©゙doubtnut

MATHS

BOOKS - CENGAGE

PROGRESSION AND SERIES

Single correct Answer

1. If $3 x^{2}-2 a x+\left(a^{2}+2 b^{2}+2 c^{2}\right)=2(a b+b c)$, then a, b, c can be in
A. A. P.
B. G. P.
C. H. P.
D. None of these
2. If $x=\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots, y=\frac{1}{1^{2}}+\frac{3}{2^{2}}+\frac{1}{3^{2}}+\frac{3}{4^{2}}+\ldots$. and
$z=\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\ldots$ then
A. x, y, z are in A. P.
B. $\frac{y}{6}, \frac{x}{3}, \frac{z}{2}$ are in A. P.
C. $\frac{y}{6}, \frac{x}{3}, \frac{z}{2}$ are in A. P.
D. $6 y, 3 x, 2 z$ are in H. P.

Answer: B

- Watch Video Solution

3. For $a, b, c \in R-\{0\}$, let $\frac{a+b}{1-a b}, b, \frac{b+c}{1-b c}$ are in A. P. If α, β are the roots of the quadratic equation
$2 a c x^{2}+2 a b c x+(a+c)=0$, then the value of $(1+\alpha)(1+\beta)$ is
B. 1
C. -1
D. 2

Answer: B

D Watch Video Solution

4. If $a_{1}, a_{2}, a_{3}, \ldots \ldots a_{87}, a_{88}, a_{89}$ are the arithmetic means between 1 and 89, then $\sum_{r=1}^{89} \log \left(\tan \left(a_{r}\right)^{\circ}\right)$ is equal to
A. 0
B. 1
C. $\log _{2} 3$
D. $\log 5$

Answer: A

5. Let a_{1}, a_{2}, \ldots and b_{1}, b_{2}, \ldots be arithemetic progression such that $a_{1}=25, b_{1}=75$ and $a_{100}+b_{100}=100$, then the sum of first hundred term of the progression $a_{1}+b_{1}, a_{2}+b_{2}$,.... is equal to
A. 1000
B. 100000
C. 10000
D. 24000

Answer: C

- Watch Video Solution

6. The sum of 25 terms of an $A . P$, whose all the terms are natural numbers, lies between 1900 and 2000 and its $9^{\text {th }}$ term is 55 . Then the first term of the $A . P$. is
A. 5
B. 6
C. 7
D. 8

Answer: C

- Watch Video Solution

7. If the first, fifth and last terms of an $A . P$. is l, m, p, respectively, and sum of the A. P. is $\frac{(l+p)(4 p+m-5 l)}{k(m-l)}$ then k is
A. 2
B. 3
C. 4
D. 5

- Watch Video Solution

8. If $a_{1}, a_{2} a_{3}, \ldots, a_{15}$ are in $A . P$ and $a_{1}+a_{8}+a_{15}=15$, then $a_{2}+a_{3}+a_{8}+a_{13}+a_{14}$ is equal to
A. 25
B. 35
C. 10
D. 15

Answer: A

- Watch Video Solution

9. If $a_{1}, a_{2}, a_{3}, \ldots$ are in A.P. and $a_{i}>0$ for each i , then $\sum_{i=1}^{n} \frac{n}{a_{i+1}^{\frac{2}{3}}+a_{i+1}^{\frac{1}{3}} a_{i}^{\frac{1}{3}}+a_{i}^{\frac{2}{3}}}$ is equal to
A. $\frac{n}{a_{n}^{2 / 3}+a_{n}^{1 / 3}+a_{1}^{2 / 3}}$
B. $\frac{n+1}{a_{n}^{2 / 3}+a_{n}^{1 / 3}+a_{1}^{2 / 3}}$
C. $\frac{n-1}{a_{n}^{2 / 3}+a_{n}^{1 / 3} \cdot a_{1}^{1 / 3}+a_{1}^{2 / 3}}$
D. None of these

Answer: C

D Watch Video Solution

10. Between the numbers 2 and 20,8 means are inserted. Then their sum is
A. 88
B. 44
C. 176
D. None of these

Answer: A

11. Let $a_{1}, a_{2}, a_{3}, \ldots ., a_{4001}$ is an A.P. such that
$\frac{1}{a_{1} a_{2}}+\frac{1}{a_{2} a_{3}}+\ldots+\frac{1}{a_{4000} a_{4001}}=10$
$a_{2}+a_{400}=50$.
Then $\left|a_{1}-a_{4001}\right|$ is equal to
A. 20
B. 30
C. 40
D. None of these

Answer: B

- Watch Video Solution

12. An A. P. consist of even number of terms $2 n$ having middle terms equal to 1 and 7 respectively. If n is the maximum value which satisfy $t_{1} t_{2 n}+713 \geq 0$, then the value of the first term of the series is
A. 17
B. -15
C. 21
D. -23

Answer: D

- Watch Video Solution

13. If the sum of the first 100 terms of an $A P$ is -1 and the sum of even terms lying in first 100 terms is 1 , then which of the following is not true?
A. Common difference of the sequence is $\frac{3}{50}$
B. First term of the sequence is $\frac{-149}{50}$
C. $100^{\text {th }}$ term $=\frac{74}{25}$
D. None of these
14. Given the sequence of numbers $x_{1}, x_{2}, x_{3}, x_{4}, \ldots, x_{2005}$, $\frac{x_{1}}{x_{1}+1}=\frac{x_{2}}{x_{2}+3}=\frac{x_{3}}{x_{3}+5}=\ldots=\frac{x_{2005}}{x_{2005}+4009}$, the nature of the sequence is
A. A. P.
B. G. P.
C. H. P.
D. None of these

Answer: A

Watch Video Solution

15. If $b-c, b x-c y, b x^{2}-c y^{2}(b, c \neq 0)$ are in G. P, then the value of $\left(\frac{b x+c y}{b+c}\right)\left(\frac{b x-c y}{b-c}\right)$ is
A. x^{2}
B. $-x^{2}$
C. $2 y^{2}$
D. $3 y^{2}$

Answer: A

- Watch Video Solution

16. If $a_{1}, a_{2}, a_{3}, \ldots$ are in G. P., where $a_{i} \in C$ (where C satands for set of complex numbers) having r as common ratio such that $\sum_{k=1}^{n} a_{2 k-1} \sum_{k=1}^{n} a_{2 k+3} \neq 0$, then the number of possible values of r is
A. 2
B. 3
C. 4
D. 5

Answer: C

- Watch Video Solution

17. If a, b, c are real numbers forming an A. P. and $3+a, 2+b, 3+c$ are in $G . P$., then minimum value of $a c$ is
A. -4
B. -6
C. 3
D. None of these

Answer: B

D Watch Video Solution

18. a, b, c, d are in increasing G. P. If the $A M$ between a and b is 6 and the $A M$ between c and d is 54 , then the $A M$ of a and b is
A. 15
B. 48
C. 44
D. 42

Answer: D

- Watch Video Solution

19. The numbers a, b, c are in $A . P$. and $a+b+c=60$. The numbers $(a-2), b,(c+3)$ are in $G . P$. Then which of the following is not the possible value of $a^{2}+b^{2}+c^{2}$?
A. 1208
B. 1218
C. 1298
D. None of these

Answer: B

- Watch Video Solution

20. a, b, c are positive integers formaing an incresing $G . P$. and $b-a$ is a perfect cube and $\log _{6} a+\log _{6} b+\log _{6} c=6$, then $a+b+c=$
A. 100
B. 111
C. 122
D. 189

Answer: D

- Watch Video Solution

21. The first three terms of a geometric sequence are x, y, z and these have the sum equal to 42 . If the middle term y is multiplied by $5 / 4$, the
numbers $x, \frac{5 y}{4}, z$ now form an arithmetic sequence. The largest possible value of x is
A. 6
B. 12
C. 24
D. 20

Answer: C

Watch Video Solution

22. If an infinite G.P. has $2 n d$ term x and its sum is 4 , then prove that
$\xi n(-8,1]-\{0\}$
A. $(0,2]$
B. $(1,8)$
C. $(-8,1]$
D. none of these

Answer: C

- Watch Video Solution

23. In a $G P$, the ratio of the sum of the first eleven terms of the sum of the last even terms is $1 / 8$ and the ratio of the sum of all the terms without the first nine to the sum of all terms without the last nine is 2 .

Then the number of terms in the $G P$ is
A. 40
B. 38
C. 36
D. 34

Answer: B

24. The number of ordered pairs (x, y), where $x, y \in N$ for which $4, x, y$ are in $H . P$. , is equal to
A. 1
B. 2
C. 3
D. 4

Answer: C

- Watch Video Solution

25. If $a+c, a+b, b+c$ are in G. P and a, c, b are in H. P. where a, b, $c>0$, then the value of $\frac{a+b}{c}$ is
A. 3
B. 2
C. $\frac{3}{2}$
D. 4

Answer: B

- Watch Video Solution

26. If a, b, c are in $H . P, b, c, d$ are in $G . P$ and c, d, e are in $A . P$., then the value of e is
A. $\frac{a b^{2}}{(2 a-b)^{2}}$
B. $\frac{a^{2} b}{(2 a-b)^{2}}$
C. $\frac{a^{2} b^{2}}{(2 a-b)^{2}}$
D. None of these

Answer: A

27. If $x>1, y>1, z>1$ are in G. P., then $\log _{e x} e, \log _{e y} e, \log _{e z} e$ are in
A. A. P.
B. H. P.
C. G. P.
D. none of these

Answer: B

- Watch Video Solution

28. If x, y, z are in $G . P .(x, y, z>1)$, then $\frac{1}{2 x+\log _{e} x}, \frac{1}{4 x+\log _{e} y}$, $\frac{1}{6 x+\log _{e z} z}$ are in
A. A. P.
B. G. P.
C. H. P.
D. none of these

Answer: C

- Watch Video Solution

29. The arithmetic mean of two positive numbers is 6 and their geometric mean G and harmonic mean H satisfy the relation $G^{2}+3 H=48$. Then the product of the two numbers is
A. 24
B. 32
C. 48
D. 54

Answer: B

D Watch Video Solution

30. If x, y, z be three numbers in $G . P$. such that 4 is the $A . M$. between x and y and 9 is the $H . M$. between y and z, then y is
A. 4
B. 6
C. 8
D. 12

Answer: B

- Watch Video Solution

31. If harmonic mean of $\frac{1}{2}, \frac{1}{2^{2}}, \frac{1}{2^{3}}, \ldots, \frac{1}{2^{10}}$ is $\frac{\lambda}{2^{10}-1}$, then $\lambda=$
A. 10.2^{10}
B. 5
C. 5.2^{10}
D. 10

D Watch Video Solution

32. An aeroplane flys around squares whose all sides are of length 100 miles. If the aeroplane covers at a speed of 100 mph the first side, 200 mph the second side 300 mph the third side and 400 mph the fourth side. The average speed of aeroplane around the square is
A. $190 m p h$
B. $195 m p h$
C. $192 m p h$
D. $200 m p h$

Answer: C

33. The sum of the series $1+\frac{9}{4}+\frac{36}{9}+\frac{100}{16}+\ldots$ infinite terms is
A. 446
B. 746
C. 546
D. 846

Answer: A

- Watch Video Solution

34. The sum $2 \times 5+5 \times 9+8 \times 13+\ldots 10$ terms is
A. 4500
B. 4555
C. 5454
D. None of these

D Watch Video Solution

35. The sum of n terms of series
$a b+(a+1)(b+1)+(a+2)(b+2)+\ldots+(a+(n-1)(b+(n-1))$
if $a b=\frac{1}{6}$ and $(1+b)=\frac{1}{3}$ is
A. $\frac{n}{6}(1-2 n)^{2}$
B. $\frac{n}{6}\left(1+n-2 n^{2}\right)$
C. $\frac{n}{6}\left(1-2 n+2 n^{2}\right)$
D. None of these

Answer: C

- Watch Video Solution

36. $\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \frac{1}{a^{i+j+k}}$ is equal to (where $|a|>1$)
A. $(a-1)^{-3}$
B. $\frac{3}{a-1}$
C. $\frac{3}{a^{3}-1}$
D. None of these

Answer: A

- Watch Video Solution

37. The coefficient of x^{1274} in the expansion of $(x+1)(x-2)^{2}(x+3)^{3}(x-4)^{4} \ldots(x+49)^{49}(x-50)^{50}$ is
A. 1275
B. -1275
C. $-\sum_{i=1}^{50} i^{2}$
D. $-\sum_{i=1}^{50} i^{2}$
38. If the positive integers are written in a triangular array as shown below,
then the row in which the number 2010 will be, is
A. 65
B. 61
C. 63
D. 65

Answer: C

- Watch Video Solution

39. The value of $\sum_{i=1}^{n} \sum_{j=1}^{i} \underset{k=1}{j}=220$, then the value of n equals
A. 11
B. 12
C. 10
D. 9

Answer: C

- Watch Video Solution

40. The sum $\sum_{k=1}^{10} \sum_{\substack{j=1 \\ i \neq j \neq k}}^{10} \sum_{i=1}^{10} 1$ is equal to
A. 240
B. 720
C. 540
D. 1080

Answer: B

41. The sum $\sum_{k=1}^{10} \sum_{\substack{j=1 \\ i<j<k}}^{10} \sum_{i=1}^{10} 1$ is equal to
A. 120
B. 240
C. 360
D. 720

Answer: A

- Watch Video Solution

42. If the sum to infinty of the series, $1+4 x+7 x^{2}+10 x^{3}+\ldots$, is $\frac{35}{16}$, where $|x|<1$, then ' x ' equals to
A. $19 / 7$
B. $1 / 5$
C. $1 / 4$
D. None of these

Answer: B

- Watch Video Solution

43. The value of $\sum_{n=1}^{\infty}(-1)^{n+1}\left(\frac{n}{5^{n}}\right)$ equals
A. $\frac{5}{12}$
B. $\frac{5}{24}$
C. $\frac{5}{36}$
D. $\frac{5}{16}$

Answer: C

- Watch Video Solution

44. Find the sum of the infinte series $\frac{1}{9}+\frac{1}{18}+\frac{1}{30}+\frac{1}{45}+\frac{1}{63}+\ldots$
A. $\frac{1}{3}$
B. $\frac{1}{4}$
C. $\frac{1}{5}$
D. $\frac{2}{3}$

Answer: A

- Watch Video Solution

45. If $\sum_{r=1}^{r=n} \frac{r^{4}+r^{2}+1}{r^{4}+r}=\frac{675}{26}$, then n equal to
A. 10
B. 15
C. 25
D. 30

Answer: C

46. The sequence $\left\{x_{k}\right\}$ is defined by $x_{k+1}=x_{k}^{2}+x_{k}$ and $x_{1}=\frac{1}{2}$. Then $\left[\frac{1}{x_{1}+1}+\frac{1}{x_{2}+1}+\ldots+\frac{1}{x_{100}+1}\right]$ (where [.] denotes the greatest integer function) is equal to
A. 0
B. 2
C. 4
D. 1

Answer: D

- Watch Video Solution

47. The absolute value of the sum of first 20 terms of series, if $S_{n}=\frac{n+1}{2}$ and $\frac{T_{n-1}}{T_{n}}=\frac{1}{n^{2}}-1$, where n is odd, given S_{n} and T_{n} denotes sum of first n terms and $n^{\text {th }}$ terms of the series
A. 340
B. 430
C. 230
D. 320

Answer: B

- Watch Video Solution

48.

$S_{n}=\left(1^{2}-1+1\right)(1!)+\left(2^{2}-2+1\right)(2!)+\ldots+\left(n^{2}-n+1\right)(n!)$,
then $S_{50}=$
A. 52 !
B. $1+49 \times 5$!
C. $52!-1$
D. $50 \times 51!-1$

Answer: B

- Watch Video Solution

49. If $S_{n}=\frac{1.2}{3!}+\frac{2.2^{2}}{4!}+\frac{3.2^{2}}{5!}+\ldots+$ up to n terms, then sum of infinite terms is
A. $\frac{4}{\pi}$
B. $\frac{3}{e}$
C. $\frac{\pi}{r}$
D. 1

Answer: D

Watch Video Solution

50. There is a certain sequence of positive real numbers. Beginning from the third term, each term of the sequence is the sum of all the previous
terms. The seventh term is equal to 1000 and the first term is equal to 1 . The second term of this sequence is equal to
A. 246
B. $\frac{123}{2}$
C. $\frac{123}{4}$
D. 124

Answer: B

- Watch Video Solution

51. The sequence $\left\{x_{1}, x_{2}, \ldots x_{50}\right\}$ has the property that for each k, x_{k} is k less than the sum of other 49 numbers. The value of $96 x_{20}$ is
A. 300
B. 315
C. 1024
D. 0

Answer: B

- Watch Video Solution

52. Let $a_{0}=0$ and $a_{n}=3 a_{n-1}+1$ for $n \geq 1$. Then the remainder obtained dividing a_{2010} by 11 is
A. 0
B. 7
C. 3
D. 4

Answer: A

53. Suppose $a_{1}, a_{2}, a_{3}, \ldots, a_{2012}$ are integers arranged on a cicle. Each number is equal to the average of its two adjacent numbers. If the sum of all even idexed numbers is 3018 , what is the sum of all numbers ?
A. 0
B. 9054
C. 12072
D. 6036

Answer: D

- Watch Video Solution

54. The sum of the series $\frac{9}{5^{2} \cdot 2 \cdot 1}+\frac{13}{5^{3} \cdot 3 \cdot 2}+\frac{17}{5^{4} \cdot 4 \cdot 3}+\ldots$ upto infinity
A. 1
B. $\frac{9}{5}$
C. $\frac{1}{5}$
D. $\frac{2}{5}$

Answer: C

- Watch Video Solution

Comprehension

1. The $1^{s t}, 2^{n d}$ and $3^{r d}$ terms of an arithmetic series are a, b and a^{2} where ' a ' is negative. The $1^{s t}, 2^{n d}$ and $3^{r d}$ terms of a geometric series are a, a^{2} and b respectively.

