

MATHS

BOOKS - CENGAGE

MATRICES

Solved Examples And Exercises

1. If both $A - \frac{1}{2}IandA + \frac{1}{2}$ are orthogonal matices, then (a)A is orthogonal (b)A is skew-symmetric matrix of even order (c) $A^2 = \frac{3}{4}I$ (d)none of these

Watch Video Solution

2. If nth-order square matrix A is a orthogonal, then |adj (adj A)| is

3. If P is an orthogonal matrix and $Q = PAP^{T}andx = P^{T}Q^{1000}P$ then x^{-1} is ,

where A is involutary matrix. A b. I c. A^{1000} d. none of these

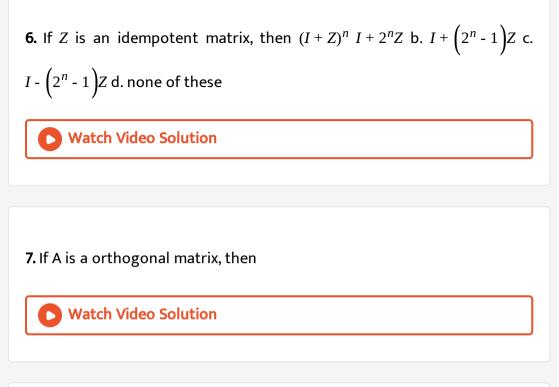
4. If A is a nilpotent matrix of index 2, then for any positive integer $n, A(I + A)^n$ is equal to A^{-1} b. $A c. A^n d. I_n$

Watch Video Solution

5. If AandB are two matrices such that AB = BandBA = A, then

$$(A^5 - B^5)^3 = A - B$$
 b. $(A^5 - B^5)^3 = A^3 - B^3$ c. $A - B$ is idempotent d. none

of these



8. If $A^2 = 1$, then the value of det(A - I) is (where A has order 3) 1 b. -1 c. 0

d. cannot say anything

Watch Video Solution

9. Let A be an nth-order square matrix and B be its adjoint, then $|AB + KI_n|$ is (where K is a scalar quantity)

10.
$$A = \begin{bmatrix} a & 1 & 0 \\ 1 & b & d \\ 1 & b & c \end{bmatrix}, B = \begin{bmatrix} a & 1 & 1 \\ 0 & d & c \\ f & g & h \end{bmatrix}, U = \begin{bmatrix} f \\ g \\ h \end{bmatrix}, V = \begin{bmatrix} a^2 \\ 0 \\ 0 \end{bmatrix}$$
 If there is a

vector matrix X, such that AX = U has infinitely many solutions, then prove that BX = V cannot have a unique solution. If $afd \neq 0$. Then, prove that BX = V has no solution.

Watch Video Solution

11. If M is a 3×3 matrix, where det M = 1 and $MM^T = I$, where 'I' is an

identity matrix, then prove that det. (M - I) = 0.

Watch Video Solution

12. If *A* is a diagonal matrix of order 3×3 is commutative with every square matrix or order 3×3 under multiplication and tr(A) = 12, then the value of $|A|^{1/2}$ is _____.

13. Let S be the set which contains all possible values of *l*, *m*, *n*, *p*, *q*, *r* for

which

$$A = \begin{bmatrix} l^2 - 3 & p & 0 \\ 0 & m^2 - 8 & q \\ r & 0 & n^2 - 15 \end{bmatrix}$$
 be a nonsingular idempotent matrix. Then

the sum of all the elements of the set S is ______.

Watch Video Solution

14. Given a matrix
$$A = \begin{bmatrix} a & b & c \\ b & c & a \\ c & a & b \end{bmatrix}$$
, where a, b, c are real positive numbers.

If abc = 1 and $A^T A = I$, then find the value of $a^3 + b^2 + c^3$.

15. If A is a square matrix of order 3 such that |A| = 2, then $\left| \left(adjA^{-1} \right)^{-1} \right|$ is

Watch Video Solution

16. Let
$$A = \begin{bmatrix} 3x^2 \\ 1 \\ 6x \end{bmatrix}$$
, $B = [a, b, c]$ and $C = \begin{bmatrix} (x+2)^2 & 5x^2 & 2x \\ 5x^2 & 2x & (x+2)^2 \\ 2x & (x+2)^2 & 5x^2 \end{bmatrix}$ be

three given matrices, where $a, b, candx \in R$ Given that tr(AB)=tr(C). If $f(x) = ax^2 + bx + c$, then the value of f(1) is _____.

Watch Video Solution

17. If A is an idempotent matrix satisfying, $(I - 0.4A)^{-1} = I - \alpha A$ where I is the unit matrix of the same order as that of A, then the value of $|9\alpha|$ is equal to _____.

18. Let $A = [a_{ij}]_{3\times 3}$ be a matrix such that $AA^T = 4I$ and $a_{ij} + 2c_{ij} = 0$, where C_{ij} is the cofactor of a_{ij} and I is the unit matrix of order 3.

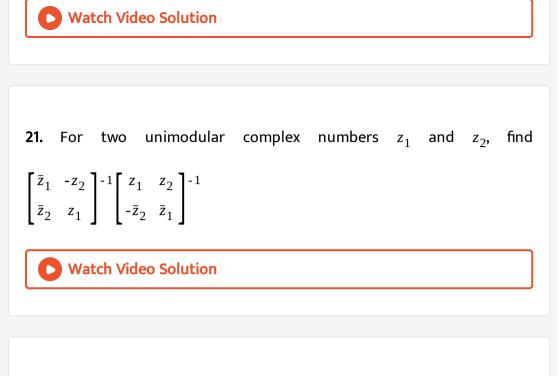
then the value of λ is

Watch Video Solution

19. Let A be the set of all 3×3 skew-symmetric matrices whose entries are either -1, 0, or 1. If there are exactly three 0's, three 1's, and three (-1)'s, then the number of such matrices is ______.

20. If $A = [0121233a1]andA_1 = [1/212/12/ - 43c5/2 - 3/21/2]$, then the

values of *a* anti *c* are equal to 1, 1 b. 1, - 1 c. 1, 2 d. -1, 1



22. If A and B are two nonsingular matrices of the same order such that

 $B^r = I$, for some positive integer r > 1, then $A^{-1}B^{r-1}A - A^{-1}B^{-1}A =$

Watch Video Solution

23. If A is non-diagonal involuntary matrix, then A = I = O b. A + I = O c.

A = I is nonzero singular d. none of these

24. If A and B are squares matrices such that $A^{2006} = O$ and AB = A + B,

then det (B) equals

25. If matrix A is given by $A = \begin{bmatrix} 6 & 11 \\ 2 & 4 \end{bmatrix}$, then the determinant of $A^{2005} - 6A^{2004}$ is

Watch Video Solution

26. If A = [abcxyzpqr], B[q - by - pa - xr - cz] and if A is invertible, then which of the following is not true? |A| = |B| |A| = -|B| |adjA| = |adjB| A is invertible if and only if B is invertible

27. If *AandB* are two non-singular matrices such that AB = C, then |B| is

equal to
$$\frac{|C|}{|A|}$$
 b. $\frac{|A|}{|C|}$ c. $|C|$ d. none of these

Watch Video Solution

28. If
$$A(\alpha, \beta) = \begin{bmatrix} \cos\alpha & \sin\alpha & 0 \\ -\sin\alpha & \cos\alpha & 0 \\ 0 & 0 & e^{\beta} \end{bmatrix}$$
, then $A(\alpha, \beta)^{-1}$ is equal to

Watch Video Solution

29. If
$$A = \begin{bmatrix} a+ib & c+id \\ -c+id & a-ib \end{bmatrix}$$
 and $a^2 + b^2 + c^2 + d^2 = 1$, then A^{-1} is equal to a.
$$\begin{bmatrix} a+ib & -c+id \\ -c+id & a-ib \end{bmatrix}$$
 b.
$$\begin{bmatrix} a-ib & -c-id \\ -c-id & a+ib \end{bmatrix}$$
 c.
$$\begin{bmatrix} a+ib & -c-id \\ -c+id & a-ib \end{bmatrix}$$
 d. none of

these

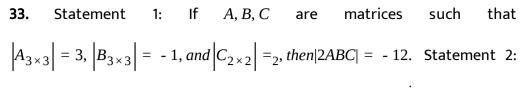
30. Statement 1: $A = [404222121]B^{-1} = [133143134]$. Then $(AB)^{-1}$ does not exist. Statement 2: Since |A| = 0, $(AB)^{-1} = B^{-1}A^{-1}$ is meaning-less.

Watch Video Solution

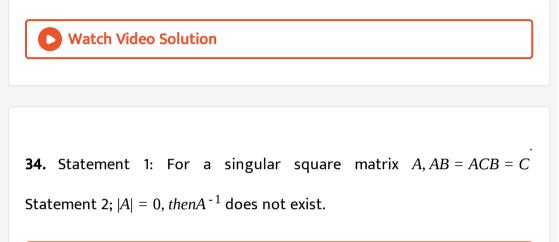
31. Statement 1: if a, b, c, d are real numbers and $A = [abcd]andA^3 = O$, $thenA^2 = O$ Statement 2: For matrix A = [abcd] we have $A^2 = (a + d)A + (ad - bc)I = O$

Watch Video Solution

32. Statement 1: Matrix 3×3 , $a_{ij} = \frac{i-j}{i+2j}$ cannot be expressed as a sum of symmetric and skew-symmetric matrix. Statement 2: Matrix 3×3 , $a_{ij} = \frac{i-j}{i+2j}$ is neither symmetric nor skew-symmetric



For matrices A, B, C of the same order, |ABC| = A = |A||B||C|



Watch Video Solution

35. Statement 1: The inverse of singular matrix $A = \left(\begin{bmatrix} a_{ij} \end{bmatrix} \right)_{n \times n}, where a_{ij} = 0, i \ge jisB = ([aij - 1])_{n \times n}$ Statement 2: The

inverse of singular square matrix does not exist.

Statement 1: The determinant of a 36. matrix $A = \left(\left[a_{ij} \right] \right)_{5 \times 5}$ where $a_{ij} + a_{ji} = 0$ for all *iandj* is zero. Statement 2: The determinant of a skew-symmetric matrix of odd order is zero

Watch Video Solution

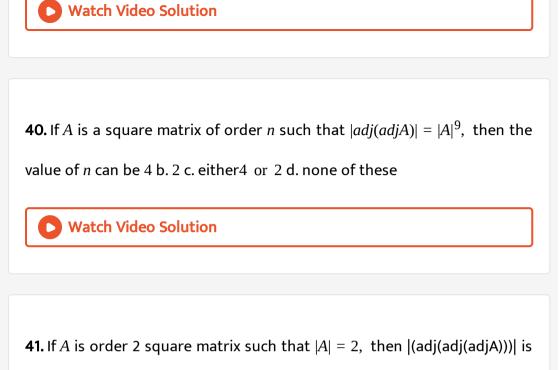
37. If
$$A = [1221]andf(x) = \frac{1+x}{1-x}$$
, then $f(A)$ is $[1111]$ b. $[2222]$ c. $1 - 1 - 1$ d.

none of these

Watch Video Solution

38. If
$$\begin{bmatrix} 1/25 & 0 \\ x & 1/25 \end{bmatrix} = \left(\begin{bmatrix} 5 & 0 \\ -a & 5 \end{bmatrix}^{-1} \right)^2$$
, then the value of x is

39.
$$A = \begin{bmatrix} 1 & \tan x \\ -\tan x & 1 \end{bmatrix}$$
, show that $A^T A^{-1} = \begin{bmatrix} \cos 2x & -\sin 2x \\ \sin 2x & \cos 2x \end{bmatrix}$



512 b. 256 c. 64 d. none of these

Watch Video Solution

42. If $A^3 = O$, then $I + A + A^2$ equals a. I - A b. $(I + A^1)^{-1}$ c. $(I - A)^{-1}$ d. none

of these

43. Prove that sin² A cos² B+cos² A sin² B+cos² A cos² B+sin² A

sin^2 B=1

44. $(-A)^{-1}$ is always equal to (where A is nth-order square matrix) $(-A)^{-1}$ b. $-A^{-1}$ c. $(-1)^n A^{-1}$ d. none of these

Watch Video Solution

45. If
$$A = \begin{bmatrix} 0 & -\tan\alpha \\ 2 & \tan\alpha \\ 2 & 0 \end{bmatrix}$$
 and I is 2×2 unit matrix, then $(I - A) \begin{bmatrix} \cos\alpha & \sin\alpha \\ \sin\alpha & \sin\alpha \end{bmatrix}$

is (a) -I + A (b) I - A (c) -I - A (d) non of these

46. Let AdnB be 3×3 matrices of ral numbers, where A is symmetric, B is

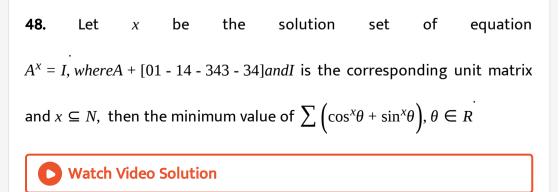
skew-symmetric , and (A + B)(A - B) = (A - B)(A + B) If

 $(AB)^{t} = (-1)^{k}AB$, where $(AB)^{t}$ is the transpose of the mattix AB, then find

the possible values of k

47. If
$$\begin{bmatrix} a & b \\ c & 1 - a \end{bmatrix}$$
 is an idempotent matrix and $f(x) = x - x^2$, $bc = \frac{1}{4}$, then

the value of 1/f(a) is _____.



49. If
$$A = \begin{bmatrix} \alpha & 0 \\ 1 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 0 \\ 5 & 1 \end{bmatrix}$ find the values of α for which $A^2 = B$.

50. Let *a* and *b* be two real numbers such that a > 1, b > 1. If $A = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$,

then $\lim n \to \infty A^{-n}$ is

a. unit matrix

b. null matrix

c. 2l

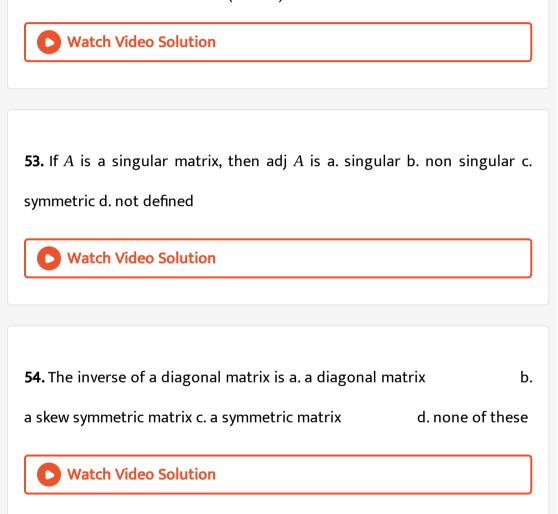
d. none of these

Watch Video Solution

51. Let $f(x) = \frac{1+x}{1-x}$. If *A* is matrix for which $A^3 = O$, *thenf*(*A*) is (a) $I + A + A^2$ (b) $I + 2A + 2A^2$ (c) $I - A - A^2$ (d) none of these

52. If A and B are square matrices of the same order and A is nonsingular,

```
then for a positive integer n, (A^{-1}BA)^n is equal to
```



55. If *P* is non-singular matrix, then value of $adj(P^{-1})$ in terms of *P* is (A) $\frac{P}{|P|}$ (B) P|P| (C) *P* (D) none of these

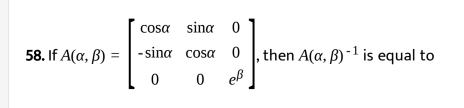
Watch Video Solution

56. If adj
$$B = A$$
, $|P| = |Q| = 1$, then adj $(Q^{-1}BP^{-1})$ is

Watch Video Solution

57. If *A* is non-singular and (A - 2I)(A - 4I) = O, then $\frac{1}{6}A + \frac{4}{3}A^{-1}$ is equal to

OI b. 2I c. 6I d. I



59. If A and B are two square matrices such that $B = -A^{-1}BA$, then $(A + B)^2$ is equal to

Watch Video Solution

60. A = [1tanx - tanx1]andf(x) is defined as $f(x) = detA^{T}A^{-1}$ en the value of

$$(f(f(f(f(f(x))))) \text{ is } (n \ge 2) _____.$$

Watch Video Solution

61. The equation
$$\begin{bmatrix} 1 & 2 & 2 \\ 1 & 3 & 4 \\ 3 & 4 & k \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
 has a solution for (x, y, z) besides (0, 0,

0). Then the value of k is _____ .

62. If D_1 and D_2 are two 3×3 diagonal matrices, then which of the

following is/are true ?

63. If *AandB* are symmetric and commute, then which of the following is/are symmetric? $A^{-1}B$ b. AB^{-1} c. $A^{-1}B^{-1}$ d. none of these

Watch Video Solution

64. If *C* is skew-symmetric matrix of order $nand \equiv sn \times 1$ column matrix, then $X^T C X$ is a singular b. non-singular c. invertible d. non invertible

65. If
$$S = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$
 and $A = \begin{bmatrix} b+c & c-a & b-a \\ c-b & c+a & a-b \\ b-c & a-c & a+b \end{bmatrix}$

 $(a, b, c \neq 0)$, then SAS⁻¹ is

Watch Video Solution

66. Let A = a ij be a matrix of order 3, where
$$a_{ij} = \begin{cases} x & \text{if } i = j, x \in R \\ 1 & \text{if } |i - j| = 1 \\ 0 & \text{otherwise} \end{cases}$$

then which of the following hold (s) good :

Watch Video Solution

67. A skew-symmetric matrix A satisfies the relation $A^2 + I = O$, where I is a unit matrix then A is a. idempotent b. orthogonal c. of even order d. odd order

68. If AB = AandBA = B, then a. $A^2B = A^2$ b. $B^2A = B^2$ c. ABA = A d.

$$BAB = B$$

69. Statement 1: if
$$D = \text{diag} [d_1, d_2, d_n]$$
, then $D^{-1} = \text{diag} [d_1^{-1}, d_2^{-1}, ..., d_n^{-1}]$ Statement 2: if $D = \text{diag} [d_1, d_2, d_n]$, then $D^n = \text{diag} [d_1^n, d_2^n, ..., d_n^n]$

Natch Video Solution

70. If
$$F(x) = \begin{bmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 and $G(y) = \begin{bmatrix} \cos y & 0 & \sin y \\ 0 & 1 & 0 \\ -\sin y & 0 & \cos y \end{bmatrix}$, then

 $[F(x)G(y)]^{-1}$ is equal to

71. Elements of a matrix A or orddr 10×10 are defined as $a_{ij} = w^{i+j}$ (where w is cube root of unity), then trace (A) of the matrix is 0 b. 1 c. 3 d. none of these

Watch	Video	Solu	tion
vvalch	video	3010	LION

72. If A is a 3×3 skew-symmetric matrix, then trace of A is equal to -1 b. 1

c. |A| d. none of these

Watch Video Solution

73. If *AandB* are symmetric matrices of the same order and

X = AB + BAandY = AB - BA, then $(XY)^T$ is equal to XY b. YX c. - YX d. none

of these

74. The number of solutions of the matrix equation

$$X^2 = \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix}$$
is

Watch Video Solution

75. If $A^2 - A + I = 0$, then the invers of A is A^{-2} b. A + I c. I - A d. A - I

Watch Video Solution

76. Let K be a positive real number and
$$A = \begin{bmatrix} 2k-1 & 2\sqrt{k} & 2\sqrt{k} \\ 2\sqrt{k} & 1 & -2k \\ -2\sqrt{k} & 2k & -1 \end{bmatrix}$$
 and

$$B = \begin{bmatrix} 0 & 2k - 1 & \sqrt{k} \\ 1 - 2k & 0 & 2 \\ -\sqrt{k} & -2\sqrt{k} & 0 \end{bmatrix}$$
. If det (adj A) + det (adj B) = 10⁶, then [k] is

equal to _____ .

