©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - CENGAGE

PAIR OF STRAIGHT LINES

Examples

1. Find the lines whose combined equation is
$6 x^{2}+5 x y-4 y^{2}+7 x+13 y-3=0$
2. The distance between the pair of parallel lines $x^{2}+4 x y+4 y^{2}+3 x+6 y-4=0$ is

D Watch Video Solution

3. Find the value of λ if
$2 x^{2}+7 x y+3 y^{2}+8 x+14 t+\lambda=0$
represents a pair of straight lines
(Watch Video Solution
4.

Does
$x^{2}+2 y^{2}-2 \sqrt{3} x-4 y+5=0$ satisfies the condition $a b c+2 g h-a f^{2}-b g^{2}-c h^{2}=0 ?$

Does it represent a pair of straight lines?

D Watch Video Solution

> 5. If the pair of lines
> $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$
intersect on the y-axis, then prove that $2 f g h=b g^{2}+c h^{2}$
6. Find the coordinates of points where pair of
lines given by equation
$2 x^{2}-6 y^{2}+x y-2 x+17 y-12=0$ intersect line $x=1$.

- Watch Video Solution

$$
\begin{aligned}
& \text { 7. } \begin{array}{l}
\text { If } \\
a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0
\end{array}
\end{aligned}
$$

respresent the pair of parallel straight lines,
$h^{2}=a b$ and $a b c+2 f g h-a f^{2}-b g^{2}-c h^{2}=0$

- Watch Video Solution

8. Find the equation of component lines whose combined equation is
$6 x^{2}+5 x y-4 y^{2}+7 x+13 y-3=0$ without solving for xor y .

Watch Video Solution

9. If the component lines whose combined equation is $p x^{2}-q x y-y^{2}=0$ make the angles α and β with x -axis, then find the value of $\tan (\alpha+\beta)$.

- Watch Video Solution

10. Find the joint equation of the pair of lines which pass through the origin and are perpendicular to the lines represented the equation $y^{2}+3 x y-6 x+5 y-14=0$
11. If the sum of the slopes of the lines given by
$x^{2}-2 c x y-7 y^{2}=0$ is four times their product, then c has the value

- Watch Video Solution

12. If the pair of straight lines
$a x^{2}+2 h x y+b y^{2}=0$ is rotated about the
origin through 90°, then find the equations in the new position.
13. Find acute and obtuse angle between companent lines whose combined equation is
$2 x^{2}+5 x y+3 y^{2}+6 x+7 y+4=0$.

D Watch Video Solution

14. Find the value of a for which the lines
represented by $a x^{2}+5 x y+2 y^{2}=0 \quad$ are mutually perpendicular.
15. If the pair of straight lines
$a x^{2}-2 p x y-y^{2}=0$ and $x^{2}-2 q x y-y^{2}=0$
are such that each pair bisects the angle between the other pair, then prove that $p q=-1$.

- Watch Video Solution

16. Prove that the straight lines joining the origin to the point of intersection of the
straight line $h x+k y=2 h k$ and the curve $(x-k)^{2}+(y-h)^{2}=c^{2}$ are perpendicular to each other if $h^{2}+k^{2}=c^{2}$.

D Watch Video Solution

17. Prove that the angle between the lines
joining the origin to the points of intersection of the straight line $y=3 x+2$ with the curve
$x^{2}+2 x y+3 y^{2}+4 x+8 y-11=0$ is
$\tan ^{-1}\left(\frac{2 \sqrt{2}}{3}\right)$
18. Show that straight lines
$\left(A^{2}-3 b^{2}\right) x^{2}+8 A B x y\left(b^{2}-3 A^{2}\right) y^{2}=0$
form with the line $A x+B y+C=0$ an equilateral triangle of area $\frac{C^{2}}{\sqrt{3\left(A^{2}+B^{2}\right)}}$.

D Watch Video Solution

19. Prove that the product of the perpendiculars from (α, β) to the pair of lines $a x^{2}+2 h x y+b y^{2}=0$ is $\frac{a \alpha^{2}-2 h \alpha \beta+\eta^{2}}{\sqrt{(a-b)^{2}+4 h^{2}}}$

- Watch Video Solution

20. If the distance of a point $\left(x_{1}, y_{1}\right)$ from each of the two straight lines, which pass through the origin of coordinates, is δ, then the two lines are given by

D Watch Video Solution

21. A point moves so that the distance between
the foot of perpendiculars from it on the lines $a x^{2}+2 h x y+b y^{2}=0$ is a constant $2 d$. Show
that the equation to its locus is $\left(x^{2}+y^{2}\right)\left(h^{2}-a b\right)=d^{2}\left\{(a-b)^{2}+4 h^{2}\right\}$.