The sum of infinite geometric series is
A. $\frac{-1}{2}$
B. $\frac{-3}{2}$
C. $\frac{-1}{3}$
D. None of these

Answer: C

- Watch Video Solution

2. The $1^{\text {st }}, 2^{\text {nd }}$ and $3^{r d}$ terms of an arithmetic series are a, b and a^{2} where ' a ' is negative. The $1^{s t}, 2^{n d}$ and $3^{r d}$ terms of a geometric series are a, a^{2} and b respectively.

The sum of the 40 terms of the arithmetic series is
A. $\frac{545}{2}$
B. 220
C. 250
D. $\frac{575}{2}$

Answer: A

Let $A B C D$ is a unit square and each side of the square is divided in the ratio $\alpha:(1-\alpha)(0<\alpha<1)$. These points are connected to obtain another square. The sides of new square are divided in the ratio $\alpha:(1-\alpha)$ and points are joined to obtain another square. The process is continued idefinitely. Let a_{n} denote the length of side and A_{n} the area of the $n^{\text {th }}$ square
If $\alpha=\frac{1}{3}$, then the least value of n for which $A_{n}<\frac{1}{10}$ is
A. 4
B. 5
C. 6
D. 7

Answer: B

- Watch Video Solution

4.

Let $A B C D$ is a unit square and each side of the square is divided in the ratio $\alpha:(1-\alpha)(0<\alpha<1)$. These points are connected to obtain another square. The sides of new square are divided in the ratio $\alpha:(1-\alpha)$ and points are joined to obtain another square. The process is continued idefinitely. Let a_{n} denote the length of side and A_{n} the area
of the $n^{\text {th }}$ square
The value of α for which $\sum_{n=1}^{\infty} A_{n}=\frac{8}{3}$ is/are
A. $\frac{1}{3}, \frac{2}{3}$
B. $\frac{1}{4}, \frac{3}{4}$
C. $\frac{1}{5}, \frac{4}{5}$
D. $\frac{1}{2}$

Answer: B

- View Text Solution

5.

Let $A B C D$ is a unit square and each side of the square is divided in the ratio $\alpha:(1-\alpha)(0<\alpha<1)$. These points are connected to obtain another square. The sides of new square are divided in the ratio $\alpha:(1-\alpha)$ and points are joined to obtain another square. The process is continued idefinitely. Let a_{n} denote the length of side and A_{n} the area of the $n^{\text {th }}$ square

The value of α for which side of $n^{\text {th }}$ square equal to the diagonal of $(n+1)^{t h}$ square is
A. $\frac{1}{3}$
B. $\frac{1}{4}$
C. $\frac{1}{2}$
D. $\frac{1}{\sqrt{2}}$

Answer: C

- Watch Video Solution

6. Let $f(n)$ denote the $n^{\text {th }}$ terms of the seqence of $3,6,11,18,27, \ldots$. and $g(n)$ denote the $n^{\text {th }}$ terms of the seqence of $3,7,13,21, \ldots$ Let $F(n)$ and $G(n)$ denote the sum of n terms of the above sequences, respectively. Now answer the following:
$\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=$
A. 0
B. 1
C. 2
D. ∞

- Watch Video Solution

7. Let $f(n)$ denote the $n^{t h}$ terms of the seqence of $3,6,11,18,27, \ldots$ and $g(n)$ denote the $n^{t h}$ terms of the seqence of $3,7,13,21, \ldots$ Let $F(n)$ and $G(n)$ denote the sum of n terms of the above sequences, respectively. Now answer the following:

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=
$$

A. 2
B. 1
C. 0
D. ∞

Answer: B

1. If a, x, $a n d b$ and b are in A.P .., a, y, and a, z, b are in H.P such that $x=9 z$ and $a>0, b>0$ then
A. $y^{2}=x z$
B. $x>y>z$
C. $a=9, b=1$
D. $a=1 / 4, b=9 / 4$

Answer: A::B::C

- Watch Video Solution

2. If $A_{1}, A_{2}, A_{3}, G_{1}, G_{2}, G_{3}$, and H_{1}, H_{2}, H_{3} are the three arithmetic, geometric and harmonic means between two positive numbers a and $b(a>b)$, then which of the following is/are true ?

$$
\text { A. } 2 G_{1} G_{3}=H_{2}\left(A_{1}+A_{3}\right)
$$

B. $A_{2} H_{2}=G_{2}^{2}$
C. $A_{2} G_{2}=H_{2}^{2}$
D. $2 G_{1} A_{1}=H_{1}\left(A_{1}+A_{3}\right)$

Answer: A: B

- Watch Video Solution

3. Given that α, γ are roots of the equation $A x^{2}-4 x+1=0$ and β, δ are roots of the equation $B x^{2}-6 x+1=0$. If α, β, γ and δ are in $H . P .$, then
A. $A=5$
B. $A=3$
C. $B=8$
D. $B=-8$

Answer: B

4. If $\frac{1}{a}+\frac{1}{c}=\frac{1}{2 b-a}+\frac{1}{2 b-c}$, then
A. a, b, c are in $A . P$.
B. $a, \frac{b}{2}, c$ are in A. P.
C. $a, \frac{b}{2}, c$ are in $H . P$.
D. $a, 2 b, c$ are in H. P.

Answer: A::D

- Watch Video Solution

Examples

1. Write down the sequence whose nth term is $2^{n} / n$ and (ii)
$\left[3+(-1)^{n}\right] / 3^{n}$
2. Find the sequence of the numbers defined by
$a_{n}= \begin{cases}\frac{1}{n} & \text { when } \mathrm{n} \text { is odd } \\ -\frac{1}{n} & \text { when } \mathrm{n} \text { is even }\end{cases}$

- Watch Video Solution

3. Write the first three terms of the sequence defined by $a_{1} 2, a_{n+1}=\frac{2 a_{n}+3}{a_{n}+2}$.

- Watch Video Solution

4. The Fibonacci sequence is defined by $1=a_{1}=a_{2}$ and $a_{n}=a_{n-1}+a_{n-2}, n>2$. Find $\frac{a_{n+1}}{a_{n}}$, for $n=1,2,3,4,5$,

- Watch Video Solution

5. A sequence of integers $a_{1}+a_{2}++a_{n}$ satisfies $a_{n+2}=a_{n+1}-a_{n} f$ or $n \geq 1$. Suppose the sum of first 999 terms is 1003 and the sum of the first 1003 terms is -99 . Find the sum of the first 2002 terms.

- Watch Video Solution

6. Show that the sequence $9,12,15,18, \ldots$... is an A.P. Find its 16 th term and the general term.

- Watch Video Solution

7. Show that the sequence $\log a, \log (a b), \log \left(a b^{2}\right), \log \left(a b^{3}\right)$, is an A.P.

Find its nth term.

- Watch Video Solution

8. In a certain AP, 5times the $5^{\text {th }}$ term is equal to 8 times the $8^{t h}$ term. Its $13^{\text {th }}$ term is

Watch Video Solution

9. Find the term of the series $25,22, \frac{3}{4}, 20 \frac{1}{2}, 18 \frac{1}{4}$ which is numerically the smallest.

- Watch Video Solution

10. If pth, qth, and rth terms of an A.P. are a, b, c, respectively, then show that

$$
a(q-r)+b(r-p)+c(p-q)=0
$$

$(a-b) r+(b-c) p+(c-a) q=0$

- Watch Video Solution

11. Consider two A.P. s: $S_{1}: 2,7,12,17,500$ terms and $S_{1}: 1,8,15,22,300$ terms Find the number of common term. Also find the last common term.

- Watch Video Solution

12. If $a_{1}, a_{2}, a_{3}, a_{n}$ are in A.P., where $a_{i}>0$ for all i, show that
$\frac{1}{\sqrt{a_{1}}+\sqrt{a_{2}}}+\frac{1}{\sqrt{a_{1}}+\sqrt{a_{3}}}++\frac{1}{\sqrt{a_{n-1}}+\sqrt{a_{n}}}=\frac{n-1}{\sqrt{a_{1}}+\sqrt{a_{n}}}$.

- Watch Video Solution

13. If p, q and $\mathrm{r}(p \neq q)$ are terms (not necessarily consecutive) of an A.P., then prove that there exists a rational number k such that $\frac{r-q}{q-p}=\mathrm{k}$. hence, prove that the numbers $\sqrt{2}, \sqrt{3}$ and $\sqrt{5}$ cannot be the terms of a single A.P. with non-zero common difference.
14. If the terms of the A.P. $\sqrt{a-x}, \sqrt{x}, \sqrt{a+x}$ are all in integers, wherea, $x>0$, then find the least composite value of a.

- Watch Video Solution

15. If $\frac{b+c-a}{a}, \frac{c+a-b}{b}, \frac{a+b-c}{c}$, are in A.P., prove that $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are also in A.P.

- Watch Video Solution

16. If $a, b, c \in R+$ form an A.P., then prove that $a+1 /(b c), b+1 /(a c), c+1 /(a b)$ are also in A.P.

- Watch Video Solution

17. If a,b,c are in A.P., then prove that the following are also in A.P

$$
\begin{equation*}
a^{2}(b+c), b^{2}(c+a), c^{2}(a+b) \quad \mathrm{Itbr} \tag{i}
\end{equation*}
$$

$\frac{1}{\sqrt{b}+\sqrt{c}}, \frac{1}{\sqrt{c}+\sqrt{a}}, \frac{1}{\sqrt{a}+\sqrt{b}}$

(iii) $a\left(\frac{1}{b}+\frac{1}{c}\right), b\left(\frac{1}{c}+\frac{1}{a}\right), c\left(\frac{1}{a}+\frac{1}{b}\right)$

- Watch Video Solution

18. If the sum of three numbers in A.P., is 24 and their product is 440 , find the numbers.

- Watch Video Solution

19. Divide 32 into four parts which are in A.P. such that the ratio of the product of extremes to the product of means is 7:15.

- Watch Video Solution

20. The digits of a positive integer, having three digits, are in A.P. and their sum is 15 . The number obtained by reversing the digits is 594 less than the original number. Find the number.
21. If eleven A.M. s are inserted between 28 and 10 , then find the number of integral A.M. s.

- Watch Video Solution

22. Between 1 and 31 , m numbers have been inserted in such a way that the resulting sequence is an A. P. and the ratio of $7^{\text {th }}$ and $(m-1)^{t h}$ numbers is $5: 9$. Find the value of m.

- Watch Video Solution

23. Find the sum of all three-digit natural numbers, which are divisible by 7.

- Watch Video Solution

24. Find the number of terms in the series $20,19 \frac{1}{3}, 18 \frac{2}{3} \ldots$ the sum of which is 300 . Explain the answer.

- Watch Video Solution

25. Find the degree of the expression $(1+x)\left(1+x^{6}\right)\left(1+x^{11}\right)\left(1+x^{101}\right)$.

- Watch Video Solution

26. Find the sum of first 24 terms of the A.P. a_{1}, a_{2}, a_{3}, , if it is know that $a_{1}+a_{5}+a_{10}+a_{15}+a_{20}+a_{24}=225$.

- Watch Video Solution

27. If S_{1} is the sum of an AP of ' n ' odd number of terms and S_{2} be the sum of the terms of series in odd places of the same AP then $\frac{S_{1}}{S_{2}}=$
28. If the sequence $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ is an A.P., then prove that $a_{1}^{2}-a_{2}^{2}+a_{3}^{2}-a_{4}^{2}+\ldots+a_{2 n-1}^{2}-a_{2 n}^{2}=\frac{n}{2 n-1}\left(a_{1}^{2}-a_{2 n}^{2}\right)$

- Watch Video Solution

29. If the arithmetic progression whose common difference is nonzero the sum of first $3 n$ terms is equal to the sum of next n terms. Then, find the ratio of the sum of the $2 n$ terms to the sum of next $2 n$ terms.

- Watch Video Solution

30. The sums of n terms of two arithmetic progressions are in the ratio $5 n+4: 9 n+6$. Find the ratio of their $18^{\text {th }}$ terms.

- Watch Video Solution

31. If n arithmetic means are inserted between 2 and 38 , then the sum of the resulting series is obtained as 200 . Then find the value of n.

Watch Video Solution

32. The third term of a geometric progression is 4 . Then find the product of the first five terms.

- Watch Video Solution

33. The first term of a G.P. is 1 . The sum of the third term and fifth term is 90. Find the common ratio of G.P.

- Watch Video Solution

34. If $\frac{a+b x}{a-b x}=\frac{b-c x}{b-c x}=\frac{c+d x}{c-d x}(x \neq 0)$ then show that $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d are in G.P.
35. The fourth, seventh, and the last term of a G.P. are 10, 80 , and 2560 , respectively. Find the first term and the number of terms in G.P.

- Watch Video Solution

36. If a, b, d and p are distinct non - zero real numbers such that $\left(a^{2}+b^{2}+c^{2}\right) p^{2}-2(a b+b c+c d) p+\left(b^{2}+c^{2}+d^{2}\right) \leq 0 \quad$ then $\quad \mathrm{n}$.

Prove that $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are in G. P and $\mathrm{ad}=\mathrm{bc}$

- Watch Video Solution

37. Does there exist a geometric progression containing 27,8 and 12 as three of its term ? If it exists, then how many such progressions are possible ?
38. In a sequence of $(4 n+1)$ terms, the first $(2 n+1)$ terms are n A.P. whose common difference is 2 , and the last $(2 n+1)$ terms are in G.P. whose common ratio is 0.5 if the middle terms of the A.P. and LG.P. are equal ,then the middle terms of the sequence is $\frac{n .2 n+1}{2^{2 n}-1}$ b. $\frac{n .2 n+1}{2^{n}-1}$ c. $n .2^{n}$ d. none of these

- Watch Video Solution

39. Find the value of n so that $\frac{a^{n+1}+b^{n+1}}{a^{n}+b^{n}}$ may be the geometric mean between a and b .

- Watch Video Solution

40. If $(p+q)$ th term of a G.P. is aand its $(p-q) t h$ term is bwherea, $b \in R^{+}$, then its pth term is $\sqrt{\frac{a^{3}}{b}}$ b. $\sqrt{\frac{b^{3}}{a}}$ c. $\sqrt{a b}$ d. none of these
41. Find four numbers in G.P. whose sum is 85 and product is 4096 .

- Watch Video Solution

42. Three non zero numbers a, b, c are in A.P. Increasing a by 1 or increasing c by 2, the number become in G.P then b equals

- Watch Video Solution

43. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in A.P., $\mathrm{b}, \mathrm{c}, \mathrm{d}$ are in G.P. and $\frac{1}{c}, \frac{1}{d}, \frac{1}{e}$ are in A.P. prove that a,c,e are in GP.

- Watch Video Solution

44. If G is the geometric mean of xandy then prove that $\frac{1}{G^{2}-x^{2}}+\frac{1}{G^{2}-y^{2}}=\frac{1}{G^{2}}$
45. Insert four G.M.s between 2 and 486 .

- Watch Video Solution

46. If A.M. and G.M. between two numbers is in the ratio $m: n$ then prove that the numbers are in the ratio $\left(m+\sqrt{m^{2}-n^{2}}\right): \sqrt{\left(m-m^{2}-n^{2}\right)}$.

- Watch Video Solution

47. If a be one A.M and G_{1} and G_{2} be then geometric means between b and c then $G_{1}^{3}+G_{2}^{3}=$

- Watch Video Solution

48. Determine the number of terms in G.P. `<>,ifa_1=3,a_n=96a n dS_n=189.'

- Watch Video Solution

49. Let S be the sum, P the product and R the sum of reciprocals of n terms in a G.P. Prove that $P^{2} R^{n}=S^{n}$.

- Watch Video Solution

50. Find the sum to n terms of the sequence $(x+1 / x)^{2},\left(x^{2}+1 / x\right)^{2},\left(x^{3}+1 / x\right)^{2}$,

- Watch Video Solution

51. The sum to n terms of the series $\frac{4}{3}+\frac{10}{9}+\frac{28}{27}+\ldots \ldots$. is

- Watch Video Solution

52. Find the sum of the following series up to n terms:
(i) $5+55+555+\ldots \ldots$.
(ii) $.6+.66 .+.666$
$+$. \qquad

Watch Video Solution

53. Find the sum $1+(1+2)+\left(1+2+2^{2}\right)+\left(1+2+2^{2}+2^{3}\right)+\ldots$. To n terms.

- Watch Video Solution

54. If the sum of the n terms of a G.P. is $\left(3^{n}-1\right)$, then find the sum of the series whose terms are reciprocal of the given G.P..

- Watch Video Solution

55. The numbers $49,4489,444889, \ldots .$. obtained by inserting 48 into the middle of the preceding numbers are square of integers. (a) true or (b)
false. explain

- Watch Video Solution

56. If f is a function satisfying $\mathrm{f}(\mathrm{x}+\mathrm{y})=\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y})$ for all $x, y \in N$ such that $f(1)=3$ and $\sum_{x=1}^{n} f(x)=120$, find the value of n .

- Watch Video Solution

57. Using the sum of G.P., prove that $a^{n}+b^{n}(a, b \in N)$ is divisble by a+b for odd natural numbers n. Hence prove that $1^{99}+2^{99}+\ldots . .100^{99}$ is divisble by 10100

- Watch Video Solution

58. Find the sum of the following series: $(\sqrt{2}-1)+1+(\sqrt{2}-1)+\infty$

- Watch Video Solution

59. Sum of infinite number of terms in GP is 20 and sum of their square is 100. The common ratio of GP is

- Watch Video Solution

60. If each term of an infinite G.P. is twice the sum of the terms following it, then find the common ratio of the G.P.

- Watch Video Solution

61.