[Note : adj M denotes the adjoint of a square matrix M and [k] denotes the largest integer less than or equal to k.] 77. Let X and Y be two arbitrary, 3×3 , non-zero, skew-symmetric matrices

and Z be an arbitrary 3×3 , non-zero symmetric matrix. The which of the

following matrices is (are) skew symmetric ?

Watch Video Solution

78. If B is an idempotent matrix, and A = I - B, then

79. If
$$A^{-1} = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 3 & 1 \\ 0 & 0 & -\frac{1}{3} \end{bmatrix}$$
, then $|A| = -1$ b. $adjA = \begin{bmatrix} -1 & 1 & 2 \\ 0 & -3 & -1 \\ 0 & 0 & \frac{1}{3} \end{bmatrix}$ c.

$$A = \begin{bmatrix} 1 & \frac{1}{3} & 7 \\ 0 & \frac{1}{3} & 1 \\ 0 & 0 & -3 \end{bmatrix} d. A = \begin{bmatrix} 1 & -\frac{1}{3} & -7 \\ 0 & -3 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

80. If
$$A_1 = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$
, $A_2 = \begin{bmatrix} 0 & 0 & 0 & i \\ 0 & 0 & -i & 0 \\ -i & 0 & 0 & 0 \end{bmatrix}$, then $A_i A_k + A_k A_i$ is equal to
a. 2*I* if $i = k$
b. *O* if $i \neq k$
c. 2*I* if $i \neq k$
d. *O* always

81. If A is an invertible matrix, then (adj. A)⁻¹ is equal to

Watch Video Solution

82. If
$$A = (a_{ij})_{n \times n}$$
 and f is a function, we define

$$f(A) = \left(f(a_{ij})\right)_{n \times n} \operatorname{Let} A = \begin{pmatrix} \pi/2 - \theta & \theta \\ -\theta & \pi/2 - \theta \end{pmatrix}.$$
 Then

Watch Video Solution

83. If A, B, and C are three square matrices of the same order, then

 $AB = AC \Rightarrow B = C$. Then

84. If
$$\alpha, \beta, \gamma$$
 are three real numbers and

$$A = \begin{bmatrix} 1 & \cos(\alpha - \beta) & \cos(\alpha - \gamma) \\ \cos(\beta - \alpha) & 1 & \cos(\beta - \gamma) \\ \cos(\gamma - \alpha) & \cos(\gamma - \beta) & 1 \end{bmatrix}$$

then which of following is/are true ?

Watch Video Solution

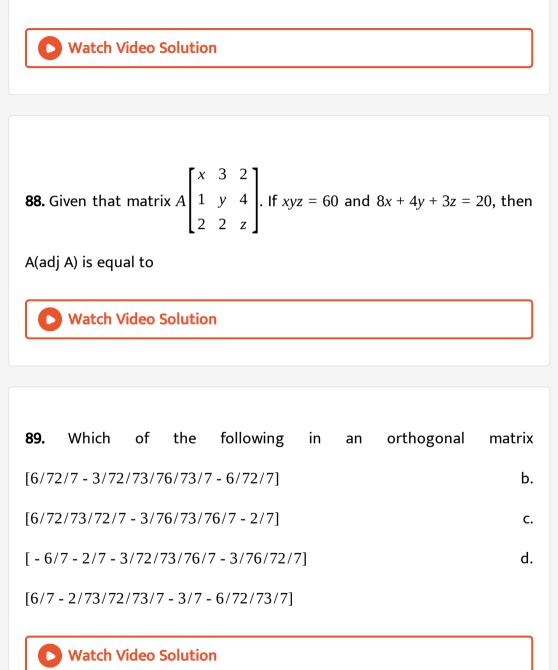
85. If A and B are square matrices of the same order and A is nonsingular,

then for a positive integer n, $(A^{-1}BA)^n$ is equal to

Watch Video Solution

86. If
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 (where $bc \neq 0$) satisfies the equations $x^2 + k = 0$, then

87. If A, B, A + I, A + B are idempotent matrices, then AB is equal to



90. If $k \in R_0$, then det $\{ \operatorname{adj}(kI_n) \}$ is equal to

91. If $A_1, A_3, ..., A_{2n-1}$ are n skew-symmetric matrices of same order, then

$$B = \sum_{r=1}^{n} (2r - 1) (A_{2r-1})^{2r-1}$$
 will be

Watch Video Solution

92. Let
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 0 & 5 \\ 0 & 2 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 0 \\ -3 \\ 1 \end{bmatrix}$. Which of the following is true ?

Watch Video Solution

93.
$$A = \begin{bmatrix} 0 & 1 \\ 3 & 0 \end{bmatrix}$$
 and $A^8 + A^6 + A^4 + A^2 + IV = \begin{bmatrix} 0 \\ 11 \end{bmatrix}$ (where *I* is the 2 × 2

idensity matrix), then the product of all elements of matrix V is _____.

94. Show that every square matrix A can be uniquely expressed as

P + iQ, where PandQ are Hermitian matrices.

Watch Video Solution

95. If
$$A = [a_{ij}]_{n \times n}$$
 is such that $a_{ij} = \bar{a}_{ji} \forall I, j$ and $A^2 = O$, then prove that

matrix A is null matrix. Here, \bar{a}_{ii} denotes the conjugate a_{ii} .

96. Show that the solution of the equation
$$\begin{bmatrix} x & y \\ z & t \end{bmatrix}^2 = O$$
 is $\begin{bmatrix} x & y \\ z & t \end{bmatrix} = \begin{bmatrix} \pm \sqrt{\alpha\beta} & -\beta \\ \alpha & \pm \sqrt{\alpha\beta} \end{bmatrix}$ where α, β are arbitrary.

97. If $A = \begin{bmatrix} -1 & 1 \\ 0 & -2 \end{bmatrix}$, then prove that $A^2 + 3A + 2I = O$. Further, find

matrices B and C of order 2 with integer elements if $A = B^3 + C^3$.

Watch Video Solution

98. If D =diag.
$$[d_1, d_2, ..., d_n]$$
, then prove that $f(D) = diag$. $[f(d_1), f(d_2), ..., f(d_n)]$, where $f(x)$ is a polynominal with scalar coefficieents.

Watch Video Solution

99. Find the possible square roots of the two-rowed unit matrix I.

100. Let M be a 3×3 matrix satisfying

$$M\begin{bmatrix}0\\1\\0\end{bmatrix} = \begin{bmatrix}-1\\2\\3\end{bmatrix}, M\begin{bmatrix}1\\-1\\0\end{bmatrix} = \begin{bmatrix}1\\1\\-1\end{bmatrix}, \text{ and } M\begin{bmatrix}1\\1\\1\end{bmatrix} = \begin{bmatrix}0\\0\\12\end{bmatrix}$$

Then the sum of the diagonal entries of M is ____.

Watch Video Solution

101. If A is unimodular, then which of the following is unimodular?

Watch Video Solution

102. Consider three matrices
$$A = \begin{bmatrix} 2 & 1 \\ 4 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix}$, and $C = \begin{bmatrix} 3 & -4 \\ -2 & 3 \end{bmatrix}$.

Then the value of the sum

$$tr(A) + tr\left(\frac{ABC}{2}\right) + tr\left(\frac{A(BC)^2}{4}\right) + tr\left(\frac{A(BC)^3}{8}\right) + \dots + \infty$$
 is

103. If A=
$$\begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix}$$
 and B = $\begin{bmatrix} a & 1 \\ b & -1 \end{bmatrix}$ and $(A + B)^2 = A^2 + B^2$, then the

values of a and b are

Watch Video Solution

104. Let *AandB* be two nonsinular square matrices, $A^T andB^T$ are the transpose matrices of *AandB*, respectively, then which of the following are correct? B^TAB is symmetric matrix if *A* is symmetric B^TAB is symmetric matrix if *B* is symmetric B^TAB is symmetric matrix for every matrix $A B^TAB$ is skew-symmetric matrix if *A* is skew-symmetric

Watch Video Solution

105. If a is matrix such that $A^2 + A + 2I = O$, then which of the following is/are true ?

106. If
$$A(\theta) = \begin{bmatrix} \sin\theta & i\cos\theta \\ i\cos\theta & \sin\theta \end{bmatrix}$$
, then which of the following is not true ?

Watch Video Solution

107. If the square of the matrix $\begin{bmatrix} \alpha & \beta \\ \gamma & -\alpha \end{bmatrix}$ is the unit matrix of order 2, then

 α , β and γ should satisfy the relation.

Watch Video Solution

108. If
$$A = [a_{ij}]_{4 \times 4}$$
, such that $a_{ij} = \begin{cases} 2, & \text{when } i = j \\ 0, & \text{when } i \neq j \end{cases}$, then

 $\left\{\frac{\det (\operatorname{adj} (\operatorname{adj} A))}{7}\right\}$ is (where $\{\cdot\}$ represents fractional part function)

109. Statement 1: Let A, B be two square matrices of the same order such that AB = BA, $A^m = O$, $ndB^n = O$ for some positive integers m, n, then there exists a positive integer r such that $(A + B)^r = O$ Statement 2: If $AB = BAthen(A + B)^r$ can be expanded as binomial expansion.

Watch Video Solution

110. If the matrices, A, B and (A + B) are non-singular, then prove that

$$\left[A(A+B)^{-1}B\right]^{-1} = B^{-1} + A^{-1}.$$

Watch Video Solution

111. The number of diagonal matrix, A or ordern which $A^3 = A$ is

112. A is a 2×2 matrix such that

$$A\begin{bmatrix}1\\-1\end{bmatrix} = \begin{bmatrix}-1\\2\end{bmatrix} \text{ and } A^2\begin{bmatrix}1\\-1\end{bmatrix} = \begin{bmatrix}1\\0\end{bmatrix}.$$

The sum of the elements of A is

Watch Video Solution

113. If
$$A = \begin{bmatrix} a & b \\ 0 & a \end{bmatrix}$$
 is nth root of I_2 , then choose the correct statements :

- (i) if n is odd, a=1, b=0
- (ii) if n is odd, a=-1, b=0
- (iii) if n is even, a=1, b=0
- (iv) if n is even, a=-1, b=0

114. Let $\omega \neq 1$ be cube root of unity and S be the set of all non-singular

matrices of the form
$$\begin{bmatrix} 1 & a & b \\ \omega & 1 & c \\ \omega^2 & \theta & 1 \end{bmatrix}$$
, where each of *a*, *b*, and *c* is either ω

or ω^2 . Then the number of distinct matrices in the set *S* is (a) 2 (b) 6 (c) 4

(d) 8

Watch Video Solution

115. The number of 3×3 matrices a whose entries are either 0 or 1 and for

which the system
$$A\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
 has exactly two distinct solutions is

116. *A* is an involuntary matrix given by $A = \begin{bmatrix} 0 & 1 & -1 \\ 4 & -3 & 4 \\ 3 & -3 & 4 \end{bmatrix}$, then the inverse of $\frac{A}{2}$ will be a. 2*A* b. $\frac{A^{-1}}{2}$ c. $\frac{A}{2}$ d. A^{2} Watch Video Solution

117. If A is a nonsingular matrix such that $AA^T = A^T A$ and $B = A^{-1}A^T$, then

matrix B is

118. Let MandN be two 3×3 non singular skew-symmetric matrices such

that MN = NM If P^T denote the transpose of P, then

$$M^{2}N^{2}(M^{T}N)^{-1}(MN^{-1})^{T}$$
 is equal to
a. M^{2}
b. $-N^{2}$
c. $-M^{2}$
d. MN

Watch Video Solution

119. Let ω be a complex cube root of unity with $\omega \neq 1$ and $P = \left[p_{ij}\right]$ be a

$$n \times n$$
 matrix withe $p_{ij} = \omega^{i+j}$ Then $p^2 \neq O$, when $n =$

a.57

b. 55

c. 58

d. 56

120. If
$$A = \begin{bmatrix} i & -i \\ -i & i \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$, then A^8 equals

121. If
$$\begin{bmatrix} 2 & -1 \\ 1 & 0 \\ -3 & 4 \end{bmatrix} A = \begin{bmatrix} -1 & -8 & -10 \\ 1 & -2 & -5 \\ 9 & 22 & 15 \end{bmatrix}$$
, then sum of all the elements of

matrix a is

Watch Video Solution

122. Identity the incorrect statement in respect of two square matrices *AandB* conformable for sum and product : $a.t_r(A + B) = t_r(A) + t_r(B)$ b. $t_r(\alpha A) = \alpha t_r(A), \in R \text{ c. } t_r(A^T) = t_r(A) \text{ d. none of these}$

Watch Video Solution

123. If A is a square matrix such that $A^2 = A$, find the value of $7A - (I + A)^3$.

124. If A and B are square matrices of order n, then $A - \lambda I$ and $B - \lambda I$

commute for every scalar λ , only if

125. Matrix A such that $A^2 = 2A - I$, where I is the identity matrix, then for

 $n \ge 2, A^n$ is equal to

Watch Video Solution

126. Let
$$A = \begin{bmatrix} 0 & \alpha \\ 0 & 0 \end{bmatrix}$$
 and $(A + I)^{50}A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Then the value of

a + *b* + *c* + *d* is

1. If e^A is defined as $e^A = I + A + \frac{A^2}{2!} + \frac{A^3}{3!} + ... = \frac{1}{2} \begin{bmatrix} f(x) & g(x) \\ g(x) & f(x) \end{bmatrix}$, where

 $A = \begin{bmatrix} x & x \\ x & x \end{bmatrix}, 0 < x < 1 \text{ and I is identity matrix, then find the functions f(x)}$

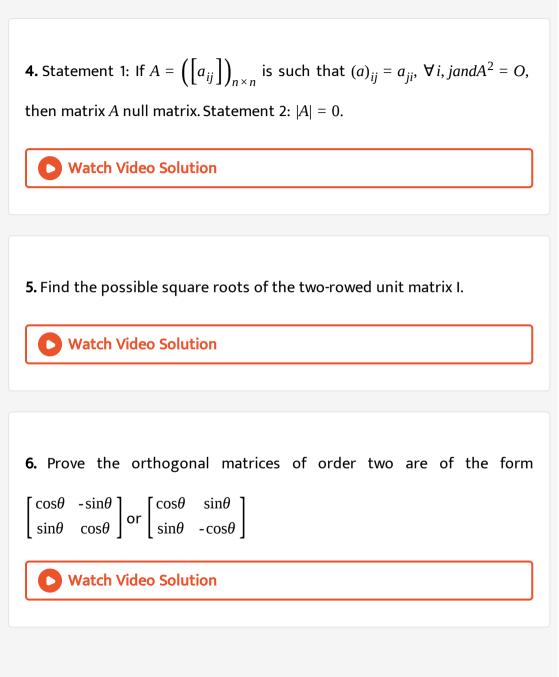
and g(x).

View Text Solution

2. Prove that matrix
$$\begin{bmatrix} \frac{b^2 - a^2}{a^2 + b^2} & \frac{-2ab}{a^2 + b^2} \\ \frac{-2ab}{a^2 + b^2} & \frac{a^2 - b^2}{a^2 + b^2} \end{bmatrix}$$
 is orthogonal.

Watch Video Solution

3. If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, where a, b, c and d are real numbers, then prove that $A^2 - (a + d)A + (ad - bc)I = O$. Hence or therwise, prove that if $A^3 = O$ then $A^2 = O$



7. Let
$$A = \begin{bmatrix} \tan \frac{\pi}{3} & \sec \frac{2\pi}{3} \\ \\ \cot \left(2013 \frac{\pi}{3} \right) & \cos(2012\pi) \end{bmatrix}$$
 and P be a 2 × 2 matrix such that

 $PP^{T} = I$, where I is an identity matrix of order 2. If $Q = PAP^{T}$ and $R = \left[r_{ij}\right]_{2 \times 2} = P^{T}Q^{8}P$, then find r_{11} .

Watch Video Solution

8. Consider,
$$A = \begin{bmatrix} a & 2 & 1 \\ 0 & b & 0 \\ 0 & -3 & c \end{bmatrix}$$
, where a, b and c are the roots of the equation $x^3 - 3x^2 + 2x - 1 = 0$. If matric B is such that $AB = BA, A + B - 2I \neq O$ and $A^2 - B^2 = 4I - 4B$, then find the value of det.
(B)

9. If A and B are square matrices of order 3 such that det. (A) = -2 and det. (B) = 1, then det. $(A^{-1}adjB^{-1}.adj(2A^{-1}))$ is equal to

10. If a matrix has 28 elements, what are the possible orders it can have ?

11. Construct a
$$2 \times 2$$
 matrix, where

(i)
$$a_{ij} = \frac{(i-2j)^2}{2}$$
 (ii) $a_{ij} = |-2i+3j|$

Watch Video Solution

12. What is the maximum number of different elements required to form

a symmetric matrix of order 12?

13. If a square matix a of order three is defined $A = [a_{ij}]$ where $a_{ij} = sgn(i - j)$, then prove that A is skew-symmetric matrix.

14. For what values of x and y are the following matrices equal ?

$$A = \begin{bmatrix} 2x+1 & 3y \\ 0 & y^2 - 5y \end{bmatrix}, B = \begin{bmatrix} x+3 & y^2 + 2 \\ 0 & -6 \end{bmatrix}$$

15. For
$$\alpha, \beta, \gamma \in R$$
, let

$$A = \begin{bmatrix} \alpha^2 & 6 & 8 \\ 3 & \beta^2 & 9 \\ 4 & 5 & \gamma^2 \end{bmatrix} \text{ and } B = \begin{bmatrix} 2\alpha & 3 & 5 \\ 2 & 2\beta & 6 \\ 1 & 4 & 2\gamma - 3 \end{bmatrix}$$

16. Find the values of x for which matrix $\begin{bmatrix} 3 & -1+x & 2\\ 3 & -1 & x+2\\ x+3 & -1 & 2 \end{bmatrix}$ is singular.

Watch Video Solution

17. If
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$$
 and $B = \begin{bmatrix} -3 & -2 \\ 1 & -5 \\ 4 & 3 \end{bmatrix}$, then find $D = \begin{bmatrix} p & q \\ r & s \\ t & u \end{bmatrix}$ such that $A + B - D = O$.

Watch Video Solution

18. If
$$A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$$
, and $A + A' = I$, then the value of α is

19. Let A be a square matrix. Then prove that $(i)A + A^T$ is a symmetric matrix, $(ii)A - A^T$ is a skew-symmetric matrix and $(iii) \forall^T$ and A^TA are symmetric matrices.

20. If A = [2 - 131] and B = [1472], find 3A - 2B

Watch Video Solution

21. Find the non-zero values of x satisfying the matrix equation

$$x\begin{bmatrix} 2x & 2\\ 3 & x \end{bmatrix}, 2\begin{bmatrix} 8 & 5x\\ 4 & 4x \end{bmatrix} = 2\begin{bmatrix} x^2 + 8 & 24\\ 10 & 6x \end{bmatrix}$$

22. Let
$$A + 2B = \begin{bmatrix} 1 & 2 & 0 \\ 6 & -1 & 3 \\ -5 & 3 & 1 \end{bmatrix}$$
 and $2A - B = \begin{bmatrix} 2 & -1 & 5 \\ 2 & -1 & 6 \\ 0 & 1 & 2 \end{bmatrix}$, then find

tr(A) - tr(B).

Watch Video Solution

23. If
$$\begin{bmatrix} \lambda^2 - 2\lambda + 1 & \lambda - 2 \\ 1 - \lambda^2 + 3\lambda & 1 - \lambda^2 \end{bmatrix} = A\lambda^2 + B\lambda + C$$
, where A, B and C are matrices

then find matrices B and C.

24. Prove that square matrix can be expressed as the sum of a symmetric

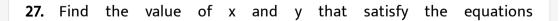
matrix and a skew-symmetric matrix.