D View Text Solution

22. Show that all chords of the curve
$3 x^{2}-y^{2}-2 x+4 y=0, \quad$ which subtend a right angle at the origin, pass through a fixed point. Find the coordinates of the point.

D Watch Video Solution

1. Find the combined equation of the pair of lines through the point $(1,0)$ and parallel to the lines represented by $2 x^{2}-x y-y^{2}=0$

D Watch Video Solution

> 2. Prove that the equation
> $2 x^{2}+5 x y+3 y^{2}+6 x+7 y+4=0$
represents a pair of straight lines. Find the coordinates of their point of intersection and also the angle between them.

- Watch Video Solution

3. If one of the lines of the pair $a x^{2}+2 h x y+b y^{2}=0$ bisects the angle between the positive direction of the axes.

Then find the relation for a, b, h

D Watch Video Solution

4. If the pair of lines $\sqrt{3} x^{2}-4 x y+\sqrt{3} y^{2}=0$
is rotated about the origin by $\frac{\pi}{6}$ in the
anticlockwise sense, then find the equation of the pair in the new position.

D Watch Video Solution

5. If the equation $2 x^{2}+k x y+2 y^{2}=0$ represents a pair of real and distinct lines, then find the values of k.
6. Find the point of intersection of the pair of
straight lines represented by the equation
$6 x^{2}+5 x y-21 y^{2}+13 x+38 y-5=0$.

D Watch Video Solution

Exercise 32

1. If the slope of one line is double the slope of another line and the combined equation of the
pair of lines
$\left(\frac{x^{2}}{a}\right)+\left(\frac{2 x y}{h}\right)+\left(\frac{y^{2}}{b}\right)=0$, then find the ratio $a b: h^{2}$.

- Watch Video Solution

2. Find the angle between the lines represented by $x^{2}+2 x y \sec \theta+y^{2}=0$

- Watch Video Solution

3. Find the angle between the straight lines
joining the origin to the point of intersection
of $\quad 3 x^{2}+5 x y-3 y^{2}+2 x+3 y=0 \quad$ and $3 x-2 y=1$

(Watch Video Solution

4. If θ is the angle between the lines given by
the equation
$6 x^{2}+5 x y-4 y^{2}+7 x+13 y-3=0$, then
find the equation of the line passing through
the point of intersection of these lines and making an angle θ with the positive x-axis.
5. Show that the equation of the pair of lines bisecting the angles between the pair of bisectors of the angles between the pair of lines $\quad a x^{2}+2 h x y+b y^{2}=0 \quad$ is
$(a-b)\left(x^{2}-y^{2}\right)+4 h x y=0$.

- Watch Video Solution

6. Find the equation of the bisectors of the angles between the lines joining the origin to the point of intersection of the straight line
$x-y=2$
$5 x^{2}+11 x y=8 y^{2}+8 x-4 y+12=0$

D Watch Video Solution

7. Show that the pairs of straight lines
$2 x^{2}+6 x y+y^{2}=0$ and $4 x^{2}+18 x y+y^{2}=0$
have the same set of angular bisector.

- Watch Video Solution

Exercise Single

1. The angle between the pair of lines whose equation is
$4 x^{2}+10 x y+m y^{2}+5 x+10 y=0$ is
$\tan ^{-1}\left(\frac{3}{8}\right)$
$\tan ^{-1}\left(\frac{3}{4}\right)$
$\tan ^{-1}\left\{2 \frac{\sqrt{25-4 m}}{m+4}\right\}, m \in R$ none of these
A. $\tan ^{-1}(3 / 8)$
B. $\tan ^{-1}(3 / 4)$
C. $\tan ^{-1}\{2 \sqrt{25-4 m /}(m+4)\}, m \in R$
D. None of these

Answer: 2

(D) Watch Video Solution

$\begin{array}{lr}\text { 2. The two lines represented by } \\ 3 a x^{2}+5 x y+\left(a^{2}-2\right) y^{2}=0 & \text { are }\end{array}$ perpendicular to each other for (a)two values of a (b) a (c)for one value of a (d) for no values of a
A. two values of a
B. a
C. for one value of a
D. for no value of a

Answer: 1

D Watch Video Solution

3. The distance between the two lines
represented
by the equation
$9 x^{2}-24 x y+16 y^{2}-12 x+16 y-12=0$ is
A. $8 / 5$
B. $6 / 5$
C. $11 / 5$
D. None of these

Answer: 1

D Watch Video Solution

4.

