

MATHS

BOOKS - CENGAGE

SCALER TRIPLE PRODUCTS

1. Number of integral value(s) of λ for which vectors $x^2\hat{i} - \hat{j} + x\hat{k}, (\lambda - 1)\hat{i} - 2\lambda\hat{j} + \hat{k}$ and $\hat{i} - \hat{j} + \hat{k}$, in the order

from right-handed system $orall x \ \in$ R, is

A. 0

B. 2

C. 4

Answer: A

Watch Video Solution

2. Let $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ be three linearly independent vectors, then $\frac{\left[\overrightarrow{a}+2\overrightarrow{b}-\overrightarrow{c}2\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}4\overrightarrow{a}-\overrightarrow{b}+5\overrightarrow{c}\right]}{\left[\overrightarrow{a}\overrightarrow{b}\overrightarrow{c}\right]}$

A. 0

B. 1

C. 2

D. -1

Answer: A

3. If
$$\overrightarrow{a}, \overrightarrow{b}$$
 are two unit vectors such that $\overrightarrow{a} + (\overrightarrow{a} \times \overrightarrow{b}) = \overrightarrow{c}$, where $|\overrightarrow{c}| = 2$, then value of $[\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}]$ is

- $\mathsf{B.}\pm 1$
- $\mathsf{C.}-3$
- D. 3

Answer: D

4. Let \overrightarrow{a} and \overrightarrow{b} be unit vectors that are perpendicular to each other I. then $\left[\overrightarrow{a} + \left(\overrightarrow{a} \times \overrightarrow{b}\right)\overrightarrow{b} + \left(\overrightarrow{a} \times \overrightarrow{b}\right)\overrightarrow{a} \times \overrightarrow{b}\right]$ will

always be equal to

A. 1

B. zero

C. -1

D. 3

Answer: A

5. If V is the volume of the parallelepiped having three coterminous edges as \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} , then the volume of the parallelepiped having three coterminous edges as

$$\vec{\alpha} = \left(\vec{a} \cdot \vec{a}\right) \vec{a} + \left(\vec{a} \cdot \vec{b}\right) \vec{b} + \left(\vec{a} \cdot \vec{c}\right) \vec{c},$$

$$\vec{\beta} = \left(\vec{b} \cdot \vec{a}\right) \vec{a} + \left(\vec{b} \cdot \vec{b}\right) + \left(\vec{b} \cdot \vec{c}\right) \vec{c}$$

and
$$\vec{\lambda} = \left(\vec{c} \cdot \vec{a}\right) \vec{a} + \left(\vec{c} \cdot \vec{b}\right) \vec{b} + \left(\vec{c} \cdot \vec{c}\right) \vec{c}$$
 is

A. 3V

B. 4V

 $\mathsf{C}.V^2$

D. V^3

Answer: D

Watch Video Solution

6. A parallelepiped is formed by planes drawn parallel to coordinate axes through the points A=(1,2,3) and B=(9,8,5). The volume of that parallelepiped is equal to (in cubic units)

A. 192

B.48

C. 32

D. 96

Answer: D

Watch Video Solution

7. If $\overrightarrow{a}, \overrightarrow{b}$ and \overrightarrow{c} are any three vectors forming a linearly independent system, then $\forall \theta \in R$ $\overrightarrow{p} = \overrightarrow{a} \cos \theta + \overrightarrow{b} \sin \theta + \overrightarrow{c} (\cos 2\theta)$ $\overrightarrow{q} = \overrightarrow{a} \cos \left(\frac{2\pi}{3} + \theta\right) + \overrightarrow{b} \sin \left(\frac{2\pi}{3} + \theta\right) + \overrightarrow{c} (\cos 2) \left(\frac{2\pi}{3} + \theta\right)$

and

$$\overrightarrow{r} = \overrightarrow{a}\cos\left(\theta - \frac{2\pi}{3}
ight) + \overrightarrow{b}\sin\left(\theta - \frac{2\pi}{3}
ight) + \overrightarrow{c}\cos 2\left(\theta - \frac{2\pi}{3}
ight)$$

then $\left[\overrightarrow{p}\overrightarrow{q}\overrightarrow{r}
ight]$

A.
$$\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \\ \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix} \cos \theta$$

B. $\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \\ \overrightarrow{c} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix} \cos 2\theta$
C. $\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \\ \overrightarrow{c} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix} \cos 3\theta$

D. None of these

Answer: D

8. Let
$$\overrightarrow{r} = \left(\overrightarrow{a} \times \overrightarrow{b}\right) \sin x + \left(\overrightarrow{b} \times \overrightarrow{c}\right) \cos y + \left(\overrightarrow{c} \times \overrightarrow{a}\right)$$
,
where $\overrightarrow{a}, \overrightarrow{b}$ and \overrightarrow{c} are non-zero non-coplanar vectors, If \overrightarrow{r} is
orthogonal to $3\overrightarrow{a} + 5\overrightarrow{b} + 2\overrightarrow{c}$, then the value of
 $\sec^2 y + \csc^2 x + \sec y \csc x$ is

A. 3

B. 4

C. 5

D. 6

Answer: A

Watch Video Solution

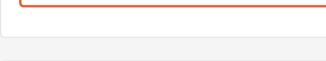
9. In a regular tetrahedron, prove that angle θ between any edge and the face not containing that edge is given by $\cos \theta = \frac{1}{\sqrt{3}}$.

A. 1/6

B. 1/9

 $\mathsf{C.}\,1/3$

D. None of these


Answer: C

10. DABC be a tetrahedron such that AD is perpendicular to the base ABC and $\angle ABC = 30^{\circ}$. The volume of tetrahedron is 18. If value of AB+BC+AD is minimum, then the length of AC is

A.
$$6\sqrt{2-\sqrt{3}}$$

B. $3(\sqrt{6}-\sqrt{2})$
C. $6\sqrt{2+\sqrt{3}}$
D. $3(\sqrt{6}+\sqrt{2})$

Answer: A

Watch Video Solution

11. If
$$lpha \left(\overrightarrow{a} \times \overrightarrow{b}
ight) + eta \left(\overrightarrow{b} \times \overrightarrow{c}
ight) + \gamma \left(\overrightarrow{c} \times \overrightarrow{a}
ight) = 0$$
, then

A. $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are coplanar is all $lpha, eta, \gamma \neq 0$

B. $\overrightarrow{a}, \overrightarrow{b}, \rightarrow$ are coplanar if any one of $lpha, eta, \gamma \neq 0$

C. $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are non-coplanar for any $lpha, eta, \gamma \neq 0$

D. None of these

Answer: A::B