25. Matrix A ha s m rows and n+ 5 columns; matrix B has m rows and 11 - *n* columns. If both AB and BA exist, then (A) AB and BA are square matrix (B) AB and BA are of order 8×8 and 3×13 , respectively (C) AB = BA (D) None of these

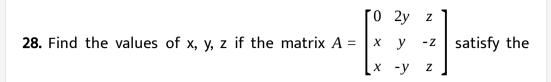
26. If
$$A = \begin{bmatrix} 2 & 3 & -1 \\ 1 & 4 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 3 \\ 4 & 5 \\ 2 & 1 \end{bmatrix}$ then AB and BA are defined and

equal.

Watch Video Solution



$$\begin{bmatrix} 3 & -2 \\ 3 & 0 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} y & y \\ x & x \end{bmatrix} = \begin{bmatrix} 3 & 3 \\ 3y & 3y \\ 10 & 10 \end{bmatrix}$$



equation A'A = I.

Watch Video Solution

29. If
$$A = [\cos\theta \sin\theta - \sin\theta \cos\theta]$$
, then prove that

 $A^n = [\cos n\theta \sin n\theta - \sin n\theta \cos n\theta], n \in N.$

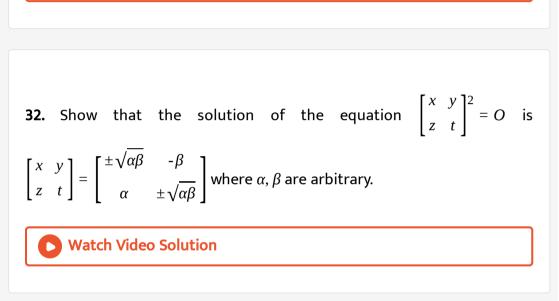
Watch Video Solution

30. If
$$A = \begin{pmatrix} p & q \\ 0 & 1 \end{pmatrix}$$
, then show that $A^8 = \begin{pmatrix} p^8 & q \begin{pmatrix} p^8 - 1 \\ p - 1 \end{pmatrix} \\ 0 & 1 \end{pmatrix}$

31. Let
$$A = \begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix}$$
 be a matrix. If $A^{10} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ then prove that $a + d$ is

divisible by 13.

Watch Video Solution



33. Let a be square matrix. Then prove that AA^T and A^TA are symmetric matrices.

34. If A, B are square materices of same order and B is a skewsymmetric

matrix, show that $A^{T}BA$ is skew-symmetric.

35. If a and B are square matrices of same order such that AB + BA = O,

then prove that $A^3 - B^3 = (A + B)(A^2 - AB - B^2)$.

Watch Video Solution

36. Let
$$A = \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix}$$
. If $A^6 = kA - 205I$ then then numerical quantity of

k - 40 should be

Watch Video Solution

37. Let A, B, C, D be (not necessarily square) real matrices such that $A^T = BCD$: $B^T = CDA$; $C^T = DAB$ and $D^T = ABC$. For the matrix

S = ABCD, consider the two statements. I. $S^3 = S$ II. $S^2 = S^4$ (A) II is true but not I (B) I is true but not II (C) both I and II are true (D) both I and II are false

38. If A and B are square matrices of the same order such that AB = BA, then prove by induction that $AB^n = B^nA$. Further, prove that $(AB)^n = A^nB^n$ for all $n \in N$.

Watch Video Solution

39. If A = [-110 - 2], then prove that $A^2 + 3A + 2I = O$ Hence, find *BandC*

matrices of order 2 with integer elements, if $A = B^3 + C^3$

40. If
$$A = \begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix}$$
 then find tr. (A^{2012}) .

41. If A is a nonsingular matrix satisfying AB - BA = A, then prove that det.

 $(B + I) = \det, (B - I).$

Watch Video Solution

42. If det, $(A - B) \neq 0, A^4 = B^4, C^3A = C^3B$ and $B^3A = A^3B$, then find the value of det. $(A^3 + B^3 + C^3)$.

Watch Video Solution

43. Given a matrix A = [abcbcacab], wherea, b, c are real positive numbers

 $abc = 1 and A^T A = I$, then find the value of $a^3 + b^3 + c^3$.

44. If M is a 3×3 matrix, where det M = 1 and $MM^T = 1$, where I is an

identity matrix, prove theat det (M - I) = 0.

45. Consider point P(x, y) in first quadrant. Its reflection about x-axis is

$$Q(x_1, y_1)$$
. So, $x_1 = x$ and $y(1) = -y$.

This may be written as :
$$\begin{cases} x_1 = 1. \, x + 0. \, y \\ y_1 = 0. \, x + (-1)y \end{cases}$$

This system of equations can be put in the matrix as :

 $\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$ Here, matrix $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ is the matrix of reflection about x-axis. Then find the

matrix of

(i) reflection about y-axis

(ii) reflection about the line y = x

(iii) reflection about origin

(iv) reflection about line $y = (\tan \theta)x$

Watch Video Solution

46. If
$$A = \begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}$$
 then A is `1) an idempotent matrix 2) nilpotent

matrix 3) involutary 4) orthogonal matrix

Watch Video Solution

47. If
$$A = \begin{bmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{bmatrix}$$
 then find $A^{14} + 3A - 2I$

48. The matrix A = [-5 - 8035012 -] is a. idempotent matrix b. involutory

matrix c. nilpotent matrix d. none of these

49. If
$$abc = p$$
 and $A = \begin{bmatrix} a & b & c \\ c & a & b \\ b & c & a \end{bmatrix}$, prove that A is orthogonal if and only if

a, b, c are the roots of the equation $x^3 \pm x^2 - p = 0$.

Watch Video Solution

50. Let A be an orthogonal matrix, and B is a matrix such that AB = BA,

then show that $AB^T = B^T A$.

51. Find the adjoint of the matrix $A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & -3 \\ -1 & 2 & 3 \end{bmatrix}$.

Watch Video Solution

52. If
$$S = \begin{bmatrix} \frac{\sqrt{3} \cdot 1}{2\sqrt{2}} & \frac{\sqrt{3} \cdot 1}{2\sqrt{2}} \\ -\left(\frac{\sqrt{3} \cdot 1}{2\sqrt{2}}\right) & \frac{\sqrt{3} \cdot 1}{2\sqrt{2}} \end{bmatrix}, A = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \text{ and } P = S(\text{adj.A})S^T, \text{ then find}$$

matrix $S^T P^{10} S$.

53. If A is a square matrix such that
$$A(adjA) = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$
, then
$$= \frac{|adj(adjA)|}{2|adjA|}$$
 is equal to
Watch Video Solution

54. Let A be a square matrix of order 3 such that

adj. (adj. (adj. A)) =
$$\begin{bmatrix} 16 & 0 & -24 \\ 0 & 4 & 0 \\ 0 & 12 & 4 \end{bmatrix}$$
. Then find

(i) |A| (ii) adj. A

Watch Video Solution

55. Let
$$A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix}$$
 and $10B = \begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3 \end{bmatrix}$. If B is the inverse of A,

then α is :

Watch Video Solution

56. Matrices a and B satisfy
$$AB = B^{-1}$$
, where $B = \begin{bmatrix} 2 & -1 \\ 2 & 0 \end{bmatrix}$. Find

(i) without finding B^{-1} , the value of K for which

 $KA - 2B^{-1} + I = O.$

(ii) without finding A^{-1} , the matrix X satifying $A^{-1}XA = B$.

Watch Video Solution

57. Given the matrices a and B as $A = \begin{bmatrix} 1 & -1 \\ 4 & -1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & -1 \\ 2 & -2 \end{bmatrix}$. The two

matrices X and Y are such that XA = B and AY = B, then find the matrix 3(X + Y)

Watch Video Solution

58. If M is the matrix
$$\begin{bmatrix} 1 & -3 \\ -1 & 1 \end{bmatrix}$$
 then find matrix $\sum_{r=0}^{\infty} \left(\frac{-1}{3}\right)^r M^{r+1}$

Watch Video Solution

59. Let p be a non singular matrix, and $I + P + p^2 + ... + p^n = 0$, then find

 p^{-1} .

60. If A and B are square matrices of same order such that AB = O and

 $B \neq O$, then prove that |A| = 0.

Watch Video Solution

61. If A is a symmetric matrix, B is a skew-symmetric matrix, A + B is nonsingular and $C = (A + B)^{-1}(A - B)$, then prove that (i) $C^{T}(A + B)C = A + B$ (ii) $C^{T}(A - B)C = A - B$ (iii) $C^{T}AC = A$

Watch Video Solution

62. If the matrices, A, B and (A + B) are non-singular, then prove that

$$\left[A(A+B)^{-1}B\right]^{-1} = B^{-1} + A^{-1}.$$

63. If matrix a satisfies the equation $A^2 = A^{-1}$, then prove that $A^{2^n} = A^{2^{(n-1)}}, n \in N$.

64. If a and B are non-singular symmetric matrices such that AB = BA, then prove that $A^{-1}B^{-1}$ is symmetric matrix.

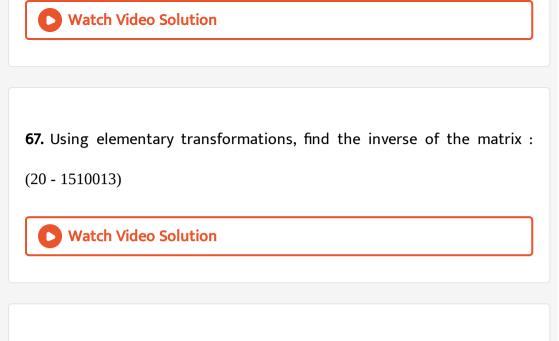
Watch Video Solution

65. If A is a matrix of order n such that $A^{T}A = I$ and X is any matric such

that $X = (A + I)^{-1}(A - I)$, then show that X is skew symmetric matrix.

66. Show that two matrices

$$A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 1 & 1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 3 & 0 & 1 \\ 0 & 3 & 1 \end{bmatrix} \text{ are row equivalent.}$$



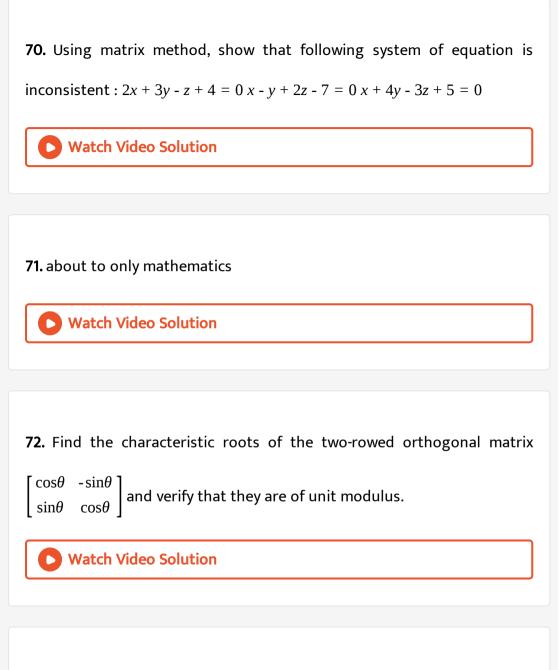
68. Let a be a 3×3 matric such that

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 3 \\ 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \text{ then find } A^{-1}.$$

Watch Video Solution

69. Using matrix method, solve the following system of equations:

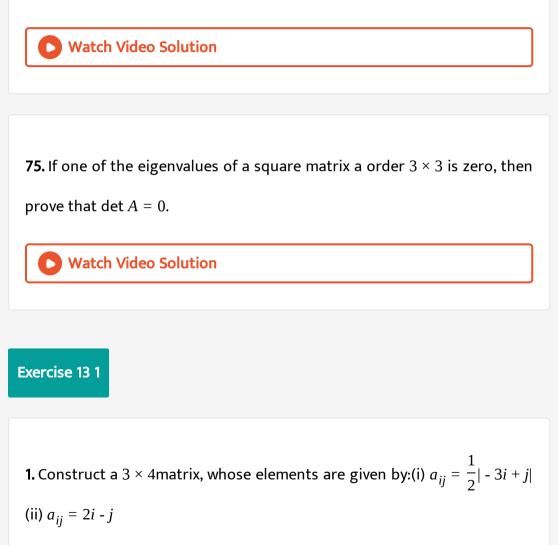
x + 2y + z = 7, x + 3z = 11, 2x - 3y = 1

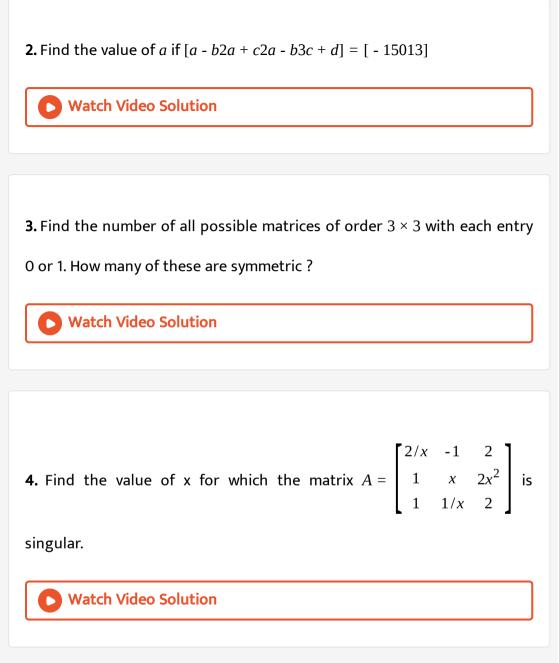


73. Show that if $\lambda_1, \lambda_2, \dots, lamnda_n$ are *n* eigenvalues of a square matrix a

of order n, then the eigenvalues of the matric A^2 are $\lambda_1^2, \lambda_2^2, ..., \lambda_n^2$.

74. If A is nonsingular, prove that the eigenvalues of A^{-1} are the reciprocals of the eigenvalue of A.





5. If matric A is skew-symmetric matric of odd order, then show that tr. A =

det. A.

Exercise 13 2

1. Solve for x and y,
$$x \begin{bmatrix} 2 \\ 1 \end{bmatrix} + y \begin{bmatrix} 3 \\ 5 \end{bmatrix} + \begin{bmatrix} -8 \\ -11 \end{bmatrix} = 0.$$

Watch Video Solution

2. If
$$A = \begin{bmatrix} 1 & 5 \\ 7 & 12 \end{bmatrix}$$
 and $B = \begin{bmatrix} 9 & 1 \\ 7 & 8 \end{bmatrix}$ then find a matrix C such that

3A + 5B + 2C is a null matrix.

View Text Solution

3. Solve the following equations for X and Y :

$$2X - Y = \begin{bmatrix} 3 & -3 & 0 \\ 3 & 3 & 2 \end{bmatrix}, 2Y + X = \begin{bmatrix} 4 & 1 & 5 \\ -1 & 4 & -4 \end{bmatrix}$$

4. If
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 2 \\ 2 & 2 & 3 \end{bmatrix} B = \begin{bmatrix} 1 & 2 & 2 \\ -2 & -1 & -2 \\ 2 & 2 & 3 \end{bmatrix}$$
 and $C = \begin{bmatrix} -1 & -2 & -2 \\ 2 & 1 & 2 \\ 2 & 2 & 3 \end{bmatrix}$ then find the value of tr. $(A + B^T + 3C)$.

Watch Video Solution

5. If $A = \begin{bmatrix} 3 & -2 \\ 4 & -1 \end{bmatrix}$, then find all the possible values of λ such that the

matrix (A - λI) is singular.

Watch Video Solution

6. If matrix $A = \begin{bmatrix} 0 & 1 & -1 \\ 4 & -3 & 4 \\ 3 & -3 & 4 \end{bmatrix} = B + C$, where B is symmetric matrix and C

is skew-symmetric matrix, then find matrices B and C.

Exercise 13 3

1. Consider the matrices

$$A = \begin{bmatrix} 4 & 6 & -1 \\ 3 & 0 & 2 \\ 1 & -2 & 5 \end{bmatrix}, B = \begin{bmatrix} 2 & 4 \\ 0 & 1 \\ -1 & 2 \end{bmatrix}, C = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}$$

Out of the given matrix products, which one is not defined ?

A. $(AB)^T C$ B. $C^T C (AB)^T$ C. $C^T AB$

 $D. A^T A B B^T C$

Answer: B

2. Let
$$A = BB^T + CC^T$$
, where $B = \begin{bmatrix} \cos\theta \\ \sin\theta \end{bmatrix}$, $C = \begin{bmatrix} \sin\theta \\ -\cos\theta \end{bmatrix}$, $\theta \in R$. Then prove

that a is unit matrix.

• Watch Video Solution 3. The matrix R(t) is defined by $R(t) = \begin{bmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{bmatrix}$. Show that R(s)R(t) = R(s + t). • Watch Video Solution

4. if
$$A = \begin{bmatrix} i & 0 \\ 0 & i \end{bmatrix}$$
 where $i = \sqrt{-1}$ and $x \in N$ then A^{4x} equals to:

5. If
$$A = \begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix}$$
 prove that $A^k = \begin{bmatrix} 1+2k & -4k \\ k & 1-2k \end{bmatrix}$ where k is any positive

integer.

Watch Video Solution

6. If
$$A = \begin{bmatrix} 1 & 2 \\ 3 & -5 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$ and X is a matrix such that $A = BX$, then X=

7. For what values of
$$x$$
: $\begin{bmatrix} 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 0 \\ 2 & 0 & 1 \\ 1 & 0 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \\ x \end{bmatrix} = O?$

Watch Video Solution

8. Find the matrix X so that *X*[123456] = [-7-8-9246]

9. If
$$A = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$$
, then $\lim_{x \to \infty} \frac{1}{n} A^n$ is

Watch Video Solution

10.
$$A = \begin{bmatrix} 3 & a & -1 \\ 2 & 5 & c \\ b & 8 & 2 \end{bmatrix}$$
 is symmetric and $B = \begin{bmatrix} d & 3 & a \\ b - a & e & -2b - c \\ -2 & 6 & -f \end{bmatrix}$ is skew-

symmetric, then find AB.

Watch Video Solution

1. If A and B are matrices of the same order, then $AB^T - BA^T$ is a/an

(a) skew-symmetric matrix

- (b) null matrix
- (c) unit matrix
- (d) symmetric matrix

Watch Video Solution

2. If A and B are square matrices such that AB = BA then prove that

$$A^3 - B^3 = (A - B)(A^2 + AB + B^2).$$

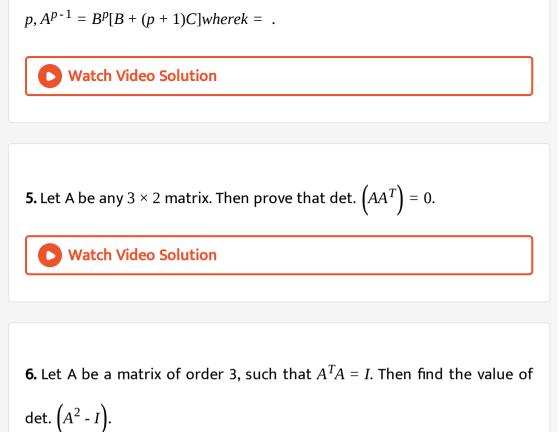
Watch Video Solution

3. If A is a square matrix such that $A^2 = I$, then

 $(A - I)^3 + (A + I)^3 - 7A$ is equal to



4. If B, C are square matrices of order nand if $A = B + C, BC = CB, C^2 = O$, then for any positive integer



Watch Video Solution

7. A and B are different matrices of order n satisfying $A^3 = B^3$ and $A^2B = B^2A$. If det. $(A - B) \neq 0$, then find the value of det. $(A^2 + B^2)$.

8. If $D = diag[d_1, d_2, d_n]$, then prove that $f(D) = diag[f(d_1), f(d_2), f(d_n)]$, where f(x) is a polynomial with scalar

coefficient.

