©゙"doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - RESNICK AND HALLIDAY

PHYSICS (HINGLISH)

HYDROGEN ATOM

Sample Problem

1. An electron is confined to a one dimensional, infinitely deep potential energy
well of width $\mathrm{L}=100 \mathrm{pm}$. (a) What is the smallest amount of energy the electron can have? (A trapped electron cannot have zero energy.)

- Watch Video Solution

2. How much energy must be transferred to
the electron if it is to make a quantum jump
from its ground state to its second excited state?
3. If the electron gains the energy for the jump
from energy level E_{1} to energy level E_{3} by absorbing light, what light wavelength is required?

D View Text Solution

4. Once the electron has been exicted to the second excited state, what wavelengths of light can it emit by de - excitation?
5. A ground state electron is trapped in the one dimensional infinite potential well of fig.
$38-2$, with width $\mathrm{L}=100 \mathrm{pm}$.
(a) What is the probability that the electron
can be detected in the left one third of well
$\left(x_{1}=0\right.$ to $\left.x_{2}=L / 3\right)$

What is the probability that the electron can be detected in the middle one third of the well?

D View Text Solution

6. Evaluate the amplitude constant A in Eq. 38-

10 for an infinite potential well extending from
$x=0$ to $x=L$.

D View Text Solution

7. What is the wavelength of ligth for the least energetic photon emitted in the Lyman series of the hydrogen spectrum. (Take, hc $=1240 \mathrm{eV}$ nm)

D Watch Video Solution

8. What is the wavelength of the series limit for the Lyman series?

- Watch Video Solution

9. A neutron moving with a speed v strikes a
hydrogen atom in the ground state moving toward it with the same speed. Find the minimum kinetic energy of the neutron for
which inelastic (completely or partially) collision might take place. (Take $m_{a}=m_{b}$.)

D Watch Video Solution

10. Consider an excited hydrogen atom in state n moving with a velocity $v(v \ll c)$. It emits a photon in the direction of its motion and changes its state to a lower state m.

Apply momentum and energy conservation principle to calculate the frequency v of the
emitted radiation, compare this with the frequency v_{0} emitted if the atom were at rest.

D Watch Video Solution

11. A muon is unstable elementary particle wohse mass is $207 m_{e}$ and whose charge is either $+e$ or $-e$. A negative moun $\left(\mu^{-}\right)$
can be captured by a proton to form a muonic atom. (a) Find the distance between the moun and proton for this atom. (b) Find the ionization energy of the atom.
12. Show that the radial probability density for the ground state of the hydrogen atom has maximum at $\mathrm{r}=\mathrm{a}$.

D Watch Video Solution

13. It can be shown that probability $p(r)$ that
the electron in the ground state of the hydrogen atom will be detected inside a sphere of radius R is given by
$p(r)=1-e^{-2 x}\left(1+2 x+2 x^{2}\right)$.
in which x, a dimensionless quantity, is equal to r / a. Find r for $p(r)=0.90$.

D Watch Video Solution

Checkpoint

1. Rank the following pairs of quantum states
for an electron confined to an infinite well
according to the energy differences between
the states, greatest first : (a) $\mathrm{n}=3$ and, (b) $\mathrm{n}=$ 5 and $n=4$, (c) $n=4$ an $n=3$.

D View Text Solution

2. The figure shows three infinite potential wells of widths $L, 2 L$, and $3 L$, each contains an electron in the state for which $\mathrm{n}=10$. Rank the wells according to (a) the number of maxima for the probability density of the electron and (b) the energy of the electron,
greatest first.

D View Text Solution

3. Each of the following particles is confined to
an infinite well, and all four wells have the
same width : (a) an electron, (b) a proton, (c) a deuteron, and (d) and alpha particle. Rank
their zero - point energies, greatest first. The particles are listed in order of increasing mass.

V View Text Solution

4. In the following figure, one of the spectra is emission spectra and other is absorption spectra of the same element. Identify which is which?

- Watch Video Solution

5. What would be the effect of nuclear motion on the radius of the electronic orbit? Would the radius be the same as that of the predicted Bohr orbit By Eq. more or less?

D View Text Solution

6. (a) A group of quantum states of the hydrogen atom has $n=5$. How many values of I are possible for states in the group? (b) A subgroup of hydrogen atom states in the $\mathrm{n}=5$
group has $I=3$. How many values of m_{l} are possible for states in this subgroup?

D View Text Solution

Problems

1. An atom (not a hydrogen atom) absorbs a photon whose associated wavelength is 400 nm and then immediately emits a photon whose associated wavelength is 580 nm . How
much net energy is absorbed by the atom in
this process?

D Watch Video Solution

2. Calculate the radial probability density $P(r)$
for the hydro- gen atom in its ground state at
(a) $r=0$, (b) $r=a$, and (c) $r=2 a$, where a is the Bohr radius.
3. What is the ratio of shortest wavelength of the Balmer series ot the shortest waelength of the Lyman series?

- Watch Video Solution

4. A neutron with a kinetic energy of 6.0 eV collides with a stationary hydrogen atom in its ground state. Explain why the collision must be elastic-that is, why kinetic energy must be conserved. (Hint: Show that the hydrogen
atom cannot be excited as a result of the collision.)

D Watch Video Solution

5. An atom (not a hydrogen atom) absorbs a photon whose associated frequency is $5.6 x x 10^{14} \mathrm{~Hz}$. By what amount does the energy of the atom increase?
6. What is the probability that an electron in
the ground state of the hydrogen atom will be
found between two spherical shells whose radii are r and $r+\Delta r$, (a) if $r=0.500$ a and Δr
$=0.010 \mathrm{a}$ and (b) if $\mathrm{r}=1.00 \mathrm{a}$ and $\Delta r=0.01 \mathrm{a}$,
where a is the Bohr radius? (Hint: Δr is small enough to permit the radial probability density to be taken to be constant between r and $r+\Delta r$.)
7. In the ground state of the hydrogen atom, the electron has a total energy of -13.6 eV . What are (a) its kinetic energy and (b) its potential energy if the electron is one Bohr radius from the central nucleus?

- Watch Video Solution

8. A hydrogen atom, initially at rest in the $n=3$
quantum state, undergoes a transition to the ground state, emitting a photon in the
process. What is the speed of the recoiling hydrogen atom?