If

$$
|r|>1, x=a+\frac{a}{r}+\frac{a}{r^{2}}+
$$

$y=b-\frac{b}{r}+\frac{b}{r^{2}}-\ldots \ldots \ldots \infty$ and $z=c+\frac{c}{r^{2}}+\frac{c}{r^{4}}+\ldots \ldots \infty$, then the value of $\frac{x y}{z}=$

- Watch Video Solution

62. After striking the floor, a certain ball rebounds (4/5)th of height from which it has fallen. Then the total distance that it travels before coming to rest, if it is gently dropped of a height of 120 m is 1260 m b. 600 m c . 1080 md . none of these

- Watch Video Solution

63. If an infinite G.P. has $2 n d$ term x and its sum is 4 , then prove that $\xi n(-8,1]-\{0\}$

- Watch Video Solution

64. If the 20th term of a H.P. is 1 and the 30th term is $-1 / 17$, then find its largest term.

- Watch Video Solution

65. If $\frac{a-x}{p x}=\frac{a-y}{q y}=\frac{a-z}{r} a n d p, q, a n d r$ are in A.P., then prove that x, y, z are in H.P.

Watch Video Solution

66. If a, b, candd are in H.P., then prove that $(b+c+d) / a,(c+d+a) / b,(d+a+b) / c$ and $(a+b+c) / d$, are in A.P.

- Watch Video Solution

67. The mth term of a H.P is n and the nth term is m. Proves that its rth term is $m n / r$.

(Watch Video Solution

68. If $a>1, b>1 a n d c>1$ are in G.P. then show that $\frac{1}{1+(\log)_{e} a}, \frac{1}{1+(\log)_{e} b}$, and $\frac{1}{1+(\log)_{e} c}$ are in H.P.

- Watch Video Solution

69. If $a, b, a n d c$ be in G.P. and $a+x, b+x, a n d c+x$ in H.P. then find the value of x ($\mathrm{a}, \mathrm{b}, \mathrm{c}$ are distinct numbers).

- Watch Video Solution

70. If first three terms of the sequence $1 / 16, a, b, c 1 / 16$ are in geometric series and last three terms are in harmonic series, then find the values of $a a n d b$.

- Watch Video Solution

71. if $(m+1) t h,(n+1) t h$ and $(r+1) t h$ term of an AP are in GP.and m, n and r in HP. . find the ratio of first term of A.P to its common difference

- Watch Video Solution

72. Insert four H.M.s between $2 / 3$ and $2 / 13$.

- Watch Video Solution

73. If nine arithmetic means and nine harmonic means are inserted between 2 and 3 alternatively, then prove that $A+6 / H=5$ (where A is any of the A.M.'s and H the corresponding H.M.).

- Watch Video Solution

74. Let a, b be positive real numbers. If $a A_{1}, A_{2}, b$ be are in arithmetic progression a, G_{1}, G_{2}, b are in geometric progression, and a, H_{1}, H_{2}, b
$\frac{G_{1} G_{2}}{H_{1} H_{2}}=\frac{A_{1}+A_{2}}{H_{1}+H_{2}}=\frac{(2 a+b)(a+2 b)}{9 a b}$

- Watch Video Solution

75. The A.M. and H.M. between two numbers are 27 and 12, respectively, then find their G.M.

- Watch Video Solution

76. If the A.M. between two numbers exceeds their G.M. by 2 and the GM.

Exceeds their H.M. by 8/5, find the numbers.

- Watch Video Solution

77. Find the sum
$2017+\frac{1}{4}\left(2016+\frac{1}{4}\left(2015+\ldots+\frac{1}{4}\left(2+\frac{1}{4}(1)\right) ..\right)\right)$
78. The sum of 50 terms of the series
$1+2\left(1+\frac{1}{50}\right)+3\left(1+\frac{1}{50}\right)^{2}+$ is given by 2500 b. 2550 c. 2450 d . none of these

(Watch Video Solution

79. Find the sum to ininity of the series $1-3 x+5 x^{2}+7 x^{3}+\ldots . \infty$ when $|x|<1$.

- Watch Video Solution

80. The sum of the infinite series
$1+\left(1+\frac{1}{5}\right)\left(\frac{1}{2}\right)+\left(1+\frac{1}{5}+\frac{1}{5^{2}}\right)\left(\frac{1}{2^{2}}\right)+\ldots$
(Watch Video Solution
81. If the sum to infinity of the series $3+(3+d) \frac{1}{4}+(3+2 d) \frac{1}{4^{2}}+\infty$ is $\frac{44}{9}$, then find ..

- Watch Video Solution

82. Find the sum to infinity of the series $1^{2}+2^{2}+3^{2}+4^{2}+\infty$.

- Watch Video Solution

83. Find the sum $2 \times 5+5 \times 9+8 \times 13+11 \times 17+\ldots \mathrm{n}$ terms.

- Watch Video Solution

84. Find the sum of the series
$1 \times n+2(n-1)+3 \times(n-2)++(n-1) \times 2+n \times 1$.

- Watch Video Solution

85. For and odd integer $n \geq 1, n^{3}-(n-1)^{3}+\ldots .$.
$+(-1)^{n-1} 1^{3}$

- Watch Video Solution

86. Find the sum of the following series up to n terms:
$\frac{1^{3}}{1}+\frac{1^{3}+2^{3}}{1+3}+\frac{1^{3}+2^{3}+3^{3}}{1+3+5}+\ldots \ldots$.

- Watch Video Solution

87. Find the sum of first n terms of the series $1^{3}+3 \times 2^{2}+3^{3}+3 \times 4^{2}+5^{3}+3 \times 6^{2}+$ when n is even n is odd

- Watch Video Solution

88. If $\sum_{r=1}^{n} T_{r}=n\left(2 n^{2}+9 n+13\right)$, then find the sum $\sum_{r=1}^{n} \sqrt{T_{r}}$.
89. Find the sum to n terms of the series $3+15+35+63+$

- Watch Video Solution

90. Find the sum of the following series to n terms $5+7+13+31+85+$

- Watch Video Solution

91. Find the $\sum_{k=1}^{\infty} \sum_{n=1}^{\infty} \frac{k}{2^{n+k}}$.

- Watch Video Solution

92. Find the sum of the products of the ten numbers $\pm 1, \pm 2, \pm 3, \pm 4$, and ± 5 taking two at a time.
93. Find the $\sum \sum_{0 \leq i<j \leq n} 1$.

- Watch Video Solution

94. Let the terms $a_{1}, a_{2}, a_{3}, \ldots a_{n}$ be in G.P. with common ratio r. Let S_{k} denote the sum of first k terms of this G.P.. Prove that $S_{m-1} \times S_{m}=\frac{r+1}{r}$ SigmaSigma_(ile itj le n)a_(i)a_(j)'

- View Text Solution

95. Find the sum $1+\frac{1}{1+2}+\frac{1}{1+2+3}++\frac{1}{1+2+3++n}$.

- Watch Video Solution

96. Find the sum of the series:

$$
\frac{1}{(1 \times 3)}+\frac{1}{(3 \times 5)}+\frac{1}{(5 \times 7)}+\ldots+\frac{1}{(2 n-1)(2 n+1)}
$$

- Watch Video Solution

97. Find the sum to n terms of the series $3 /\left(1^{2} \times 2^{2}\right)+5 /\left(2^{2} \times 3^{2}\right)+7 /\left(3^{2} \times 4^{2}\right)+$.

- Watch Video Solution

98. Find the sum to n terms of the series:
$\frac{1}{1+1^{2}+1^{4}}+\frac{1}{1+2^{2}+2^{4}}+\frac{1}{1+3^{2}+3^{4}}+$

- Watch Video Solution

99. Find the sum $\Sigma_{r=1}^{n} \frac{r}{(r+1)!}$. Also, find the sum of infinite terms.

- Watch Video Solution

100. Find the sum $\Sigma_{r=1}^{n} \frac{1}{r(r+1)(r+2)(r+3)}$

Also,find $\Sigma_{r=1}^{\infty} \frac{1}{r(r+1)(r+2)(r+3)}$

- Watch Video Solution

101. Find the sum $\underset{r=1}{r}(r+1)(r+2)(r+3)$.

- Watch Video Solution

102. Find the sum of the series $\sum_{r=11}^{99}\left(\frac{1}{r \sqrt{r+1}+(r+1) \sqrt{r}}\right)$

- View Text Solution

103. Find the sum of the series
$\frac{1}{3^{2}+1}+\frac{1}{4^{2}+2}+\frac{1}{5^{2}+3}+\frac{1}{6^{2}+4}+\infty$
104. Find the sum of first 100 terms of the series whose general term is given by $a_{k}=\left(k^{2}+1\right) k$!

- Watch Video Solution

105. Find the sum of the series
$\frac{2}{1 \times 3}+\frac{5}{2 \times 3} \times 2+\frac{10}{3 \times 4} \times 2^{2}+\frac{17}{4 \times 5} \times 2^{3}+\rightarrow n$ terms.

- Watch Video Solution

106. A long a road lie an odd number of stones placed at intervals of 10 meters. These stones have to be assembled around the middle stone. A person can carry only one stone ar a time. A man started the job with one of the end stones by carrying them in succession. In carrying all the stones, the man covered a total distance of 3 kilometers. Then the total number of stones is

- Watch Video Solution

108. If a, b, c are distinct positive real numbers in G.P and $\log _{c} a, \log _{b} c, \log _{a} b$ are in A.P, then find the common difference of this A.P

- Watch Video Solution

109. The values of $x y z$ is $\frac{15}{2}$ or $\frac{18}{5}$ according as the series a, x, y, z, b is an $A P$ or $H P$. Find the values of $a \& b$ assuming them to be positive integer.

- View Text Solution

110. about to only mathematics
111. If $S_{n}=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}(n \in N)$, then prove that
$S_{1}+S_{2}+\ldots+S_{(n-1)}=(n S((n))-n)$ or $(n S((n-1))-n+1)$

- View Text Solution

112. The value of the expression 1. $(2-\omega) \cdot\left(2-\omega^{2}\right)+2 \cdot(3-\omega)\left(3-\omega^{2}\right)+.+(n-1)(n-\omega)\left(n-\omega^{2}\right)$, where omega is an imaginary cube root of unity, is.........

- Watch Video Solution

113. Find the value of $\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \frac{1}{3^{i} 3^{j} 3^{k}}$.

$$
(\in e j \neq k)
$$

- Watch Video Solution

114. Find the sum $\sum_{j=1}^{10} \sum_{i=1}^{10} i \times 2^{j}$

- Watch Video Solution

115. Coefficient of $x^{18} \in\left(1+x+2 x^{2}+3 x^{3}++18 x^{18}\right)^{2}$ equal to 995
b. 1005 c. 1235 d. none of these

D Watch Video Solution

116. Let $a_{1}, a_{2}, \ldots \ldots . a_{n}$ be real numbers such that $\sqrt{a_{1}}+\sqrt{a_{2}-1}+\sqrt{a_{3}-2}++\sqrt{a_{n}-(n-1)}=\frac{1}{2}\left(a_{1}+a_{2}+\ldots \ldots .+\right.$ then find the value of $\sum_{i=1}^{100} a_{i}$

D Watch Video Solution

117. A sequence of numbers $A_{\cap}=1,2,3$ is defined as follows : $A_{1}=\frac{1}{2}$ and for each $n \geq 2, \quad A_{n}=\left(\frac{2 n-3}{2 n}\right) A_{n-1}$, then prove that $\sum_{k=1}^{n} A_{k}<1, n \geq 1$

- Watch Video Solution

118. If $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ is continous such that $\mathrm{f}(\mathrm{x})-f\left(\frac{x}{2}\right)=\frac{4 x^{2}}{3}$ for all $\xi n R$ and $\mathrm{f}(0)=0$, find the value of $f\left(\frac{3}{2}\right)$.

- View Text Solution

119. Find the value of $\frac{\sum_{r=1}^{n} \frac{1}{r}}{\sum_{r=1}^{n} \frac{k}{(2 n-2 k+1)(2 n-k+1)}}$.

- View Text Solution

120. Find the sum $\sum_{n=1}^{\infty} \frac{6^{n}}{\left(3^{n}-2^{n}\right)\left(3^{n+1}-2^{n+1}\right)}$

Exercise 5.1

1. Write the first five terms of each of the sequences and obtain the corresponding series:
$a_{1}=a_{2}=2, a_{n}=a_{n-1}-1, n>2$

- Watch Video Solution

2. about to only mathematics

- Watch Video Solution

3. Let $\left\{a_{n}\right\}(n \geq 1)$ be a sequence such that
$a_{1}=1, \operatorname{and} 3 a_{n+1}-3 a_{n}=1 f$ or $a l \ln \geq 1$. Then find the value of a_{2002}.

Exercise 5.2

1. If the $p^{t h}$ term if an A.P. is q and the term of an A.P is p then the $r^{t h}$ term is

D Watch Video Solution

2. If x is a positive real number different from 1 , then prove that the numbers $\frac{1}{1+\sqrt{x}}, \frac{1}{1-x}, \frac{1}{1-\sqrt{x}}, \ldots$ are in A.P. Also find their common difference.

- Watch Video Solution

3. The sum of the first four terms of an A.P. is 56 . The sum of the last four terms is 112 . If its first term is 11 , then find the number of terms.
4. The fourth power of the common difference of an arithmetic progression with integer entries is added to the product of any four consecutive of it. Prove that the resulting sum is the squares of an integer.

- Watch Video Solution

5. Divide 28 into four parts in an A.P. so that the ratio of the product of first and third with the product of second and fourth is $8: 15$.

- Watch Video Solution

6. If $(b-c)^{2},(c-a)^{2},(a-b)^{2}$ are in A.P., then prove that $\frac{1}{b-c}, \frac{1}{c-a}, \frac{1}{a-b}$ are also in A.P.

- Watch Video Solution

7. Find the number of common terms to the two sequences $17,21,25, \ldots, 417$ and $16,21,26, . . ., 466$.

- Watch Video Solution

8. If $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are distinct integers in A. P. Such that $d=a^{2}+b^{2}+c^{2}$, then $a+b+c+d$ is

- Watch Video Solution

9. If $\frac{a^{n}+b^{n}}{a^{n-1}+b^{n-1}}$ is the A.M. between a and b , then find the value of n .

- Watch Video Solution

10. n arlithmetic means are inserted between $x a n d 2 y$ and then between
$2 x a n d y$. If the rth means in each case be equal, then find the ratio x / y.

Exercise 5.3

1. If $S_{n}=n P+\frac{n(n-1)}{2} Q$, where S_{n} denotes the sum of the first n terms of an A.P., then find the common difference.

- Watch Video Solution

2.

Solve
the
equation
$(x+1)+(x+4)+(x+7)++(x+28)=155$.

- Watch Video Solution

3. If the sum of the first ten terms of an $A . P$ is four times the sum of its first five terms, the ratio of the first term to the common difference is:

- Watch Video Solution

4. Let sum of $n, 2 n, 3 n$, terms of an A.P are S_{1}, S_{2}, S_{3} respectively. Prove that $S_{3}=3\left(S_{2}-S_{1}\right)$.

Watch Video Solution

5. Let S_{n} denote the sum of first n terms of an A.P. If $S_{2 n}=3 S_{n}$, then find the ratio $S_{3 n} / S_{n}$.

- Watch Video Solution

6. The ratio of the sum of m and n terms of an A.P. is $m^{2}: n^{2}$. Show that the ratio of $m^{\text {th }}$ and $n^{\text {th }}$ term is $2 m-1: 2 n-1$.

- Watch Video Solution

7. Find the sum to n terms of the series $1^{2}+2^{2}+3^{2}-4^{2}+5^{2}-6^{2}+\ldots$.
8. The interior angles of a polygon are in arithmetic progression. The smallest angle is 120° and the common difference is 5° Find the number of sides of the polygon

- View Text Solution

9. 150 workers were engaged to finish a piece of work in a certain number of days. Four workers dropped from the work on the second day. Four workers dropped on third day and so on. It took 8 more days to finish the work. Find the number of days in which the work was completed. [Let the no.of days to finish the work is 'r' then
$150 x=\frac{x+8}{2}[2 \times 150+(x+8-1)(-4)]$

- Watch Video Solution

1. The first and second term of a G.P. are x^{-4} and x^{n} respectively. If x^{52} is the $8^{\text {th }}$ term, then find the value of n.

- Watch Video Solution

2. If a, b, c are respectively the $p^{t h} q^{\text {th }}$ and $r^{\text {th }}$ terms of a GP. Show that $(q-r) \log a+(r-p) \log b+(p-q) \log c=0$.

- Watch Video Solution

3. If p, q, andr are inA.P., show that the pth, q th, and rth terms of any G.P. are in G.P.

- Watch Video Solution

4. If a, $\mathrm{b}, \mathrm{c}, \mathrm{d}$ are in G.P, prove that $\left(a^{n}+b^{n}\right),\left(b^{n}+c^{n}\right),\left(c^{n}+d^{n}\right)$ are in G.P.
5. Let T_{r} denote the rth term of a G.P. for $r=1,2,3$, If for some positive integers mandn, we have $T_{m}=1 / n^{2}$ and $T_{n}=1 / m^{2}$, then find the value of $T_{m+n / 2}$.

- Watch Video Solution

6. If a, b, c and d are in G.P. show that $\left(a^{2}+b^{2}+c^{2}\right)\left(b^{2}+c^{2}+d^{2}\right)=(a b+b c+c d)^{2}$

- Watch Video Solution

7. The sum of three numbers in G.P. is 56 . If we subtract $1,7,21$ from these numbers in that order, we obtain an arithmetic progression. Find the numbers.
8. If $x, y, a n d z$ are pth, qth, and rth terms, respectively, of an A.P. nd also of a G.P., then $x^{y-z} y^{z-x} z^{x-y}$ is equal to $x y z \mathrm{~b} .0 \mathrm{c} .1 \mathrm{~d}$. none of these

Watch Video Solution

9. The product of the three numbers in G.P. is 125 and sum of their product taken in pairs is $\frac{175}{2}$. Find them.