Watch Video Solution

9. Point P(x, y) is rotated by an angle θ in anticlockwise direction. The new

position of point P is
$$Q(x_1, y_1)$$
. If $\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = A \begin{bmatrix} x \\ y \end{bmatrix}$, then find matrix A.

Watch Video Solution

10. How many different diagonal matrices of order n can be formed which

are involuntary?

11. How many different diagonal matrices of order n can be formed which are involuntary ?

A. 2ⁿ B. 2ⁿ - 1 C. 2ⁿ⁻¹

D. n

Answer: A

Watch Video Solution

12. If A and B are n-rowed unitary matrices, then AB and BA are also unitary

matrices.

Watch Video Solution

Exercise 13 5

1. By the method of matrix inversion, solve the system.

$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 5 & 7 \\ 2 & 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 & y_1 \\ x_2 & y_2 \\ x_3 & y_3 \end{bmatrix} = \begin{bmatrix} 9 & 2 \\ 52 & 15 \\ 0 & -1 \end{bmatrix}$$

Watch Video Solution

2. Let
$$A = \begin{bmatrix} 2 & 0 & 7 \\ 0 & 1 & 0 \\ 1 & -2 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} -x & 14x & 7x \\ 0 & 1 & 0 \\ x & -4x & -2x \end{bmatrix}$ are two matrices such
that $AB = (AB)^{-1}$ and $AB \neq I$ then
 $Tr((AB) + (AB)^2 + (AB)^3 + (AB)^4 + (AB)^5 + (AB)^6) =$

Watch Video Solution

3. If
$$A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$
 show that $A^{-1} = \frac{1}{2} \left(A^2 = 3I \right)$

4. For the matrix A = [3175], find x and y so that $A^2 + xI = yA$

5. If $A^3 = O$, then prove that $(I - A)^{-1} = I + A + A^2$.

6. If
$$A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$$
, $B = \begin{bmatrix} \cos 2\beta & \sin 2\beta \\ \sin 2\beta & -\cos 2\beta \end{bmatrix}$ where $0 < \beta < \frac{\pi}{2}$ then prove that $BAB = A^{-1}$ Also find the least positive value of α for which $BA^4B = A^{-1}$

View Text Solution

7. If
$$A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 2 & 3 \\ 1 & -1 & 3 \end{bmatrix}$$
, $C = \begin{bmatrix} 2 & 1 & 1 \\ 2 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix}$, $D = \begin{bmatrix} 10 \\ 13 \\ 9 \end{bmatrix}$, and $CB = D$. Solve the

equation AX = B.

Watch Video Solution

8. If A is a 2 × 2 matrix such that
$$A^2 - 4A + 3I = 0$$
, then prove that
 $(A + 3I)^{-1} = \frac{7}{24}I - \frac{1}{24}A.$

9. For two unimobular complex numbers
$$z_1$$
 and z_2 , find

$$\begin{bmatrix} \bar{z}_1 & -z_2 \\ \bar{z}_2 & z_1 \end{bmatrix}^{-1} \begin{bmatrix} z_1 & z_2 \\ -\bar{z}_2 & \bar{z}_1 \end{bmatrix}^{-1}$$
Watch Video Solution

10. Prove that inverse of a skew-symmetric matrix (if it exists) is skew-

symmetric.

Watch Video Solution

11. If square matrix a is orthogonal, then prove that its inverse is also orthogonal.

Watch Video Solution

12. If A is a skew symmetric matrix, then $B = (I - A)(I + A)^{-1}$ is (where I is

an identity matrix of same order as of A)

Watch Video Solution

13. Prove that (adj.
$$A$$
)⁻¹ = (adj. A^{-1}).

14. Using elementary transformation, find the inverse of the matrix

$$A = \begin{bmatrix} a & b \\ c & \left(\frac{1+bc}{a}\right) \end{bmatrix}.$$

Watch Video Solution

15. Show that the two matrices A, $P^{-1}AP$ have the same characteristic

roots.

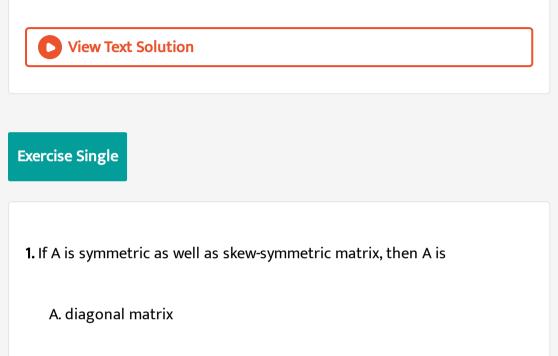
Watch Video Solution

16. Show that the characteristics roots of an idempotent matris are either

0 or 1

17. If α is a characteristic root of a nonsin-gular matrix, then prove that

 $|A|\alpha|$ is a characteristic root of adj A.



B. null matrix

C. triangular materix

D. none of these

Answer: B

2. Elements of a matrix *A* or orddr 10×10 are defined as $a_{ij} = w^{i+j}$ (where *w* is cube root of unity), then trace (*A*) of the matrix is 0 b. 1 c. 3 d. none of these

A. 0

B. 1

C. 3

D. none of these

Answer: D

Watch Video Solution

3. If A_1, A_2, A_{2n-1} are skew-symmetric matrices of same order, then

 $B = \sum_{r=1}^{n} (2r - 1) \left(A^{2r - 1} \right)^{2r - 1}$ will be symmetric skew-symmetric neither

symmetric nor skew-symmetric data not adequate

A. symmetric

B. skew-symmetric

C. neither symmetric nor skew-symmetric

D. data not adequate

Answer: B

Watch Video Solution

4. The equation
$$\begin{bmatrix} 1 & x & y \end{bmatrix} \begin{bmatrix} 1 & 3 & 1 \\ 0 & 2 & -1 \\ 0 & 2 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ x \\ y \end{bmatrix} = \begin{bmatrix} 0 \end{bmatrix}$$
 has

(i) $y = 0$,	(p) rational roots	
(ii) $y = -1$	(q) irrational roots	
	(r) integral roots	

 $A. \frac{(i)}{(p)} \quad (ii) \\ (p) \quad (r) \\ B. \frac{(i)}{(q)} \quad (p) \\ C. \frac{(i)}{(p)} \quad (q) \\ (q) \\$

D. $\frac{(i)}{(r)}$ (ii) (ii) (ii) (p)

Answer: C

- **5.** Let *AandB* be two 2×2 matrices. Consider the statements
- (i) AB = O, A = O or B = O
- (ii) $AB = I_2 \Rightarrow A = B^{-1}$
- (iii) $(A + B)^2 = A^2 + 2AB + B^2$
- a. (i) and (ii) are false, (iii) is true
- b. (ii) and (iii) are false, (i) is true
- c. (i) is false (ii) and, (iii) are true
- d. (i) and (iii) are false, (ii) is true
 - A. (i) and (ii) are false, (iii) is true
 - B. (ii) and (iii) are false, (i) is true
 - C. (i) is false, (ii) and (iii) are true

D. (i) and (iii) are false, (ii) is true

Answer: D

A. 1

B. 0

C. 2^{*n*}

D. 3^{*n*}

Answer: D

7. *A* is a 2 × 2 matrix such that $A[1 - 1] = [-12]andA^2[1 - 1] = [10]$ The sum of the elements of *A* is -1 b. 0 c. 2 d. 5

A. - 1 B. O C. 2 D. 5

Answer: D

8. If
$$\theta - \phi = \frac{\pi}{2}$$
, prove that,

$$\begin{bmatrix} \cos^2\theta & \cos\theta\sin\theta \\ \cos\theta\sin\theta & \sin^2\theta \end{bmatrix} \begin{bmatrix} \cos^2\phi & \cos\phi\sin\phi \\ \cos\phi\sin\phi & \sin^2\phi \end{bmatrix} = 0$$
A. $2n\pi$, $\in Z$
B. $n\frac{\pi}{2}, n \in Z$

$$\mathsf{C}.\,(2n+1)\frac{\pi}{2},\,n\in X$$

D. $n\pi$, $n \in Z$

Answer: C

Watch Video Solution

9. If A = [ab0a] is nth root of I_2 , then choose the correct statements: If n is odd, a = 1, b = 0 If n is odd, a = -1, b = 0 If n is even, a = 1, b = 0 If n is even, a = -1, b = 0 If n is even, a = -1, b = 0 If n is iii, iv b. ii, iii, iv c. i, ii, iii, iv d. i, iii, iv

A. i, ii, iii

B. ii, iii, iv

C. i, ii, iii, iv

D. i, iii, iv

Answer: D

10. If the square of the matrix $\begin{bmatrix} \alpha & \beta \\ \gamma & -\alpha \end{bmatrix}$ is the unit matrix of order 2, then

 α , β and γ should satisfy the relation.

A.
$$1 - \alpha^2 + \beta \gamma = 0$$

B. $\alpha^2 + \beta \gamma - 1 = 0$
C. $1 + \alpha^2 + \beta \gamma = 0$
D. $1 - \alpha^2 - \beta \gamma = 0$

Answer: B

Watch Video Solution

11. If A = [i - i - ii]andB = [1 - 1 - 11], then A^8 equals 4B b. 128B c. -128B d.

-64B

A. 4B

B. 128B

С. - 128 В

D.-64B

Answer: B

Watch Video Solution

12. If [2 - 110 - 34]A = [-1 - 8 - 101 - 2 - 592215], then sum of all the elements of matrix *A* is 0 b. 1 c. 2 d. -3

A. 0

B. 1

C. 2

D. - 3

Answer: B

13. For each real x, -1 < x < 1. Let A(x) be the matrix $(1 - x)^{-1} \begin{bmatrix} 1 & -x \\ -x & 1 \end{bmatrix}$

and
$$z = \frac{x + y}{1 + xy}$$
. Then
A. $A(z) = A(x)A(y)$
B. $A(z) = A(x) - A(y)$
C. $A(z) = A(x) + A(y)$
D. $A(z) = A(x)[A(y)]^{-1}$

Answer: A

14. If
$$A = \begin{bmatrix} 0 & -\tan\frac{\alpha}{2} \\ \tan\frac{\alpha}{2} & 0 \end{bmatrix}$$
 and I is the identity matrix of order 2, show that
 $I + A = (I - A) \begin{bmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{bmatrix}$

A. -*I* + *A*

В. І - А

C. -*I* - *A*

D. none of these

Answer: B

Watch Video Solution

15. The number of solutions of the matrix equation $X^2 = [1123]$ is a. more

than2 b. 2 c. 0 d. 1

A. more then 2

B. 2

C. 0

D. 1

Answer: A

16. If A = [abcd] (where $bc \neq 0$) satisfies the equations $x^2 + k = 0$, then

a + d = 0 b. K = -|A| c. k = |A| d. none of these

A. a + d = 0

B. k = -|A|

C. k = |A|

D. none of these

Answer: C

17.
$$A = \begin{bmatrix} 2 & 1 \\ 4 & 1 \end{bmatrix}; B = \begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix}$$
 &

$$c = \begin{bmatrix} 3 & -4 \\ -2 & 3 \end{bmatrix},$$

$$tr(A) + tr\left[\frac{ABC}{2}\right] + tr\left[\frac{A(BC)^2}{4}\right] + tr\left[\frac{A(BC)^2}{8}\right] + \dots \infty$$
 is:

A. 6

B. 9

C. 12

D. none of these

Answer: A

Watch Video Solution

18. If
$$\begin{bmatrix} \cos \frac{2\pi}{7} & -\sin \frac{2\pi}{7} \\ \sin \frac{2\pi}{7} & \cos \frac{2\pi}{7} \end{bmatrix}^k = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
, then the least positive integral value

of *k*, is

A. 3

B. 6

C. 7

D. 14

Answer: C

19. If A and B are square matrices of order *n*, then prove that *AandB* will

commute iff A - $\lambda IandB$ - λI commute for every scalar λ

A.AB = BA

B.AB + BA = O

C.A = -B

D. none of these

Answer: A

20. Matrix A such that $A^2 = 2A - I$, where I is the identity matrix, the for

 $n \ge 2$. A^n is equal to $2^{n-1}A - (n-1)l$ b. $2^{n-1}A - I$ c. nA - (n-1)l d. nA - I

Answer: C

Watch Video Solution

21. Let
$$A = \begin{bmatrix} 0 & \alpha \\ 0 & 0 \end{bmatrix}$$
 and $(A + I)^{50} - 50A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Then the value of $a + b + c + d$ is
A. 2
B. 1
C. 4
D. none of these

Answer: A

22. If Z is an idempotent matrix, then $(I + Z)^n I + 2^n Z$ b. $I + (2^n - 1)Z$ c.

$$I - (2^n - 1)Z$$
 d. none of these

A. $I + 2^{n}Z$

B.
$$I + (2^{n} - 1)Z$$

C. $I - (2^{n} - 1)Z$

D. none of these

Answer: B

Watch Video Solution

23. if *AandB* are squares matrices such that $A^{2006} = OandAB = A + B$, thendet(B) equals 0 b. 1 c. -1 d. none of these

B. 1

C. - 1

D. none of these

Answer: A

Watch Video Solution

24. If matrix A is given by
$$A = \begin{bmatrix} 6 & 11 \\ 2 & 4 \end{bmatrix}$$
 then determinant of $A^{2005} - 6A^{2004}$

is

A. 2²⁰⁰⁶

B. (- 11)2²⁰⁰⁵

C. - 2²⁰⁰⁵.7

D. (-9)2²⁰⁰⁴

Answer: B

25. If A is a non-diagonal involutory matrix, then

A.A - I = O

 $\mathsf{B}.A + I = O$

C. A - I is nonzero singular

D. none of these

Answer: C

Watch Video Solution

26. If A and B are two nonzero square matrices of the same order such

that the product AB = O, then

A. both A and B must be singular

B. exactly one of them must be singular

C. both of them are nonsingular

D. none of these

Answer: A

Watch Video Solution

27. If *AandB* are symmetric matrices of the same order and X = AB + BAandY = AB - BA, *then*(*XY*)^{*T*} is equal to *XY* b. *YX* c. - *YX* d. none of these

A. XY

B. *YX*

C. - *YX*

D. none of these

Answer: C

28. If A, B, A + I, A + B are idempotent matrices, then AB is equal to

A. BA

В.-ВА

C. I

D. *O*

Answer: B

Watch Video Solution

29. If
$$A = \begin{bmatrix} 0 & x \\ y & 0 \end{bmatrix}$$
 and $A^3 + A = O$ then sum of possible values of xy is
A. 0
B. -1

C. 1

Answer: B

30. Which of the following is an orthogonal matrix ?

A.	6/7	2/7	-3/7
	2/7	3/7	6/7
	3/7	-6/7	2/7
B.	6/7	2/7	3/7
	2/7	-3/7	6/7
	3/7	6/7	-2/7
C.	-6/7	-2/7	-3/7
	2/7	3/7	6/7
	-3/7	6/7	2/7
D.	6/7	-2/7	3/7
	2/7	2/7	-3/7
	-6/7	2/7	3/7

Answer: A

31. Let A and B be two square matrices of the same size such that $AB^T + BA^T = O$. If A is a skew-symmetric matrix then BA is

A. a symmetric matrix

B. a skew-symmetric matrix

C. an orthogonal matrix

D. an invertible matrix

Answer: B

Watch Video Solution

32. In which of the following type of matrix inverse does not exist always?

a. idempotent b. orthogonal c. involuntary d. none of these

A. idempotent

B. orthogonal

C. involuntary

D. none of these

Answer: A

Watch Video Solution

33. Let A be an nth-order square matrix and B be its adjoint, then $|AB + KI_n|$ is (where K is a scalar quantity) $(|A| + K)^{n-2}$ b. $(|A| +)K^n$ c. $(|A| + K)^{n-1}$ d. none of these

A. $(|A| + K)^{n-2}$

B. $(|A| + K)^n$

C. $(|A| + K)^{n-1}$

D. none of these

Answer: B

34. If
$$A = \begin{bmatrix} a & b & c \\ x & y & x \\ p & q & r \end{bmatrix}$$
, $B = \begin{bmatrix} q & -b & y \\ -p & a & -x \\ r & -c & z \end{bmatrix}$ and If A is invertible, then which

of the following is not true ?

A. |A| = |B|

B. |A| = -|B|

C. |adj A| = |adj B|

D. A is invertible if and only if B is invertible

Answer: A

35. If
$$A(\alpha, \beta) = \begin{bmatrix} \cos\alpha & \sin\alpha & 0 \\ -\sin\alpha & \cos\alpha & 0 \\ 0 & 0 & e^{\beta} \end{bmatrix}$$
, then $A(\alpha, \beta)^{-1}$ is equal to

A. $A(-\alpha, -\beta)$ B. $A(-\alpha, \beta)$ C. $A(\alpha, -\beta)$ D. $A(\alpha, \beta)$

Answer: A

Watch Video Solution

36. If
$$A = \begin{bmatrix} a+ib & c+id \\ -c+id & a-ib \end{bmatrix}$$
 and $a^2 + b^2 + c^2 + d^2 = 1$, then A^{-1} is equal to
A. $\begin{bmatrix} a-ib & -c-id \\ c-id & a+ib \end{bmatrix}$
B. $\begin{bmatrix} a+ib & -c+id \\ -c+id & a-ib \end{bmatrix}$
C. $\begin{bmatrix} a-ib & -c-id \\ -c-id & a+ib \end{bmatrix}$

D. none of these

Answer: A

37. Id $[1/250x1/25] = [50 - a5]^{-2}$, then the value of x is a/125 b. 2a/125 c.

2a/25 d. none of these

A. *a*/125

B. 2*a*/125

C. 2*a*/25

D. none of these

Answer: B

38. If
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
 and $f(x) = \frac{1+x}{1-x}$, then f(A) is
A. $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$

$$\mathbf{B} \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$$
$$\mathbf{C} \begin{bmatrix} -1 & -1 \\ -1 & -1 \end{bmatrix}$$

D. none of these

Answer: C

Watch Video Solution

39. There are two possible values of A in the solution of the matrix equation

$$\begin{bmatrix} 2A+1 & -5\\ -4 & A \end{bmatrix}^{-1} \begin{bmatrix} A-5 & B\\ 2A-2 & C \end{bmatrix} = \begin{bmatrix} 14 & D\\ E & F \end{bmatrix}$$

where A, B, C, D, E and F are real numbers. The absolute value of the

difference of these two solutions, is

A.
$$\frac{8}{3}$$

B. $\frac{19}{3}$
C. $\frac{1}{3}$

D. $\frac{11}{3}$

Answer: B

40. If A and B are two square matrices such that $B = -A^{-1}BA$, then $(A + B)^2$ is equal to

A. $A^2 + B^2$

B. *O*

 $C.A^2 + 2AB + B^2$

D.A + B

Answer: A

41.
$$A = \begin{bmatrix} 1 & \tan x \\ -\tan x & 1 \end{bmatrix}$$
, show that $A^T A^{-1} = \begin{bmatrix} \cos 2x & -\sin 2x \\ \sin 2x & \cos 2x \end{bmatrix}$.
A. $\begin{bmatrix} -\cos 2x & \sin 2x \\ -\sin 2x & \cos 2x \end{bmatrix}$
B. $\begin{bmatrix} \cos 2x & -\sin 2x \\ \sin 2x & \cos 2x \end{bmatrix}$
C. $\begin{bmatrix} \cos 2x & \cos 2x \\ \cos 2x & \sin 2x \end{bmatrix}$
D. none of these