D Watch Video Solution

9. How much work must be done to pull apart the electron and the proton that make up the hydrogen atom if the atom is initially in (a) its ground state and (b) the state with $\mathrm{n}=2$?
10. An electron is in a certain energy state in a one- dimensional, infinite potential well from x
$=0$ to $x=L=180 \mathrm{pm}$. The electron's probability density is zero at $x=0.300 \mathrm{~L}$, and $x=0.400 \mathrm{~L}$, it
is not zero at intermediate values of x. The electron then jumps to the next lower energy level by emitting light. What is the change in the electron's energy?

View Text Solution

11. Monochromatic radiation of wavelength λ
is incident on a hydrogen sample in ground
state. Hydrogen atoms absorb a fraction of light and subsequently emit radiations of six different wavelength . Find the wavelength λ.

D Watch Video Solution

12. How much energy is required to cause an electron of hydrogen to move from $n=1$ state to $\mathrm{n}=2$ state?
13. A particle is confined to the onedimensional infinite potential well of Fig. 38-2.

If the particle is in its ground state, what is its probability of detection between (a) $\mathrm{x}=0$ and $x 0.25 \mathrm{~L}$, (b) $\mathrm{x}=0.75 \mathrm{~L}$ and $\mathrm{x}=\mathrm{L}$, and (c) $\mathrm{x}=0.25 \mathrm{~L}$ and $\times 0.75 \mathrm{~L}$?

- View Text Solution

14. For the hydrogen atom in its ground state, calculate (a) the probability density $y(r)$ and
(b) the radial probability density $\Psi^{2}(r)$ for $r=$ a, where a is the Bohr radius.

- View Text Solution

15. Light of wavelength 102.6 nm is emitted by
a hydrogen atom. What are the (a) higher quantum number and (b) lower quantum number of the transition producing this
emission? (c) What is the name of the series that includes the transition?

D Watch Video Solution

16. What are the (a) energy. (b) magnitude of the momentum, and (c) wavelength of the photon emitted when a hydrogen atom undergoes a transition from a state with $\mathrm{n}=3$ to a state with $\mathrm{n}=1$?
17. What are the (a) wavelength range and (b)
frequency range of the Lyman series? What are the (c) wavelength range and (d) frequency range of the Balmer series?

- View Text Solution

18. An electron is trapped in a one-dimensional infinite potential well. For what (a) higher quantum number and (b) lower quantum number is the corresponding energy difference equal to the energy of the $n=5$
level? (c) Show that no pair of adjacent levels has an energy difference equal to the energy of the $\mathrm{n}=6$ level.

- Watch Video Solution

19. Suppose that a hydrogen atom in the ground state absorbs photons of wavelength

15 nm . (a) Will the atom be ionized? (b) If so, what will be the kinetic energy of the electron
when it gets far away from its atom of origin?
20. A proton is confined to a one-dimensional infinite potential well 120 pm wide. What is its ground-state energy?

D Watch Video Solution

21. An electron is trapped in a one-dimensional
infinite potential well. For what (a) higher quantum number and (b) lower quantum number is the corresponding energy difference equal to the energy diflerence ΔF_{43}
between levels $\mathrm{n}=4$ and $\mathrm{n}=3$? (c) Show that no pair of adjacent levels has an energy difference equal to $2 \Delta E_{43}$.

D View Text Solution

22. For what value of the principal quantum number n would the effective radius, as shown in a probability density dot plot for the hydrogen atom, be 1.0 mm ? Assume that has
its maximum value of $n-1$. (Hint: See Fig. 38-19.)

View Text Solution

23. A hydrogen atom is excited from its ground state to the state with $\mathrm{n}=4$. (a) How much energy must be absorbed by the atom?

Consider the photon energies that can be emitted by the atom as it de-excites to the ground state in the several possible ways. (b) How many different energies are possible, what are the (c) highest, (d) second highest,
(e) third highest, (f) lowest, (g) second lowest, and (h) third lowest energies?
24. An electron is trapped in a onedimensional infinite potential well that is 100 pm wide, the electron is in its ground state.

What is the probability that you can detect the electron in an interval of width $\Delta r 5.0 \mathrm{pm}$ centered at $x=(a) 25 \mathrm{pm}$, (b) 50 pm , and (c) 90 pm ? (Hint: The interval Δr is so narrow that you can take the probability density to be constant within it.)
25. An electron in a one-dimensional infinite potential well of length L has ground-state energy E_{1}. The length is changed to L' so that the new ground-state energy is
$E_{1}^{\prime}=0.500 E_{1}$. What is the ratio L^{\prime} / L ?

- Watch Video Solution

26. Consider an atomic nucleus to be equivalent to a one- dimensional infinite potential well with $L=1.4 \times 10^{-14} \mathrm{~m}$, a
typical nuclear diameter. What would be the ground-state energy of an electron if it were trapped in such a potential well? (Note: Nuclei do not contain electrons.)

D View Text Solution

27. (a) What is the energy E of the hydrogenatom electron whose probability density is represented by the dot plot of Fig. 38-16?

What minimum energy is needed to remove this electron from the atom?
28. What is the ground-state energy of (a) an electron and (b) a proton if each is trapped in
a one-dimensional infinite potential well that is 300 pm wide?

- View Text Solution

29. What must be the width of a onedimensional infinite potential well if an
electron trapped in it in the $\mathrm{n}=3$ state is to have an energy of 4.7 eV ?

D Watch Video Solution

30. An electron is trapped in a onedimensional infinite well of width 200 pm and
is in its ground state. What are the (a) longest,
(b) second longest, and (c) third longest wavelengths of light that can excite the electron from the ground state via a single photon absorption?
31. Hydrogen atoms are in an excited state with $\mathrm{n}=5$. In terms of the Bohr's model, (a) how many spectral lines can be radiated as these atoms return to be ground state?

Find the energies of the line with the longest and shortest wavelengths.

- View Text Solution

32. Calculate the smallest kinetic energy which an electron may have and still excite a hydrogen atom initially at rest. What minimum kinetic energy is necessary to ionize the hydrogen atom?

D View Text Solution

33. Using the Bohr model, (a) calculate the speed of the electrons in a hydrogen atom in
$\mathrm{n}=1,2$, and 3 level and (b) calculate the orbital period in each of these levels.

D View Text Solution

34. Average lifetime of a hydrogen atom excited to $\mathrm{n}=2$ state is $10^{-8} \mathrm{~s}$. Find the number of revolutions made by the electron on the average before it jumps to the ground state.
35. The energy needed to detach the electron of a hydrogen like ion in ground state is a system(a) what is the wavelength of the radiation emitted when the electron jumps
from the first excited state to the ground state? (b) What is the radius of the orbit for this atom?