- Watch Video Solution

10. Find the product o three geometric means between 4 and $1 / 4$.

- Watch Video Solution

11. Find two numbers whose arithmetic mean is 34 and the geometric mean is 16 .
12. If the arithmetic means of two positive number a and $\mathrm{b}(a>b)$ is twice their geometric mean, then find the ratio $a: b$

- Watch Video Solution

13. Let $a_{1}, a_{2}, a_{3} \ldots$ and $b_{1}, b_{2}, b_{3} \ldots$ be two geometric progressions with $a_{1}=2 \sqrt{3}$ and $b_{1}=\frac{52}{9} \sqrt{3}$ If $3 a_{99} b_{99}=104$ then find the value of $a_{1} b_{1}+a_{2} b_{2}+\ldots+a_{n} b_{n}$

- Watch Video Solution

Exercise 5.5

1. A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of terms occupying odd places, then find its common ratio.
2. If the sum of n terms of a G.P. is $3 \frac{3^{n+1}}{4^{2 n}}$, then find the common ratio.

Watch Video Solution

3. $(666 \ldots \ldots)^{2}+(888 \ldots . \ldots)$ is equal to
n-digits n-digits

- Watch Video Solution

4. Find the sum of n terms of series
$(x+y)+\left(x^{2}+x y+y^{2}\right)+\left(x^{3}+x^{2} y+x y^{2}+y^{3}\right)+\ldots \ldots \ldots \ldots \ldots \ldots$

- Watch Video Solution

5. Find the sum of n terms of the series $4 / 3+10 / 9+28 / 27+\ldots$
6. If $p(x)=\left(1+x^{2}+x^{4}++x^{2 n-2}\right) /\left(1+x+x^{2}++x^{n-1}\right)$ is a polomial in x, then find possible value of n.

Watch Video Solution

7.

Let
$A_{n}=\left(\frac{3}{4}\right)-\left(\frac{3}{4}\right)^{2}+\left(\frac{3}{4}\right)^{3}+\ldots+(-1)^{n-1}\left(\frac{3}{4}\right)^{n}$ and $B_{n}=1-$ n_0, so that B_ngtA_n Aangen_0`

D View Text Solution

8. If the sum of the series $\Sigma_{n=0}^{\infty} r^{n},|r| \leq 1$ is s , then find the sum of the series $\Sigma_{n=0}^{\infty} r^{2 n},|r| \leq 1$

- Watch Video Solution

9. Prove that $6^{1 / 2} \times 6^{1 / 4} \times 6^{1 / 8} \infty=6$.

- Watch Video Solution

10. The sum to n terms of series
$1+\left(\frac{1}{2}+\frac{1}{2^{2}}\right)+1+\left(\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\frac{1}{2^{4}}\right)+$ is

(Watch Video Solution

Exercise 5.6

1. The 8 th and 14 th term of a H.P. are $1 / 2$ and $1 / 3$, respectively. Find its 20 th term. Also, find its general term.

D View Text Solution

2. If the first two terms of a H.P. are $2 / 5$ and $12 / 23$ respectively. Then, largest term is
3. If a, b, c are in G.P. and $a-b, c-a, a n d b-c$ are in H.P., then prove that $a+4 b+c$ is equal to 0 .

- Watch Video Solution

4. If x, y and z are in A.P ax,by and $c z$ in G.P and a, b, c in H.P then prove that $\frac{x}{z}+\frac{z}{x}=\frac{a}{c}+\frac{c}{a}$

- Watch Video Solution

5. If a, b, c and the d are in H.P then find the vlaue of $\frac{a^{-2}-d^{-2}}{b^{-2}-c^{-2}}$

Watch Video Solution

6. If $x=\Sigma_{n=0}^{\infty} a^{n}, y=\Sigma_{n=0}^{\infty} b^{n}, z=\Sigma_{n=0}^{\infty} c^{n}$ where a, b,and care in A.P and $|a|<1,|b|<1$ and $|c|$ 1then prove that x, y and z are in H.P
7. If $x, 1, a n d z$ are in A.P. and $x, 2, a n d z$ are in G.P., then prove that $x, a n d 4, z$ are in H.P.

- View Text Solution

8. If $a, a_{1}, a_{2}, a_{3}, a_{2 n}, b$ are in A.P. and $a, g_{1}, g_{2}, g_{3},, g_{2 n}, b$. are in G.P. and $h \quad \mathrm{~s}$ the H.M. of $a a n d b$, then prove that $\frac{a_{1}+a_{2 n}}{g_{1} g_{2 n}}+\frac{a_{2}+a_{2 n-1}}{g_{1} g_{2 n-1}}++\frac{a_{n}+a_{n+1}}{g_{n} g_{n+1}}=\frac{2 n}{h}$

- Watch Video Solution

9. If the sum of the roots of the quadratic equation $a x^{2}+b x+c=0$ is equal to the sum of the squares of their reciprocals, then $\frac{a}{c}, \frac{b}{a}$ and $\frac{c}{b}$ are in
10. The A.M. of two given positive numbers is 2 . If the larger number is increased by 1, the G.M. of the numbers becomes equal to the A.M. of the given numbers. Then find the H.M.

- Watch Video Solution

11. The harmonic mean between two numbers is $21 / 5$, their A.M. ' A ' and G.M. ' G ' satisfy the relation $3 A+G^{2}=36$. Then find the sum of square of numbers.

- Watch Video Solution

Exercise 5.7

1. If $\alpha(\neq 1)$ is a nth root of unity then $S=1+3 \alpha+5 \alpha^{2}+\ldots \ldots \ldots$. upto n terms is equal to
2. Find the sum of n terms of the series $1+\frac{4}{5}+\frac{7}{5^{2}}+10+5^{3}+$.

- View Text Solution

3. Find the sum $\frac{3}{2}-\frac{5}{6}+\frac{7}{18}-\frac{9}{54}+\infty$.

- Watch Video Solution

4. Find the sum $\frac{1^{2}}{2}+\frac{3^{2}}{2^{2}}+\frac{5^{2}}{2^{3}}+\frac{7^{2}}{2^{4}}+\ldots . \infty$

- Watch Video Solution

Exercise 5.8

1. Find the sum to n terms of the series $1 \times 2 \times 3+2 \times 3 \times 4+3 \times 4 \times 5+$
2. Find the sum of the series $1^{2}+3^{2}+5^{2}+\rightarrow n$ terms.
A. $\frac{n(2 n-1)(2 n+1)}{3}$
B. $\frac{n(2 n+1)(2 n+1)}{3}$
C. $\frac{n(2 n-1)(2 n-1)}{3}$
D. $\frac{n(2 n+1)(2 n-1)}{3}$

Answer: A

- Watch Video Solution

3. Find the sum of the series $31^{3}+32^{3}++50^{3}$.

- Watch Video Solution

4. Find the sum $1^{2}+\left(1^{2}+2^{2}\right)+\left(1^{2}+2^{2}+3^{2}\right)+$ up to 22 nd term.
5. Find the sum of the first n terms of the series: $3+7+13+21+31+.$.

- Watch Video Solution

6. Find the sum $11^{2}-1^{2}+12^{2}-2^{2}+13^{2}-3^{2}+\ldots \ldots+20^{2}-10^{2}$

- Watch Video Solution

7. Find the sum $3+7+14+24+37+\ldots . .20$ terms

- Watch Video Solution

8. Find the sum $\Sigma_{j=1}^{n} \Sigma_{i=1}^{n} I \times 3^{j}$
9. If for sequence $<a_{n}>$ sum of n terms $S_{n}=2 n^{2}+3 n$ then find the $\Sigma \Sigma$
sum $1 \leq i<j \leq 10{ }^{a_{i} a_{j}}$

D View Text Solution

10. Find the value of $\begin{gathered}\Sigma \Sigma \\ 1 \leq i \leq j\end{gathered} i \times\left(\frac{1}{2}\right)^{j}$

- View Text Solution

Exercise 5.9

1. Find the sum of infinite series
$\frac{1}{1 \times 3 \times 5}+\frac{1}{3 \times 5 \times 7}+\frac{1}{5 \times 7 \times 9}+\ldots$.

- Watch Video Solution

2. If $\Sigma_{r=1}^{n} T_{r}=\frac{n}{8}(n+1)(n+2)(n+3)$ then find $\Sigma_{r=1}^{n} \frac{1}{T_{r}}$

Watch Video Solution

3. Find the sum $\Sigma_{r=1}^{\infty} \frac{3 n^{2}+1}{\left(n^{2}-1\right)^{3}}$

Watch Video Solution
4. Find the $\operatorname{sum} \Sigma_{r=1}^{\infty} \frac{r}{r^{4}+\frac{1}{4}}$

- Watch Video Solution

5. Find the sum

$$
\frac{3}{1!+2!+3!}+\frac{4}{2!+3!+4!}+\ldots+\frac{1000}{998!+999!+1000!}
$$

6.

$S=\frac{\sqrt{1}}{1+\sqrt{1}+\sqrt{2}}+\frac{\sqrt{2}}{1+\sqrt{2}+\sqrt{3}}+\frac{\sqrt{3}}{1+\sqrt{3}+\sqrt{4}}+\ldots+\frac{\sqrt{1}}{1+\sqrt{n}+}$
Then find the value of n.

- Watch Video Solution

7. Find the sum $\frac{1 \times 2}{3!}+\frac{(2 \times 2)^{2}}{4!}+\frac{(3 \times 2)^{3}}{5!}+\ldots .+\frac{(20 \times 2)^{30}}{22!}$

- Watch Video Solution

8. Find the sum $\Sigma_{r=1}^{\infty} \frac{r-2}{(r+2)(r+3)(r+4)}$

- Watch Video Solution

$$
\begin{aligned}
& \text { 9. Find the sum of the series } \\
& 1+2(1-x)+3(1-x)(1-2 x)++n(1-x)(1-2 x)(1-3 x)[1-(n-
\end{aligned}
$$

Exercise (Single)

1. If a,b,c are in A.P., then $a^{3}+c^{3}-8 b^{3}$ is equal to
A. 2 abc
B. 3abc
C. 4 abc
D. $-6 a b c$

Answer: D

- Watch Video Solution

2. If three positive real numbers a, b, c are in A.P and $a b c=4$, then the minimum possible value of b is
A. $2^{1 / 3}$
B. $2^{2 / 3}$
C. $2^{1 / 2}$
D. $2^{3 / 2}$

Answer: B

- Watch Video Solution

3. If $\log _{2}\left(5.2^{x}+1\right), \log _{4}\left(2^{1-x}+1\right)$ and 1 are in A.P,then x equals
A. $\log _{2} 5$
B. $1-\log _{5} 2$
C. $\log _{5} 2$
D. $1-\log _{2} 5$

Answer: D

4. The largest term common to the sequences $1,11,21,31, \rightarrow 100$ terms and $31,36,41,46, \rightarrow 100$ terms is 381 b .471 c .281 d . none of these
A. 381
B. 471
C. 281
D. 521

Answer: D

- Watch Video Solution

5. In any A.P. if sum of first six terms is 5 times the sum of next six terms then which term is zero?
A. 10 th
B. 11 th
C. 12 th
D. 13 th

Answer: B

- Watch Video Solution

6. If the sides of a right angled triangle are in A.P then the sines of the acute angles are
A. $\frac{3}{5}, \frac{4}{5}$
B. $\frac{1}{\sqrt{3}}, \sqrt{\frac{2}{3}}$
C. $\frac{1}{2}, \frac{\sqrt{3}}{2}$
D. none of these

Answer: A

7. If $a, \frac{1}{b}$, and $\frac{1}{p}, q, \frac{1}{r}$ from two arithmetic progressions of the common difference, then a, q, c are in A.P. if p, b, r are in A.P. b. $\frac{1}{p}, \frac{1}{b}, \frac{1}{r}$ are in A.P. c. p, b, r are in G.P. d. none of these
A. p,b,r are in A.P
B. $\frac{1}{p}, \frac{1}{b}, \frac{1}{r}$ are $\in A . P$
C. p,b,r are in G.P
D. none of these

Answer: B

- Watch Video Solution

8. Suppose that $F(n+1)=\frac{2 f(n)+1}{2}$ for $\mathrm{n}=1,2,3, \ldots .$. and $\mathrm{f}(1)=2$ Then $F(101)$ equals $=$?
A. 50
B. 52
C. 54
D. none of these

Answer: B

- Watch Video Solution

9. Consider an A.P. $a_{1}, a_{2}, a_{3}, \ldots$. such that $a_{3}+a_{5}+a_{8}=11$ and $a_{4}+a_{2}=-2$ then the value of $a_{1}+a_{6}+a_{7}$ is.....
A. -8
B. 5
C. 7
D. 9

Answer: C
10. If $a_{1}, a_{2}, a_{3}, \ldots$ are in A.P., then a_{p}, a_{q}, q_{r} are in A.P. if p,q,r are in
A. A.P
B. G.P
C. H.P
D. none of these

Answer: A

- Watch Video Solution

11. Let $\alpha, \beta \in R$. If α, β^{2} are the roots of quadratic equation $x^{2}-p x+1=0 a n d \alpha^{2}, \beta$ is the roots of quadratic equation $x^{2}-q x+8=0$, then the value of r if $\frac{r}{8}$ is the arithmetic mean of pandq, is $\frac{83}{2}$ b. 83 c. $\frac{83}{8}$ d. $\frac{83}{4}$
A. $\frac{83}{2}$
B. 83
C. $\frac{83}{8}$
D. $\frac{83}{4}$

Answer: B

- Watch Video Solution

12. If the sum of m terms of an A.P. is same as the sum of its n terms, then the sum of its $(m+n)$ terms is
A. $m n$
B. $-m n$
C. $1 / m n$
D. 0

Answer: D

13. If S_{n} denotes the sum of n terms of an A.P.,
$S_{n+3}-3 S_{n+2}+3 S_{n+1}-S_{n}=$
A. $2 s_{n}$
B. S_{n+1}
C. $3 S_{n}$
D. 0

Answer: D

- Watch Video Solution

14. The first term of an A.P. is a and the sum of first p terms is zero, show tht the sum of its next q terms is $\frac{a(p+q) q}{p-1}$.
A. $\frac{-a(p+q) p}{q+1}$
B. $\frac{a(q+q) p}{P+1}$
C. $\frac{-a(p+q) q}{p-1}$
D. none of these

Answer: C

- Watch Video Solution

15. If S_{n} denotes the sum of first n terms of an A.P. and $\frac{S_{3 n}-S_{n-1}}{S_{2 n}-S_{2 n-1}}=31$, then the value of n is 21 b. 15 c. 16 d .19
A. 21
B. 15
C. 16
D. 19

Answer: B

16. The number of terms of an A.P. is even; the sum of the odd terms is 24 , and of the even terms is 30 , and the last term exceeds the first by $21 / 2$ then the number of terms in the series is 8 b .4 c .6 d .10
A. 8
B. 4
C. 6
D. 10

Answer: A

- Watch Video Solution

17. The number of terms of an A.P. is even; the sum of the odd terms is 24 , and of the even terms is 30 , and the last term exceeds the first by $21 / 2$ then the number of terms in the series is 8 b .4 c .6 d .10
A. 8
B. 4
C. 6
D. 10

Answer: D

- Watch Video Solution

18. Concentric circles of radii $1,2,3, \ldots, 100 \mathrm{~cm}$ are drawn. The interior of the smallest circle is colored red and the angular regions are colored alternately green and red, so that no two adjacent regions are of the same color. Then, the total area of the green regions in sq. cm is equal to 1000π b. 5050π c. 4950π d. 5151π
А. 1000π
B. 5050π
C. 4950π
D. 5151π

Answer: B

- Watch Video Solution

19. If $a_{1}, a_{2}, a_{3} \ldots a_{2 n+1}$ are in A.P then
$\frac{a_{2 n+1}-a_{1}}{a_{2 n+1}+a_{1}}+\frac{a_{2} n-a_{2}}{a_{2 n}+a_{2}}+\ldots+\frac{a_{n+2}-a_{n}}{a_{n+2}+a_{n}}$ is equal to
A. $\frac{n(n+1)}{2} \times \frac{a_{2}-a_{1}}{a_{n+1}}$
B. $\frac{n(n+1)}{2}$
C. $(n+1)\left(a_{2}-a_{1}\right)$
D. none of these

Answer: A

- Watch Video Solution

20. If $a_{1}, a_{2}, \ldots \ldots, a_{n}$ are in A.P. with common differece $d \neq 0$, then $(\sin d)\left[\sec a_{1} \sec a_{2}+\sec a_{2} \sec a_{3}+\ldots .+\sec a_{n-1} \sec a_{n}\right]$ is equal to
A. $\cos e c a_{n}-\cos e c a$
B. $\cot a_{n}-\cot a$
C. $\sec a_{n}-\sec a_{1}$
D. $\tan a_{n}-\tan a_{1}$

Answer: D

- Watch Video Solution

21. ABC is a right-angled triangle in which $\angle B=90^{\circ}$ and $B C=a$. If n points $L_{1}, L_{2}, \ldots, L_{n}$ on AB is divided in $\mathrm{n}+1$ equal parts and $L_{1} M_{1}, L_{2} M_{2}, \ldots, L_{n} M_{n}$ are line segments parallel to BC and $M_{1}, M_{2}, \ldots, M_{n}$ are on AC , then the sum of the lengths of $L_{1} M_{1}, L_{2} M_{2}, \ldots, L_{n} M_{n}$ is
A. $\frac{a(n+1)}{2}$
B. $\frac{a(n-1)}{2}$
C. $\frac{a n}{2}$
D. none of these

Answer: C

- View Text Solution

22. If a, b, c, d are in G.P, then $(b-c)^{2}+(c-a)^{2}+(d-b)^{2}$ is equal to `
A. $(a-d)^{2}$
B. $(a d)^{2}$
C. $(a+d)^{2}$
D. $(a / d)^{2}$

Answer: A

- Watch Video Solution

23. Let $\left\{t_{n}\right\}$ be a sequence of integers in G.P. in which $t_{4}: t_{6}=1: 4 a n d t_{2}+t_{5}=216$. .Then $t_{1} i s 12 \mathrm{~b} .14 \mathrm{c} .16 \mathrm{~d}$. none of these
A. 12
B. 14
C. 16
D. none of these

Answer: A

- Watch Video Solution

24. if $x, 2 y$ and $3 z$ are in AP where the distinct numbers x, yand z are in $g p$.