The
equation
$x-y=4$ and $x^{2}+4 x y+y^{2}=0$ represent
the sides of
A. an equilateral triangle
B. a right - angled triangle
C. an isosceles triangle
D. None of these

D View Text Solution

5. The straight lines represented by
$(y-m x)^{2}=a^{2}\left(1+m^{2}\right)$
and
$(y-n x)^{2}=a^{2}\left(1+n^{2}\right)$ from a rectangle (b)
rhombus trapezium (d) none of these
A. rectangle
B. rhombus
C. trepezium

D. None of these

Answer: 2

D Watch Video Solution

6. If the pairs of lines $x^{2}+2 x y+a y^{2}=0$ and $a x^{2}+2 x y+y^{2}=0$ have exactly one line in common, then the joint equation of the other two lines is given by (a) $3 x^{2}+8 x y-3 y^{2}=0$
(b) $3 x^{2}+10 x y+3 y^{2}=0$
$y^{2}+2 x y-3 x^{2}=0$ (d) $x^{2}+2 x y-3 y^{2}=0$

$$
\begin{aligned}
& \text { A. } 3 x^{2}+8 x y-3 y^{2}=0 \\
& \text { В. } 3 x^{2}+10 x y+3 y^{2}=0 \\
& \text { С. } y^{2}+2 x y-3 x^{2}=0 \\
& \text { D. } x^{2}+2 x y-3 y^{2}=0
\end{aligned}
$$

Answer: B

D Watch Video Solution

7. The condition that one of the straight lines given by the equation $a x^{2}+2 h x y+b y^{2}=0$ may coincide with one of those given by the
equation $\quad a^{\prime} x^{2}+2 h^{\prime} x y+b^{\prime} y^{2}=0 \quad$ is
$\left(a b^{\prime}-a^{\prime} b\right)^{2}=4\left(h a^{\prime}-h^{\prime} a\right)\left(b h^{\prime}-b^{\prime} h\right)$
$\left(a b^{\prime}-a^{\prime} b\right)^{2}=\left(h a^{\prime}-h^{\prime} a\right)\left(b h^{\prime}-b^{\prime} h\right)$
$\left(h a^{\prime}-h^{\prime} a\right)^{2}=4\left(a b^{\prime}-a^{\prime} b\right)\left(b h^{\prime}-b^{\prime} h\right)$
$\left(b h^{\prime}-b^{\prime} h\right)^{2}=4\left(a b^{\prime}-a^{\prime} b\right)\left(h a^{\prime}-h^{\prime} a\right)$
A.

$$
\left(a b^{\prime}-a^{\prime} b\right)^{2}=4\left(h a^{\prime}-h^{\prime} a\right)\left(b h^{\prime}-b^{\prime} h\right)
$$

B.

$$
\left(a b^{\prime}=a^{\prime} b\right)^{2}=\left(h a^{\prime}-h^{\prime} a\right)\left(b h^{\prime}-b^{\prime} h\right)
$$

C.

$$
\left(h a^{\prime}-h^{\prime} a\right)=4\left(a b^{\prime}-a^{\prime} b\right)\left(b h^{\prime}-b^{\prime} h\right)
$$

D.

$$
\left(b h^{\prime}-b^{\prime} h\right)^{2}=4\left(a b^{\prime}-a^{\prime} b\right)\left(h a^{\prime}-h^{\prime} a\right)
$$

Answer: 1

D Watch Video Solution

8. If the represented by the equation $3 y^{2}-x^{2}+2 \sqrt{3} x-3=0$ are rotated about the point $(\sqrt{3}, 0)$ through an angle of 15°, on in clockwise direction and the other in anticlockwise direction, so that they become
perpendicular, then the equation of the pair of
lines in the new position is
$y^{2}-x^{2}+2 \sqrt{3} x+3=0$
$y^{2}-x^{2}+2 \sqrt{3} x-3=0$
$y^{2}-x^{2}-2 \sqrt{3} x+3=0$ (d) $y^{2}-x^{2}+3=0$
A. $y^{2}-x^{2}+2 \sqrt{3} x+3=0$
B. $y^{2}-x^{2}+2 \sqrt{3} x-3=0$
C. $y^{2}-x^{2}-2 \sqrt{3} x+3=0$
D. $y^{2}-x^{2}+3=0$

