

MATHS

BOOKS - CENGAGE

Quadratic Equations, Inequalities, Modulus and Logarithms

Question Bank

1. Let a, b, c, d be positive integers such that $(\log)_a b = rac{3}{2} and (\log)_c d = rac{5}{4} \cdot \ \ \mbox{If} \ \ (a-c) = 9,$

then find the value of (b-d).

2. Find the largest natural number a for which the maximum value of $f(x) = a - 1 + 2x - x^2$ is smaller thante ninimum value of $g(x) = x^2 - 2ax = 10 - 2a$.

3. If a positive real number x satisfy the condition $x^5 - x^3 + \ x = 1$ then the minimum value of x^6 is equal to

4. If the quadratic equations $3x^2 + ax + 1 = 0$ and $2x^2 + bx + 1 = 0$ have a common root, then the value of the expression $5ab - 2a^2 - 3b^2$ is

5. The value of the expression $x^4 - 8x^3 + 18x^2 - 8x + 2$ when $x = \frac{\cot(\pi)}{12}$ is Watch Video Solution

6. If λ_1 and λ_2 be two values of λ for which the expression $x^2 + (2 - \lambda)x + \lambda - \frac{3}{4}$ becomes a perfect square, then calculate the value of $(\lambda_1^2 + \lambda_2^2)$.

7. If k be an integer and p is a prime such that the quadratic equation $x^2 + kx + p = 0$ has two distinct positive integer solutions find the value of -(k + p).

Watch Video Solution

8. If the equation $x^3 + kx^2 + 3 = 0$ and $x^2 + kx + 3 = 0$ have a common root, then the value k.

9. If $ax^2 + bx + c = 0$ and

 $bx^2+cx+a=0, a, b, c
eq 0$ have a common

root, then value of
$$\left(rac{a^3+b^3+c^3}{abc}
ight)^2$$
 is

10. Let r_1,r_2 and r_3 be the solutions of the equation $x^3-2x^2+4x+5074=0$, then the value of $(r_1+2)(r_2+2)(r_3+2)$

11. If
$$f(x) = rac{(x+3)^{201}(x-1)^{102}(x-5)^{305}}{x^5(3x+4)^{503}}$$
,

then sum of integral values of x for which $f(x) \leq 0.$

> Watch Video Solution

12. The equation $\alpha x^3 - 2(\alpha + 1)x^2 + 4\alpha x = 0$ has real roots and α is any positive integer, then the sum of the roots of the equation is

13. Number of integral values of b for which inequality $ig(a^2+1ig)x^2+4(a+b)x+2<0$ is true for atleast one x $orall a\in R,$

Watch Video Solution

14. Let
$$f(x) = ax^2 + bx + c$$
, $a
eq 0$, a , b , $c \in I$.

Suppose that f(1) = 0, 50 < f(7) < 60 and

70 < f(8) < 80.

The least value of f(x) is

15. If α, β be the roots of $x^2 + x + 2 = 0$ and γ, δ be the roots of $x^2 + 3x + 4 = 0$, then $(\alpha + \gamma)(\alpha + \delta)(\beta + \gamma)(\beta + \delta)$ is equal to

Watch Video Solution

16. The number of integral value(s) of a so that the graph of $y = 16x^2 + 8(a+5)x - 7a - 5$ is

always above the x -axis is

17. Number of integral values of a such that the quadratic equation $x^2 + ax + a + 1 = 0$ has integral roots is

Watch Video Solution

18. If $P(x) = x^2 + ax + 1$. If P(x) is a negative integer for only one real x, then number of values of a is

$$A=rac{\left({{{{\log }_2}\,3} \right)}^3-\left({{{\log }_2}\,6}
ight)^3-\left({{{\log }_2}\,12}
ight)^3+\left({{{\log }_2}\,24}
ight)^3}{6}$$

then the value of $\left(2^A
ight)$ is equal to

Watch Video Solution

21. If
$$\alpha, \beta, \gamma$$
 are roots of equation
 $x^3 - 2x^2 - 1 = 0$ and $T_n = \alpha^n + \beta^n + \gamma^n$,
then value of $\frac{T_{11} - T_8}{T_{10}}$ is
Watch Video Solution

22. The minimum value of the expression $x^2 - kx + lpha$ is 6 which is obtained at x = 3. Find the value of $\frac{lpha}{3}$.

23. If
$$\alpha, \beta$$
 are the roots of the equation $x^2 - 3x - 15 = 0$, and $f(n) = \alpha^n + \beta^n$, then $\frac{f(8) - 3f(7) + f(6)}{2f(6)}$ is equal to

Watch Video Solution

24. If a,b,c,d in R-{0} , such that a,b are the roots of equation $x^{(2)+cx+d=0}$ and c,d are the roots of equation $x^{(2)+ax+b=0}$, then |a|+|b|+|c|+|d| is equal to

25. If x + y + z = 5 and xy + yz + zx = 3,

then the greatest value of (x) is

26. Number of values of x satisfying the pair of quadratic equations $x^2 - px + 20 = 0$ and $x^2 - 20x + p = 0$ for some $p \in R$, is

27. If
$$\left(y^2-5y
ight)\left(x^2+2x+4
ight)<2$$
, for all $x\in R$

, then number of integers in the range of y is

Watch Video Solution

28. Number of integral value(s) of 'x ' satisfying

the equation

|2x+1|+|5-2x|=6, is