Then the common ratio of the GP is
A. 3
B. $\frac{1}{3}$
C. 2
D. $\frac{1}{2}$

Answer: B

- Watch Video Solution

25. If a, b, and c are in A.P and $b-a, c-b$ and a are in G.P then $a: b: c$ is
A. 1:2:3
B. 1:3:5
C. 2:3:4
D. 1:2:4

Answer: A

- Watch Video Solution

26. If the sides of a triangle are in G.P., and its largest angle is twice the smallest, then the common ratio r satisfies the inequality ${ }^{\circ} 0$
A. $0<r<\sqrt{2}$
B. $1<r<\sqrt{2}$
C. $1<r<2$
D. none of these

Answer: B

- Watch Video Solution

27. If $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are in G.P and $a^{x}=b^{y}=c^{z}$,then
A. $\log _{b} a=\log _{a} c$
B. $\log _{c} b=\log _{a} c$
C. $\log _{b} a=\log _{b}$
D. none of these

Answer: C

- Watch Video Solution

28. The number of terms common between the series $1+2+4+8 . \ldots .$. to 100 terms and $1+4+7+10+\ldots$ to 100 terms is
A. 6
B. 4
C. 5
D. none of these

Answer: C

- Watch Video Solution

29. If $a^{2}+b^{2}, a b+b c, a n d b^{2}+c^{2}$ are in G.P., then a, b, c are in a. A.P. b.
G.P. C. H.P. d. none of these
A. A.P.
B. G.P
C. H.P
D. none of these

Answer: B

- Watch Video Solution

30. In a G.P. the first, third, and fifth terms may be considered as the first, fourth, and sixteenth terms of an A.P. Then the fourth term of the A.P., knowing that its first term is 5 , is 10 b .12 c .16 d .20
A. 10
B. 12
C. 16
D. 20

- Watch Video Solution

31. If the pth ,qth and rth terms of an AP are in G.P then the common ration of the GP is
A. $p \frac{r}{q^{2}}$
B. $\frac{r}{p}$
C. $\frac{q+r}{p+q}$
D. $\frac{q-r}{p-q}$

Answer: D

- Watch Video Solution

32. If $p^{t h}, q^{\text {th }}, r^{\text {th }}$ and $s^{t h}$ terms of an A.P. are in G.P, then show that ($\mathrm{p}-$ $q),(q-r),(r-s)$ are also in G.P.
A. A.P
B. G.P
C. H.P
D. none of these

Answer: B

- Watch Video Solution

33. If $a, b, a n d c$ are in G.P. and x, y, respectively, are the arithmetic means between $a, b, a n d b, c$, then the value of $\frac{a}{x}+\frac{c}{y}$ is $1 \mathrm{~b} .2 \mathrm{c} .1 / 2 \mathrm{~d}$. none of these
A. 1
B. 2
C. $1 / 2$
D. none of these

Answer: B

- Watch Video Solution

34. If $a, b a n d c$ are in A.P., and $p a n d p$ ' are respectively, A.M. and G.M. between aandbwhileq, q' are, respectively, the A.M. and G.M. between band c, then $p^{2}+q^{2}=p^{\prime 2}+q^{\prime 2}$ b. $p q=p^{\prime} q^{\prime}$ c. $p^{2}-q^{2}=p^{\prime 2}-q^{\prime 2}$ d. none of these
A. $p^{2}+q^{2}=P^{2}+q^{2}$
B. $p q=p^{\prime} q^{\prime}$
C. $p^{2}-q^{2}=p^{2}-q^{2}$
D. none of these

Answer: C

D Watch Video Solution

35. If $(1+x)\left(1+x^{2}\right)\left(1+x^{4}\right) \ldots\left(1+x^{128}\right)=\sum_{r=0}^{n} x^{r}$, then n is equal is
A. 256
B. 255
C. 254
D. none of these

Answer: B

- Watch Video Solution

36. If $(1-p)\left(1+3 x+9 x^{2}+27 x^{3}+81 x^{4}+243 x^{5}\right)=1-p^{6} p \neq 1$, then the value of $\frac{p}{\xi} s \frac{1}{3}$ b. 3 c. $\frac{1}{2}$ d. 2
A. $\frac{1}{3}$
B. 3
C. $\frac{1}{2}$

D. 2

Answer: B

- Watch Video Solution

37. Consider the ten numbers $a r, a r^{2}, a r^{3}, a r^{10}$. If their sum is 18 and the sum of their reciprocals is 6 , then the product of these ten numbers is 81 b .243 c .343 d .324
A. 81
B. 243
C. 343
D. 324

Answer: B

- Watch Video Solution

38. If $x, y, a n d z$ are distinct prime numbers, then $x, y, a n d z$ may be in A.P. but not in G.P. $x, y, a n d z$ may be in G.P. but not in A.P. $x, y, a n d z$ can neither be in A.P. nor in G.P. none of these
A. x, y and z may be in A.P but not in G.P
B. x, y and z may be in G.P but not in A.P
C. x, y and z can neither be in
D. none of these

Answer: A

- Watch Video Solution

39.

$a=1111(55$ digits $), b=1+10+1=^{2}++10^{4}, c=1+10^{5}+10^{10}+10$
then $a=b+c$ b. $a=b c$ c. $b=a c$ d. $c=a b$
A. $a+b+c$
B. $a=b c$
C. $b=a c$
D. $c=a b$

Answer: B

- Watch Video Solution

40. Let a_{n} be the $n^{\text {th }}$ term of a G.P of positive integers. Let $\sum_{n=1}^{100} a_{2 n}=\alpha$
and $\sum_{n=1}^{100} a_{2 n+1}=\beta$ such that $\alpha \neq \beta$. Then the common ratio is
A. α / β
B. β / α
C. $\sqrt{\alpha / \beta}$
D. $\sqrt{\beta / \alpha}$

Answer: A

41. The sum of 20 terms of a series of which every term is 2 times the term before it ,and every odd term is 3 times the term before it the first term being unity is
A. $\left(\frac{2}{7}\right)\left(6^{10}-1\right)$
B. $\left(\frac{3}{7}\right)\left(6^{10}-1\right)$
C. $\left(\frac{3}{5}\right)\left(6^{10}-1\right)$
D. none of these

Answer: C

- Watch Video Solution

42. Let $a \in(0,1)$ satisfies the equation
$a^{2008}-2 a+1=0$ values $(s) \rightarrow S$ is 2010 b. 2009 c. 2008 d. 2
A. 2010
B. 2009
C. 2008
D. 2

Answer: A

- Watch Video Solution

43. In a geometric series, the first term is a and common ratio is r. If S_{n} denotes the sum of the n terms and $U_{n}=\Sigma_{n=1}^{n} S_{n}$, then $r S_{n}+(1-r) U_{n}$ equals
A. 0
B. n
C. na
D. nar

Answer: C

44. Let $S \subset(0, \pi)$ denote the set of values of x satisfying the equation $8^{1+|\cos x|+\cos ^{2} x+\mid \cos ^{3 x \mid \rightarrow \infty}=4^{3}}$. Then, $S=\{\pi / 3\} \quad$ b. $\{\pi / 3,2 \pi / 3\}$ c.
$\{-\pi / 3,2 \pi / 3\}$ d. $\{\pi / 3,2 \pi / 3\}$
A. $\{\pi / 3\}$
B. $\{\pi / 6,5 \pi / 6\}$
C. $\{\pi / 3,5 \pi / 6\}$
D. $\{\pi / 3,2 \pi / 3\}$

Answer: D

- Watch Video Solution

45. If $||a|<1$ and $| b \mid<1$ then the sum of the series $1+(1+a) b+\left(1+a+a^{2}\right) b^{2}+\left(1+a+a^{2}+a^{3}\right) b^{3}+\ldots .$. is
A. $\frac{1}{(1-a)(1-b)}$
B. $\frac{1}{(1-a)(1-a b)}$
C. $\frac{1}{(1-b)(1-a b)}$
D. $\frac{1}{(1-a)(1-b)(1-a b)}$

Answer: C

- Watch Video Solution

46. The value of $0.2^{\log \sqrt{5} \frac{1}{4}+\frac{1}{8}+\frac{1}{16}+}$ is $4 \mathrm{~b} \cdot \log 4 \mathrm{c} \cdot \log 2 \mathrm{~d}$. none of these
A. 4
B. $\log 4$
C. $\log 2$
D. none of these

Answer: A

$x=9^{1 / 3} \times 9^{1 / 9} \times 9^{1 / 27} \times \ldots, y=4^{1 / 3} \times-4^{1 / 9} \times 4^{1 / 27} x \ldots$, and $z=\Sigma_{r=1}^{\infty}(1+i)^{r}$ then $\arg (\mathrm{x}+\mathrm{yz})$ is equal to
A. 0
B. $\pi-\tan ^{-1}\left(\frac{\sqrt{2}}{3}\right)$
C. $-\tan ^{-1}\left(\frac{\sqrt{2}}{3}\right)$
D. $-\tan ^{-1}\left(\frac{2}{\sqrt{3}}\right)$

Answer: C

- Watch Video Solution

48. The value of x that satisfies the relation

$$
x=1-x+x^{2}-x^{3}+x^{4}-x^{5}+\ldots \infty \text { is }
$$

A. $2 \cos 36^{\circ}$
B. $2 \cos 144^{\circ}$
C. $2 \sin 18^{\circ}$
D. $2 \cos 18^{\circ}$

Answer: C

- Watch Video Solution

49. If S dentes the sum to infinity and S_{n} the sum of n terms of the series
$1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots .$. such that $S-S_{n}<\frac{1}{1000}$ then the least value of n is
A. 8
B. 9
C. 10
D. 11

Answer: D
50. The first term of an infinite geometric series is 21 . The seconds term and the sum of the series are both positive integers. The possible value(s) of the second term can be
A. 12
B. 14
C. 18
D. none of these

Answer: D

- View Text Solution

51. The sum of an infinite G.P. is 57 and the sum of their cubes is 9747 , then the common ratio of the G.P. is
A. $1 / 3$
B. $2 / 3$
C. $1 / 6$
D. none of these

Answer: B

- Watch Video Solution

52. If S_{p} denotes the sum of the series $1+r^{p}+r^{2 p}+\rightarrow \infty a n d s_{p}$ the sum of the series $1-r^{2 p} r^{3 p}+\rightarrow \infty,|r|<1$, then $S_{p}+s_{p}$ in term of $S_{2 p}$ is
A. $2 S_{2 p}$
B. 0
C. $\frac{1}{2} S_{2 p}$
D. $-\frac{1}{2} S_{2 p}$
53. If the sum to infinity of the series $1+2 r+3 r^{2}+4 r^{3}+$ is $9 / 4$, then value of r is $1 / 2 \mathrm{~b} .1 / 3 \mathrm{c} .1 / 4 \mathrm{~d}$. none of these
A. $1 / 2$
B. $1 / 3$
C. $1 / 4$
D. none of these

Answer: B

54. Sum to infininty of the series $1+\frac{4}{5}+\frac{7}{5^{2}}+\frac{10}{5^{3}}+\ldots \ldots$ is
A. $7 / 16$
B. $5 / 16$
C. $105 / 64$
D. $35 / 16$

Answer: D

- Watch Video Solution

55. The sum of the series $0.4+0.004+0.00004+\infty$ is
A. $\frac{200}{891}$
B. $\frac{2000}{9801}$
C. $\frac{1000}{9801}$
D. $\frac{2180}{9801}$

Answer: D

- Watch Video Solution

56. The positive integer n for which
$2 \times 2^{2} \times+3 \times 2^{3}+4 \times 2^{4}++n \times 2^{n}=2^{n+10}$ is 510 b. 511 c. 512 d.
513
A. 510
B. 511
C. 512
D. 513

Answer: D

- Watch Video Solution

57. If ω is a complex nth root of unity, then $\underset{r=1}{ }{ }_{r=1}^{n}+b \omega^{r-1}$ is equal to
A. $(n(n+1)) a \frac{)}{a}$
B. $\frac{n b}{1-n}$
C. $\frac{n a}{\omega-1}$
D. none of these

Answer: C

- Watch Video Solution

58. ABCD is a square of length $a, a \in N, a>1$. Let L_{1}, L_{2}, L_{3},....... Be points on BC such that $B L_{1} L_{2}=L_{2} L_{3}=\ldots . .=1$ and $M_{1}, M_{2} M_{3} \ldots$ be points on CD such that $C M_{1}=M_{1} M_{2}=M_{2} M_{3}=\ldots .1$ Then $\Sigma_{n=1}^{a-1}\left(A L_{n}^{2}+L_{n} M_{n}^{2}\right)$ is equal to
A. $\frac{1}{2} a(a-1)^{2}$
B. $\frac{1}{2}(a-1)(2 a-1)(4 a-1)$
C. $\frac{1}{2} a(a-1)^{2}$
D. none of these

Answer: C

59. The 15 th term of the series $2 \frac{1}{2}+1 \frac{7}{13}+1 \frac{1}{9}+\frac{20}{23}+\ldots$ is
A. $\frac{10}{39}$
B. $\frac{10}{21}$
C. $\frac{10}{23}$
D. none of these

Answer: A

- Watch Video Solution

$$
\begin{aligned}
& \text { 60. If } a_{1}, a_{2}, \ldots a_{n} \quad \text { are in H.P } \\
& \frac{a_{1}}{a_{2}+, a_{3}, \ldots, a_{n}}, \frac{a_{2}}{a_{1}+a_{3}+\ldots .+a_{n}}, \ldots, \frac{a_{n}}{a_{1}+a_{2}+\ldots .+a_{n-1}} \\
& \text { are in }
\end{aligned}
$$

A. A.P
B. G.P
C. H.P
D. none of these

Answer: C

(Watch Video Solution

61. If $a_{1}, a_{2}, a_{3} \ldots a_{n}$ are in H.P and $f(k)=\left(\Sigma_{r=1}^{n} a_{r}\right)-a_{k}$ then
$\frac{a_{1}}{f(1)}, \frac{a_{2}}{f(3)}, \ldots, \frac{a_{n}}{f(n)}$ are in
A. A.P
B. G.P
C. H.P
D. none of these

Answer: C

0
 Watch Video Solution

62. If $a, b, a n d c$ are in A.P. $p, q, a n d r$ are in H.P., and $a p, b q$, andcr are in G.P., then $\frac{p}{r}+\frac{r}{p}$ is equal to $\frac{a}{c}-\frac{c}{a}$ b. $\frac{a}{c}+\frac{c}{a}$ c. $\frac{b}{q}+\frac{q}{b}$ d. $\frac{b}{q}-\frac{q}{b}$ A. A.P
B. G.P
C. G.P
D. none of these

Answer: D

- View Text Solution

63. If $a, b, a n d c$ are in A.P. $p, q, a n d r$ are in H.P., and $a p, b q, a n d c r$ are in
G.P., then $\frac{p}{r}+\frac{r}{p}$ is equal to $\frac{a}{c}-\frac{c}{a}$ b. $\frac{a}{c}+\frac{c}{a}$ c. $\frac{b}{q}+\frac{q}{b}$ d. $\frac{b}{q}-\frac{q}{b}$
A. $\frac{a}{c}-\frac{c}{a}$
B. $\frac{a}{c}+\frac{c}{a}$
C. $\frac{b}{q}+\frac{q}{b}$
D. $\frac{b}{q}-\frac{q}{b}$

Answer: B

- Watch Video Solution

64. $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \in R^{+}$such that a, b and c are in H.P and ap.bq, and cr are in
G.P then $\frac{p}{r}+\frac{t}{p}$ is equal to

- Watch Video Solution

65. If in a progression a_{1}, a_{2}, a_{3}, et $\cdot,\left(a_{r}-a_{r+1}\right)$ bears a constant atio with $a_{r} \times a_{r+1}$, then the terms of the progression are in a. A.P b. G.P. c.
H.P. d. none of these
A. A.P
B. G.P
C. H.P
D. none of these

Answer: C

- Watch Video Solution

66. If a, b, and c are in G.P then $a+b, 2 b$ and $b+c$ are in
A. A.P
B. G.P
C. H.P
D. none of these

Answer: C

(Watch Video Solution

67. If a, x, b are in A.P.,a,y,b are in G.P. and a, z, b are in H.P. such that $x=9 z$ and $>0, b>0$, then
A. $|y|=3 z$
B. $x=3|y|$
C. $2 y=x+z$
D. none of these

Answer: B

- Watch Video Solution

68. Let $n \in N, n>25$. Let A, G, H deonote te arithmetic mean, geometric man, and harmonic mean of 25 and n. The least value of n for which $A, G, H \in\{25,26, n\}$ is a. 49 b. 81 c. 169 d. 225
A. 49
B. 81
C. 169
D. 225

Answer: D

- View Text Solution

69. If A.M., G.M., and H.M. of the first and last terms of the series of $100,101,102, \ldots n-1, n$ are the terms of the series itself, then the value of 'ni s(100
A. 200
B. 300
C. 400
D. 500

Answer: C

70. If H_{1}. $, H_{2}, \ldots, H_{20}$ are 20 harmonic means between 2 and 3 , then $\frac{H_{1}+2}{H_{1}-2}+\frac{H_{20}+3}{H_{20}-3}=$
A. 20
B. 21
C. 40
D. 38

Answer: C

- View Text Solution

71. If the sum of n terms of an A.P is $\mathrm{cn}(\mathrm{n}-1)$ where $c \neq 0$ then the sum of the squares of these terms is
A. $c^{2} n(n+1)^{2}$
B. $\frac{2}{3} c^{2} n(n-1)(2 n-1)$
C. $\frac{2 c^{2}}{3} n(n+1)(2 n+1)$
D. none of these

Answer: B

- View Text Solution

72.