Answer: 2
9. The equation of a line which is parallel to the line common to the pair of lines given by
$6 x^{2}-x y-12 y^{2}=0$
and
$15 x^{2}+14 x y-8 y^{2}=0$ and at a distance of 7
units from it is
(a) $3 x-4 y=-35$
(b) $5 x-2 y=7$
(c) $3 x+4 y=35$
(d) $2 x-3 y=7$
A. $3 x-4 y=-35$

$$
\text { B. } 5 x-2 y=7
$$

C. $3 x+4 y=35$

$$
\text { D. } 2 x-3 y=7
$$

Answer: 3

- Watch Video Solution

10.

The
equation
$x^{2} y^{2}-9 y^{2}-6 x^{2} y+54 y=0$ represents
A. a pair of straight lines and a circle
B. a pair of straight lines and a parabola
C. a set of four straight lines forming a square

D. None of these

Answer: 3

D Watch Video Solution

11.

The
equation
$a^{2} x^{2}+2 h(a+b) x y+b^{2} y^{2}=0$
and
$a x^{2}+2 h x y+b y^{2}=0$ represent (a)two pairs
of perpendicular straight lines (b)two pairs of parallel straight lines (c)two pairs of straight lines which are equally inclined to each other (d) none of these
A. two pair of perpendicular straight lines
B. two pairs of parallel straight lines
C. two pairs of straight lines which are equally inclined to each other

D. None of these

12. If the equation of the pair of straight lines passing through the point $(1,1)$, one making an angle θ with the positive direction of the x axis and the other making the same angle with
the positive direction of the y-axis, is
$x^{2}-(a+2) x y+y^{2}+a(x+y-1)=0, a \neq 2$,
then the value of $\sin 2 \theta$ is
(a) $a-2$
(b) $a+2$
(c) $\frac{2}{a+2}$
(d) $\frac{2}{a}$
A. $a-2$
B. $a+2$
C. $2 /(a+2)$
D. $2 / a$

Answer: 3

D Watch Video Solution

13. If two lines represented by
$x^{4}+x^{3} y+c x^{2} y^{2}-x y^{3}+y^{4}=0$ bisect the
angle between the other two, then the value of
c is (a)0(b) -1 (c) 1 (d) -6
A. 0
B. -1
C. 1
D. -6

Answer: 4

D Watch Video Solution
14. Through a point A on the x-axis, a straight
line is drawn parallel to the y-axis so as to meet the pair of straight lines
$a x^{2}+2 h x y+b y^{2}=0 \quad$ at B and C. If
$A B=B C$, then (a) $h^{2}=4 a b$ (b) $8 h^{2}=9 a b$
(c) $9 h^{2}=8 a b$ (d) $4 h^{2}=a b$
A. $h^{2}=4 a b$
B. $8 h^{2}=9 a b$
C. $9 h^{2}=8 a b$
D. $4 h^{2}=a b$

Answer: 2

D Watch Video Solution

15. The image of the pair of lines represented
by $a x^{2}+2 h x y+b y^{2}=0$ by the line mirror

$$
\begin{aligned}
& y=0 \quad \text { is } \quad a x^{2}-2 h x y-b y^{2}=0 \\
& b x^{2}-2 h x y+a y^{2}=0 b x^{2}+2 h x y+a y^{2}=0 \\
& a x^{2}-2 h x y+b y^{2}=0
\end{aligned}
$$

$$
\text { A. } a x^{2}-2 h x y-b y^{2}=0
$$

$$
\text { B. } b x^{2}-2 h x y+a y^{2}=0
$$

$$
\begin{aligned}
& \text { C. } b x^{2}+2 h x y+a y^{2}=0 \\
& \text { D. } a x^{2}-2 h x y+b y^{2}=0
\end{aligned}
$$

Answer: 4

D Watch Video Solution

16. The straight lines represented by the equation $\quad 135 x^{2}-136 x y+33 y^{2}=0 \quad$ are equally inclined to the line (a) $x-2 y=7$ (b)
$\mathrm{x}+2 \mathrm{y}=7$ (c) $x-2 y=4$ (d) $3 x+2 y=4$

$$
\text { A. } x-2 y=7
$$

$$
\begin{aligned}
& \text { B. } x+2 y=7 \\
& \text { C. } x-2 y=4 \\
& \text { D. } 3 x+2 y=4
\end{aligned}
$$

