

MATHS

BOOKS - CENGAGE

LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

Dpp 1 2

1. The number of integral values of p for which $(p+1)\hat{i} - 3\hat{j} + p\hat{k}, p\hat{i} + (p+1)\hat{j} - 3\hat{k}$ and $-3\hat{i} + p\hat{j} + (p+1)\hat{k}$ are linearly dependent vectors is A. 0

B. 1

C. 2

D. 3

Answer: B

Watch Video Solution

2. The base vectors \overrightarrow{a}_1 , \overrightarrow{a}_2 and \overrightarrow{a}_3 are given in terms of base vectors \overrightarrow{b}_1 , \overrightarrow{b}_2 and \overrightarrow{b}_3 as $\overrightarrow{a}_1 = 2\overrightarrow{b}_1 + 3\overrightarrow{b}_2 - \overrightarrow{b}_3$, $\overrightarrow{a}_2 = \overrightarrow{b}_1 - 2\overrightarrow{b}_2 + 2\overrightarrow{b}_3$ and $\overrightarrow{a}_3 = -2\overrightarrow{b}_1 + \overrightarrow{b}_2 - 2\overrightarrow{b}_3$, if $\overrightarrow{F} = 3\overrightarrow{b}_1 - \overrightarrow{b}_2 + 2\overrightarrow{b}_3$, then vector \overrightarrow{F} in terms of $\overrightarrow{a}_1, \overrightarrow{a}_2$ and \overrightarrow{a}_3 is

A.
$$\overrightarrow{F}=3\overrightarrow{a}_{1}+2\overrightarrow{a}_{2}+5\overrightarrow{a}_{3}$$

$$\mathsf{B}.\overrightarrow{F}=3\overrightarrow{a}_1-5\overrightarrow{a}_2-2\overrightarrow{a}_3$$

C.
$$\overrightarrow{F}=3\overrightarrow{a}_1+5\overrightarrow{a}_2+3\overrightarrow{a}_3$$

D. none of these

Answer: C

Watch Video Solution

3. The number of distinct real values of λ for which the

vectors
$$\overrightarrow{a} = \lambda^3 \hat{i} + \hat{k}, \overrightarrow{b} = \hat{i} - \lambda^3 \hat{j}$$
 and

 $\overrightarrow{c} = \hat{i} + (2\lambda - \sin\lambda)\hat{i} - \lambda\hat{k}$ are coplanar is

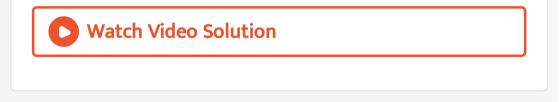
A. 0

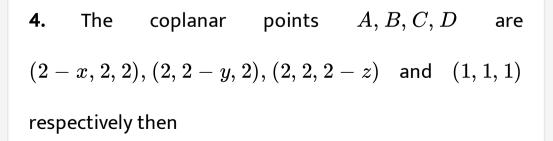
B. 1

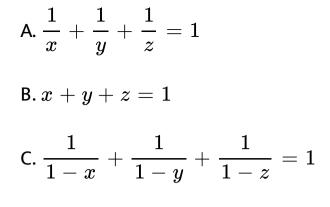
C. 2

D. 3

Answer: A







D. none of these

Answer: A

Watch Video Solution

5. If a_1 and a_2 are two values of a for which the unit vector $\overrightarrow{ai} + \overrightarrow{bj} + \frac{1}{2}\overrightarrow{k}$ is linearly dependent with $\overrightarrow{i} + 2\overrightarrow{j}$ and $\overrightarrow{j} - 2\overrightarrow{k}$, then $\frac{1}{a_1} + \frac{1}{a_2}$ is equal to

A. 1

B.
$$\frac{1}{8}$$

C. $-\frac{16}{11}$
D. $-\frac{11}{16}$

Answer: C

6. Let a,b and c be distinct non-negative numbers and the vectors $a\hat{i} + a\hat{j} + c\hat{k}$, $\hat{i} + \hat{k}$, $c\hat{i} + c\hat{j} + b\hat{k}$ lie in a plane, then the quadratic equation $ax^2 + 2cx + b = 0$ has

A. real and equal roots

B. real unequal roots

C. unreal roots

D. both roots real and positive

Answer: A

7. In the $\triangle OAB$, M is the midpoint of AB, C is a point on OM, such that 2OC = CM. X is a point on the side OB such that OX = 2XB. The line XC is produced to meet OA in Y. Then $\frac{OY}{YA}$ =

A.
$$\frac{1}{3}$$

B.
$$\frac{2}{7}$$

C. $\frac{3}{2}$
D. $\frac{2}{5}$

Answer: B

8. Points X and Y are taken on the sides QR and RS, respectively of a parallelogram PQRS, so that QX = 4XR and RY = 4YS The line XY cuts the line PR at Z Find the ratio PZ: ZR

A.
$$\frac{21}{25}\overrightarrow{PR}$$

B.
$$\frac{16}{25}\overrightarrow{PR}$$

C. $\frac{17}{25}\overrightarrow{PR}$

D. None of these

Answer: A

9. On the xy plane where O is the origin, given points, A(1,0), B(0,1) and C(1,1). Let P,Q, and R be moving points on the line OA, OB, OC respectively such that $\overrightarrow{OP} = 45t\left(\overrightarrow{OA}\right), \overrightarrow{OQ} = 60t\left(\overrightarrow{OB}\right), \overrightarrow{OR} = (1-t)\left(\overrightarrow{OC}\right)$ with t > 0. If the three points P,Q and R are collinear then the value of t is equal to

A.
$$\frac{1}{106}$$

B. $\frac{7}{187}$
C. $\frac{1}{100}$

D. none of these

Answer: B

Watch Video Solution

10. Given three vectors \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are non-zero and non-coplanar vectors. Then which of the following are coplanar.

A.
$$\overrightarrow{a}+\overrightarrow{b}, \overrightarrow{b}+\overrightarrow{c}, \overrightarrow{c}+\overrightarrow{a}$$

B.
$$\overrightarrow{a} - \overrightarrow{b}$$
, $\overrightarrow{b} + \overrightarrow{c}$, $\overrightarrow{c} + \overrightarrow{a}$
C. $\overrightarrow{a} + \overrightarrow{b}$, $\overrightarrow{b} - \overrightarrow{c}$, $\overrightarrow{c} - \overrightarrow{a}$
D. $\overrightarrow{a} + \overrightarrow{b}$, $\overrightarrow{b} + \overrightarrow{c}$, $\overrightarrow{c} - \overrightarrow{a}$

Answer: B::D

