ satisfying $y(1)=1$, then $y\left(\frac{1}{2}\right)$ is equal to
A. $\frac{4}{64}$
B. $\frac{13}{16}$
C. $\frac{49}{16}$
D. $\frac{1}{4}$

Answer: C

- Watch Video Solution

2. Let $f:[0,1] \rightarrow R$ be such that $f(x y)=f(x) . f(y)$, for all
$x, y \in[0,1]$ and $f(0) \neq 0$. If $y=y(x)$ satisfies the
differential equation, $\frac{d y}{d x}=f(x)$ with $y(0)=1$, then
$y\left(\frac{1}{4}\right)+y\left(\frac{3}{4}\right)$ is equal to
A. 4
B. 3
C. 5
D. 2

Answer: B

- Watch Video Solution

3.

$\frac{d y}{d x}+\frac{3}{\cos ^{2} x} y=\frac{1}{\cos ^{2} x}, x \in\left(\frac{-\pi}{3}, \frac{\pi}{3}\right)$ and $y\left(\frac{\pi}{4}\right)=\frac{4}{3}$, then $y(-$ equals
A. $\frac{1}{3}+e^{6}$
B. $\frac{1}{3}$
C. $-\frac{1}{4}$
D. $\frac{1}{3}+e^{3}$

Answer: A

- Watch Video Solution

4. Let f be differentiable function such that
$f^{\prime}(x)=7-\frac{3}{4} \frac{f(x)}{x},(x>0)$ and $f(1) \neq 4$ Then $\lim _{x \rightarrow 0^{+}} x f\left(\frac{1}{x}\right)$
A. exists abd equals 4
B. does not exist
C. exists and equals 0
D. exists and equals $4 / 7$

Answer: A

D Watch Video Solution

5. The curve amongst the family of curves, represented by the differential equation $\left(x^{2}-y^{2}\right) d x+2 x y d y=0$ which passes through $(1,1)$ is
A. a circle with centre on the y-axis
B. a circle with centre on the x-axis
C. an ellipse with major axis along the y-axis
D. a hyperbola with transverse axis along the

Answer: B

- Watch Video Solution

6. If $y(x)$ is the the solution of the differntial equation $\frac{d y}{d x}+\left(\frac{2 x+1}{x}\right) y=e^{-2 x}, x>0, \quad$ where $y(1)=\frac{1}{2} e^{-2}$, then
A. $y(x)$ is decreasing in $(0,1)$
B. $y(x)$ is decreasing in $\left(\frac{1}{2}, 1\right)$
C. $y\left(\log _{e} 2\right)=\frac{\log _{e} 2}{4}$
D. $y\left(\log _{e} 2\right)=\log _{2} 4$

Answer: B

7. The solution of the differential equation, $\frac{d y}{d x}=(x-y)^{2}$, when $y(1)=1$, is
A. $\log _{e}\left|\frac{2-y}{2-x}\right|=2(y-1)$
B. $\log _{e}\left|\frac{2-x}{2-y}\right|=x-y$
C. $-\log _{e}\left|\frac{1+x-y}{1-x+y}\right|=x+y-2$
D. $-\log _{e}\left|\frac{1-x+y}{1+x-y}\right|=2(x-1)$

Answer: D

- Watch Video Solution

8. Let $y=y(x)$ be the solution of the differential equation $x \frac{d y}{d x}+y=x \log _{e} x,(x>1)$. If $2 y(2)=\log _{e} 4-1$, then $y(e)$ is equal to
A. $\frac{e^{2}}{4}$
B. $\frac{e}{4}$
C. $-\frac{e}{2}$
D. $-\frac{e^{2}}{2}$

Answer: B

(Watch Video Solution

9. If a curve passes through the point $(1,-2)$ and has slope of the tangent at any point (x, y) on it as $\frac{x^{2}-2 y}{x}$, then the curve also passes through the point
A. $(-\sqrt{2}, 1)$
B. $(\sqrt{3}, 0)$
C. $(-1,2)$
D. $(3,0)$

Answer: B

- Watch Video Solution