Answer: B

O Watch Video Solution

42. If A is order 3 square matrix such that |A| = 2, then |adj (adj (adj A))| is

A. 512

B. 256

C. 64

D. none of these

Answer: B

Watch Video Solution

43. If
$$A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & a & 1 \end{bmatrix}$$
 and $A^{-10} = \begin{bmatrix} 1/2 & 1/2 & 1/2 \\ -4 & 3 & c \\ 5/2 & -3/2 & 1/2 \end{bmatrix}$, then the values of a

and c are equal to

A. 1, 1

B. 1, -1

C. 1, 2

D.-1, 1

Answer: B

44. If nth-order square matrix A is a orthogonal, then |adj (adj A)| is

A. always -1 if n is even

B. always 1 if n is odd

C. always 1

D. none of these

Answer: B

Watch Video Solution

45. Let *a* and *b* be two real numbers such that a > 1, b > 1. If $A = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$,

then $\lim n \to \infty A^{-n}$ is

a. unit matrix

b. null matrix

c. 2*l*

d. none of these

A. unit matrix

B. null matrix

C. 2I

D. none of these

Answer: B

Watch Video Solution

46. If
$$A = \begin{bmatrix} a_{ij} \end{bmatrix}_{4 \times 4}$$
, such that $a_{ij} = \begin{cases} 2, & \text{when } i = j \\ 0, & \text{when } i \neq j \end{cases}$ then $\left\{ \frac{\det (\operatorname{adj} (\operatorname{adj} A))}{7} \right\}$ is (where $\{ \cdot \}$ represents fractional part function)

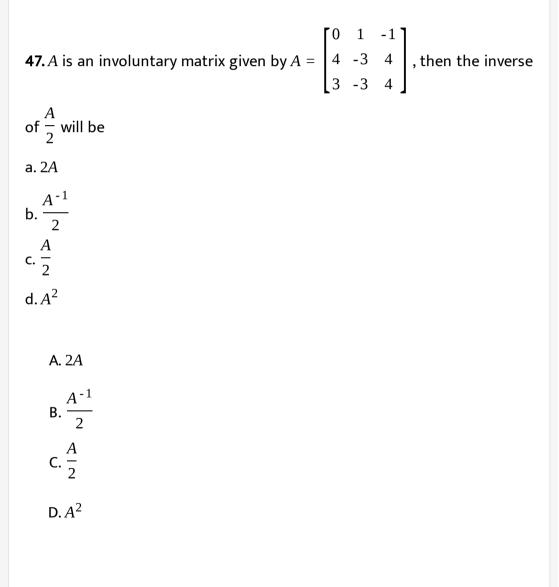
A. 1/7

B.2/7

C. 3/7

D. none of these

Answer: A



Answer: A

48. If A is a nonsingular matrix such that $AA^T = A^T A$ and $B = A^{-1}A^T$, then

matrix B is

A. involuntary

B. orthogonal

C. idempotent

D. none of these

Answer: B

Watch Video Solution

49. If *P* is an orthogonal matrix and $Q = PAP^{T}andx = P^{T}A$ b. *I* c. A^{1000} d.

none of these

В.*І*

 $C.A^{1000}$

D. none of these

Answer: B

Watch Video Solution

50. If AandB are two non-singular matrices of the same order such that

 $B^r = I$, for some positive integer r > 1, then $A^{-1}B^{r-1}A = A^{-1}B^{-1}A = I$ b. 2I

c. *O* d. -I

A. I

B. 2*I*

C. *O*

D. -*I*

Answer: C

51. If adjB = A, |P| = |Q| = 1, then $adj(Q^{-1}BP^{-1})$ is PQ b. QAP c. PAQ d. PA¹Q

A. PQ

B. QAP

C. PAQ

D. $PA^{-1}Q$

Answer: C

Watch Video Solution

52. If A is non-singular and (A - 2I)(A - 4I) = O, then $\frac{1}{6}A + \frac{4}{3}A^{-1}$ is equal to

OI b. 2*I* c. 6*I* d. *I*

A. 0

В.*І*

C. 2*I*

D. 6I

Answer: B

Watch Video Solution

53. Let $f(x) = \frac{1+x}{1-x}$. If A is matrix for which $A^3 = O$, then f(A) is $I + A + A^2$ b. $I + 2A + 2A^2$ c. $I - A - A^2$ d. none of these

A. $I + A + A^2$

B. $I + 2A + 2A^2$

C. $I - A - A^2$

D. none of these

Answer: B

54. if
$$\begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix} A \begin{bmatrix} -3 & 2 \\ 5 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
, then $A = ?$
A. $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$
B. $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
C. $\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$
D. $-\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$

Answer: A

Watch Video Solution

55. If $A^2 - A + I = 0$, then the inverse of A is: (A) A + I (B) A (C) A - I (D) I - A

A. A⁻²

B.A + I

C. I - A

D. A - I

Answer: C

Watch Video Solution

56. If
$$F(x) = \begin{bmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 and $G(y) = \begin{bmatrix} \cos y & 0 & \sin y \\ 0 & 1 & 0 \\ -\sin y & 0 & \cos y \end{bmatrix}$, then

 $[F(x)G(y)]^{-1}$ is equal to

A. F(-x)G(-y)B. G(-y)F(-x)C. $F(x^{-1})G(y^{-1})$ D. $G(y^{-1})F(x^{-1})$

Answer: B

57. If *AandB* are square matrices of the same order and *A* is non-singular, then for a positive integer *n*, $(A^{-1}BA)^n$ is equal to $A^{-n}B^nA^n$ b. $A^nB^nA^{-n}$ c. $A^{-1}B^nA$ d. $n(A^{-1}B^A)$

A. $A^{-n}B^nA^n$

 $B.A^nB^nA^{-n}$

 $C. A^{-1}B^n A$

 $\mathsf{D.}\,n\Big(\!A^{-1}\!B\!A\Big)$

Answer: C

Watch Video Solution

58. If $k \in R_o$ then det $\{adj(kI_n)\}$ is equal to K^{n-1} b. $K^{n(n-1)}$ c. K^n d. k

A. *k*^{*n*-1}

B. $k^{n(n-1)}$

C. *k*^{*n*}

D. k

Answer: B

Watch Video Solution

59. Given that matrix
$$A\begin{bmatrix} x & 3 & 2 \\ 1 & y & 4 \\ 2 & 2 & z \end{bmatrix}$$
. If $xyz = 60$ and $8x + 4y + 3z = 20$, then

A(adj A) is equal to

A.
$$\begin{bmatrix}
 64 & 0 & 0 \\
 0 & 64 & 0 \\
 0 & 0 & 64
 \end{bmatrix}$$
B. $\begin{bmatrix}
 88 & 0 & 0 \\
 0 & 88 & 0 \\
 0 & 0 & 88
 \end{bmatrix}$ C. $\begin{bmatrix}
 68 & 0 & 0 \\
 0 & 68 & 0 \\
 0 & 0 & 68
 \end{bmatrix}$

$$D. \begin{bmatrix} 34 & 0 & 0 \\ 0 & 34 & 0 \\ 0 & 0 & 34 \end{bmatrix}$$

Answer: C

Watch Video Solution

60. Let
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 0 & 5 \\ 0 & 2 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 0 \\ -3 \\ 1 \end{bmatrix}$. Which of the following is true ?

A. AX = B has a unique solution

B. AX = B has exactly three solutions

C. AX = B has infinitelt many solutions

D.AX = B is inconsistent

Answer: A

61. If A is a square matrix of order less than 4 such that $|A - A^T| \neq 0$ and B = adj. (A), then adj. $(B^2 A^{-1} B^{-1} A)$ is

A.*A*

B. *B*

C. |A|A

D. |B|B

Answer: A

Watch Video Solution

62. Let A be a square matrix of order 3 such that det. (A) = $\frac{1}{3}$, then the value of det. (adj. A^{-1}) is

A. 1/9

B. 1/3

C. 3

Answer: D

Watch Video Solution

63. If A and B are two non-singular matrices of order 3 such that $AA^T = 2I$ and $A^{-1} = A^T - A$. Adj. $(2B^{-1})$, then det. (B) is equal to

A. 4

B. $4\sqrt{2}$

C. 16

D. $16\sqrt{2}$

Answer: D

64. If A is a square matric of order 5 and $2A^{-1} = A^T$, then the remainder when |adj. (adj. (adj. A))| is divided by 7 is

A. 2 B. 3 C. 4

D. 5

Answer: A

Watch Video Solution

65. Let
$$P = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & -1 \\ 3 & 1 & 1 \end{bmatrix}$$
. If the product PQ has inverse $R = \begin{bmatrix} -1 & 0 & 1 \\ 1 & 1 & 3 \\ 2 & 0 & 2 \end{bmatrix}$

then Q^{-1} equals

$$A. \begin{bmatrix} 3 & 2 & 9 \\ -1 & 1 & 1 \\ 0 & 1 & 8 \end{bmatrix}$$

 $B.\begin{bmatrix} 5 & 2 & 9 \\ -1 & 1 & 1 \\ 0 & 1 & 7 \end{bmatrix}$ $C.\begin{bmatrix} 2 & -1 & 0 \\ 10 & 6 & 3 \\ 8 & 6 & 4 \end{bmatrix}$

D. none of these

Answer: C

D Watch Video Solution

Exercise Multiple

1. If A is unimidular, then which of the following is unimodular ?

A. -*A*

 $B.A^{-1}$

C. adj A

D. ωA , where ω is cube root of unity

Answer: B::C

2. Let $A = a_{ij}$ be a matrix of order 3, where $a_{ij} = \{(x, , \text{ if } i = j, x \in R,), (1, , \text{ if } |i - j| = 1, , , \text{ then which of the following}), (0, , on hold (s) good :$

A. for x = 2, A is a diagonal matrix

B. A is a symmetric matrix

C. for x = 2, det A has the value equal to 6

D. Let $f(x) = \det A$, then the function f(x) has both the maxima and

minima

Answer: B::D

3. If
$$A = \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} a & 1 \\ b & -1 \end{bmatrix}$ and $(A + B)^2 = A^2 + B^2 + 2AB$, then
A. $a = -1$
B. $a = 1$
C. $b = 2$
D. $b = -2$

Answer: A::D

Watch Video Solution

4. If AB=A and BA=Bm then which of the following is/are true ?

A. A is idempotent

B. B is idempotent

 $C.A^T$ is idempotent

D. none of these

Answer: A::B::C

5. If
$$A(\theta) = \begin{bmatrix} \sin\theta & i\cos\theta \\ i\cos\theta & \sin\theta \end{bmatrix}$$
, then which of the following is not true ?

A. $A(\theta)^{-t} = A(\pi - \theta)$

B. $A(\theta) + A(\pi + \theta)$ is a null matrix

C. $A(\theta)$ is invertible for all $\theta \in R$

 $D. A(\theta)^{-1} = A(-\theta)$

Answer: A::B::C

6. Let A and B be two nonsingular square matrices, A^T and B^T are the tranpose matrices of A and B, respectively, then which of the following are

coorect ?

A. $B^{T}AB$ is symmetric matrix if A is symmetric

B. $B^{T}AB$ is symmetric matrix if B is symmetric

C. $B^{T}AB$ is skew-symmetric matrix for every matrix A

D. $B^{T}AB$ is skew-symmetric matrix if A is skew-symmetric

Answer: A::D

Watch Video Solution

7. If B is an idempotent matrix, and A = I - B, then

A.
$$A^2 = A$$

 $\mathsf{B}.A^2 = I$

C.AB = O

 $\mathsf{D}.\,B\!A=O$

Answer: A::C::D

$$\mathbf{8. If } A_1 = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}, A_2 = \begin{bmatrix} 0 & 0 & 0 & i \\ 0 & i & 0 & 0 \\ -i & 0 & 0 & 0 \end{bmatrix}, then A_i A_k + A_k A_i \text{ is equal to}$$

$$a. 2I \text{ if } i = k$$

$$b. O \text{ if } i \neq k$$

$$c. 2l \text{ if } i \neq k$$

$$d. O \text{ always}$$

$$A. 2I \text{ if } i = k$$

$$B. O \text{ if } i \neq k$$

$$C. 2I \text{ if } i \neq k$$

$$D. O \text{ always}$$

Answer: A::B

9. Suppose a_1, a_2, \dots Are real numbers, with $a_1 \neq 0$. If a_1, a_2, a_3, \dots Are in A.P., then

A.
$$A = \begin{bmatrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \\ a_5 & a_6 & a_7 \end{bmatrix}$$
 is singular (where $i = \sqrt{-1}$)

B. the system of equations

$$a_1x + a_2y + a_3z = 0, a_4x + a_5y + a_6z = 0, a_7x + a_8y + a_9z = 0$$
 has

infinite number of solutions

C.
$$B\begin{bmatrix} a_1 & ia_2\\ ia_2 & a_1 \end{bmatrix}$$
 is nonsingular

D. none of these

Answer: A::B::C

View Text Solution

10. If

real

$$A = \begin{bmatrix} 1 & \cos(\alpha - \beta) & \cos(\alpha - \gamma) \\ \cos(\beta - \alpha) & 1 & \cos(\beta - \gamma) \\ \cos(\gamma - \alpha) & \cos(\gamma - \beta) & 1 \end{bmatrix}$$

then which of following is/are true ?

A. A is singular

B. A is symmetric

C. A is orthogonal

D. A is not invertible

Answer: A::B::D

Watch Video Solution

11. If D_1 and D_2 are two 3×3 diagonal matrices, then which of the following is/are true ?

A. D_1D_2 is a diagonal matrix

B. $D_1 D_2 = D_2 D_1$

 $C.D_1^2 + D_2^2$ is a diagonal matrix

D. none of these

Answer:

Watch Video Solution

12. Let A be the 2 × 2 matrix given by $A = [a_{ij}]$ where $a_{ij} \in \{0, 1, 2, 3, 4\}$ such theta $a_{11} + a_{12} + a_{21} + a_{22} = 4$ then which of the following statement(s) is/are true ?

A. Number of matrices A such that the trace of A equal to 4, is 5

B. Number of matrices A, such that A is invertible is 18

C. Absolute difference between maximum value and minimum value of det (A) is 8

D. Number of matrices A such that A is either symmetric (or) skew

symmetric and det (A) is divisible by 2, is 5.

Answer:

Watch Video Solution

13. If
$$S = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$
 and $A = \begin{bmatrix} b+c & c-a & b-a \\ c-b & c+b & a-b \\ b-c & a-c & a+b \end{bmatrix}$

 $(a, b, c \neq 0)$, then SAS⁻¹ is

A. symmetric matrix

B. diagonal matrix

C. invertible matrix

D. singular matrix

Answer:

14. P is a non-singular matrix and A, B are two matrices such that $B = P^{-1}AP$. The true statements among the following are

A. A is invertible iff B is invertib,e

 $\mathsf{B}.\,B^n = P^{-1}A^nP\,\forall\,n \in N$

C. $\forall \lambda \in R, B - \lambda I = P^{-1}(A - \lambda I)P$

D. A and B are both singular matrices

Answer:

15. Let
$$A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$$
. Then
A. $A^2 - 4A - 5I_3 = O$
B. $A^{-1} = \frac{1}{5}(A - 4I_3)$

 $C. A^3$ is not invertible

 $D.A^2$ is invertible

Answer:

O Watch Video Solution

$$\mathbf{16. If } A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}, \text{ then}$$
$$A. A^{3} - A^{2} = A - I$$
$$B. \det (A^{100} - I) = 0$$
$$C. A^{200} = \begin{bmatrix} 1 & 0 & 0 \\ 100 & 1 & 0 \\ 100 & 0 & 1 \end{bmatrix}$$
$$D. A^{100} = \begin{bmatrix} 1 & 1 & 0 \\ 50 & 1 & 0 \\ 50 & 0 & 1 \end{bmatrix}$$

Answer:

17. If Ais symmetric and B is skew-symmetric matrix, then which of the following is/are CORRECT ?

A. *ABA^T* is skew-symmetric matrix

B. $AB^T + BA^T$ is symmetric matrix

C. (A + B)(A - B) is skew-symmetric

D. (A + I)(B - I) is symmetric

Answer:

Watch Video Solution

18. If $A = \left(\left(a_{ij} \right) \right)_{n \times n}$ and f is a function, we define $f(A) = \left(\left(f\left(a_{ij} \right) \right) \right)_{n \times n'}$ Let $A = (\pi/2 - \theta\theta - \theta\pi/2 - \theta)$. Then sinA is invertible b. sin $A = \cos A$ c. sinA is orthogonal d. sin $(2A) = 2A\sin A\cos A$ A. sinA is invertible

B. sinA = cosA

C. sinA is orthogonal

 $D. \sin(2A) = 2\sin A \cos A$

Answer:

Watch Video Solution

19. If a is matrix such that $A^2 + A + 2I = O$, then which of the following

is/are true ?

A. A is nonsingular

B. A is symmetric

C. A cannot be skew-symmetric

$$\mathsf{D}.A^{-1} = -\frac{1}{2}(A+I)$$

Answer:

20. If A =
$$\begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$$
, then adj (adj A) is

A. adj(adjA) = A

B. |adj (adj A)|=1

C. |adj A|=1

D. none of these

Answer: B

Watch Video Solution

21. If
$$\begin{bmatrix} 1 & -\tan\theta \\ \tan\theta & 1 \end{bmatrix} \begin{bmatrix} 1 & \tan\theta \\ -\tan\theta & 1 \end{bmatrix}^{-1} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$$
, then

A. $a = \cos 2\theta$

B. *a* = 1

 $\mathsf{C.} b = \sin 2\theta$

D.b = -1

Answer:

22. If
$$A^{-1} = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 3 & 1 \\ 0 & 0 & -1/3 \end{bmatrix}$$
, then

A.
$$|A| = -1$$

B. adj
$$A = \begin{bmatrix} -1 & 1 & -2 \\ 0 & -3 & -1 \\ 0 & 0 & 1/3 \end{bmatrix}$$

C. $A = \begin{bmatrix} 1 & 1/3 & 7 \\ 0 & 1/3 & 1 \\ 0 & 0 & -3 \end{bmatrix}$

$$\mathbf{D}.A = \begin{bmatrix} 1 & -1/3 & -7 \\ 0 & -3 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Answer:

Watch Video Solution

23. If *A* is an invertible matrix, tehn
$$\left(adjA\right)^{-1}$$
 is equal to $adjA^{-1}$ b. $\frac{A}{detA}$ c.

A d. (detA)A

A. adj. $\left(A^{-1}\right)$ B. $\frac{A}{\det A}$ C. A

D. (det. A) A

Answer:

24. If A and B are two invertible matrices of the same order, then adj (AB)

is equal to

A. adj (B) adj (A)

B. $|B||A|B^{-1}A^{-1}$

C. $|B||A|A^{-1}B^{-1}$

D. |A||B|(AB)⁻¹

Answer:

Watch Video Solution

 $\ensuremath{\textbf{25.}}$ If A, B, and C are three square matrices of the same order, then

 $AB = AC \Rightarrow B = C$. Then

A. $|A| \neq 0$

B. A is invertible

C. A may be orthogonal

D. A is symmetric

Answer:

26. If *A* and *B* are two non singular matrices and both are symmetric and commute each other, then

A. *A*⁻¹*B*

B. AB⁻¹

 $C.A^{-1}B^{-1}$

D. none of these

Answer:

27. If A and B are square matrices of order 3 such that $A^3 = 8B^3 = 8I$ and det. $(AB - A - 2B + 2I) \neq 0$, then identify the correct statement(s), where I is idensity matrix of order 3.

A.
$$A^2 + 2A + 4I = O$$

B. $A^2 + 2A + 4I \neq O$
C. $B^2 + B + I = O$
D. $B^2 + B + I \neq O$

Answer:

Watch Video Solution

28. Let A, B be two matrices different from identify matrix such that AB = BA and $A^n - B^n$ is invertible for some positive integer n. If $A^n - B^n = A^{n+1} - B^{n+1} = A^{n+1} - B^{n+2}$, then

A. I - A is non-singular

B. I - B is non-singular

- C. I A is singular
- D. I B is singular

Answer:

Watch Video Solution

29. Let A and B be square matrices of the same order such that $A^2 = I$ and

 $B^2 = I$, then which of the following is CORRECT ?