Answer: 2

- Watch Video Solution

17. If the slope of one of the lines represented by $a x^{2}+2 h x y+b y^{2}=0$ is the square of the other, then $\frac{a+b}{h}+\frac{8 h^{2}}{a b}=$ (a) 4 (b) 6 (c) 8 (d) none of these
A. 4
B. 6
C. 8

D. None of these

Answer: 2

D Watch Video Solution

18.

$$
x+y=7
$$

and
$a x^{2}+2 h x y+a y^{2}=0,(a \neq 0)$, are three real distinct lines forming a triangle. Then the
triangle is (a) isosceles (b) scalene (c) equilateral (d) right angled
A. isosceles
B. scalene
C. equilateral
D. right - angled

Answer: 1
19. Statement 1 : If $-h 2=a+b$, then one line
of the pair of lines $a x^{2}+2 h x y+b y^{2}=0$ bisects the angle between the coordinate axes
in the positive quadrant. Statement 2 : If
$a x+y(2 h+a)=0 \quad$ is a factor of
$a x^{2}+2 h x y+b y^{2}=0$, then $b+2 h+a=0$

Both the statements are true but statement 2
is the correct explanation of statement 1. Both
the statements are true but statement 2 is not
the correct explanation of statement 1.
Statement 1 is true and statement 2 is false.

Statement 1 is false and statement 2 is true.
A. Both the statements are true but statement 2 is the correct explanation of statement 1.
B. Both the statements are true but statement 2 is not the correct explanation of statement 1.
C. Statement 1 is true and statement 2 is
false.
D. Statement 1 is false and statement 2 is
true.

Answer: 2

D Watch Video Solution

20. The orthocenter of the triangle formed by
the lines $x y=0$ and $x+y=1$ is
A. $(1 / 2,1 / 2)$
B. $(1 / 3,1 / 3)$
C. $(0,0)$
D. $(1 / 4,1 / 4)$

Answer: 3

- Watch Video Solution

21. Let $P Q R$ be a right-angled isosceles triangle, right angled at $P(2,1)$. If the equation of the line $Q R$ is $2 x+y=3$, then
the equation representing the pair of lines $P Q$
and
$P R$
is
$3 x^{2}-3 y^{2}+8 x y+20 x+10 y+25=0$
$3 x^{2}-3 y^{2}+8 x y-20 x-10 y+25=0$

$$
\begin{align*}
& 3 x^{2}-3 y^{2}+8 x y+10 x+15 y+20=0 \quad \text { (d) } \tag{d}\\
& 3 x^{2}-3 y^{2}-8 x y-15 y-20=0 \\
& \quad \text { A. } 3 x^{2}-3 y^{2}+8 x y+20 x+10 y+25=0 \\
& \quad \text { B. } 3 x^{2}=3 y^{2}+8 x-20 x-10 y+25=0 \\
& \text { C. } 3 x^{2}-3 y^{2}+8 x y+10 x+15 y+20=0 \\
& \text { D. } 3 x^{2}-3 y^{2}-8 x y-15 y-20=0
\end{align*}
$$

Answer: 2

D Watch Video Solution

22. Area of the triangle formed by the line $x+y=3$ and the angle bisectors of the pairs of straight lines $x^{2}-y^{2}+2 y=1$ is
(a)2squnits
(b)4squnits
(c)6squnits
(d)8squnits
A. 2 sq. Units
B. 4 sq. Units
C. 6 sq. units
D. 8 sq. units

Answer: 1

D Watch Video Solution

23. The orthocentre of the triangle formed by
the lines $2 x^{2}+3 x y-2 y^{2}-9 x+7 y-5=0$
with $4 x+5 y-3=0$ is
A. $(3 / 5,11 / 5)$
B. $(6 / 5,11 / 5)$
C. $(5 / 6,11 / 5)$
D. $(3 / 5,6 / 5)$

Answer: 1

D Watch Video Solution

Exercise Multiple

1. The equation $x^{3}+x^{2} y-x y^{2}=y^{3}$
represents
A. three real straight lines
B. lines in which two of them are perpendicular to each other
C. lines in which two of them are coincident