- Watch Video Solution

36. A beam of electrons bombards a sample of hydrogen. Through what potential difference
must the electron have been accelerated if the
first line of the Balmer series is to be emitted?
(Watch Video Solution

Practice Questions Single Correct Choice Type

1. If $\lambda_{1}=$ and λ_{2} are the wavelengths of the
first members of Lyman and Paschen series
respectively, then $\lambda_{1}: \lambda_{2}$, is
A. $1: 3$
B. 1: 30
C. 7:50
D. 7:108

Answer: D

D Watch Video Solution

2. A hydrogen atom of mass m emits a photon corresponding to the fourth line of Brackett series and recoils. If R is the Rydberg's
recoiling velocity is
A. $\frac{3 R h}{36 m}$
B. $\frac{3 R h}{64 m}$
C. $\frac{7 R h}{120 m}$
D. $\frac{7 R h}{3 m}$

Answer: B

D Watch Video Solution

3. In Bohr's model of hydrogen atom, let PE
represents potential energy and $T E$ the total energy. In going to a higher level
A. PE decreases, TE increases
B. PE increases, TE increases
C. PE decreases, TE decreases
D. PE increases, TE decreases

Answer: B

- Watch Video Solution

4. In hydrogen atom which quantity is integral multiple of $\frac{h}{2 \pi}$
A. Angular momentum
B. Angular velocity
C. Angular acceleration
D. Momentum

Answer: A

D Watch Video Solution
5. The ratio of longest wavelength and the shortest wavelength observed in the five spectral series of emission spectrum of hydrogen is
A. $\frac{4}{3}$
B. $\frac{525}{376}$
C. 25
D. $\frac{900}{11}$

Answer: C
6. What should be the ratio of minimum to maximum wavelength of radiation emitted by
transition of an electron to ground state of Bohr's hydrogen atom?

$$
\begin{aligned}
& \text { A. } \frac{3}{4} \\
& \text { B. } \frac{8}{9} \\
& \text { C. } \frac{9}{8} \\
& \text { D. } \frac{24}{25}
\end{aligned}
$$

- Watch Video Solution

7. The frequency f of certain line of the Lyman series of the atomic spectrum of hydrogen satisfies the following conditions: (i) it is the sum of the frequencies of another Lyman line and a Balmer line, (ii) it is the sum of the
frequencies of a Lyman line, a Balmer line and a Paschen line, (iii) it is the sum of the frequencies of a Lyman and a Paschen line but no Brackett line. To what transition does f correspond?

$$
\begin{aligned}
& \text { A. } n_{2}=3 \rightarrow n_{1}=1 \\
& \text { B. } n_{2}=3 \rightarrow n_{1}=2 \\
& \text { C. } n_{2}=2 \rightarrow n_{1}=1 \\
& \text { D. } n_{2}=4 \rightarrow n_{1}=1
\end{aligned}
$$

Answer: D

- View Text Solution

8. The radius of the Bohr orbit in the ground state of hydrogen atom is $0.5 \AA$. The radius of
the orbit of the electron in the third excited
state of He will be
A. $8 \AA$
B. $4 \AA$
C. $0.5 \AA$
D. $0.25 \AA$

Answer: B
(Watch Video Solution

9. The extreme wavelengths of Paschen series

are
A. $0.365 \mu \mathrm{~m}$ and $0.565 \mathrm{mum}^{`}$
B. $0.818 \mu m$ and $1.89 \mu m$
C. $1.45 \mu \mathrm{~m}$ and $4.04 \mu \mathrm{~m}$
D. $2.27 \mu m$ and $7.43 \mu m$

Answer: D

(D) Watch Video Solution
10. The wavelength or radiations emitted is λ_{0}
when an electron in hydrogen atom jumps
from the third orbit to second. If in the H -atom
itself, the electron jumps from fourth orbit to
second orbit, the wavelength of emitted radiation will be

$$
\begin{aligned}
& \text { A. } \frac{20}{27} \lambda_{0} \\
& \text { B. } \frac{16}{25} \lambda_{0} \\
& \text { C. } \frac{27}{20} \lambda_{0} \\
& \text { D. } \frac{29}{16} \lambda_{0}
\end{aligned}
$$

D Watch Video Solution

11. In hydrogen atom, if the difference in the energy of the electron in $\mathrm{n}=2$ and $\mathrm{n}=3$ orbits is
E, the ionization energy of hydrogen atom is
A. 13.2 E
B. 7.2 E
C. 5.6 E
D. 3.2 E

- Watch Video Solution

12. Which of the following is true?
A. Lyman series is a continuous spectrum
B. Paschen series is a line spectrum in the infrared
C. Balmer series is a line spectrum in the
ultraviolet
D. The spectral series formula can be derived from the Rutherford model of the hydrogen atom

Answer: B

D Watch Video Solution

13. According to Bohr's theory, the variation of perimeter(s) of the electronic orbit with the order of orbit (n) in a particular atom is
A. Linear
B. Parabolic
C. Exponential
D. Rectangular hyperbolic

Answer: B

D Watch Video Solution
14. An excited state of H atom emits a photon of wavelength λ and returns in the ground
state. The principal quantum number of excited state is given by:

D Watch Video Solution

15. If the shortest wavelength of Lyman series
of hydrogen atom is x, then the wavelength of
first member of Balmer series of hydrogen
atom will be
A. $9 x / 5$
B. $36 x / 5$

C. $5 x / 9$

D. $5 x / 36$

Answer: B

- Watch Video Solution

16. A particle in a box has quantum states with
energies $E=E_{0} n^{2}$, with $\mathrm{n}=1,2,3,4, \ldots$ and
$E_{0}=1 \mathrm{eV}$. Which of these photons could in
principle be absorbed?
A. 1 eV
B. 2 eV
C. 4 eV
D. 5 eV

Answer: D

D View Text Solution

17. Which of the following transitions produce
the longest wavelength photon (as shown in
the following figure)?

A. $n=4 \rightarrow 3$
B. $n=4 \rightarrow 2$
C. $n=3 \rightarrow 1$
D. $n=3 \rightarrow 2$

Answer: A

- Watch Video Solution

18. For a quantum particle in a box, the lowest energy quantum state has $1 / 2$ of the particle de Broglie wave fitting in the box. The next highest state corresponds to
A. $1 / 4$ de Broglie wavelength
B. $1 / 2$ de Broglie wavelength
C. 1 de Broglie wavelength
D. 2 de Broglie wavelength
19. An electron is in a one-dimensional trap
with zero potential energy in the interior and infinite potential energy at the walls. A graph of its wave function $y(x)$ versus x is shown in
the following figure. The value of quantum
number n is