A. IF A and B are inverse to each other, then A = B.

B. If AB = BA, then there exists matrix $C = \frac{AB + BA}{2}$ such that $C^2 = C$.

C. If AB = BA, then there exists matrix D = AB - BA such that $D^n = O$

for some $n \in N$.

D. If AB = BA then $(A + B)^5 = 16(A + B)$.

Answer:

30. Let B is an invertible square matrix and B is the adjoint of matrix A such that $AB = B^T$. Then

A. A is an identity matrix

B. B is symmetric matrix

C. A is a skew-symmetric matrix

D. B is skew symmetic matrix

Answer: A

Watch Video Solution

31. First row of a matrix A is [1, 3, 2]. If

adj
$$A = \begin{bmatrix} -2 & 4 & \alpha \\ -1 & 2 & 1 \\ 3\alpha & -5 & -2 \end{bmatrix}$$
, then a det (A) is

A. - 2	
B 1	
C. 0	

D. 1

Answer:

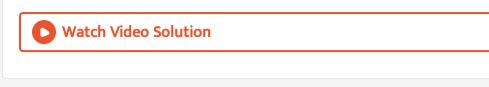
Watch Video Solution

32. Let A be a square matrix of order 3 satisfies the relation $A^3 - 6A^2 + 7A - 8I = O$ and B = A - 2I. Also, det. A = 8, then

A. det.
$$\left(\operatorname{adj.} \left(I - 2A^{-1}\right) = \frac{25}{16}\right)$$

B. adj. $\left(\left(\frac{B}{2}\right)^{-1}\right) = \frac{B}{10}$
C. det. $\left(\operatorname{adj.} \left(I - 2A^{-1}\right)\right) = \frac{75}{32}$
D. adj. $\left(\left(\frac{B}{2}\right)^{-1}\right) = \frac{2B}{5}$

Answer:



33. Which of the following matericeshave eigen values as 1 and -1?

$$A. \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
$$B. \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$
$$C. \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
$$D. \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Answer:

Watch Video Solution

Exercise Comprehension

1. Let a be a matrix of order 2×2 such that $A^2 = O$.

 A^2 - (a + d)A + (ad - bc)I is equal to

A. I

B. *O*

C. -*I*

D. none of these

Answer: B

Watch Video Solution

2. Let a be a matrix of order 2×2 such that $A^2 = O$.

tr (A) is equal to

A. 1

B. 0

C. - 1

D. none of these

Answer: B

3. Let a be a matrix of order 2×2 such that $A^2 = O$.

 $(I + A)^{100} =$

A. 100 A

B. 100(*I* + *A*)

C. 100*I* + *A*

D. *I* + 100*A*

Answer: D

4. If A and B are two square matrices of order 3×3 which satify AB = Aand BA = B, then

 $(A + I)^5$ is equal to (where I is idensity matric)

A. If matrix A is singular, then matrix B is nonsingular.

B. If matrix A is nonsingular, then materix B is singular.

C. If matrix A is singular, then matrix B is also singular.

D. Cannot say anything.

Answer: C

Watch Video Solution

5. if *A* and *B* are two matrices of order 3×3 so that AB = A and BA = Bthen $(A + B)^7 =$

A. 7(A + B)

B. 7. *I*_{3×3}

C. 64(A + B)

D. 128I

Answer: C

Watch Video Solution

6. If A and B are two square matrices of order 3×3 which satify AB = A

and BA = B, then

 $(A + I)^5$ is equal to (where I is idensity matric)

A. I + 60I

B. I + 16A

C. I + 31A

D. none of these

Answer: C

7. Consider an arbitarary 3×3 non-singular matrix $A[a_{ij}]$. A maxtrix $B = [b_{ij}]$ is formed such that b_{ij} is the sum of all the elements except a_{ij} in the ith row of A. Answer the following questions :

If there exists a matrix X with constant elemts such that AX=B`, then X is

A. skew-symmetric

B. null matrix

C. diagonal matrix

D. none of these

Answer: D

Watch Video Solution

8. Let $A = \begin{bmatrix} a_{ij} \end{bmatrix}$ be 3 × 3 matrix and $B = \begin{bmatrix} b_{ij} \end{bmatrix}$ be 3 × 3 matrix such that b_{ij} is the sum of the elements of i^{th} row of A except a_{ij} . If det, (A) = 19, then the value of det. (B) is _____.

A. |A|

B. |*A*|/2

C. 2|*A*|

D. none of these

Answer: C

Watch Video Solution

9. Let
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
 satisfies $A^n = A^{n-1} + A^2 - I$ for $n \ge 3$. And trace of a

square matrix X is equal to the sum of elements in its proncipal diagonal. Further consider a matrix $U_{3\times3}$ with its column as U_1 , U_2 , U_3 such that

$$A^{50} \mathbf{U}_{1} = \begin{bmatrix} 1\\25\\25 \end{bmatrix}, A^{50} \mathbf{U}_{2} = \begin{bmatrix} 0\\1\\0 \end{bmatrix}, A^{50} \mathbf{U}_{3} = \begin{bmatrix} 0\\0\\1 \end{bmatrix}$$

Then answer the following question :

The values of $|A^{50}|$ equals

A. 0

B. 1

C. - 1

D. 25

Answer: B

Watch Video Solution

10. Let
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
 satisfies $A^n = A^{n-1} + A^2 - I$ for $n \ge 3$. And trace of a

square matrix X is equal to the sum of elements in its proncipal diagonal. Further consider a matrix $U_{3\times3}$ with its column as U_1 , U_2 , U_3 such that

$$A^{50} \mathsf{U}_{1} = \begin{bmatrix} 1\\ 25\\ 25 \end{bmatrix}, A^{50} \mathsf{U}_{2} = \begin{bmatrix} 0\\ 1\\ 0 \end{bmatrix}, A^{50} \mathsf{U}_{3} = \begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}$$

Then answer the following question :

Trace of A^{50} equals

A. 0	
B. 1	
C. 2	
D. 3	

Answer: D

Watch Video Solution

11. Let $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ satisfies $A^n = A^{n-1} + A^2 - I$ for $n \ge 3$. And trace of a

square matrix X is equal to the sum of elements in its proncipal diagonal. Further consider a matrix $U_3 \times 3$ with its column as U_1 , U_2 , U_3 such that

$$A^{50} \cup_{1} = \begin{bmatrix} 1 \\ 25 \\ 25 \end{bmatrix}, A^{50} \cup_{2} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, A^{50} \cup_{3} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Then answer the following question :

Trace of A^{50} equals

A. 0

B. 1

C. 2

D. - 1

Answer: B

12. Let for
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix}$$
, there be three row matrices R_1, R_2 and R_3 , satisfying the relations, $R_1A = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}, R_2A = \begin{bmatrix} 2 & 3 & 0 \end{bmatrix}$ and

 $R_{3}A = \begin{bmatrix} 2 & 3 & 1 \end{bmatrix}$. If B is square matrix of order 3 with rows R_{1}, R_{2} and R_{3} in order, then

The value of det. $\left(2A^{100}B^3 - A^{99}B^4\right)$ is

A. - 2

B. - 1

C. 2

D. 3

Answer: D

Watch Video Solution

13. Let for $A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix}$, there be three row matrices R_1, R_2 and R_3 , satifying the relations, $R_1A = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}, R_2A = \begin{bmatrix} 2 & 3 & 0 \end{bmatrix}$ and $R_3A = \begin{bmatrix} 2 & 3 & 1 \end{bmatrix}$. If B is square matrix of order 3 with rows R_1, R_2 and R_3

in order, then

The value of det. $\left(2A^{100}B^3 - A^{99}B^4\right)$ is

A. - 27

B. - 9

C. - 3

D. 9

Answer: A

Watch Video Solution

14. A and B are square matrices such that det. (A) = 1, $BB^T = I$, det (B) > 0

, and A(adj. A + adj. B) = B.

The value of det (A + B) is

A. - 2

B. - 1

C. 0

Answer: D

15. A and B are square matrices such that det. (A) = 1, $BB^T = I$, det (B) > 0 , and A(adj. A + adj. B)=B. $AB^{-1} =$ A. $B^{-1}A$ B. AB^{-1} C. A^TB^{-1}

D. $B^T A^{-1}$

Answer: A

16. Let A be an $m \times n$ matrix. If there exists a matrix L of type $n \times m$ such that $LA = I_n$, then L is called left inverse of A. Similarly, if there exists a matrix R of type $n \times m$ such that $AR = I_m$, then R is called right inverse of A.

For example, to find right inverse of matrix

$$A = \begin{bmatrix} 1 & -1 \\ 1 & 1 \\ 2 & 3 \end{bmatrix}, \text{ we take } R = \begin{bmatrix} x & y & x \\ u & v & w \end{bmatrix}$$

and solve $AR = I_3$, i.e.,

$$\begin{bmatrix} 1 & -1 \\ 1 & 1 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} x & y & z \\ u & v & w \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

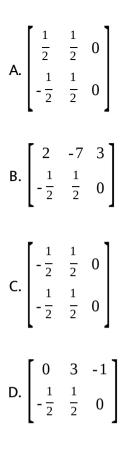
$$\Rightarrow \quad x - u = 1 \qquad y - v = 0 \qquad z - w = 0$$

$$x + u = 0 \qquad y + v = 1 \qquad z + w = 0$$

$$2x + 3u = 0 \qquad 2y + 3v = 0 \qquad 2z + 3w = 1$$

As this system of equations is inconsistent, we say there is no right inverse for matrix A.

Which of the following matrices is NOT left inverse of matrix
$$\begin{bmatrix} 1 & -1 \\ 1 & 1 \\ 2 & 3 \end{bmatrix}$$
?



Answer: C

17. Let A be an $m \times n$ matrix. If there exists a matrix L of type $n \times m$ such that $LA = I_n$, then L is called left inverse of A. Similarly, if there exists a matrix R of type $n \times m$ such that $AR = I_m$, then R is called right inverse of

For example, to find right inverse of matrix

$$A = \begin{bmatrix} 1 & -1 \\ 1 & 1 \\ 2 & 3 \end{bmatrix}, \text{ we take } R = \begin{bmatrix} x & y & x \\ u & v & w \end{bmatrix}$$

and solve $AR = I_3$, i.e.,

$$\begin{bmatrix} 1 & -1 \\ 1 & 1 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} x & y & z \\ u & v & w \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\Rightarrow \quad x - u = 1 \qquad y - v = 0 \qquad z - w = 0$$

$$x + u = 0 \qquad y + v = 1 \qquad z + w = 0$$

$$2x + 3u = 0 \qquad 2y + 3v = 0 \qquad 2z + 3w = 1$$

As this system of equations is inconsistent, we say there is no right inverse for matrix A.

The number of right inverses for the matrix
$$\begin{bmatrix} 1 & -1 & 2 \\ 2 & -1 & 1 \end{bmatrix}$$
 is

A. 0

B. 1

C. 2

D. infinite

Answer: D

18. Let A be an $m \times n$ matrix. If there exists a matrix L of type $n \times m$ such that $LA = I_n$, then L is called left inverse of A. Similarly, if there exists a matrix R of type $n \times m$ such that $AR = I_m$, then R is called right inverse of A.

For example, to find right inverse of matrix

$$A = \begin{bmatrix} 1 & -1 \\ 1 & 1 \\ 2 & 3 \end{bmatrix}, \text{ we take } R = \begin{bmatrix} x & y & x \\ u & v & w \end{bmatrix}$$

and solve $AR = I_3$, i.e.,

$$\begin{bmatrix} 1 & -1 \\ 1 & 1 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} x & y & z \\ u & v & w \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\Rightarrow \quad x - u = 1 \qquad y - v = 0 \qquad z - w = 0$$

$$x + u = 0 \qquad y + v = 1 \qquad z + w = 0$$

$$2x + 3u = 0 \qquad 2y + 3v = 0 \qquad 2z + 3w = 1$$

As this system of equations is inconsistent, we say there is no right

inverse for matrix A.

For which of the following matrices, the number of left inverses is greater than the number of right inverses ?

 $A. \begin{bmatrix} 1 & 2 & 4 \\ -3 & 2 & 1 \end{bmatrix}$ $B. \begin{bmatrix} 3 & 2 & 1 \\ 3 & 2 & 1 \end{bmatrix}$ $C. \begin{bmatrix} 1 & 4 \\ 2 & -3 \\ 2 & -3 \end{bmatrix}$ $D. \begin{bmatrix} 3 & 3 \\ 1 & 1 \\ 4 & 4 \end{bmatrix}$

Answer: C

Watch Video Solution

Exercise Matrix

1. Match the following lists :

List I	List I List II	
a. $(I - A)^n$ is if A is idempotent	p. $2^{n-1}(I-A)$	
b. $(I - A)^n$ is if A is involuntary	$\mathbf{q.} I - nA$	
c. $(I - A)^n$ is if A is nilpotent of index 2	r. A	
d. If A is orthogonal, then $(A^T)^{-1}$	s. <i>I</i> – <i>A</i>	

Watch Video Solution

2. Match the following lists :

List I	List II
a. If A is an idempotent matrix and I is an identity matrix of the same order, then the value of n, such that $(A + I)^n = I + 127$ is	p. 9
b. If $(I - A)^{-1} = I + A + A^2 + \dots + A^7$, then $A^n = O$, where <i>n</i> is	q. 10
c. If <i>A</i> is matrix such that $a_{ij} = (i + j)(i - j)$, then <i>A</i> is singular if order of matrix is	r. 7
d. If a nonsingular matrix A is symmetric, show that A^{-1} is also symmetric, then order of A can be	s. 8

3. Match the following lists :

List I (A, B, C are matrices)	List II
a. If $ A = 2$, then $ 2A^{-1} =$ (where A is of order 3)	p. 1
b. If $ A = 1/8$, then $ adj(adj(2A)) = (where A is of order 3)$	q. 4
c. If $(A + B)^2 = A^2 + B^2$, and $ A = 2$, then B = (where A and B are of odd order)	r. 24
d. $ A_{2\times 2} = 2$, $ B_{3\times 3} = 3$ and $ C_{4\times 4} = 4$, then $ ABC $ is equal to	s. 0
	t. does not exist

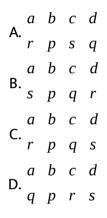
Watch Video Solution

4. Consider a matrix $A = [a_{ij}]$ of order 3×3 such that $a_{ij} = (k)^{i+j}$ where $k \in I$.

Match List I with List II and select the correct answer using the codes

given below the lists.

List I	List II
a. A is singular if	p. $k \in \{0\}$
b. A is null matrix if	q. $k \in \phi$
c. A is skew-symmetric which is not null matrix if	r. <i>k</i> ∈ <i>I</i>
d. $A^2 = 3A$ if	s. $k \in \{-1, 0, 1\}$



Answer: C

5. Match the following lists :

	List I	List II
a.	If $M_r = \begin{bmatrix} r-1 & \frac{1}{r} \\ 1 & \frac{1}{(r-1)^2} \end{bmatrix}$ and $ M_r $ is the corresponding determinant, then $\lim_{n \to \infty} (M_2 + M_3 + \dots M_n) =$	p. 0
b.	If $(A + B)^2 = A^2 + B^2$ and $ A = 2$ then $ B =$ (where A and B are matrices of odd order)	q. 1
c.	If $A = \begin{bmatrix} 3 & 1 \\ -1 & 1 \end{bmatrix}$ and a matrix <i>C</i> is defined as $C = (BAB^{-1}) (B^{-1}A^{T}B)$, where $ C = K^{2} (K \in N)$ then $K =$	r. 2
d.	If $A = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$ and $A^4 = -\lambda I$ then $\lambda - 2$ is equal to	s. 4

Answer: C

1. $A = [0130]andA^8 + A^6 + A^2 + IV = [011](where I is the 2 \times 2 identity)$

matrix), then the product of all elements of matrix V is _____.

O Watch Video Solution

2. If [abc1 - a] is an idempotent matrix and $f(x) = x - a^2 = bc = 1/4$, then

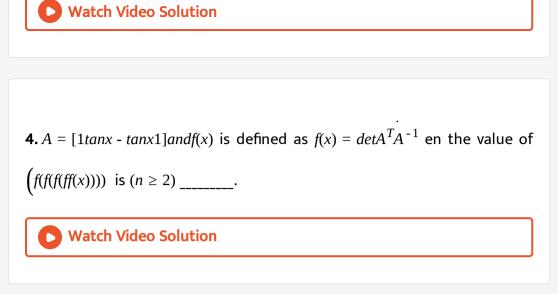
the value of 1/f(a) is _____.

Watch Video Solution

3. Let x be the solution set of equation $A^{x} = I$, where $A = \begin{bmatrix} 0 & 1 & -1 \\ 4 & -3 & 4 \\ 3 & -3 & 4 \end{bmatrix}$ and

I is the corresponding unit matrix and $x \subseteq N$, then the minimum value of

$$\sum \left(\cos^x \theta + \sin^x \theta\right), \theta \in R$$



5. The equation
$$\begin{bmatrix} 1 & 2 & 2 \\ 1 & 3 & 4 \\ 3 & 4 & k \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
 has a solution for (x, y, z) besides (0, 0,

0). Then the value of k is ______ .

Watch Video Solution

6. If A is an idempotent matrix satisfying, $(I - 0.4A)^{-1} = I - \alpha A$, where I is the unit matrix of the name order as that of A, then the value of $|9\alpha|$ is equal to _____.

$$A = \left[3x^{2}16x\right], B = [abc], and C = \left[(x+2)^{2}5x^{2}2x5x^{2}2x(x+2)^{2}2x(x+2)^{2}5x^{2}\right]$$

be three given matrices, where $a, b, candx \in R$ Given that $f(x) = ax^2 + bx + c$, then the value of f(I) is _____.

Watch Video Solution

8. Let A be the set of all 3×3 skew-symmetri matrices whose entries are either -1, 0, or 1. If there are exactly three 0s three 1s, and there (-1)'s, then the number of such matrices is _____.

Watch Video Solution

9. Let $A = [a_{ij}]_{3\times 3}$ be a matrix such that $AA^T = 4I$ and $a_{ij} + 2c_{ij} = 0$, where C_{ij} is the cofactor of a_{ij} and I is the unit matrix of order 3.

Let

$$\begin{vmatrix} a_{11} + 4 & a_{12} & a_{13} \\ a_{21} & a_{22} + 4 & a_{23} \\ a_{31} & a_{32} & a_{33} + 4 \end{vmatrix} + 5\lambda \begin{vmatrix} a_{11} + 1 & a_{12} & a_{13} \\ a_{21} & a_{22} + 1 & a_{23} \\ a_{31} & a_{32} & a_{33} + 1 \end{vmatrix} = 0$$

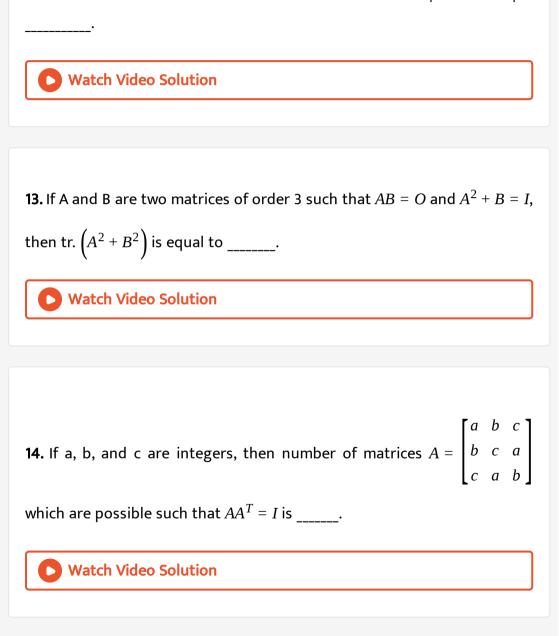
then the value of λ is

10. Let *S* be the set which contains all possible vaues fo *I*, *m*, *n*, *p*, *q*, *r* for which $A = [I^2 - 3p00m^2 - 8qr0n^2 - 15]$ be non-singular idempotent matrix. Then the sum of all the elements of the set *S* is _____.