D. None of these

Answer: 1, 2,3

D Watch Video Solution

2. The straight lines represented by $x^{2}+m x y-2 y^{2}+3 y-1=0 \quad$ meet at

$$
\begin{equation*}
\left(-\frac{1}{3}, \frac{2}{3}\right) \text { (b) }\left(-\frac{1}{3},-\frac{2}{3}\right)\left(\frac{1}{3}, \frac{2}{3}\right) \tag{d}
\end{equation*}
$$

none of these

> А. $(-1 / 3,2 / 3)$
> В. $(-1 / 3,-2 / 3)$
> С. $(-1 / 3,-2 / 3)$

D. None of these

Answer: 1, 3

D Watch Video Solution

3. If one of the lines of
$m y^{2}+\left(1-m^{2}\right) x y-m x^{2}=0$ is a bisector of the angle between the lines $x y=0$, then m is
A. 1
B. 2
C. $-1 / 2$
D. -1

Answer: 1, 4

D Watch Video Solution

4. If $x^{2}+2 h x y+y^{2}=0$ represents the equation of the straight lines through the origin which make an angle α with the straight
line $y+x=0$
(a) $\sec 2 \alpha=h$
(b) $\cos \alpha=\sqrt{\frac{(1+h)}{(2 h)}}$
(c) $2 \sin \alpha=\sqrt{\frac{(1+h)}{h}}$
(d) $\cot \alpha=\sqrt{\frac{(1+h)}{(h-1)}}$
A. $\sec 2 \alpha=h$
B. $\cos \alpha=\sqrt{(1+h) /(2 h)}$
C. $2 \sin \alpha=\sqrt{(1+h) / h}$
D. $\cot \alpha=\sqrt{(h+1) /(h-1)}$

- Watch Video Solution

5. The combined equation of three sides of a
triangle is $\left(x^{2}-y^{2}\right)(2 x+3 y-6)=0$. If
$(-2, a)$ is an interior point and $(b, 1)$ is an exterior point of the triangle, then (a)
$2<a<\frac{10}{3} \quad$ (b) $\quad-2<a<\frac{10}{3}$
$-1<b<\frac{9}{2}$ (d) $-1<b<1$
A. $2<a<10 / 3$
B. $-2<a<10 / 3$
C. $-1<b<9 / 2$

$$
\text { D. }-1<b<1
$$

Answer: 1,4

- View Text Solution

6. If one of the lines given by the equation
$2 x^{2}+p x y+3 y^{2}=0$ coincide with one of
those given by $2 x^{2}+q x y-3 y^{2}=0$ and the other lines represented by them are perpendicular, then value of $p+q$ is
B. -6
C. -7
D. 7

Answer: 1,2

- Watch Video Solution

7. The lines joining the origin to the point of intersection of The lines joining the origin to
the point of intersection of
$3 x^{2}+m x y=4 x+1=0$
$2 x+y-1=0$ are at right angles. Then which of the following is not a possible value of m ?
-4 (b) 4 (c) 7 (d) 3
A. -4
B. 4
C. 7
D. 3

Answer: 1,2,3,4
8.
$a x^{2}-6 x y+y^{2}+2 g x+2 f y+c=0$
represents a pair of lines whose slopes are m and m^{2}, then the value(s) of a is/are

$$
\text { A. } a=-8
$$

B. $a=8$
C. $a=27$
D. $a=-27$

Answer: 2, 4
9. Two pairs of straight lines have the equations $\quad y^{2}+x y-12 x^{2}=0 \quad$ and
$a x^{2}+2 h x y+b y^{2}=0$. One line will be common among them if. $a+8 h-16 b=0$ (b)
$a-8 h+16 b=0 \quad a-6 h+9 b=0$
$a+6 h+9 b=0$
A. $a+8 h-16 b=0$
B. $a-8 h+16 b=0$
C. $a-6 h+9 b=0$
D. $a+6 h+9 b=0$

Answer: 2,4

D Watch Video Solution

Exercise Comprehension

1. If $\lambda x^{2}-10 x y+12 y^{2}+5 x-16 y-3=0$,
represents a pair of straight lines, then the
value of λ is
A. 1
B. 2

C. $3 / 2$

D. 3

Answer: 2

D Watch Video Solution

2. Consider the equation of a pair of straight lines as
$\lambda x^{2}-10 x y+12 y^{2}+5 x-16 y-3=0$. The point of intersection of lines is (α, β). Then the value of $\alpha \beta$ is
A. 35
B. 45
C. 20

D. 15

Answer: 1

- View Text Solution

3. Consider the equation of a pair of straight
$\lambda x^{2}-10 x y+12 y^{2}+5 x-16 y-3=0$. The
angles between the lines is θ. Then the value of $\tan \theta$ is
A. $1 / 5$
B. $2 / 9$
C. $1 / 7$
D. $3 / 4$

Answer: 3

D Watch Video Solution
4. Consider a pair of perpendicular straight lines $a x^{2}+3 x y-2 y^{2}-5 x+5 y+c=0$.