- View Text Solution

20. A particle is trapped in an infinite potential
energy well. It is in the state with quantum
number $\mathrm{n}=14$. How many nodes does the
probability density have (counting the nodes at the ends of the well)?
A. None
B. 7
C. 13
D. 15

Answer: D
(D) View Text Solution
21. A particle is confined to a one-dimensional trap by infinite potential energy walls. Of the
following states, designed by the quantum number n, for which one is the probability density greatest near the center of the well?
A. $n=2$
B. $n=3$
C. $n=4$
D. $\mathrm{n}=5$
22. In the Bohr model of hydrogen, why is the atom 9 times larger in the $\mathrm{n}=3$ state than in the ground state?
A. The electrons are moving 9 times slower
B. The de Broglie wavelength is 9 times
longer
C. There are 9 times as many wavelengths

D. The de Broglie wavelength is 3 times

longer, and there are 3 times as many
wavelengths

Answer: D

D Watch Video Solution

23. Orbital electrons do not spiral into the nucleus because of
A. Electromagnetic forces
B. Angular momentum conservation
C. The large nuclear size compared to the electron's size
D. The wave nature of the electron

Answer: D

D Watch Video Solution
24. Bohr's model cannot explain the spectrum of neutral Lithium atoms because
A. Lithium has neutrons in its nucleus
B. Lithium has 3 protons in its nucleus
C. Each lithium atom has more than one
electron
D. Neutral lithium atoms have no spectral
lines at all

Answer: C

D Watch Video Solution

25. Compared to hydrogen the atom of helium has
A. More mass and is larger in size
B. More mass and is about the same in size
C. More mass and is smaller in size
D. None of the above

Answer: B
(Watch Video Solution
26. If the value of Planck's constant were to increase by a factor of two, the size of a hydrogen atom would
A. Decrease by a factor of 4
B. Decrease by a factor of 2
C. Increase by a factor of 2
D. Increase by a factor of 4

Answer: D

27. In the Bohr model, if an electron moves in an orbit of greater radius
A. Its total energy increases but its kinetic
energy decreases
B. Its total energy decreases but its kinetic
energy increases
C. Its total energy as well as its kinetic
energy decreases
D. Its total energy as well as its kinetic
energy increascs

- Watch Video Solution

28. Which of the following statements is (are)
wrong for hydrogen atom?
A. The rotational frequency of an electron
in an orbit of radius r proportional to
the cube of the radius of the orbit
B. The linear momentum of the revolving
electron is inversely proportional to the
square root of the radius of the orbit
C. The total energy of the system is
inversely proportional to the radius of
the orbit
D. The magnetic moment of the electron is
proportional to square of the radius of
the orbit
29. The total energy of an electron in the excited state corresponding to $\mathrm{n}=3$ state is E .

What is its potential energy with proper sign?
A. -2 E
B. 2 E
C. -E
D. E
30. Identify the highest energy photons of the following
A. Industrial strength microwave cookers
B. High power AM radio transmitters that cover thousands of square miles
C. Waves from atomic electron transitions
among outer orbits
D. Waves from atomic transitions to inner orbits

Answer: D

D View Text Solution

31. An atom consists of theree energy levels given by a ground state with energy $E_{0}=0$, the first excited state with energy $E_{1}=K$ and the second excited state with energy
$E_{2}=2 K$ where $K>0$. The atom is initially in
the ground state. Light from a laser which emits photons with energy $1.5 K$ is shined on the atom. Which of the following is / are correct?
A. Two photons are absorbed, putting one
atom in a state E_{1} and one atom in a
state E_{2}
B. A photon will always be absorbed, but
half the time the atom will go into the
state will energy e and the other half
into the state with energy 2 e . In this way
energy will be conserved on the average
C. The atom absorbs a photon, goes into
the first excited state with energy e, and
emits a photon with energy 0.5 e to
conserve energy
D. The atom does not absorb any photons
and stays in the ground state

Answer: A

32. When radiation with a continuous
spectrum is passed through a volume of hydrogen gas whose atoms are all in the ground state, which spectral series will be present in the resulting absorption spectrum?
A. Lyman
B. Balmer
C. Paschen
D. Brackett

Answer: A

D View Text Solution

33. Which of the following statement is correct
in connection with hydrogen spectrum
A. The longest wavelength in the Balmer
series is longer than the longest
wavelength in Lyman series
B. The shortest wavelength in the Balmer
series is shorter than the shortest wavelength in the Lyman series
C. The longest wavelength in both Balmer and Lyman series is equal
D. The longest wavelength in Balmer series
is shorter than the longest wavelength
in the Lyman series

Answer: A

34. A hydrogen atom is excited up to 9th level.

The total number of possible spectral lines emitted by the hydrogen atom is
A. 36
B. 35
C. 37
D. 38

Answer: a

D Watch Video Solution
35. A hydrogen atom makes a transition from
$n=2$ to $n=1$ and emits a photon. This
photon strikes a doubly ionized lithium atom
$(Z=3)$ in excited state and completely
removes the orbiting electron. The least quantum number for the excited stated of the ion for the process is:
A. 2
B. 5
C. 3
D. 4

Answer: d

D Watch Video Solution

36. In a sample of hydrogen-like atom all of which are in ground state, a photon beam containing photos of various energies is passed. In absorption spectrum, five dark lines, are observed. The number of bright lines in
the emission spectrum will be (assume that all transitions takes place).
A. 5
B. 10
C. 15
D. None of these

Answer: c

D Watch Video Solution
37. At some place in universe an atom consists of a positron revolving round an antiproton.