$b_{i}=1-a_{i} n a=\Sigma_{i=1}^{n} a_{i}, n b=\Sigma_{i=1}^{n} b_{i}$ then $\sum_{i=1}^{n} a_{b-} i+\sum_{i=1}^{n}\left(a_{i}-a\right)^{2}$
A. $a b$
B. $-n a b$
C. $(n+1) a b$
D. nab

Answer: D

73. The sum $1+3+7+15+31+\ldots \rightarrow 100$ terms is $2^{100}-102 b \mathrm{~b}$.
$2^{99}-101$ c. $2^{101}-102 \mathrm{~d}$. none of these
A. $2^{100}-102$
B. $2^{99}-101$
C. $2^{101}-102$
D. none of these

Answer: C

- Watch Video Solution

74. Consider the sequence $1,2,2,4,4,4,8,8,8,8,8,8,8,8, \ldots$.. Then 1025 th terms will be 2^{9} b. 2^{11} c. 2^{10} d. 2^{12}
A. 2^{9}
B. 2^{11}
C. 2^{10}
D. 2^{12}

Answer: C

- Watch Video Solution

75. The value of $\Sigma_{i=1}^{n} \Sigma_{j=1}^{i} \underset{k=1}{j}=220$, then the value of n equals
A. 11
B. 12
C. 10
D. 9

Answer: C

- Watch Video Solution

76.

$1^{2}+2^{2}+3^{2}++2003^{2}=(2003)(4007)(334) \operatorname{and}(1)(2003)+(2)(2002)+$ equals 2005 b. 2004 c. 2003 d. 2001
A. 2005
B. 2004
C. 2003
D. 2001

Answer: A

- View Text Solution

77. If t_{n} denotes the nth term of the series $2+3+6+11+18+\ldots$. . Then t_{50} is
A. $49^{2}-1$
B. 49^{2}
C. $50^{2}+1$
D. $49^{2}+2$

Answer: D

- Watch Video Solution

78. The sum of series $\Sigma_{r=0}^{r}(-1)^{r}(n+2 r)^{2}$ (where n is even) is
A. $-n^{2}+2 n$
B. $-4 n^{2}+2 n$
C. $-n^{2}+3 n$
D. $-n^{2}+4 n$

Answer: B

- Watch Video Solution

79. If $\left(1^{2}-t_{1}\right)+\left(2^{2}-t_{2}\right)+\ldots .+\left(n^{2}-t_{n}\right)=\frac{n\left(n^{2}-1\right)}{3}$ then t_{n} is equal to
A. n^{2}
B. 2 n
C. $n^{2}-2 n$
D. none of these

Answer: D

- Watch Video Solution

80. If $(1+3+5++p)+(1+3+5++q)=(1+3+5++r)$ where each set of parentheses contains the sum of consecutive odd integers as shown, the smallest possible value of $p+q+r($ wherep $>6)$ is 12 b .21 c .45 d .54
A. 12
B. 21
C. 45
D. 54

Answer: B

- Watch Video Solution

81. If $H_{n}=1+12++\frac{1}{n}$, then the value of $S_{n}=1+\frac{3}{2}+\frac{5}{3}++\frac{99}{50}$ is $H_{50}+50$ b. $100-H_{50}$ c. $49+H_{50}$ d.
$H_{50}+100$
A. $H_{50}+50$
B. $100-H_{50}$
C. $49+H_{50}$
D. $H_{50}+100$
82. The sum to 50 terms of the series

$$
\frac{3}{1^{2}}+\frac{5}{1^{2}+2^{2}}+\frac{7}{1^{+} 2^{2}+3^{2}}+\ldots+\ldots i s
$$

A. $\frac{100}{17}$
B. $\frac{150}{17}$
C. $\frac{200}{51}$
D. $\frac{50}{17}$

Answer: A

- Watch Video Solution

83. Let $\mathrm{S}=\frac{4}{19}+\frac{44}{(19)^{2}}+\frac{444}{(19)^{3}}+\ldots \infty$ then find the value of S
A. $40 / 9$
B. $38 / 81$
C. $36 / 171$
D. none of these

Answer: B

- Watch Video Solution

84. If $1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+=\frac{\pi}{4} \quad$, then value of $\frac{1}{1 \times 3}+\frac{1}{5 \times 7}+\frac{1}{9 \times 11}+$ is $\pi / 8$ b. $\pi / 6$ c. $\pi / 4$ d. $\pi / 36$
A. $\pi / 8$
B. $\pi / 6$
C. $\pi / 4$
D. $\pi / 36$

Answer: A

85. If $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\rightarrow \infty=\frac{\pi^{2}}{6}$, then $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+$ equals $\pi^{2} / 8$ b. $\pi^{2} / 12$ c. $\pi^{2} / 3$ d. $\pi^{2} / 2$
A. $\pi^{2} / 8$
B. $\pi^{2} / 8$
C. $\pi / 3$
D. $\pi^{2} / 2$

Answer: A

86. $\begin{array}{r}\lim _{n \rightarrow \infty} \\ \text { A. } \frac{1}{3}\end{array}$
B. $\frac{3}{2}$
C. $\frac{1}{2}$
D. none of these

Answer: C

D Watch Video Solution

87. The greatest interger by which $1+\Sigma_{r=1}^{30} r \times r$! is divisible is
A. composite number
B. odd number
C. divisible by 3
D. none of these

Answer: D

- View Text Solution

88. If $\Sigma_{r=1}^{n} r^{4}=I(n)$, then $\Sigma_{-}(r=1)^{n}(2 r-1)^{4}$ is equal to
A. $I(2 n)-I(n)$
B. $I(2 n)-16 I(n)$
C. $I(2 n)-8 I(n)$
D. $I(2 n)-4 I(n)$

Answer: B

- Watch Video Solution

89. Value of $\left(1+\frac{1}{3}\right)\left(1+\frac{1}{3^{2}}\right)\left(1+\frac{1}{3^{4}}\right)\left(1+\frac{1}{3^{8}}\right) \infty$ is equal to 3 b . $\frac{6}{5}$ c. $\frac{3}{2}$ d. none of these
A. 3
B. $\frac{6}{5}$
C. $\frac{3}{2}$
D. none of these

Answer: C

90. If $x_{1}, x_{2} \ldots, x_{20}$ are in H.P and $x_{1}, 2, x_{20}$ are in G.P then $\Sigma_{r=1}^{19} x_{r} r_{x+1}$
A. 76
B. 80
C. 84
D. none of these

Answer: A

- Watch Video Solution

91. Find the value of $\sum_{r=1}^{n}(a+r+a r)(-a)^{r}$ is equal to

Watch Video Solution

92. The sum of series $\frac{x}{1-x^{2}}+\frac{x^{2}}{1-x^{4}}+\frac{x^{4}}{1-x^{8}}+$ to infinite terms, if $|x|<1$, is $\frac{x}{1-x}$ b. $\frac{1}{1-x}$ c. $\frac{1+x}{1-x}$ d. 1
A. $\frac{x}{1-x}$
B. $\frac{1}{1-x}$
C. $\frac{1+x}{1-x}$
D. 1

Answer: A

- View Text Solution

93. The sum of 20 terms of the series whose rth term s given by k $T(n)=(-1)^{n} \frac{n^{2}+n+1}{n!}$ is $\frac{20}{19!}$ b. $\frac{21}{20!}-1$ c. $\frac{21}{20!}$ d. none of these
A. $\frac{20}{19!}$
B. $\frac{21}{20!}-1$
C. $\frac{21}{20!}$
D. none of these

Exercise (Multiple \& Comprehension)

1. For an increasing A.P. $a_{1}, a_{2}, \ldots . a_{n}$ if $a_{1}+a_{3}+a_{5}=-12$ and $a_{1} a_{3} a_{5}=80$, then which of the following is/are true? a $\cdot a_{1}=-10 \mathrm{~b}$. $a_{2}=-1 \mathrm{c} . a_{3}=-4$ d. $a_{5}=+2$
A. $a_{1}=-10$
B. $a_{2}=-1$
C. $a_{3}=-4$
D. $a_{5}=+2$

Answer: A::C::D

Watch Video Solution
2. If the sum of n terms of an A.P. is given by $S_{n}=a+b n+c n^{2}$, wherea, b, c are independent of n, then $a=0$ common difference of A.P. must be $2 b$ common difference of A.P. must be $2 c$ first term of A.P. is $b+c$
A. $a=0$
B. common ifferecnce of A.P must be 2 b
C. common difference of A.P must $2 c$
D. first term of A.P is $b+c$

Answer: A::C::D

- Watch Video Solution

3. If a, b, c and d are four unequal positive numbers which are in A.P then
A. $\frac{1}{a}+\frac{1}{d}>\frac{1}{b}+\frac{1}{c}$
B. $\frac{1}{a}+\frac{1}{d}<\frac{1}{b}+\frac{1}{c}$
C. $\frac{1}{b}+\frac{1}{c}>\frac{4}{a+d}$
D. $\frac{1}{a}+\frac{1}{d}=\frac{1}{b}+\frac{1}{c}$

Answer: A:C

- Watch Video Solution

4. Which of the following can be terms (not necessarily consecutive) of any A.P.? a. 1,6,19 b. $\sqrt{2}, \sqrt{50}, \sqrt{98}$ c. $\log 2, \log 16, \log 128$ d. $\sqrt{2}, \sqrt{3}, \sqrt{7}$
A. 1,6,19
B. $\sqrt{2} . \sqrt{50}, \sqrt{98}$
C. $\log 2, \log 16, \log 128$
D. $\sqrt{2}, \sqrt{3}, \sqrt{7}$

Answer: A::B::C

5. In a arithmetic progression whose first term is α and common difference is $\beta, \alpha, \beta \neq 0$ the ratio r of the sum of the first n terms to the sum of n terms succeending them, does not depend on n . Then which of the following is /are correct ?
A. $\alpha: \beta=2: 1$
B. If α and β are roots of the equation $a x^{2}+b x+c=0$ then

$$
2 b^{2}=9 a c
$$

C. The sum of infinite $G . P 1+r+r^{2}+\ldots . I s 3 / 2$
D. If $\alpha=1$, then sum of 10 terms of A.P is 100

Answer: B::C::D

- View Text Solution

6. If $a^{2}+2 b c, b^{2}+2 c a, c^{2}+2 a b$ are in A.P. then :-
A. $(a-b)(c-a),(a-b)(b-c),(b-c)(c-a)$ are in A.P
B. $b-c, c-a, a-b$ are in H.P
C. $a+b, b+c, c+a$ are in H.P
D. a^{2}, b^{2}, c^{2} are in H.P

Answer: A::B

- View Text Solution

7. If sum of an indinite G. $P p, 1,1 / p, 1 / p^{2} . . .=9 / 2$.. Is then value of p is
A. 2
B. $3 / 2$
C. 3
D. $9 / 2$

Answer: B::C

8. The terms of an infinitely decreasing G.P. in which all the terms are positive, the first term is 4 , and the difference between the third and fifth terms is $32 / 81$, then $r=1 / 3 \mathrm{~b} . r=2 \sqrt{2} / 3 \mathrm{c} . S_{\infty}=6 \mathrm{~d}$. none of these
A. $r=1 / 3$
B. $r=2 \sqrt{2} / 3$
C. Sum of infinite terms is 6
D. none of these

Answer: A::B::C

- Watch Video Solution

9. Let $a_{1}, a_{2}, a_{3} \ldots \ldots, a_{n}$ be in G.P such that $3 a_{1}+7 a_{2}+3 a_{3}-4 a_{5}=0$ Then common ratio of G.P can be
A. 2
B. $\frac{3}{2}$
C. $\frac{5}{2}$
D. $-\frac{1}{2}$

Answer: B::D

- Watch Video Solution

10. If $p(x)=\frac{1+x^{2}+x^{4}++x}{1+x+x^{2}++x^{n-1}{ }^{\wedge}(2 n-2)}$ is a polynomial in x, the \cap can be 5 b. 10 c. 20 d. 17
A. 5
B. 10
C. 20
D. 17

Answer: A::D

11. If $n>1$, the value of the positive integer m for which $n^{m}+1$ divides $a=1+n+n^{2}+\ddot{+} n^{63}$ is/are 8 b. 16 c. 32 d. 64
A. 8
B. 16
C. 32
D. 64

Answer: A::B::C

- Watch Video Solution

12. The next term of the G.P. $x, x^{2}+2, a n d x^{3}+10$ is $\frac{729}{16}$ b. 6 c. 0 d. 54
A. $\frac{729}{16}$
B. 6
C. 0
D. 54

- View Text Solution

13. If $1+2 x+3 x^{2}+4 x^{3}+\ldots . . \infty \geq 4$ then
A. least value of x is $1 / 2$
B. greatest value of x is $4 / 3$
C. least value of x is $2 / 3$
D. greatest value of x does not exist

Answer: A::D

- Watch Video Solution

14. Let S_{1}, S_{2}, be squares such that for each $n \geq 1$, the length of a side of S_{n} equals the length of a diagonal of S_{n+1}. If the length of a side of
$S_{1} i s 10 \mathrm{~cm}$, then for which of the following value of n is the area of S_{n} less than 1 sq.cm? a. 5 b. 7 c. 9 d. 10
A. 7
B. 8
C. 9
D. 10

Answer: B::C::D

D View Text Solution

15. If a, b and c are in G.P and x and y , respectively, be arithmetic means between a, b and b, c then prove that $\frac{a}{x}+\frac{c}{y}=2$ and $\frac{1}{x}+\frac{1}{y}=\frac{2}{b}$
16. Consider a sequence $\left\{a_{n}\right\}$ with $a_{-} 1=2 \& a_{n}=\frac{a_{n-1}^{2}}{a_{n-2}}$ for all $n \geq 3$ terms of the sequence being distinct .Given that a_{2} and a_{5} are positive integers and $a_{5} \leq 162$, then the possible values (s) of a_{5} can be
A. 162
B. 64
C. 32
D. 2

Answer: A: :C

- Watch Video Solution

17. The numbers $1,4,16$ can be three terms (not necessarily consecutive) of a.no. A.P b.only one G.P c.infinite number of A.P's d.infinite nuber of G.P' s
A. no. A.P
B. only one G.P
C. infinite number of A.P's
D. infinite nuber of G.P' s

Answer: C::D

- Watch Video Solution

18. The sum of an infinite geometric series is 162 and the sum of its first n terms is 160 . If the inverse of its common ratio is an integer, then which of the following is not a possible first term? 108 b. 144 c. 160 d. none of these
A. 108
B. 120
C. 144
D. 160

D View Text Solution

19. If $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are in A.P and $a, b-2 c$, are in G.P where a, b, c are non-zero then
A. $a^{3}+b^{3}+c^{3}=3 a b c$
B. $-2 a, b,-2 c$ are in A.P
C. $a^{2}, b^{2}, 4 c^{2}$ are in G.P
D.