The value of a is
A. 1
B. 3
C. 2
D. -2

Answer: 3
5. Consider a pair of perpendicular straight
lines $a x^{2}+3 x y-2 y^{2}-5 x+5 y+c=0$.

The value of c is
A. -3
B. 3
C. -1
D. 1

Answer: 1
6. Consider a pair of perpendicular straight
lines $a x^{2}+3 x y-2 y^{2}-5 x+5 y+c=0$.

Distance between the orthocenter and the circumcenter of triangle $A B C$ is
A. 4
B. $9 / 2$
C. $8 / 3$
D. $7 / 4$

Answer: 4

Exercise Numerical

1. The distance between the lines
$(x+7 y)^{2}+4 \sqrt{2}(x+7 y)-42=0$
is

- Watch Video Solution

2. Area of the triangle formed by the lines
$y^{2}-9 x y+18 x^{2}=0 a n d y=6$ is
3. The value k for which $4 x^{2}+8 x y+k y^{2}=9$
is the equation of a pair of straight lines is \qquad

- Watch Video Solution

4. If the gradient of one of the lines
$x^{2}+h x y+2 y^{2}=0$ twice that of the other,
then sum of possible values of h
5. One of the bisector of the angle between the lines
$a(x-1)^{2}+2 h(x-1)(y-2)+b(y-2)^{2}=0$ is $x+2 y-5=0$. Then other bisector is
(A) $2 x-y=0$
(B) $2 x+y=0$
(C) $2 x+y-4=0$
(D) $x-2 y+3=0$

Single Correct Answer Type

1. A circle rolls between pair of lines
$9 x^{2}+24 x y+16 y^{2}-25=0$ touching both of
them. Then its area is
A. 4π sq. units
B. 8π sq. units
C. 12π sq. units
D. π sq. units

D Watch Video Solution

2. The value of λ with $|\lambda|<16$ such that $2 x^{2}-10 x y+12 y^{2}+5 x+\lambda y-3=0$ represents a pair of straight lines is
A. -10
B. -9
C. 10
D. 9

- Watch Video Solution

$$
\begin{aligned}
& \text { 3. } \begin{array}{l}
\text { If } \\
2 x^{2}+2 h x y+6 y^{2}-4 x+5 y-6=0
\end{array}
\end{aligned}
$$

represents a pair of straight lines, then the length of intercept on the x-axis cut by the lines is equal to
A. 2
B. 4
C. $\sqrt{7}$
D. 0

Answer: B

D View Text Solution

4. Find the joint equation of the pair of lines which pass through the origin and are perpendicular to the lines represented the equation $y^{2}+3 x y-6 x+5 y-14=0$

$$
\text { A. } y^{2}-3 x y=0
$$

B. $3 y^{2}-x y=0$
C. $x^{2}-3 x y=0$

$$
\text { D. } 3 x^{2}-x y=0
$$

Answer: C

- Watch Video Solution

5. If the equation
$4 y^{3}-8 a^{2} y x^{2}-3 a y^{2} x+8 x^{3}=0 \quad$ represents
three straight lines, two of them are perpendicular, then sum of all possible values of a is equal to
A. $\frac{3}{8}$
B. $\frac{-3}{4}$
C. $\frac{1}{4}$
D. -2

Answer: B

D Watch Video Solution

6.

If
the
lines
$3 x^{2}-4 x y+y^{2}+8 x-2 y-3=0$
and
$2 x-3 y+\lambda=0$ are concurrent, then the
value of λ is

$$
\text { A. } 4 \pi-11
$$

B. -11
C. $\frac{1}{11}$
D. 11

Answer: D

D Watch Video Solution

7. A line passes through $(2,0)$. Then which of the
following is not the slope of the line, for which its intercept between $y=x-1$ and
$y=-x+1$ subtends a right angle at the origin?

$$
\begin{aligned}
& \text { A. }-\frac{1}{\sqrt{3}} \\
& \text { B. }-\sqrt{3} \\
& \text { C. } \frac{1}{\sqrt{3}}
\end{aligned}
$$