The ratio of the wavelength of the corresponding spectral lines from this atom and ordinary hydrogen atoms is

D View Text Solution

38. A hydrogen atom in its ground state absorbs 10.2 eV of energy. What is the increase in its orbital angular momentum ? S
A. 1×10^{-34}
B. 2×10^{-34}
C. 0.5×10^{-34}
D. Cannot be determined

Answer: A

D Watch Video Solution
39. An electron with kinetic energy $=\mathrm{E} \mathrm{eV}$ collides with a hydrogen atom in the ground state. The collision will be elastic

- Watch Video Solution

40. Consider the following:
(i) The probability density for an I = 0 state
(ii) The probability density for a state with I = 0
(iii) The average of the probability densities
for all states in an I = 0 subshell

Of these, which are spherically symmetric?
A. Only (i)
B. Only (ii)
C. Only (i) and (ii)

D. Only (i) and (iii)

Answer: D

D View Text Solution

41. If $P(r)$ is the radial probability density for a
hydrogen atom then the probability that the separation of the electron and proton is between r and $r+d r$ is
42. Which of the following sets of quantum number is not possible for an electron?
A. $\mathrm{n}=4, \mathrm{l}=3, m_{1}=-3$
B. $\mathrm{n}=4, \mathrm{l}=4, m_{1}=-2$
C. $\mathrm{n}=5, \mathrm{l}=-1, m_{1}=2$
D. $\mathrm{n}=3, \mathrm{I}=1, m_{1}=-2$

Answer: A

D Watch Video Solution
43. Which one of the following pairs of characteristics of light is best explained by assuming that light can be described in terms of photons?
A. Photoelectric effect and the effect observed in Young's experiment
B. Diffraction and the formation of atomic
spectra
C. Polarization and the photoelectric effect
D. Existence of line spectra and the photoelectric effect

Answer: D

- Watch Video Solution

44. Complete the following statement: For the ground state of the hydrogen atom, the Bohr model correctly predicts
A. Only the energy
B. Only the angular momentum
C. Only the angular momentum and the spin
D. The angular momentum and the energy

Answer: A

D Watch Video Solution

45. Which one of the following will result in an electron transition from the $\mathrm{n}=4$ level to the $\mathrm{n}=7$ level in a hydrogen atom?
A. Emission of a 0.28 eV photon
B. Absorption of a 0.28 eV photon
C. Emission of a 0.57 eV photon
D. Absorption of a 0.57 eV photon

Answer: D

D Watch Video Solution
46. Determine the wavelength of incident electromagnetic radiation required to cause
an electron transition from the $\mathrm{n}=6$ to the $\mathrm{n}=8$ level in a hydrogen atom.
A. $1.2 \times 10^{3} \mathrm{~nm}$
B. $7.5 \times 10^{3} \mathrm{~nm}$
C. $2.2 \times 10^{3} \mathrm{~nm}$
D. $5.9 \times 10^{3} \mathrm{~nm}$

Answer: B
(Watch Video Solution
47. The kinetic energy of the ground state electron in hydro- gen is +13.6 eV . What is its potential energy?

$$
\text { A. }-13.6 \mathrm{eV}
$$

B. -27.2 eV
C. +27.2 eV
D. +56.2 eV

Answer: B

D View Text Solution
48. Determine the kinetic energy of an electron that has a de Broglie wavelength equal to twice the diameter of the hydrogen atom. Assume that the hydrogen atom is a sphere of radius $5.3 \times 10^{-11} \mathrm{~m}$.
A. 13.6 eV
B. 33.6 eV
C. 27.2 eV
D. 48.9 eV

Answer: B

- Watch Video Solution

49. According to the quantum mechanical picture of the atom, which one of the following statements is true concerning the magnitude of the angular momentum L of an electron in the $n=3$ level of the hydrogen atom?
A. L is 0.318 h
B. L could be 0.225 h or 0.276 h
C. L is $0.477 h$

D. L could be 0.225 h or 0.390 h

Answer: D

D View Text Solution

50. Which quantum number is sufficient to describe the electron in hydrogen atom?
A. $\mathrm{n}=1$
B. $n=3$
C. $n=2$

$$
\text { D. } \mathrm{n}=4
$$

Answer: A

D Watch Video Solution

51. How many electron states (including spin
states) are possible in a hydrogen atom if its
energy is -3.4 eV ?
A. 2
B. 6
C. 4
D. 8

Answer: d

D View Text Solution

Practice Questions More Than One Correct Choice Type

1. An electron is revolving around a nucleus of
hydrogen atom in the first orbit. The radius of
this orbit is 0.53 A . Choose the correct option(s)
A. The radius of the first orbit of hydrogen-
like atom He^{+}is $1.06 \AA$
B. The radius of the first orbit of hydrogen-
like atom He^{+}is $0.265 \AA$
C. The energy of the electron of hydrogen-
like atom He^{+}in the first orbit is $-13 e V$
D. The energy of the electron of hydrogen-
like atom He^{+}in the first orbit is -54.4
eV

Answer: B::D

D View Text Solution

2. According to Bohr's theory, hydrogen atom for an electron in the nth permissible orbit
3. In an electron transition inside a hydrogen
atom, orbital angular momentum may change
by
A. h
B. h / π
C. $h / 2 \pi$
D. $h / 4 \pi$

Answer: B::C

D Watch Video Solution
4. Whenever a hydrogen atom emits a photon in the Balmer series
A. It may emit another photon in Balmer
series
B. It must emit another photon in Lyman
series
C. The second photon, if emitted, will have
a wavelength of about 122 nm

D. It may emit a second photon, but the

 wavelength of this photon cannot be predicted
Answer: B::C

- Watch Video Solution

5. An electron is excited from a lower energy state to a higher energy state in a hydrogen atom. Which of the following
quantity/quantities decreases/decrease in the excitation?
A. Potential energy
B. Angular speed
C. Kinetic energy

D. Angular momentum

Answer: B::C

D Watch Video Solution

6. An electron in hydrogen atom first jumps
from second excited state to first excited state and then from first excited state to ground state. Let the ratio of wavelength, momentum and energy of photons emitted in these two cases be a, b and c respectively, Then
A. $c=1 / a$
B. $a=9 / 4$
C. $b=5 / 27$
D. ${ }^{`} \mathrm{C}=5 / / 27$

Answer: A::C::D

D Watch Video Solution

7. A neutron collies head-on with a stationary
hydrogen atom in ground state. Which of the following statements is/are correct ?
A. If kinetic energy of the neutron is less
than 20.4 eV , collision must be elastic.
B. If kinetic energy of the neutron is less
than 20.4 eV , collision may be inelastic.
C. Inelastic collision may be take place only
when initial kinetic energy of neutron is
greater than 20.4 eV .
D. Perfectly inelastic collision cannot take
place.