Answer: A::B::C::D

- Watch Video Solution

20. Sum of an infinite G.P is 2 and sum of its two terms is $1.1 f$ its second terms is negative then which of the following is /are true?
A. one of the possible values of the first terms is $(2-\sqrt{2})$
B. one of the possible vlaues of the first terms is $(2+\sqrt{2})$
C. one of the possible values of the common ratio is $(\sqrt{2}-1)$
D. one of the possible values of the common ratio is $\frac{1}{\sqrt{2}}$

Answer: A::B::D

- Watch Video Solution

21. For $0<\phi<\pi / 2$, if $x=\Sigma_{n=0}^{\infty} \cos ^{2 n} \phi, y=\Sigma_{n=0}^{\infty} \sin ^{2 n} \phi$ and $z=\Sigma_{n=0}^{\infty} \cos ^{2 n} \phi$ then
A. $x y z=x z+y$
B. $x y z=x y+z$
C. $x y z=z+y+z$
D. $x y z=y z+x$

Answer: B::C

22. For
the
series,
$S=1+\frac{1}{(1+3)}(1+2)^{2}+\frac{1}{(1+3+5)}(1+2+3)^{2}+\frac{1}{(1+3+5+7)}($
$+.$.
A. $7^{\text {th }}$ term is 16
B. $7^{\text {th }}$ term $i s 18$
C. Sum of first 10 terms is $\frac{505}{4}$
D. Sum of first 10 terms is $\frac{405}{4}$

Answer: A: C

- Watch Video Solution

23. If $\sum_{r=1}^{n} r(r+1)(2 r+3)=a n^{4}+b n^{3}+c n^{2}+d n+e, \quad$ then a. $a-b=d-c$ b.e $=0$ c. $a, b-2 / 3, c-1$ are in A.P. . $\frac{c}{a}$ is an integer
A. $a-b=d-c$
B. $\mathrm{e}=0$
C. $a, b-2 / 3, c-1$ are in $\in A . P$
D. $(b+d) / a$ is an integer

Answer: A::B::C::D

- Watch Video Solution

24. If $S_{n}=1^{2}-2^{2}+3^{2}-4^{2}+5^{2}-6^{2}+\ldots \ldots$, th en
A. $S_{40}=-820$
B. $S_{2 n}>S_{2 n+2}$
C. $S_{51}=1326$
D. $S_{2 n+1}>S_{2 n-1}$

Answer: A::B::C::D

25. $\frac{1}{\sqrt{2}+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{8}}+\frac{1}{\sqrt{8}+\sqrt{11}}+n$ terms is equal to a. $\frac{(\sqrt{3 n+2})-\sqrt{2}}{3} b . \frac{n}{\sqrt{2+3 n}+\sqrt{2}}$ c.less than n d.less than $\sqrt{\frac{n}{3}}$
A. $\frac{(\sqrt{3 n+2})-\sqrt{2}}{3}$
B. $\frac{n}{\sqrt{2+3 n}+\sqrt{2}}$
C. less than n
D. less than $\sqrt{\frac{n}{3}}$

Answer: A::B::C

- Watch Video Solution

26. If $\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}$ and $\vec{b}=2 \hat{i}+4 \hat{j}-5 \hat{k}$ represent two adjacent sides of a parallelogram, find unit vectors parallel to the diagonals of the parallelogram.
27. Given that $x+y+z=15$ when $\mathrm{a}, \mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{b}$ are in A.P and $1 / x+1 / y+1 / z=5 / 3$ when a, x, y, z, b are in H.P .Then
A. G.M of a and b is 3
B. one possible value of $a+2 b$ is 11
C. A.M of a and b is 6
D. greatest value of $a-b$ is 8

Answer: A::B::D

- View Text Solution

28. If a, b and c are in H.P., then the value of $\frac{(a c+a b-b c)(a b+b c-a c)}{(a b c)^{2}}$ is
A. $\frac{(a+c)(3 a-c)}{4 a^{2} c^{2}}$
B. $\frac{2}{b c}-\frac{1}{b^{2}}$
C. $\frac{2}{b c}-\frac{1}{b^{2}}$
D. $\frac{(a-c)(3 a+c)}{4 a^{2} c^{2}}$

Answer: A: B

- Watch Video Solution

29. If p, q and r are in A.P then which of the following is / are true ?
A. pth,qth and rth terms of A.P are in A.P
B. pth,qth,and rht terms of G.P are in G.P
C. pth , qth , and rht terms of H.P are in H.P
D. none of these

Answer: A::B::C

30. If $x^{2}+9 y^{2}+25 z^{2}=x y z\left(\frac{15}{2}+\frac{5}{y}+\frac{3}{z}\right)$, then x, y, and z are in H.P. b. $\frac{1}{x}, \frac{1}{y}, \frac{1}{z}$ are in A.P. c. x, y, z are in G.P. d. $\frac{1}{a}+\frac{1}{d}=\frac{1}{b}=\frac{1}{c}$
A. x, y and z are in H.P
B. $\frac{1}{x}, \frac{1}{y}, \frac{1}{z}$ are in G.P
C. x, y, z are in G.P
D. $\frac{1}{x}, \frac{1}{y}, \frac{1}{z}$ are in G.P

Answer: A: C

D View Text Solution

31. If $A_{1}, A_{2}, G_{1}, G_{2}$, and H_{1}, H_{2} are two arithmetic, geometric and harmonic means respectively, between two quantities aandb, thenab is equal to
A. A_{H-2}
B. $A_{2} H_{1}$
C. $G_{1} G_{2}$
D. none of these

Answer: A::B::C

- Watch Video Solution

32. If $\frac{1}{b-a}+\frac{1}{b-c}=\frac{1}{a}+\frac{1}{c}$, then $a, b, a n d c$ are in H.P. $a, b, a n d c$ are in A.P. $b=a+c 3 a=b+c$
A. a,b, and c are in H.P
B. a, b, and c are in A.P
C. $b=a+c$
D. $3 a=b+c$

Answer: A: B

- View Text Solution

33. If a, b, c are three distinct numbers in G.P., b,c,a are in A.P and a,bc, abc, in H.P then the possible value of b is
A. $3+4 \sqrt{2}$
B. $3-4 \sqrt{2}$
C. $4+3 \sqrt{2}$
D. $4-3 \sqrt{2}$

Answer: C::D

- View Text Solution

34. If a,b,c are in A.P and a^{2}, b^{2}, c^{2} are in H.P then which is of the following is /are possible?
A. $a x^{2}+b x+c=0$
B. $a x^{2} b x+c=0$
C. $a, b-\frac{c}{2}$ form a G.P
D. $a-b, \frac{c}{2}$ from a G.P

Answer: A:C

- View Text Solution

35. If first and $(2 n-1)^{\text {th }}$ terms of A.P., G.P. and H.P. are equal and their nth terms are a,b,c respectively, then
A. $a=b=c$
B. $a \geq b e \geq c$
C. $a+b=c$
D. $a c-b^{2}=0$

Answer: B::D

- View Text Solution

36. Let $E=\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+$ Then, a. $E<3$ b. $E>3 / 2$ c. $E>2$ d. $E<2$
A. $E<3$
B. $E>3 / 2$
C. $E>2$
D. $E<2$

Answer: A::B::D

- Watch Video Solution

37. Sum of certain consecutive odd positive intergers is $57^{2}-13^{2}$

The least value of the an interger is
A. $a_{1}=-10$
B. $a_{2}=-1$
C. $a_{3}=-4$
D. $a_{5}=+2$

Answer: A::C::D

- View Text Solution

38. Sum of certain consecutive odd positive intergers is $57^{2}-13^{2}$

The least value of the an interger is
A. $a=0$
B. common ifferecnce of A.P must be 2 b
C. common difference of A.P must 2 c
D. first term of A.P is $b+c$

Answer: A::C::D

- Watch Video Solution

39. Sum of certain consecutive odd positive intergers is $57^{2}-13^{2}$

The least value of the an interger is
A. $\frac{1}{a}+\frac{1}{d}>\frac{1}{b}+\frac{1}{c}$
B. $\frac{1}{a}+\frac{1}{d}<\frac{1}{b}+\frac{1}{c}$
C. $\frac{1}{b}+\frac{1}{c}>\frac{4}{a+d}$
D. $\frac{1}{a}+\frac{1}{d}=\frac{1}{b}+\frac{1}{c}$

Answer: A::C

- View Text Solution

40. Consider three distinct real numbers a, b, c in a G.P with $a^{2}+b^{2}+c^{2}=t^{2}$ and $\mathrm{a}+\mathrm{b}+\mathrm{c}=\alpha t$. The sum of the common ratio and its reciprocal is denoted by S .

Complete set of α^{2} is
A. 1,6,19
B. $\sqrt{2} . \sqrt{50}, \sqrt{98}$
C. $\log 2, \log 16, \log 128$
D. $\sqrt{2}, \sqrt{3}, \sqrt{7}$

Answer: A::B::C

- View Text Solution

41. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are distinct +ve real numbers and $a^{2}+b^{2}+c^{2}=1$ then $a b+b c+c a$ is
A. $\alpha: \beta=2: 1$
B. If α and β are roots of the equation $a x^{2}+b x+c=0$ then

$$
2 b^{2}=9 a c
$$

C. The sum of infinite $G . P 1+r+r^{2}+\ldots . I s 3 / 2$
D. If $\alpha=1$, then sum of 10 terms of A.P is 100
42. If a, b and c also represent the sides of a triangle and a, b, c are in g.p then the complete set of $\alpha^{2}=\frac{r^{2}+r+1}{r^{2}-r+1}$ is
A. $\left(\frac{1}{3}, 3\right)$
B. $(2,3)$
C. $\left(\frac{1}{3}, 2\right)$
D. $\left(\frac{\sqrt{5+3}}{2}, 3\right)$

Answer: 4

- Watch Video Solution

43. In a n increasing G.P. , the sum of the first and the last term is 66 , the product of the second and the last but one is 128 and the sum of the terms is 126 . How many terms are there in the progression?
A. 2
B. $3 / 2$
C. 3
D. $9 / 2$

Answer: B::C

- Watch Video Solution

44. In a G.P the sum of the first and last terms is 66 , the product of the second and the last but one is 128 , and the sum of the terms is 126 . If an increasing G.P is considered , then the number of trems in G.P is
A. $r=1 / 3$
B. $r=2 \sqrt{2} / 3$
C. Sum of infinite terms is 6
D. none of these

- Watch Video Solution

45. In a G.P the sum of the first and last terms is 66 , the product of the second and the last but one is 128 , and the sum of the terms is 126 . If an increasing G.P is considered, then the number of trems in G.P is
A. 2
B. $\frac{3}{2}$
C. $\frac{5}{2}$
D. $-\frac{1}{2}$

Answer: B::D

46. Four different integers form an increasing A.P .One of these numbers is equal to the sum of the squares of the other three numbers. Then The product of all numbers is
A. 5
B. 10
C. 20
D. 17

Answer: A::D

- Watch Video Solution

47. The sum of all four-digit numbers that can be formed by using the digits $2,4,6,8$ (when repetition of digits is not allowed) is a. 133320 b . 5333280 c .53328 d . none of these
A. 8
B. 16
C. 32
D. 64

Answer: A::B::C

- Watch Video Solution

48. The common difference of the divisible by
A. $\frac{729}{16}$
B. 6
C. 0
D. 54

Answer: A::D

49. Consider the sequence in the form of group (1),(2,2)(3,3,3),(4,4,4,4), (5,5,5,5,5.....)

The $2000^{\text {th }}$ term of the sequence is not divisible by
A. least value of x is $1 / 2$
B. greatest value of x is $4 / 3$
C. least value of x is $2 / 3$
D. greatest value of x does not exist

Answer: A: D

D View Text Solution

50. Consider the sequence in the form of group (1),(2,2)(3,3,3),(4,4,4,4), (5,5,5,5,5.....)

The sum of first 2000 terms is
A. 7
B. 8
C. 9
D. 10

Answer: B::C::D

- View Text Solution

51. Consider the sequence in the form of group (1),(2,2)(3,3,3),(4,4,4,4), (5,5,5,5,5.....)
A. $\frac{a}{x}+\frac{c}{y}=2$
B. $\frac{a}{x}+\frac{c}{y}=\frac{c}{a}$
C. $\frac{1}{x}+\frac{1}{y}=\frac{2}{b}$
D. $\frac{1}{x}+\frac{1}{y}=\frac{2}{a} c$

Answer: A::C

52. There are two sets A and B each of which consists of three numbers in A.P.whose sum is 15 and where D and d are the common differences such that $D-d=1 . I f \frac{p}{q}=\frac{7}{8}$, where p and q are the product of the numbers ,respectively, and $d>0$ in the two sets .

The sum of the products of the numbers is set A taken two at at time is
A. 162
B. 64
C. 32
D. 2

Answer: A:C

- Watch Video Solution

53. There are two sets A and B each of which consists of three numbers in A.P.whose sum is 15 and where D and d are the common differences such
that $D-d=1 . I f \frac{p}{q}=\frac{7}{8}$, where p and q are the product of the numbers , respectively, and $d>0$ in the two sets.

The sum of the products of the numbers is set A taken two at at time is
A. no. A.P
B. only one G.P
C. infinite number of A.P's
D. infinite nuber of G.P' s

Answer: C::D

- Watch Video Solution

54. There are two sets M_{1} and M_{2} each of which consists of three numbers in arithmetic sequence whose sum is 15 . Let d_{1} and d_{2} be the common differences such that $d_{1}=1+d_{2}$ and $8 p_{1}=7 p_{2}$ where p_{1} and p_{2} are the product of the numbers respectively in M_{1} and M_{2}. If $d_{2}>0$ then find the value of $\frac{p_{2}-p_{1}}{d_{1}+d_{2}}$
A. 108
B. 120
C. 144
D. 160

Answer: A::C::D

- View Text Solution

55. Let $A_{1}, A_{2}, A_{3}, \ldots, A_{m}$ be the arithmetic means between -2 and 1027 and $G_{1}, G_{2}, G_{3}, \ldots, G_{n}$ be the gemetric means between 1 and 1024 .The product of gerometric means is 2^{45} and sum of arithmetic means is 1024×171

The value of $\sum_{r=1}^{n} G_{r}$ is
A. $a^{3}+b^{3}+c^{3}=3 a b c$
B. $-2 a, b,-2 c$ are in A.P
C. $a^{2}, b^{2}, 4 c^{2}$ are in G.P

D.

Answer: A::B::C::D

- View Text Solution

56. If the arithmetic means of two positive number a and $\mathrm{b}(a>b)$ is twice their geometric mean, then find the ratio a : b
A. one of the possible values of the first terms is $(2-\sqrt{2})$
B. one of the possible vlaues of the first terms is $(2+\sqrt{2})$
C. one of the possible values of the common ratio is $(\sqrt{2}-1)$
D. one of the possible values of the common ratio is $\frac{1}{\sqrt{2}}$

Answer: A::B::D

- Watch Video Solution

57. A box contains 2 blue marbles, 4 green marbles and 7 red marbles. One marble is taken out of the box at random. What is the probability that the marble taken out will be (i) blue (ii) Not blue?

- Watch Video Solution

58. Two consecutive numbers from $1,2,3, \ldots, n$ are removed, then arithmetic mean of the remaining numbers is $\frac{105}{4}$ then $\frac{n}{10}$ must be equal to
A. $7^{\text {th }}$ term is 16
B. $7^{\text {th }}$ term $i s 18$
C. Sum of first 10 terms is $\frac{505}{4}$
D. Sum of first 10 terms is $\frac{405}{4}$

Answer: A:C

59. Two consecutive numbers from 1,2,3, n are removed.The arithmetic mean of the remaining numbers is 105/4.

The removed numbers
A. $a-b=d-c$
B. $\mathrm{e}=0$
C. $a, b-2 / 3, c-1$ are in $\in A . P$
D. $(b+d) / a$ is an integer

Answer: A::B::C::D

- Watch Video Solution

60. Two consecutive numbers from $1,2,3 \ldots, \mathrm{n}$ are removed . The arithmetic mean of the remaining numbers is 105/4

The sum of all numbers
A. $S_{40}=-820$
B. $S_{2 n}>S_{2 n+2}$
C. $S_{51}=1326$
D. $S_{2 n+1}>S_{2 n-1}$

Answer: A::B::C::D

- View Text Solution

61. Two arithmetic progressions have the same numbers. The reatio of the last term of the first progression to the first term of the second progression is equal to the ratio of the last term of the second progression to the first term of first progression is equal to 4. The ratio of the sum of the n terms of the first progression to the sum of the n terms of teh first progression to the sum of the n terms of the second progerssion is equal to 2 .

The ratio of their first term is
A. $\frac{(\sqrt{3 n+2})-\sqrt{2}}{3}$
B. $\frac{n}{\sqrt{2+3 n}+\sqrt{2}}$
C. less than n
D. less than $\sqrt{\frac{n}{3}}$

Answer: A::B::C

- Watch Video Solution

62. Two arithmetic progressions have the same numbers. The reatio of the last term of the first progression to the first term of the second progression is equal to the ratio of the last term of the second progression to the first term of first progression is equal to 4. The ratio of the sum of the n terms of the first progression to the sum of the n terms of teh first progression to the sum of the n terms of the second progerssion is equal to 2 .

The ratio of their first term is
A. $6 / 5$
B. $7 / 2$
C. $9 / 5$
D. none of these

Answer: B

- Watch Video Solution

63. Two arithmetic progressions have the same numbers. The reatio of the last term of the first progression to the first term of the second progression is equal to the ratio of the last term of the second progression to the first term of first progression is equal to 4. The ratio of the sum of the n terms of the first progression to the sum of the n terms of teh first progression to the sum of the n terms of the second progerssion is equal to 2 .

The ratio of their first term is
A. G.M of a and b is 3
B. one possible value of $a+2 b$ is 11
C. A.M of a and b is 6
D. greatest value of $a-b$ is 8

Answer: A::B::D

- Watch Video Solution

64. Find three numbers a, b, c between $2 \& 18$ such that; O their sum is 25
@ the numbers $2, \mathrm{a}, \mathrm{b}$ are consecutive terms of an $\mathrm{AP} \& \mathrm{Q} .3$ the numbers b?c?18 are consecutive terms ofa GP
A. $\frac{(a+c)(3 a-c)}{4 a^{2} c^{2}}$
B. $\frac{2}{b c}-\frac{1}{b^{2}}$
C. $\frac{2}{b c}-\frac{1}{b^{2}}$
D. $\frac{(a-c)(3 a+c)}{4 a^{2} c^{2}}$

Answer: A: B

- View Text Solution

65. Find three numbers a, b, c between $2 \& 18$ such that; O their sum is 25
@ the numbers $2, \mathrm{a}, \mathrm{b}$ are consecutive terms of an AP \& Q. 3 the numbers b?c?18 are consecutive terms ofa GP
A. pth,qth and rth terms of A.P are in A.P
B. pth,qth,and rht terms of G.P are in G.P
C. pth, qth, and rht terms of H.P are in H.P
D. none of these

Answer: A::B::C

- View Text Solution

66. If a, b and c are roots of the equation $x^{3}+q x^{2}+r x+s=0$ then the value of r is
A. x, y and z are in H.P
B. $\frac{1}{x}, \frac{1}{y}, \frac{1}{z}$ are in G.P
C. x, y, z are in G.P
D. $\frac{1}{x}, \frac{1}{y}, \frac{1}{z}$ are in G.P

Answer: A::C

- Watch Video Solution

EXERCIESE (MULTIPLE CORRECT ANSWER TYPE)

1. If $\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}$ and $\vec{b}=2 \hat{i}+4 \hat{j}-5 \hat{k}$ represent two adjacent sides of a parallelogram, find unit vectors parallel to the diagonals of the parallelogram.

- Watch Video Solution

2. Two arithmetic progressions have the same numbers. The reatio of the last term of the first progression to the first term of the second progression is equal to the ratio of the last term of the second
progression to the first term of first progression is equal to 4. The ratio of the sum of the n terms of the first progression to the sum of the n terms of teh first progression to the sum of the n terms of the second progerssion is equal to 2 .