D. None of these

Answer: B
8. If the line passing through $P(1,2)$ making an angle 45° with the x-axis in the positive direction meets the pair of lines $x^{2}+4 x y+y^{2}=0 \quad$ at $\quad \mathrm{A} \quad$ and $\quad \mathrm{B}$ then
$P A \cdot P B=$
A. $13 / 3$
B. $13 / 6$
C. $11 / 6$
D. $11 / 3$

- View Text Solution

9. Let $y=x$ line is median of the triangle OAB
where O is origin. Equation
$a x^{2}+2 h x y+b y^{2}=0, a, h, b \in N$,
represents combined equation of $O A$ and $O B . A$
and B lie on the ordinate $x=3$. If slope of OA
is twice the slope of $O B$, then greatest possible
value of $a+2 h+b$ is
A. 0
B. -2

C. -1

D. Does not exist

Answer: C

D Watch Video Solution

10. The lines $y=m x$ bisects the angle between the lines $a x^{2}+2 h x y+b y^{2}=0$ if

$$
\text { A. } h\left(1+m^{2}\right)=m(a+b)
$$

$$
\text { B. } h\left(1-m^{2}\right)=m(a-b)
$$

$$
\text { C. } h\left(1+m^{2}\right)=m(a-b)
$$

D. None of these

Answer: B

D Watch Video Solution

11.

$$
x+y=7
$$

and
$a x^{2}+2 h x y+a y^{2}=0,(a \neq 0)$, are three real distinct lines forming a triangle. Then the triangle is (a) isosceles (b) scalene
A. isosceles

B. scalene

C. equilateral

D. right angled triangle

Answer: A
(Watch Video Solution

Multiple Correct Answers Type

1. If $x^{2}+2 h x y+y^{2}=0$ represents the equation of the straight lines through the origin which make an angle α with the straight line $y+x=0$
(a) $\sec 2 \alpha=h$
(b) $\cos \alpha=\sqrt{\frac{(1+h)}{(2 h)}}$
(c) $2 \sin \alpha=\sqrt{\frac{(1+h)}{h}}$
(d) $\cot \alpha=\sqrt{\frac{(1+h)}{(h-1)}}$
A. $\sec 2 \alpha=h$
B. $\cos \alpha=\sqrt{\frac{1+h}{2 h}}$
C. $m_{1}+m_{2}=-2 \sec 2 \alpha$
D. $\cot \alpha=\sqrt{\frac{h+1}{h-1}}$

Answer: A::B::C::D

D Watch Video Solution

2. Let $o<p<q$ and $a \neq 0$ such that the equation
$p x^{2}+4 \lambda x y+q y^{2}+4 a(x+y+1)=0$
represents a pair of straight lines, then a can
lie in the interval
A. $(-\infty, \infty)$
B. $(-\infty, p]$
C. $[p, q]$
D. $[q, \infty)$

Answer: B::D

(Watch Video Solution

3. $9 x^{2}+2 h x y+4 y^{2}+6 x+2 f y-3=0$ represents two parallel lines. Then

$$
\begin{aligned}
& \text { A. } h=6, f=2 \\
& \text { B. } h=-6, f=2 \\
& \text { C. } h=6, f=-2 \\
& \text { D. } h=-6, f=-2
\end{aligned}
$$

Answer: A::D

D Watch Video Solution

4.

Given
pair
of
lines
$2 x^{2}+5 x y+2 y^{2}+4 x+5 y+a=0$ and the
line $L: b x+y+5=0$. Then
A. $a=2$
B. $a=-2$
C. There exists no circle which touches the pair of lines and the line L if $b=5$.

D. There exists no circle which touches the

pair of lines and the line L if $b=-5$

Answer: A::C

D View Text Solution
5. Equation $x^{2}+k_{1} y^{2}+2 k_{2} y=a^{2}$ represents
a pair of perpendicular straight lines if

$$
\begin{aligned}
& \text { A. } k_{1}=1, k_{2}=a \\
& \text { B. } k_{1}=1, k_{2}=-a \\
& \text { C. } k_{1}=-1, k_{2}=-a \\
& \text { D. } k_{1}=-1, k_{2}=a
\end{aligned}
$$

Answer: C::D

6. The equation of the diagonal of the square
formed by the pairs
$x y+4 x-3 y-12=0$

$$
x y-3 x+4 y-12=0 \text { is }
$$

A. $x-y=0$
B. $x+y+1=0$
C. $x+y=0$
D. $x-y+1=0$

Answer: A:B