Answer: A::C::D

D Watch Video Solution
8. The wavelengths and frequencies of photons in transition 1,2 and 3 for hydrogen
like atom are $\lambda_{1}, \lambda_{2}, \lambda_{3}, v_{1}, v_{2}$ and v_{3} respectively. Then:

A. $v_{3}=v_{1}+v_{2}$

$$
\begin{aligned}
& \text { B. } v_{3}=\frac{v_{1} v_{2}}{v_{1}+v_{2}} \\
& \text { C. } \lambda_{3}=\lambda_{1}+\lambda_{2} \\
& \text { D. } \lambda_{3}=\frac{\lambda_{1} \lambda_{2}}{\lambda_{1}+\lambda_{2}}
\end{aligned}
$$

Answer: A::D

- Watch Video Solution

9. A particular hydrogen like atom has its ground state Binding energy $=122.4 e V$. It is in ground state. Then
A. Its atomic number is 3
B. An electron of 90 eV can excite it
C. An electron of kinetic energy nearly 91.8
eV can be brought to almost rest by this
atom
D. An electron of kinetic energy 2.6 eV may
emerge from the atom when electron of
kinetic energy 125 eV collides with this
atom

- Watch Video Solution

10. In the Bohr model of the hydrogen atom,
let R, v and E represent the radius of the orbit,
the speed of electron and the total energy of
the electron respectively. Which of the following quantity is proportional to the equantum number n
A. VR
B. RE
C. $V E^{-}$

D. $R E^{-}$

Answer: A::C

D Watch Video Solution

11. When Z is doubled in an atom, which of the
following statements are consistent with Bohr's theory?
A. Energy of a state is doubled
B. Radius of an orbit is doubled
C. Velocity of electrons in an orbit is doubled
D. Radius of an orbit is halved

Answer: C::D

- Watch Video Solution

12. If electron of hydrogen atom is replaced by another particle of same charge but of double mass then:
A. Bohr radius will increase
B. Ionization energy of the atom will be doubled
C. Speed of the new particle in a given
state will be lesser than the electron's
speed in same orbit
D. Gap between energy levels will now be
doubled

Answer: B::D

13. If the potential energy is taken zero at ground state of hydrogen atom in place of infinity then
A. Total energy of atom will get changed
B. Binding energy of hydrogen atom in
ground state will remain unchanged
C. Kinetic energy of electron in ground
state will get changed
D. Energy of photon generated because of de-excitation of atom from first excited state will remain unchanged

Answer: A::B::D

D Watch Video Solution

14. A beam of ultraviolet light of all wavelength passes through hydrogen gas at room temperature, in the x-direction. Assume that all photons emitted due to electron
transitions inside the gas emerge in the y direction. Let A and B denote the lights emerging from the gas in the x-and y directions respectively.
(i) Some of the incident wavelengths will be absent in A
(ii) Only those wavelengths will be present in B which are absent in A
(iii) B will contain some visible light
(iv) B will contain some infrared light
A. Some of the incident wavelengths will be absent in A
B. Only those wavelengths will be present in B which are absent in A
C. B will contain some visible light
D. B will contain some infrared light

Answer: A::C::D

D Watch Video Solution

15. A free hydrogen atom in ground state is at rest. A neutron of kinetic energy K collides
with the hydrogen atom. After collision
hydrogen atom emits two photons in succession one of which has energy 2.55 eV .

Assume that the hydrogen atom and neutron has same mass.
(1) Minimum value of K is 25.5 eV
(2) Minimum value of K is 12.75 eV
(3) The other photon has energy 10.2 eV
(4) The upper energy level is of excitation
energy 12.5 eV
A. Minimum value of K is 25.5 eV
B. Minimum value of K is 12.75 eV
C. The other photon has energy 10.2 eV
D. The upper energy level is of excitation energy 12.75 eV

Answer: A::C::D

- Watch Video Solution

Practice Questions Linked Comprehension

1. Hydrogen atom in its ground state is excited
by means of a monochromatic radiation of wavelength $970.6 \AA$. Different wavelengths are
possible in the spectrum. After absorbing the energy of radiation, hydrogen atom goes to the excited state. After $10^{-8} \mathrm{~s}$, the hydrogen atom will come to the ground state by emitting the absorbed energy.

Energy absorbed by hydrogen atom is
A. 1.82 eV
B. 2.18 eV
C. 8.12 eV
D. 12.8 eV

- Watch Video Solution

2. Hydrogen atom in its ground state is excited by means of a monochromatic radiation of wavelength $970.6 \AA$. Different wavelengths are possible in the spectrum. After absorbing the energy of radiation, hydrogen atom goes to the excited state. After $10^{-8} \mathrm{~s}$, the hydrogen atom will come to the ground state by emitting the absorbed energy.

The electron of excited hydrogen atom is in which of the following energy states?
A. 2
B. 3
C. 4
D. 5

Answer: d

D View Text Solution

3. Hydrogen atom in its ground state is excited by means of a monochromatic radiation of wavelength $970.6 \AA$. Different wavelengths are
possible in the spectrum. After absorbing the energy of radiation, hydrogen atom goes to the excited state. After $10^{-8} \mathrm{~s}$, the hydrogen atom will come to the ground state by emitting the absorbed energy.

Number of different wavelengths present in the spectrum
A. 4
B. 6
C. 8
D. 5

Answer: a

D Watch Video Solution

4. A beam of alpha paricles is incident on a target of lead. A particular alpha paticles comes in 'head- on' to a particular lead nucleus and stops $6.50 \times 10^{-14} \mathrm{~m}$ away from the center of the nucleus. (This point is well outside the nucleus.) Assume that the lead nucleus, which has 82 protons, remains at rest.

The mass of alpha particle is $6.64 \times 10^{-27} \mathrm{~kg}$

Calculate the electrostatic potential energy at the instant when the alpha particle stops?
A. 36.3 MeV
B. 45.0 MeV
C. 3.63 Me V
D. 40.0 MeV

Answer: C

D Watch Video Solution

5. A beam of alpha paricles is incident on a target of lead. A particular alpha paticles comes in 'head- on' to a particular lead nucleus and stops $6.50 \times 10^{-14} \mathrm{~m}$ away from the center of the nucleus. (This point is well outside the nucleus.) Assume that the lead nucleus, which has 82 protons, remains at rest.

The mass of alpha particle is $6.64 \times 10^{-27} \mathrm{~kg}$

What initial kinetic energy (in joule and in

MeV)did the alpha particle have?
A. 36.3
B. 0.36
C. 3.63
D. 2.63

Answer: c

D Watch Video Solution

6. A beam of alpha paricles is incident on a target of lead. A particular alpha paticles comes in 'head- on' to a particular lead nucleus and stops $6.50 \times 10^{-14} \mathrm{~m}$ away from the
center of the nucleus. (This point is well outside the nucleus.) Assume that the lead nucleus, which has 82 protons, remains at rest.