The ratio of their first term is
A. last term $=210$
B. first term = 191
C. sum $=4010$
D. sum $=4200$

Answer: A::B::C

- Watch Video Solution

EXERCIESE (MATRIX MATCH TYPE)

1. If α and β are roots of the equation $x^{2}-8 x+p=0$, then $\alpha^{2}+\beta^{2}=40$, find the value of p.

Watch Video Solution

2. The area of a parallelogram whose adjacent sides are represented by the vectors $\vec{a}=2 \hat{i}+\hat{j}+3 \hat{k}$ and $\vec{b}=\hat{i}-\hat{j}$ is

- Watch Video Solution

3. Find the area of a parallelogram whose adjacent sides are determined by the vectors $\vec{a}=2 \hat{i}-\hat{j}+3 \hat{k}$ and $\vec{b}=\hat{i}-6 \hat{j}+4 \hat{k}$ is

- Watch Video Solution

Exercise (Numerical)

1. Let a, b, c, d be four distinct real numbers in A.P. Then half of the $\begin{array}{lllll}\text { smallest } & \text { positive } & \text { valueof } & k & \text { satisfying }\end{array}$

$$
a(a-b)+k(b-c)^{2}=(c-a)^{3}=2(a-x)+(b-d)^{2}+(c-d)^{3} \text { is }
$$

- View Text Solution

2. Let fourth therm of an arithmetic progression be 6 and $m^{\text {th }}$ term be 18 . If A.P has intergal terms only then the numbers of such A.P s is

- Watch Video Solution

3. The 5th and 8th terms of a geometric sequence of real numbers are 7!

And 8! Respectively. If the sum to first n tems of the G.P. is 2205 , then n equals \qquad .

- View Text Solution

4. Let $a_{1}, a_{2}, a_{3},, a_{101}$ are in G.P. with $a_{101}=25 a n d \sum_{i=1}^{201} a_{1}=625$. Then the value of $\sum_{i=1}^{201} \frac{1}{a_{1}}$ equals \qquad .

- Watch Video Solution

5. Let $a, b>0, \quad$ let $5 a-b, 2 a+b, a+2 b$ be in A.P. and $(b+1)^{2}, a b+1,(a-1)^{2}$ are in G.P., then the value of $\left(a^{-1}+b^{-1}\right)$ is
\qquad .

- Watch Video Solution

6. Let $a+a r_{1}+a r 12++\infty a n d a+a r_{2}+a r 22++\infty$ be two infinite series of positive numbers with the same first term. The sum of the first series is r_{1} and the sum of the second series r_{2}. Then the value of $\left(r_{1}+r_{2}\right)$ is \qquad .

D Watch Video Solution

7. If he equation $x^{3}+a x^{2}+b x+216=0$ has three real roots in G.P., then b / a has the value equal to \qquad .

- View Text Solution

8. Let $a_{n}=16,4,1, \ldots$ be a geometric sequence .Define P_{n} as the product of the first n terms. The value of $\Sigma_{n=1}^{\infty} n \sqrt{P}_{n}$ is \qquad .

- View Text Solution

9. The terms a_{1}, a_{2}, a_{3} from an arithmetic sequence whose sum s 18 . The terms $a_{1}+1, a_{2}, a_{3},+2$, in that order, form a geometric sequence. Then the absolute value of the sum of all possible common difference of the A.P. is \qquad .

- View Text Solution

10. Let the sum of first three terms of G.P. with real terms be $13 / 12$ and their product is -1 . If the absolute value of the sum of their infinite terms is S, then the value of $7 S$ is \qquad .

- Watch Video Solution

11. The first term of an arithmetic progression is 1 and the sum of the first nine terms equal to 369 . The first and the ninth term of a geometric progression coincide with the first and the ninth term of the arithmetic progression. Find the seventh term of the geometric progression.

- View Text Solution

12. The digits in units's place of number $\frac{10^{2013}-1}{10^{33}-1}$ is. \qquad .

- Watch Video Solution

13. The number of positive integral ordered pairs of (a, b) such that $6, a, b$ are in harmonic progression is \qquad .

- View Text Solution

14. If the roots of $10 x^{3}-n x^{2}-54 x-27=0$ are in harmonic oprogresion, then n eqauls \qquad .

- Watch Video Solution

15. Given a, b, c are in A.P.,b,c,d are in G.P and c, d, e are in H.P .If $a=2$ and $e=18$, then the sum of all possible value of c is \qquad .

- View Text Solution

16. Let S_{k} be sum of an indinite G.P whose first term is ' K ' and commmon ratio is $\frac{1}{k+1}$. Then $\Sigma_{k=1}^{10} S_{k}$ is equal to \qquad .
17. The value of the sum $\Sigma_{i=1}^{20} i\left(\frac{1}{i}+\frac{1}{i+1}+\frac{1}{i+2}+\ldots .+\frac{1}{20}\right)$ is

- Watch Video Solution

18. The difference between the sum of the first k terms of the series $1^{3}+2^{3}+3^{3}+\ldots+n^{3}$ and the sum of the first k terms of $1+2+3+\ldots .+n$ is 1980 . The value of k is :

- View Text Solution

19. The value of the $\Sigma_{n=0}^{\infty} \frac{2 n+3}{3^{n}}$ is equal to \qquad .

- Watch Video Solution

20. The sum of the infinite Arithmetico -Geometric progression $3,4,4, \ldots$ is
\qquad -

- Watch Video Solution

21. $\Sigma_{r=1}^{50} \frac{r^{2}}{r^{2}+(11-r)^{2}}$ is equal to \qquad .

- View Text Solution

22. If $\Sigma_{r=1}^{50} \frac{r^{2}}{r^{2}+(11-r)^{2}}$, then the value of n is

(Watch Video Solution

23. Let $\left\langle a_{n}\right\rangle$ be an arithmetic sequence of 99 terms such that sum of its odd numbered terms is 1000 then the value of $\Sigma_{r=1}^{50}(-1)^{\frac{r(r+1)}{2}} \cdot a_{2 r-1}$ is \qquad .
24. Find the sum of series upto n terms $\left(\frac{2 n+1}{2 n-1}\right)+3\left(\frac{2 n+1}{2 n-1}\right)^{2}+5\left(\frac{2 n+1}{2 n-1}\right)^{3}+\ldots$

- Watch Video Solution

25. Let $S=\Sigma_{n=1}^{999}$

1
$\frac{1}{(\sqrt{n}+\sqrt{n+1})(4 \sqrt{n}+4 \sqrt{n}+1)}$, then S equals .

View Text Solution

26. Let S denote sum of the series $\frac{3}{2^{3}}+\frac{4}{2^{4} .3}+\frac{5}{2^{6} .3}+\frac{6}{2^{7} .5}+\infty$ Then the value of S^{-1} is \qquad .

- View Text Solution

27. The sum $\frac{7}{2^{2} \times 5^{2}}+\frac{13}{5^{2} \times 8^{2}}+\frac{19}{8^{2} \times 11^{2}}+\ldots 10$ terms is S , then the value of 1024(S) is \qquad .

Watch Video Solution

JEE Main Previous Year

1. The sum to infinity of the series $1+\frac{2}{3}+\frac{6}{3^{2}}+\frac{10}{3^{3}}+\frac{14}{3^{4}} \ldots \ldots$ is (1) 2 (2) $3(3) 4(4) 6$
A. 2
B. 3
C. 4
D. 6

Answer: B

2. A person is to count 4500 currency notes. Let a_{n}, denote the number of notes he counts in the nth minute if $a_{1}=a_{2}=a_{3}=\ldots \ldots \ldots .=a_{10}=150$ and $a_{10}, a_{11}, \ldots \ldots \ldots$. are in an $A P$ with common difference -2 , then the time taken by him to count all notes is :- (1) 24 minutes 1011 (2) 34 minutes (3) 125 minutes (4) 135 minutes
A. 135 min
B. 24 min
C. 34 min
D. 125 min

Answer: C

- View Text Solution

3. A man saves Rs. 200 in each of the first three months of his service. In each of the subsequent months his saving increases by Rs, 40 more than
the saving of immediately previous month. His total saving s from the start of service will be Rs. 11040 after
A. 21 months
B. 18 months
C. 19 months
D. 20 months

Answer: A

- Watch Video Solution

4. Statement 1 :

The sum of the series $1+(1+2+4)+(4+6+9)+(9+12+16)+\ldots+(361+380+400)$ is 8000

Statement 1:
$\sum_{k=1}^{n}\left(k^{3}-(k-1)^{3}\right)=n^{3}$, for any natural number n.
A. Statement 1 is fasle ,statement 2 is true
B. Statement 1 is true ,statement 2 is true, statement 2 is a correct explanation for statement 1.
C. Statement 1 is true, statements 2 is true statement 2 is not a correct explanation for statement 1
D. Statement 1 is true, statement 2 is false

Answer: B

- View Text Solution

5. If 100 times the $100^{\text {th }}$ term of an AP with non zero common difference equals the 50 times its $50^{t h}$ term, then the $150^{t h}$ term of this AP is (1) 150 (2) 150 times its $50^{\text {th }}$ term (3) 150 (4) zero
A. -150
B. 150 times its 50 th term
C. 150
D. Zero

- Watch Video Solution

6. The sum of first 20 terms of the sequence $0.7,0.77,0.777$, .. , is (1)

$$
\begin{align*}
& \frac{7}{9}\left(99-10^{-20}\right) \quad \text { (2) } \quad \frac{7}{81}\left(179+10^{-20}\right) \quad \text { (3) } \quad \frac{7}{9}\left(99+10^{-20}\right) \tag{3}\\
& \frac{7}{81}\left(179-10^{-20}\right)
\end{align*}
$$

A. $\left.\frac{7}{81}(179-10)^{20}\right)$
B. $\frac{7}{9}\left(99-10^{20}\right)$
C. $\frac{7}{81}\left(179+10^{-20}\right)$
D. $\frac{7}{9}\left(99+10^{-20}\right)$

Answer: C

7. If $(10)^{9}+2(11)^{1}(10)^{8}+3(11)^{2}(10)^{7}+\ldots+10(11)^{9}=k(10)^{9}$ then k is equal to
A. $\frac{121}{10}$
B. $\frac{441}{100}$
C. 100
D. 110

Answer: C

- Watch Video Solution

8. If m is the A.M. of two distinct real numbers l and $n(l, n>1)$ and G1, G2 and G3 are three geometric means between l and n, then $G 14+2 G 24+G 34$ equals, (1) $4 l^{2} \mathrm{mn}$ (2) $4 l^{m} \wedge 2 \mathrm{mn}$ (3) $4 l m n^{2}$
$4 l^{2} m^{2} n^{2}$
A. $4 l^{2} m n$
B. $4 l m^{2} n$
C. $4 l m n^{2}$
D. $4 l^{2} m^{n}{ }^{\wedge} 2$

Answer: B

- Watch Video Solution

9. The sum of the first 9 terms of the series $\frac{1^{3}}{1}+\frac{1^{3}+2^{3}}{1+3}+\frac{1^{3}+2^{3}+3^{3}}{1+3+5} \ldots .$. is :
A. 71
B. 96
C. 142
D. 192

Answer: B

10. If the $2 \mathrm{nd}, 5$ th and 9 th terms of a non-constant A.P. are in G.P., then the common ratio of this G.P. is : (1) $\frac{8}{5}$ (2) $\frac{4}{3}$ (3) 1 (4) $\frac{7}{4}$
A. $\frac{4}{3}$
B. 1
C. $\frac{7}{4}$
D. $\frac{8}{5}$

Answer: A

- View Text Solution

11. If the surm of the first ten terms of the series, $\left(1 \frac{3}{5}\right)^{2}+\left(2 \frac{2}{5}\right)^{2}+\left(3 \frac{1}{5}\right)^{2}+4^{2}+\left(4 \frac{4}{5}\right)^{2}+\ldots \ldots$. , is $\frac{16}{5} m$,then m is equal to
A. 101
B. 100
C. 99
D. 102

Answer: A

- View Text Solution

12. For a positive integer n, if the quadratic equation, equation, $x(x+1)+(x+1)(x+2)+\ldots+(x+n-1)(x+n)=10 n$ has two consective integral solutions, then n is equal to
A. 11
B. 12
C. 9
D. 10

JEE Advanced Previous Year

1. For any three positive real numbers a, b and c, $9\left(25 a^{2}+b^{2}\right)+25\left(c^{2}-3 a c\right)=15 b(3 a+c)$ Then: (1) b, c and a are in G.P. (2) b, c and a are in A.P. (3) a, b and c are in A.P (4) a, b and c are in G.P
A. a,b and c are in G.P
B. b,c and a are in G.P
C. b,c and a are in A.P
D. a, b and c are in A.P

Answer: C

- Watch Video Solution

2. Let $a, b, c \in R . \operatorname{Iff}(x)=a x^{2}+b x+c$ is such that $a+b+c=3$ and $f(x+y)=f(x)+f(y)+x y, \forall x, y \in R$, then $\Sigma_{n=1}^{10} f(n)$ is equal to
A. 255
B. 330
C. 165
D. 190

Answer: B

- View Text Solution

3. Let A be the sum of the first 20 terms and B be the sum of the first 40 terms of the series $1^{2}+2.2^{2}+3^{2}+2.4^{2}+5^{2}+2.6^{2}+\ldots \quad$ If $B-2 A=100 \lambda$ then λ is equal to (1) 232 (2) 248 (3) 464 (4)496
A. 496
B. 232
C. 248
D. 464

Answer: C

- View Text Solution

4. Let $a_{1}, a_{2}, a_{3} \ldots, a_{49}$ be in A.P . Such that $\Sigma_{k=0}^{12} a_{4 k+1}=416$ and $a_{9}+a_{43}=66$.If $a_{1}^{2}+a_{2}^{2}+\ldots+a_{17}=140 \mathrm{~m}$ then m is equal to
A. 33
B. 66
C. 68
D. 34

Answer: D

5. Let $a_{1}, a_{2}, a_{3}, \ldots$ be a harmonic progression with $a_{1}=5$ and $a_{20}=25$. The least positive integer n for which $a_{n}<0$, is
A. 22
B. 23
C. 24
D. 25

Answer: D

- Watch Video Solution

6. The value of $\Sigma_{k=1}^{13} \frac{1}{\sin \left(\frac{\pi}{4}+\frac{(k-1) \pi}{6}\right) \sin \left(\frac{\pi}{4}+\frac{k \pi}{6}\right)}$ is equal to
A. $3-\sqrt{3}$
B. $2(3-\sqrt{3})$
C. $2(3-\sqrt{3})$
D. $2(\sqrt{3}-1))$

D View Text Solution

7. Let $b_{i}>1$ for $\mathrm{i}=1,2, \ldots, ., 101$. Suppose $\log _{e} b_{1}, \log _{e} b_{2}, \ldots ., \log _{e} b_{101}$ are in Arithmetic Progression (A.P.) with the common difference $\log _{e} 2$. Suppose $a_{1}, a_{2}, \ldots, a_{101}$ are in A.P. such that $a_{1}=b_{1}$ and $a_{51}=b_{51}$. If $t=b_{1}+b_{2}+\ldots .+b_{51}$ and $s=a_{1}+a_{2}+\ldots .+a_{51}$ then
A. $s>t$ and $a_{101}>b_{101}$
B. $s>t$ and $a_{101}<b_{101}$
C. $s<t$ and $a_{101}>b_{101}>b_{101}$
D. $s<t$ and $a_{101}<b_{101}$

Answer: B

8. $\operatorname{Let} S_{n}=\Sigma_{k=1}^{4 n}(-1)^{\frac{k(k+1)}{2}} k^{2}$.Then S_{n} can take value (s)
A. 1056
B. 1088
C. 1120
D. 1332

Answer: A: D

- View Text Solution

9. Let $S_{k}, k=1,2, \ldots .100$ denote the sum of the infinite geometric series whose first term is $\frac{k-1}{K!}$ and the common ration is $\frac{1}{k}$ then the value of $\frac{(100)^{2}}{100!}+\Sigma_{k=1}^{100}\left|\left(k^{\wedge} 2-3 \mathrm{k}+1\right) \mathrm{S}_{-} \mathrm{k}\right|$ is

- View Text Solution

10. Let $a 1, a 2, a 3$...... a11 be real numbers satisfying
$a_{1}=15,27-2 a_{2}>0$ and $a_{k}=2 a_{k-1}-a_{k-2}$ for $k=3,4, \ldots . .11$ If $\frac{a 1^{2}+a 2^{2} \ldots \ldots . a 11^{2}}{11}=90$ then find the value of $\frac{a_{1}+a_{2} \ldots+a_{11}}{11}$

- Watch Video Solution

11. Let $a_{1}, a_{2}, a_{3}, \ldots \ldots, a 100$ be an arithmetic progression with $a_{1}=3$ and $S_{p}=\Sigma_{i=1}^{p} a_{i}, 1 \leq p \leq 100$. For any integer n with $1 \leq n \leq 20, \leq t m=5 n$. If $\frac{S_{m}}{S_{n}}$ does not depend on n then a_{2} is
\qquad .

D View Text Solution

12. A pack contains n cards numbered from 1 to n. Two consecutive numbered cards are removed from the pack and the sum of the numbers on the remaining cards is 1224 . If the smaller of het numbers on the removed cards is k, then $k-20=$ \qquad .
13. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be positive integers such that $\frac{b}{a}$ is an integer. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in GP and the arithmetic mean of a, b, c, is $b+2$ then the value of $\frac{a^{2}+a-14}{a+1}$ is

- View Text Solution

14. about to only mathematics

- Watch Video Solution

15. The sides of a right angled triangle are in arithmetic progression. If the triangle has area 24 , then what is the length of its smallest side?

- View Text Solution

16. Let X be the set consisting of the first 2018 terms of the arithmetic progression 1, 6, 11, ; and Y be the set consisting of the first 2018 terms of the arithmetic progression $9,16,23, \ldots$ Then, the number of elements in the set $X \cup Y$ is \qquad .

- View Text Solution

ARCHIVES (MATRIX MATCH TYPE)

1. It is given that in a group of 4 students, the probability of 2 students not having the same birthday is 0.893 . What is the probability that the 2 students have the same birthday?

- Watch Video Solution