Watch Video Solution

11. If A is a diagonal matrix of order 3×3 is commutative with every square matrix of order 3×3 under multiplication and trace (A)=12, then

12. If A is a square matrix of order 3 such that |A| = 2, then $\left| \left(adjA^{-1} \right)^{-1} \right|$ is



15. Let $A = \begin{bmatrix} a_{ij} \end{bmatrix}$ be 3 × 3 matrix and $B = \begin{bmatrix} b_{ij} \end{bmatrix}$ be 3 × 3 matrix such that b_{ij} is the sum of the elements of i^{th} row of A except a_{ij} . If det, (A) = 19, then the value of det. (B) is _____.

Watch Video Solution

16. A square matrix M of order 3 satisfies $M^2 = I - M$, where I is an identity

matrix of order 3. If $M^n = 5I - 8M$, then *n* is equal to _____.

Watch Video Solution

17. Let
$$A = [a_{ij}]_{3\times 3}$$
, $B = [b_{ij}]_{3\times 3}$ and $C = [c_{ij}]_{3\times 3}$ be any three matrices,
where $b_{ij} = 3^{i-j}a_{ij}$ and $c_{ij} = 4^{i-j}b_{ij}$. If det. $A = 2$, then det. (*BC*) is equal to

18. If A is a square matrix of order 2×2 such that |A| = 27, then sum of

the infinite series
$$|A| + \left|\frac{1}{2}A\right| + \left|\frac{1}{4}A\right| + \left|\frac{1}{8}A\right| + \dots$$
 is equal to _____

View Text Solution

19. If A is a aquare matrix of order 2 and det. A = 10, then $((tr. A)^2 - tr. (A^2))$ is equal to _____.

Watch Video Solution

20. Let A and B are two square matrices of order 3 such that det. (A) = 3

and det. (B) = 2, then the value of det. $\left(\left(\text{adj. } \left(B^{-1}A^{-1} \right) \right)^{-1} \right)$ is equal to

Watch Video Solution

21. Let P, Q and R be invertible matrices of order 3 such $A = PQ^{-1}$, $B = QR^{-1}$ and $C = RP^{-1}$. Then the value of det. (*ABC* + *BCA* + *CAB*) is equal to _____.

Watch Video Solution

22. If
$$A = \begin{bmatrix} 1 & x & 3 \\ 1 & 3 & 3 \\ 2 & 4 & 4 \end{bmatrix}$$
 is the adjoint of a 3 × 3 matrix B and det. (B) = 4,

then the value of x is _____ .

Watch Video Solution

23. A, B and C are three square matrices of order 3 such that A= diag. (x, y, x), det. (B) = 4 and det. (C) = 2, where $x, y, z \in I^+$. If det. (adj. (adj. (ABC))) = $2^{16} \times 3^8 \times 7^4$, then the number of distinct possible matrices A is

24. Let $A = \begin{bmatrix} a_{ij} \end{bmatrix}$ be a matrix of order 2 where $a_{ij} \in \{-1, 0, 1\}$ and adj. A = -A. If det. (A) = -1, then the number of such matrices is

Watch Video Solution

Jee Main Previous Year

1. Let A be 2 x 2 matrix. Statement I adj(adjA) = A Statement II |adjA| = A

A. Statement 1 is true, statement 2 is true, statement 2 is a correct

explanation for statement 1.

B. Statement 1 is true, statement 2 is true, statement 2 is a correct

explanation for statement 1.

- C. Statement 1 is true, statement 2 is false.
- D. Statement 1 is false, statement 2 is true.

Answer: B View Text Solution 2. The number of 3 3 non-singular matrices, with four entries as 1 and all other entries as 0, is (1) 5 (2) 6 (3) at least 7 (4) less than 4 A. at least 7 B. less than 4

C. 5

D. 6

Answer: A

Watch Video Solution

3. Let A be a 2×2 matrix with non-zero entries and let A²=I, where i is a

 2×2 identity matrix, Tr(A) i= sum of diagonal elements of A and |A| =

determinant of matrix A. Statement 1:Tr(A)=0 Statement 2:|A|=1

A. Statement 1 is false, statement 2 is true.

B. Statement 1 is true, statement 2 is true, statement 2 is a correct

explanation for statement 1.

C. Statement 1 is true, statement 2 is true, statement 2 is a correct

explanation for statement 1.

D. Statement 1 is true, statement 2 is false.

Answer: D

Watch Video Solution

4. Let A and B two symmetric matrices of order 3.

Statement 1: A(BA) and (AB)A are symmetric matrices.

Statement 2 : AB is symmetric matrix if matrix multiplication of A with B is

commutative.

A. Statement 1 is false, statement 2 is true.

B. Statement 1 is true, statement 2 is true, statement 2 is a correct

explanation for statement 1.

C. Statement 1 is true, statement 2 is true, statement 2 is not a correct

explanation for statement 1.

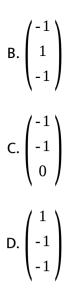
D. Statement 1 is true, statement 2 is false.

Answer: C

5. Let
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{pmatrix}$$
. If u_1 and u_2 are column matrices such that

$$Au_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
 and $Au_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, then $u_1 + u_2$ is equal to :

 $A. \begin{pmatrix} -1\\1\\0 \end{pmatrix}$



Answer: D

6. Let P and Q be 3×3 matrices with $P \neq Q$. If $P^3 = Q^3 and P^2 Q = Q^2 P$,

then determinant of $(P^2 + Q^2)$ is equal to (1) 2 (2) 1 (3) 0 (4) 1

A. - 2

B. 1

C. 0

D. - 1

Answer: C

7. If
$$P = \begin{bmatrix} 1 & \alpha & 3 \\ 1 & 3 & 3 \\ 2 & 4 & 4 \end{bmatrix}$$
 is the adjoint of a 3 x 3 matrix A and $|A| = 4$, then α is
equal to
A. 4
B. 11
C. 5
D. 0
Answer: B

Watch Video Solution

8. If A is an 3×3 non-singular matrix such that $\forall' = A'A$ and $B = A^{-1}A'$, then BB equals (1) I + B (2) I (3) B^{-1} (4) $(B^{-1})'$

A. I + B

В. І

C. *B*⁻¹

 $\mathsf{D}.\left(B^{-1}\right)'$

Answer: B

Watch Video Solution

9. If A =
$$\begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ a & 2 & b \end{bmatrix}$$
 is a matrix satisfying the equation AA^T = 9I, where

 $Iis3 \times 3$ identity matrix, then the ordered pair (a,b) is equal to

A. (2, -1)

B. (-2, 1)

C. (2, 1)

D. (-2, -1)

Answer: D

Watch Video Solution

10. If
$$A = \begin{bmatrix} 5a & -b \\ 3 & 2 \end{bmatrix}$$
 and $AadjA = \forall^T$, then $5a + b$ is equal to:
A. 5
B. 4
C. 13
D. -1

Answer: A

Watch Video Solution

11. if
$$A = \begin{bmatrix} 2 & -3 \\ -4 & 1 \end{bmatrix}$$
 then $adj(3A^2 + 12A) = ?$
A. $\begin{bmatrix} 72 & -63 \\ -84 & 51 \end{bmatrix}$
B. $\begin{bmatrix} 72 & -84 \\ -63 & 51 \end{bmatrix}$
C. $\begin{bmatrix} 51 & 63 \\ 84 & 72 \end{bmatrix}$
D. $\begin{bmatrix} 51 & 84 \\ 63 & 72 \end{bmatrix}$

Answer: C

Watch Video Solution

Jee Advanced Previous Year

1. The number of 3×3 matrices A whose entries are either 0 or 1 and for which the system A[xyz] = [100] has exactly two distinct solution is a. 0 b. $2^9 - 1$ c. 168 d. 2

A. 0

B. 2⁹ - 1

C. 168

D. 2

Answer: A

Watch Video Solution

2. Let $\omega \neq 1$ be cube root of unity and S be the set of all non-singular

matrices of the form
$$\begin{bmatrix} 1 & a & b \\ \omega & 1 & c \\ \omega^2 & \omega & 1 \end{bmatrix}$$
, where each of a, b and c is either

 ω or ω^2 Then the number of distinct matrices in the set S is

a. 2

b.6

c. 4

d. 8

A. 2	
B. 6	
C. 4	
D. 8	

Answer: A

Watch Video Solution

3. Let $P = \begin{bmatrix} a_{ij} \end{bmatrix}$ be a 3 × 3 matrix and let $Q = \begin{bmatrix} b_{ij} \end{bmatrix}$, where $b_{ij} = 2^{i+j}a_{ij}$ for $1 \le i, j \le 3$. If the determinant of P is 2, then the determinant of the matrix Q is

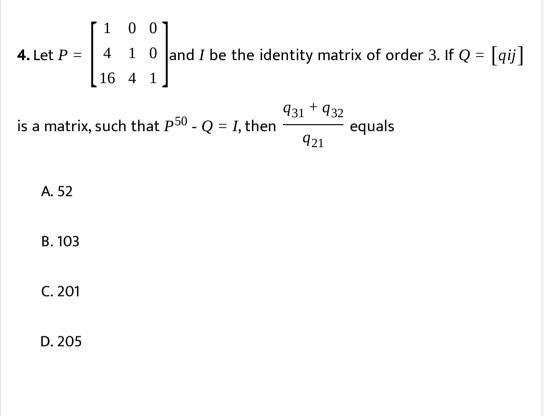
A. 2¹⁰

B. 2¹¹

C. 2¹²

D. 2¹³

Answer: D



Answer: B

Watch Video Solution

5. How many 3×3 matrices M with entries from $\{0, 1, 2\}$ are there, for which the sum of the diagonal entries of $M^T Mis5$? 126 (b) 198 (c) 162 (d) 135

A. 198

B. 126

C. 135

D. 162

Answer: A

Watch Video Solution

6. Let *MandN* be two 3×3 non singular skew-symmetric matrices such that MN = NM If P^T denote the transpose of P, then $M^2N^2(M^TN)^{-1}(MN^{-1})^T$ is equal to a. M^2 b. $-N^2$ **c**. - M^2

d. *MN*

A. M^2

B. - N^2

C. -*M*²

 $\mathsf{D}.\,M\!N$

Answer: C

Watch Video Solution

7. Let ω be a complex cube root of unity with $\omega \neq 1$ and $P = \left[p_{ij}\right]$ be a $n \times n$

matrix withe
$$p_{ij}$$
 = ω^{i+j} Then $p^2
e O$, when n =

a.57

b. 55

c. 58

d. 56

A. 57

B. 55

C. 58

D. 56

Answer: B::C::D

8. For 3×3 matrices *MandN*, which of the following statement (s) is (are) NOT correct ? N^TMN is symmetricor skew-symmetric, according as *m* is symmetric or skew-symmetric. *MN* - *NM* is skew-symmetric for all symmetric matrices *MandN MN* is symmetric for all symmetric matrices *MandN* (*adjM*)(*adjN*) = *adj*(*MN*) for all invertible matrices *MandN*

A. *N^TMN* is symmetric or skew-symmetric, according as M is symmetric or skew-symmetric

B. MN - NM is skew0symmetric for all symmetric matrices M and N

C. MN is symmetric for all symmetric matrices M and N

D. (adj M) (adj N) = adj (MN) for all inveriblr matrices M and N.

Answer: C::D

Watch Video Solution

9. Let M be a 2×2 symmetric matrix with integer entries. Then M is invertible if The first column of M is the transpose of the second row of M. The second row of M is the transpose of the first column of M is a diagonal matrix with non-zero entries in the main diagonal. The product of entries in the main diagonal of M is not the square of an integer.

A. the first column of M is the transpose of the second row of M

B. the second row of M is the transpose of the column of M

C. M is a diagonal matrix with non-zero entries in the main diagonal

D. the product of entries in the main diagonal of M is not the square

of an integer

Answer: C::D

10. Let m and N be two 3x3 matrices such that MN=NM. Further if $M \neq N^2$ and $M^2 = N^4$ then which of the following are correct.

A. determinant of
$$\left(M^2 + Mn^2\right)$$
 is 0

B. there is a 3×3 non-zero matrix U such that $(M^2 + MN^2)U$ is the

zero matrix

C. determinant of $(M^2 + MN^2) \ge 1$

D. for a 3×3 matrix U, is the zero matrix

Answer: A::B

Watch Video Solution

11. Let *XandY* be two arbitrary, 3×3 , non-zero, skew-symmetric matrices and *Z* be an arbitrary 3×3 , non-zero, symmetric matrix. Then which of the following matrices is (are) skew symmetric? a. $Y^3Z^4Z^4Y^3$ b. $x^{44} + Y^{44}$ c. $X^4Z^3 - Z^3X^4$ d. $X^{23} + Y^{23}$

A. $Y^3Z^4 - Z^4Y^3$

B. $X^{44} + Y^{44}$

 $C. X^4 Z^3 - Z^3 X^4$

D. $X^{23} + Y^{23}$

Answer: C::D

Watch Video Solution

12. Let $p = \begin{bmatrix} 3 & -1 & -2 \\ 2 & 0 & \alpha \\ 3 & -5 & 0 \end{bmatrix}$, where $\alpha \in \mathbb{R}$. Suppose $Q = \begin{bmatrix} q_{ij} \end{bmatrix}$ is a matrix

such that PQ = kl, where $k \in \mathbb{R}, k \neq 0$ and l is the identity matrix of

order 3. If
$$q_{23} = -\frac{k}{8}$$
 and $\det(Q) = \frac{k^2}{2}$, then

A. $\alpha = 0, k = 8$

B. $4\alpha - k + 8 = 0$

C. det (P adj (Q)) = 2^9

D. det (Q adj (P)) = 2^{13}

Answer: B::C

Watch Video Solution

13. Which of the following is (are) NOT the square of a 3×3 matrix with

real entries ?

$$A. \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$
$$B. \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

 $C.\begin{bmatrix} -1 & 0 & 0\\ 0 & -1 & 0\\ 0 & 0 & -1 \end{bmatrix}$ $D.\begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix}$

Answer: A::C

14. Let S be the set of all column matrices
$$\begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$
 such that $b_1, b_2, b_2 \in R$

and the system of equations (in real variables)

 $-x + 2y + 5z = b_1$

 $2x - 4y + 3z = b_2$

 $x - 2y + 2z = b_3$

has at least one solution. The, which of the following system (s) (in real

variables) has (have) at least one solution for each
$$\begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \in S$$
?

A.
$$x + 2y + 3z = b_1$$
, $4y + 5z = b_2$ and $x + 2y + 6z = b_3$

B.
$$x + y + 3z = b_1$$
, $5x + 2y + 6z = b_2$ and $-2x - y - 3z = b_3$

C.
$$x + 2y - 5z = b_1$$
, $2x - 4y + 10z = b_2$ and $x - 2y + 5z = b_3$

D.
$$x + 2y + 5z = b_1$$
, $2x + 3z = b_2$ and $x + 4y - 5z = b_3$

Answer: A::D

Watch Video Solution

15. Let A be the set of all 3×3 symmetric matrices all of whose entries are either 0 or 1. Five of these entries are 1 and four of them are 0. The number of matrices in A is

Β.	6
----	---

C. 9

D. 3

Answer: A

Watch Video Solution

16. Let A be the set of all 3×3 symmetric matrices all of whose either 0 or

1. Five of these entries are 1 and four of them are 0.

The number of matrices A in A for which the system of linear equations

 $A\begin{bmatrix} x\\ y\\ z\end{bmatrix} = \begin{bmatrix} 1\\ 0\\ 0\end{bmatrix}$

has a unique solution is

A. less than 4

B. at least 4 but less than 7

C. at least 7 but less than 10

D. at leat 10

Answer: B

17. Let A be the set of all 3×3 symmetric matrices all of whose either 0 or

1. Five of these entries are 1 and four of them are 0.

The number of matrices A in A for which the system of linear equations

$$A\begin{bmatrix} x\\ y\\ z\end{bmatrix} = \begin{bmatrix} 1\\ 0\\ 0\end{bmatrix}$$

is inconsistent is

A. 0

B. more than 2

C. 2

D. 1

Answer: B

18. Let P be an odd prime number and T_p be the following set of 2 × 2 matrices :

$$T_p = \left\{ A = \begin{bmatrix} a & b \\ c & a \end{bmatrix} : a, b, c \in \{0, 1, ..., p - 1\} \right\}$$

The number of A in T_p such that det (A) is not divisible by p is

A. $(p - 1)^2$ B. 2(p - 1)C. $(p - 1)^2 + 1$ D. 2p - 1

Answer: D

Watch Video Solution

19. Let P be an odd prime number and T_p be the following set of 2×2 matrices :

$$T_p = \left\{ A = \begin{bmatrix} a & b \\ c & a \end{bmatrix} : a, b, c \in \{0, 1, ..., p - 1\} \right\}$$

The number of A in T_p such that A is either symmetric or skew-symmetric or both, and det (A) divisible by p, is

A. $(p - 1)(p^2 - p + 1)$ B. $p^3 - (p - 1)^2$ C. $(p - 1)^2$ D. $(p - 1)(p^2 - 2)$

Answer: C

Watch Video Solution

20. Let p be an odd prime number and T_p , be the following set of 2×2

matrices
$$T_p = \left\{ A = \begin{bmatrix} a & b \\ c & a \end{bmatrix} : a, b, c \in \{0, 1, 2, \dots, p-1\} \right\}$$
 The number of

A in T_p , such that A is either symmetric or skew-symmetric or both, and det (A) divisible by p is

A. $2p^2$ B. $p^3 - 5p$ C. $p^3 - 3p$ D. $p^3 - p^2$

Answer: D

Watch Video Solution

21. Let a,b, and c be three real numbers satisfying $[a, b, c] \begin{bmatrix} 1 & 9 & 7 \\ 8 & 2 & 7 \\ 7 & 3 & 7 \end{bmatrix} = [0, 0, 0] \text{ If the point } P(a, b, c) \text{ with reference to (E),}$

lies on the plane 2x + y + z = 1, the the value of 7a + b + c is (A) 0 (B) 12 (C) 7 (D) 6 B. 12

C. 7

D. 6

Answer: D

Watch Video Solution

22. Let a,b, and c be three real numbers satisfying

$$\begin{bmatrix} a, b, c \end{bmatrix} \begin{bmatrix} 1 & 9 & 7 \\ 8 & 2 & 7 \\ 7 & 3 & 7 \end{bmatrix} = \begin{bmatrix} 0, 0, 0 \end{bmatrix}$$
 Let ω be a solution of $x^3 - 1 = 0$ with
 $Im(\omega) > 0.$ If $a = 2$ with b nd c satisfying (E) then the value of
 $\frac{3}{\omega^a} + \frac{1}{\omega^b} + \frac{3}{\omega^c}$ is equa to (A) -2 (B) 2 (C) 3 (D) -3
A. -2
B. 2

C. 3

D. - 3

Answer: A

23. Let a,b, and c be three real numbers satisfying

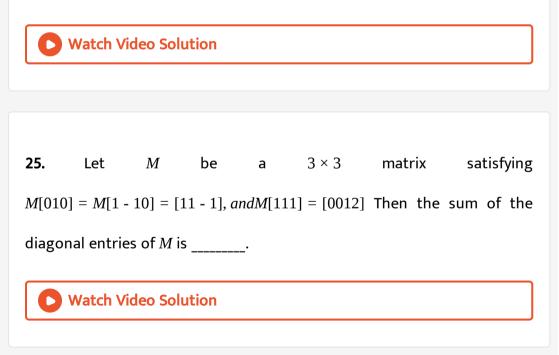
$$\begin{bmatrix} a, b, c \end{bmatrix} \begin{bmatrix} 1 & 9 & 7 \\ 8 & 2 & 7 \\ 7 & 3 & 7 \end{bmatrix} = \begin{bmatrix} 0, 0, 0 \end{bmatrix} \text{Let b=6, with a and c satisfying (E). If alpha}$$
and beta are the roots of the quadratic equation

$$ax^{2} + bx + c = 0 then \sum_{n=0}^{\infty} \left(\frac{1}{\alpha} + \frac{1}{\beta} \right)^{n} \text{ is (A) 6 (B) 7 (C) } \frac{6}{7} \text{ (D) oo}$$
A. 6
B. 7
C. $\frac{6}{7}$

D. ∞

Answer: B

24. Let *K* be a positive real number and $A = [2k - 12\sqrt{k}2\sqrt{k}1 - 2k - 2\sqrt{k}2k - 1]andB = [02k - 1\sqrt{k}1 - 2k02 - \sqrt{k} - 2\sqrt{k}]$. If det $(adjA) + det(adjB) = 10^6$, then[k] is equal to. [Note: adjM denotes the adjoint of a square matix *M* and [k] denotes the largest integer less than or equal to *K*].