The mass of alpha particle is $6.64 \times 10^{-27} \mathrm{~kg}$
What was the initial speed of the alpha particle?

> A. $132 \times 10^{2} \mathrm{~m} / \mathrm{s}$
> B. $1.32 \times 10^{2} \mathrm{~m} / \mathrm{s}$
> C. $13.2 \times 10^{2} \mathrm{~m} / \mathrm{s}$
> D. $0.13 \times 10^{2} \mathrm{~m} / \mathrm{s}$

- Watch Video Solution

7. Two hydrogen-like atoms A and B are of different masses and each atom contains equal number of protons and neutrons. The difference in the energies between the first Balmer lines emitted by A and B is 5.667 eV , when the atoms A and B, moving with the same velocity, strike a heavy target and rebound back with the same velocity. In the process, atom B imparts twice the momentum
to the target than that A imparts.

The series emitted is
A. Lyman
B. Balmer
C. Pfund
D. Paschen

Answer: B

D View Text Solution
8. Two hydrogen-like atoms A and B are of different masses and each atom contains equal numbers of protons and neutrons. The difference in the energies between the first Balmer lines emitted by A and B, is 5.667 eV .

When atom atoms A and B moving with the
same velocity, strike a heavy target, they rebound with the same velocity in the process,
atom B imparts twice the momentum to the
target than that A imparts. Identify the atom
A and B.
A. ${ }_{3}^{2} H$
B. ${ }_{2}^{1} H$
C. ${ }_{2}^{3} H$
D. ${ }_{1}^{2} H$

Answer: B

D Watch Video Solution

9. Two hydrogen-like atoms A and B are of different masses and each atom contains equal numbers of protons and neutrons. The
difference in the energies between the first Balmer lines emitted by A and B, is 5.667 eV .

When atom atoms A and B moving with the same velocity, strike a heavy target, they rebound with the same velocity in the process, atom B imparts twice the momentum to the target than that A imparts. Identify the atom
A and B.
A. ${ }_{4}^{2} H$
B. ${ }_{2}^{4} H$
C. ${ }_{1}^{1} H$

D. ${ }_{3}^{2} H$

Answer: A

- Watch Video Solution

Practice Questions Matrix Match

1. The ground state and first excited state
$-13.6 e V$ and $-3.4 e V$, respectively.

zero, then

Column I

Column II

(a) Potential energy in the first excited state \quad (p) 3.4 eV would be
(b) Total energy is the first excited state
(q) 23.8 eV would be
(c) Kinetic energy in the first excited state
(r) 20.4 cV would be
(d) Total energy in the ground state would be (s) 13.6 eV

- View Text Solution

2. The question is for spectral series of hydrogen atom. Column I Column II

Column I
(a) Lyman series
(b) Balmer series
(c) Paschen series
(d) Brackett series

Column II

(p) Infrared region
(q) Ultraviolet region
(r) Visible region
(s) Invisible region

- Watch Video Solution

3. In a hydrogen atom, whenever there is transition of electron between different energy levels, energy is emitted or absorbed, and hydrogen spectrum is obtained. In the given table, Column I shows the names of the different series of hydrogen atom spectrum,

Column II shows the energy levels from where electron transition takes place and Column III shows the EM wave region where these different series exists.

Column I		Column II		Column III	
(1)	Brackett serics	(i)	Electron jumps from any of the higher states to the ground state or first state	(J)	The series of spectral lines emitted lies in far infrared region
(II)	Lyman series	(ii)	When an electron jumps from any of the higher states to the state with $n=3$	(K)	The series of spectral lines emitted lies in ultra-violet region
(III)	Balmer series	(iii)	Electron jumps from any of the higher states to the state with $n=4$	(L)	The series of spectral lines emitted lies in near infrared region
(IV)	Paschen series	(iv)	Electron jumps from any of the higher states to the state with $n=2$	(M)	The series of spectral lines emitted lies in visible region

Which series has the following wavelength

$$
v=R Z^{2}\left(\frac{1}{1^{2}}-\frac{1}{n_{2}^{2}}\right), n_{2}=2,3,4,5, \ldots ?
$$

A. $(I)(i v)(M)$
B. $(I V)(i i)(L)$
C. $(I I)(i)(K)$

D. $(I I)(i)(K)$

Answer: A::D

D View Text Solution

4. In a hydrogen atom, whenever there is transition of electron between different energy levels, energy is emitted or absorbed, and hydrogen spectrum is obtained. In the given table, Column I shows the names of the different series of hydrogen atom spectrum,

Column II shows the energy levels from where

electron transition takes place and Column III

shows the EM wave region where these

different series exists.

Column I		Column II		Column III	
(I)	Brackett serics	(i)	Electron jumps from any of the higher states to the ground state or first state	(J)	The series of spectral lines emitted lies in far infrared region
(II)	Lyman series	(ii)	When an electron jumps from any of the higher states to the state with $n=3$	(K)	The series of spectral lines emitted lies in ultra-violet region
(III)	Balmer series	(iii)	Electron jumps from any of the higher states to the state with $n=4$	(L)	The series of spectral lines emitted lies in near infrared region
(IV)	Paschen series	(iv)	Electron jumps from any of the higher states to the state with $n=2$	(M)	The series of spectral lines emitted lies in visible region

Which series does the diagram depict?

A. $(I)(i i)(J)$
B. $(I I I)(i v)(M)$
C. $(I I)(i i i)(L)$
D. $(I)(i)(M)$

Answer: A::B

D View Text Solution

5. In a hydrogen atom, whenever there is transition of electron between different energy levels, energy is emitted or absorbed, and hydrogen spectrum is obtained. In the given table, Column I shows the names of the different series of hydrogen atom spectrum,

Column II shows the energy levels from where electron transition takes place and Column III
shows the EM wave region where these

different series exists.

Column I		Column II		Column III	
(1)	Brackett serics	(i)	Electron jumps from any of the higher states to the ground state or first state	(J)	The series of spectral lines emitted lies in far infrared region
(II)	Lyman series	(ii)	When an electron jumps from any of the higher states to the state with $n=3$	(K)	The series of spectral lines emitted lies in ultra-violet region
(III)	Balmer series	(iii)	Electron jumps from any of the higher states to the state with $n=4$	(L)	The series of spectral lines emitted lies in near infrared region
(IV)	Paschen series	(iv)	Electron jumps from any of the higher states to the state with $n=2$	(M)	The series of spectral lines emitted lies in visible region

Which series has the following wavelength
$v=R Z^{2}\left(\frac{1}{4^{2}}-\frac{1}{n_{2}^{2}}\right) ?$
A. $(I I)(i i)(J)$
B. $(I)(i i i)(J)$
C. $(I V)(i)(L)$
D. $(I I)(i i i)(M)$

Answer: A::B::C

D View Text Solution

6. Different hydrogen spectral series have different wave- lengths. In the given table,

Column I shows the values of energy levels between which electronic transition takes
place, Column II shows the formula of maximum wave- length of different spectral series and Column III shows the formula of minimum wavelength of different spectral series

Column I	Column II	Column III
$\text { (I) } \begin{array}{ll} n_{2}=2,3,4, \ldots, \infty ; \\ & n_{1}=1 \end{array}$	(i) $\lambda_{\text {max }}=\frac{36}{5 R}$	(J) $\lambda_{\text {max }}=\frac{25}{R}$
$\text { (II) } \begin{aligned} n_{2} & =3,4,5, \ldots, \infty ; \\ & n_{1} \end{aligned}=2$	(ii) $\lambda_{\operatorname{tax}}=\frac{4}{3 R}$	(K) $\lambda_{\text {man }}=\frac{1}{R}$
$\text { (III) } \begin{aligned} n_{2} & =6,7,8, \ldots, \infty ; \\ & n_{1} \end{aligned}=5$	(iii) $h_{\text {mas }}=\frac{144}{7 R}$	(L) $\lambda_{\text {min }}-\frac{4}{R}$
$\text { (IV) } \begin{aligned} n_{2} & =4,5,6, \ldots, \infty ; \\ n_{1} & =3 \end{aligned}$	(iv) $\lambda_{\max }=\frac{900}{11 R}$	(M) $\lambda_{\operatorname{man}}=\frac{9}{R}$

Determine the wavelengths, $\lambda_{\text {max }}$ and $\lambda_{\text {min }}$ for Balmer series.
A. $(I I)(i)(L)$
B. $(I I I)(i i)(K)$
C. $(I)(i)(L)$
D. $(I)(i i i)(J)$

Answer: A

D View Text Solution
7. Different hydrogen spectral series have different wave- lengths. In the given table,

Column I shows the values of energy levels
between which electronic transition takes
place, Column II shows the formula of maximum wave- length of different spectral series and Column III shows the formula of minimum wavelength of different spectral series
$\left.\begin{array}{lll}\hline \text { Column I } & \text { Column II } & \text { Column III } \\ \hline \text { (I) } n_{2}=2,3,4, \ldots \infty ; & \text { (i) } \lambda_{m \text { men }}=\frac{36}{5 R} & \text { (J) } \lambda_{m m}=\frac{25}{R} \\ n_{1}=1\end{array}\right)$

Determine the wavelengths $\lambda_{\max }$ and $\lambda_{\text {min }}$ for Pfund series.
A. $(I)(i i)(M)$
B. $(I I I)(i v)(J)$
C. $(I I)(i i)(K)$
D. $(I I)(i v)(M)$

Answer: A::B

D View Text Solution

8. Different hydrogen spectral series have different wave- lengths. In the given table,

Column I shows the values of energy levels
between which electronic transition takes
place, Column II shows the formula of maximum wave- length of different spectral series and Column III shows the formula of minimum wavelength of different spectral series

Column I	Column II	Column III
$\text { (I) } \begin{aligned} & n_{2}=2,3,4, \ldots \infty ; \\ & n_{1}=1 \end{aligned}$	$\text { (i) } \lambda_{\text {men }}=\frac{36}{5 R}$	(J) $\lambda_{\text {men }}=\frac{25}{R}$
$\text { (II) } \begin{aligned} & n_{2}=3,4,5, \ldots, \infty ; \text {; } \\ & n_{1}=2 \end{aligned}$	(ii) $\lambda_{\text {mem }}=\frac{4}{3 R}$	(K)
$\text { (III) } n_{2}=6,7,,_{1} \ldots, \ldots ;$	$\text { (iii) } \lambda_{\text {mand }}=\frac{144}{7 R}$	(L) $\lambda_{\text {m }}$
$\begin{gathered} \text { (IV) } n_{2}=4,5,6, \ldots, \infty: \\ n_{1}=3 \end{gathered}$	$\text { (iv) } \lambda_{\text {nme }}=\frac{900}{11 R}$	$\text { (M) } \lambda_{\text {me }}=\frac{9}{R}$

Determine the wavelength, $\lambda_{\max }$ and $\lambda_{\text {min }}$ for Paschen series.
A. $(I I I)(i)(L)$
B. $(I V)(i)(J)$
C. $(I I I)(i v)(J)$
D. $(I V)(i i i)(M)$

Answer: A::C::D

- View Text Solution

Practice Questions Integer Type

1. The radius of hydrogen atom in its ground state is $5.3 \times 10^{-11} \mathrm{~m}$. After collision with an electron, it is found to have a radius of $21.2 \times 10^{-11} \mathrm{~m}$. What is the principal quantum number of the final state of the atom?

D Watch Video Solution

2. An electron is placed in an orbit about a nucleus of charge +Ze . It requires 47.2 eV
energy to excite an electron from second Bohr orbit to third Bohr orbit. What is the value of

Z?

D Watch Video Solution

3. A hydrogen-like atom (described by Bohr's model) is observed to emit six wavelengths originating from all possible transitions between a group of levels. These levels have energies between -0.85 eV and -0.544 eV
(including both these values). Find the atomic number of the atom.

- View Text Solution

4. Determine the energy of the photon (in eV) emitted when the electron in a hydrogen atom
undergoes a transition from the $\mathrm{n}=8$ level to
then $=6$ level.
5. An electron is in the ground state of a hydrogen atom. A photon is absorbed by the atom and the electron is excited to the $n=2$ state. What is the energy in eV of the photon?

D Watch Video Solution

6. Two possible states for the hydrogen atom
are labeled A and B. The maximum magnetic quantum number for state A is +3 . For state B,
the maximum value is +1 . What is the ratio of
the magnitudes of the orbital angular
momenta, L_{A} / L_{B}, of an electron in these two
states ?

D View Text Solution