26. let
$$z = \frac{-1 + \sqrt{3i}}{2}$$
, where $i = \sqrt{-1}$ and $r, s \in P1, 2, 3$. Let $P = \begin{bmatrix} (-z)^r & z^{2s} \\ z^{2s} & z^r \end{bmatrix}$

and I be the idenfity matrix or order 2. Then the total number of ordered pairs (r,s) or which $P^2 = -I$ is

Watch Video Solution

Single Correct Answer

1. If
$$A = \begin{bmatrix} 0 & c & -b \\ -c & 0 & a \\ b & -a & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} a^2 & ab & ac \\ ab & b^2 & bc \\ ac & bc & c^2 \end{bmatrix}$, then $(A + B)^2 =$

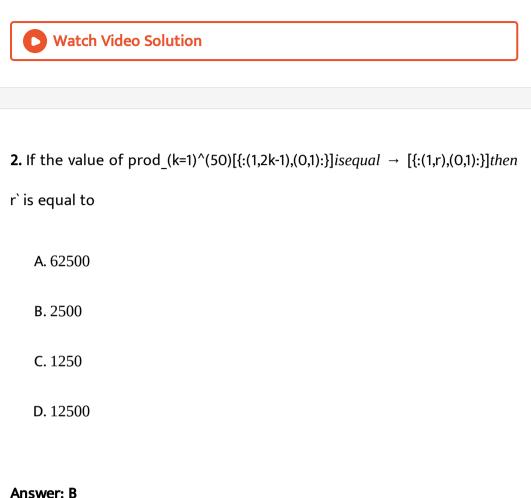
A.*A*

B. *B*

C. I

D. $A^2 + B^2$

Answer: D



3. A square matrix P satisfies $P^2 = I - P$ where I is identity matrix. If

 $P^n = 5I - 8P$, then *n* is

A . 4		
B. 5		
C . 6		
D. 7		

Answer: C

Watch Video Solution

4. A and B are two square matrices such that $A^2B = BA$ and if $(AB)^{10} = A^kB^{10}$, then k is

A. 1001

B. 1023

C. 1042

D. none of these

Answer: B

5. If matrix $A = [a_{ij}]_{3\times}$, matrix $B = [b_{ij}]_{3\times 3}$, where $a_{ij} + a_{ji} = 0$ and $b_{ij} - b_{ji} = 0 \forall i, j$, then $A^4 \cdot B^3$ is

A. Singular

B. Zero matrix

C. Symmetric

D. Skew-Symmetric matrix

Answer: A

Watch Video Solution

6. If
$$A \begin{pmatrix} 1 & 3 & 4 \\ 3 & -1 & 5 \\ -2 & 4 & -3 \end{pmatrix} = \begin{pmatrix} 3 & -1 & 5 \\ 1 & 3 & 4 \\ +4 & -8 & 6 \end{pmatrix}$$
, then $A =$

$$A. \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$
$$B. \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$C. \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$
$$D. \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$

Answer: D

7. Let
$$A = \begin{bmatrix} -5 & -8 & -7 \\ 3 & 5 & 4 \\ 2 & 3 & 3 \end{bmatrix}$$
 and $B = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$. If *AB* is a scalar multiple of *B*, then

the value of x + y is

A. - 1

	-2
--	----

C. 1

D. 2

Answer: B

Watch Video Solution

8.
$$A = \begin{bmatrix} a & b \\ b & -a \end{bmatrix}$$
 and $MA = A^{2m}$, $m \in N$ for some matrix M , then which one

of the following is correct ?

$$A. M = \begin{bmatrix} a^{2m} & b^{2m} \\ b^{2m} & -a^{2m} \end{bmatrix}$$
$$B. M = \begin{pmatrix} a^2 + b^2 \end{pmatrix}^m \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$C. M = \begin{pmatrix} a^m + b^m \end{pmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$D. M = \begin{pmatrix} a^2 + b^2 \end{pmatrix}^{m-1} \begin{bmatrix} a & b \\ b & -a \end{bmatrix}$$

Answer: D

9. If
$$A = [a_{ij}]_{m \times n}$$
 and $a_{ij} = (i^2 + j^2 - ij)(j - i)$, *n* odd, then which of the

following is not the value of *Tr*(*A*)

A. 0

B. |A|

C. 2|A|

D. none of these

Answer: D

10.
$$|A - B| \neq 0, A^4 = B^4, C^3A = C^3B, B^3A = A^3B$$
, then $|A^3 + B^3 + C^3| =$

A. 0

B. 1

C. $3|A|^3$

D. 6

Answer: A

Watch Video Solution

11. If AB + BA = 0, then which of the following is equivalent to $A^3 - B^3$

A.
$$(A - B)(A^2 + AB + B^2)$$

B. $(A - B)(A^2 - AB - B^2)$
C. $(A + B)(A^2 - AB - B^2)$
D. $(A + B)(A^2 + AB - B^2)$

Answer: C

12. *A*, *B*, *C* are three matrices of the same order such that any two are symmetric and the 3^{rd} one is skew symmetric. If X = ABC + CBA and Y = ABC - CBA, then $(XY)^T$ is

A. symmetric

B. skew symmetric

C. I - XY

D. - *YX*

Answer: D

Watch Video Solution

13. If A and P are different matrices of order n satisfying $A^3 = P^3$ and

$$A^2P = P^2A$$
 (where $|A - P| \neq 0$) then $|A^2 + P^2|$ is equal to

B. 0

 $\mathsf{C}.\left|A\right|\left|P\right|$

D. |A + P|

Answer: B

Watch Video Solution

14. Let A, B are square matrices of same order satisfying AB = A and

$$BA = B$$
 then $\left(A^{2010} + B^{2010}\right)^{2011}$ equals.

A. A + B

B. 2010(A + B)

C. 2011(A + B)

D. $2^{2011}(A + B)$

Answer: D

15. The number of 2 × 2 matrices A, that are there with the elements as real numbers satisfying $A + A^T = I$ and $AA^T = I$ is

A. zero

B. one

C. two

D. infinite

Answer: C

Watch Video Solution

16. If the orthogonal square matrices A and B of same size satisfy detA + detB = 0 then the value of det(A + B)

A. - 1

B. 1

C. 0

D. none of these

Answer: C

Watch Video Solution

17. If
$$A = \begin{bmatrix} \cos\theta & \sin\theta \\ \sin\theta & -\cos\theta \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$, $C = ABA^T$, then A^TC^nA equals to
 $\left(n \in I^+\right)$
A. $\begin{bmatrix} -n & 1 \\ 1 & 0 \end{bmatrix}$
B. $\begin{bmatrix} 1 & -n \\ 0 & 1 \end{bmatrix}$
C. $\begin{bmatrix} 0 & 1 \\ 1 & -n \end{bmatrix}$
D. $\begin{bmatrix} 1 & 0 \\ -n & 1 \end{bmatrix}$

Answer: D

18. Let A be a 3×3 matrix given by $A = (a_{ij})_{3 \times 3}$. If for every column vector X satisfies X'AX = 0 and $a_{12} = 2008$, $a_{13} = 1010$ and $a_{23} = -2012$. Then the value of $a_{21} + a_{31} + a_{32} =$

A. - 6

B. 2006

C.-2006

D. 0

Answer: C

Watch Video Solution

19. Suppose A and B are two non singular matrices such that $B \neq I$, $A^6 = I$

and $AB^2 = BA$. Find the least value of k for $B^k = 1$

B. 32

C. 64

D. 63

Answer: D

Watch Video Solution

20. Let A be a 2×3 matrix, whereas B be a 3×2 amtrix. If det. (AB) = 4,

then the value of det. (BA) is

A. -4

B.2

C. - 2

D. 0

Answer: D

21. Let A be a square matrix of order 3 so that sum of elements of each row is 1. Then the sum elements of matrix A^2 is

A. 1 B. 3 C. 0 D. 6

Answer: B

Watch Video Solution

22. A and B be 3×3 matrices such that AB + A = 0, then

A.
$$(A + B)^2 = A^2 + 2AB + B^2$$

B. |A| = |B|

 $C.A^2 = B^2$

D. none of these

Answer: A

23. If $(A + B)^2 = A^2 + B^2$ and $|A| \neq 0$, then |B| = (where A and B are matrices of odd order)

A. 2

B. - 2

C. 1

D. 0

Answer: D

24. If A is a square matrix of order 3 such that |A| = 5, then |Adj(4A)| =

A. $5^3 \times 4^2$ B. $5^2 \times 4^3$ C. $5^2 \times 16^3$ D. $5^3 \times 16^2$

Answer: C

Watch Video Solution

25. If A and B are symmetric and commute, then which of the following is/are symmetric ?

A. Both $A^{-1}B$ and $A^{-1}B^{-1}$ are symmetric.

B. $A^{-1}B$ is symmetric but $A^{-1}B^{-1}$ is not symmetric.

C. $A^{-1}B^{-1}$ is symmetric but $A^{-1}B$ is not symmetric.

D. Neither $A^{-1}B$ nor $A^{-1}B^{-1}$ are symmetric

Watch Video Solution 26. If A is a square matrix of order 3 such that $ A = 2$, then $\left (adjA^{-1})^{-1} \right $ is 	Answer: A
A. 1 B. 2 C. 4	Watch Video Solution
A. 1 B. 2 C. 4	
A. 1 B. 2 C. 4	
B. 2 C. 4	26. If <i>A</i> is a square matrix of order 3 such that $ A = 2$, then $\left \left(adjA^{-1} \right)^{-1} \right $ is
B. 2 C. 4	·
C. 4	A. 1
	B. 2
D. 8	C. 4
	D. 8
Answer: C	Answer: C
Watch Video Solution	Watch Video Solution

27. Let matrix
$$A = \begin{bmatrix} x & y & -z \\ 1 & 2 & 3 \\ 1 & 1 & 2 \end{bmatrix}$$
, where $x, y, z \in N$. If

 $|adj(adj(adj(adjA)))| = 4^8 \cdot 5^{16}$, then the number of such (x, y, z) are

A. 28

B. 36

C. 45

D. 55

Answer: B

Watch Video Solution

28. A be a square matrix of order 2 with $|A| \neq 0$ such that |A + |A|adj(A)| = 0, where adj(A) is a adjoint of matrix A, then the value of |A - |A|adj(A)| is

D		n
D	•	2

C. 3

D. 4

Answer: D

Watch Video Solution

29. If S is a real skew-symmetric matrix and det. $(I - S) \neq 0$, then prove that

matrix $A = (I + S)(I - S)^{-1}$ is orthogonal.

A. idempotent matrix

B. symmetric matrix

C. orthogonal matrix

D. none of these

Answer: C

30. If
$$A = \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$$
, then the trace of the matrix $Adj(AdjA)$ is
A. 1
B. 2
C. 3
D. 4

Answer: A

Watch Video Solution

31. If
$$A = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 2 & -3 \\ 2 & 1 & 0 \end{bmatrix}$$
 and $B = (adjA)$ and $C = 5A$, then find the value of $\frac{|adjB|}{|C|}$

A. 25

C. 1

D. 5

Answer: C

Watch Video Solution

32. Let A and B be two non-singular square matrices such that $B \neq I$ and

 $AB^2 = BA$. If $A^3 - B^{-1}A^3B^n$, then value of *n* is

A. 4

B. 5

C. 8

D. 7

Answer: C

33. If *A* is an idempotent matrix satisfying $(I - 0.4A)^{-1} = I - \alpha A$ where *I* is the unit matrix of the same order as that of *A* then the value of α is

A. - 1/3

B. 1/3

C. - 2/3

D.2/3

Answer: C

Watch Video Solution

34. If *A* and *B* are two non-singular matrices which commute, then $(A(A + B)^{-1}B)^{-1}(AB) =$

A. A + B

 $B.A^{-1} + B^{-1}$

 $C.A^{-1} + B$

D. none of these

Answer: A

Watch Video Solution

Multiple Correct Answer

1. If
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
, then
A. $A^3 - A^2 = A - I$
B. $Det(A^{2010} - I) = 0$
C. $A^{50} = \begin{bmatrix} 1 & 0 & 0 \\ 25 & 1 & 0 \\ 25 & 0 & 1 \end{bmatrix}$

$$\mathsf{D}.\,A^{50} = \begin{bmatrix} 1 & 1 & 0\\ 25 & 1 & 0\\ 25 & 0 & 1 \end{bmatrix}$$

Answer: A::B::C

Watch Video Solution

2. If the elements of a matrix A are real positive and distinct such that

$$det(A + A^T)^T = 0$$
 then

A. detA > 0

B. det $A \ge 0$

C. det
$$\left(A - A^{T}\right) > 0$$

D. det $\left(A, A^{T}\right) > 0$

Answer: A::C::D

3. If $A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$ and X is a non zero column matrix such that

 $AX = \lambda X$, where λ is a scalar, then values of λ can be

A. 3

B.6

C. 12

D. 15

Answer: A::D

Watch Video Solution

4. If A, B are two square matrices of same order such that A + B = AB and

I is identity matrix of order same as that of A,B, then

A.AB = BA

B. |A - I| = 0

 $\mathsf{C}. |B - I| \neq 0$

D. |A - B| = 0

Answer: A::C

Watch Video Solution

5. If A is a non-singular matrix of order $n \times n$ such that $3ABA^{-1} + A = 2A^{-1}BA$, then

A. A and B both are identity matrices

$$\mathsf{B.}\left|A+B\right|=0$$

$$\mathsf{C}. \left| ABA^{-1} - A^{-1}BA \right| = 0$$

D.A + B is not a singular matrix

Answer: B::C

6. If the matrix A and B are of 3×3 and (I - AB) is invertible, then which of

the following statement is/are correct ?

A. I - BA is not invertible

B. I - BA is invertible

C. *I* - *BA* has for its inverse $I + B(I - AB)^{-1}A$

D. *I* - *BA* has for its inverse $I + A(I - BA)^{-1}B$

Answer: B::C

Watch Video Solution

7. If A is a square matrix such that
$$A \cdot (AdjA) = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$
, then

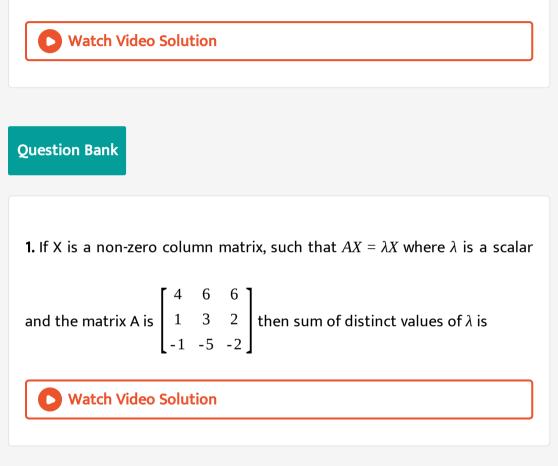
A. |A| = 4

B. |adjA| = 16

$$\mathsf{C}.\,\frac{|adj(adjA)|}{|adjA|} = 16$$

D. |adj2A| = 128

Answer: A::B::C



2. Let
$$A = [[1, 0, 2], [2, 0, 1][1, 1, 2]]$$
, then det $((A - I)^3 - 4A)$ is

3. Let *A* be a square matrix of order 2 such that $A^2 - 4A + 4I = O$ where *I* is an identity matrix of order 2. If $B = A^5 + 4A^4 + 6A^3 + 4A^2 + A$, then det(*B*) is equal to

Watch Video Solution

4. If
$$P = \begin{bmatrix} 1 & c & 3 \\ 1 & 3 & 3 \\ 2 & 4 & 4 \end{bmatrix}$$
 is the adjoint of a 3 × 3 matrix Q and det. (Q)⁼4, then

c is equal to

Watch Video Solution

5. If
$$A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$$
, then the number of values of α in $(0, \pi)$ satisfying $A + A^T = I_{,}$ is [Note: I is an identity matrix of order 2 and P^T denotes transpose of matrix P .]

6. For
$$\alpha, \beta, \gamma \in R$$
, let $A = \begin{bmatrix} \alpha^2 & 6 & 8 \\ 3 & \beta^2 & 9 \\ 4 & 5 & \gamma^2 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & \alpha & 3 & 5 \\ 2 & 2 & \beta & 6 \\ 1 & 4 & 2\gamma & -3 \end{bmatrix}$. If trace

A = traceB, then the value of $\left(\alpha^{-1} + \beta^{-1} + \gamma^{-1}\right)$ is equal to

Watch Video Solution

7. Let the matrix A and B be defined as $A = \begin{bmatrix} 3 & 2 \\ 2 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & 1 \\ 7 & 3 \end{bmatrix}$ then the absolute value of det. $(2A^9B^{-1})$ is

Watch Video Solution

8. Let D_k be the $k \times k$ matrix with 0's in the main diagonal, unity as the element of 1^{st} row and $(f(k))^{th}$ column and k for all other entries. If f(x) = x - x where x denotes the tional part function then the value of det. (D_2) + det. (D_3) equals

9. Let
$$A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix}$$
 and $10B = \begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3 \end{bmatrix}$.

If B is the inverse of A, then find the value α .

Watch Video Solution

10. Let
$$A + 2B = \begin{bmatrix} 1 & 2 & 0 \\ 6 & -3 & 3 \\ -5 & 3 & 1 \end{bmatrix}$$
 and $2A - B = \begin{bmatrix} 2 & -1 & 5 \\ 2 & -1 & 6 \\ 0 & 1 & 2 \end{bmatrix}$, then find tr (A)-

tr(B).

11. If the product of n matrices
$$\begin{bmatrix} [1, n][0, 1] \\ 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix}$$
 is equal to the matrix $\begin{bmatrix} 1 & 378 \\ 0 & 1 \end{bmatrix}$ then the value of n is equal to **Watch Video Solution**

12.

$$\left\{ \begin{bmatrix} 3 & 1 & 2 \\ 8 & 9 & 5 \\ 1 & 1 & 3 \end{bmatrix} [[1, 3, 3], [3, 2, 7][3, 7, 9]] \right\}^{2} = \left(\begin{bmatrix} 3 & 8 & 1 \\ 1 & 9 & 1 \\ 2 & 5 & 3 \end{bmatrix} \right\}$$
 then the values of

|a_2-b_1| + |a_3 -c_1| +|b_3 - c_2|` is

Watch Video Solution

13. Let A=[[1, 2], [3, 4]] and B = [[a, b], [c, d]]betwomatricessucht they are computative and c ne 3 bthen the value of |(a-d)/(2 b-c)| is

Watch Video Solution

14. Let
$$A = \begin{bmatrix} -1 & -2 & -2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}$$
 If adj. $A = kA^T$ theri the value of 'K' is

Watch Video Solution

lf

15. If
$$A = \begin{bmatrix} 0 & -1 & -2 \\ 2 & 4 & 3 \\ 1 & 1 & 1 \end{bmatrix}$$
 then trace (adj A) is equal to.