©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - CENGAGE

STRAIGHT LINE

Examples

1. Find the equation of the line through $(2,3)$ which is (i) parallel to the x axis and (ii) parallel to the y-axis.

- Watch Video Solution

2. Find the equation of line passing through point $(2,-5)$ which is
(i) parallel to the line $3 x+2 y-4=0$
(ii) perpendicular to the line $3 x+2 y-4=0$
3. Find the equation of the perpendicular bisector of the line segment joining the points $\mathrm{A}(2,3)$ and $\mathrm{B}(6,-5)$.

- Watch Video Solution

4. Find the locus of a point P which moves such that its distance from the line $y=\sqrt{3} x-7$ is the same as its distance from $(2 \sqrt{3},-1)$

- Watch Video Solution

5. Consider a triangle with vertices $A(1,2), B(3,1)$, and $C(-3,0)$. Find the equation of altitude through vertex A. the equation of median through vertex A. the equation of internal angle bisector of $\angle A$.

- View Text Solution

6. Find the coordinates of the foot of the perpendicular drawn from the point $P(1,-2)$ on the line $y=2 x+1$. Also, find the image of P in the line.

- Watch Video Solution

7. If the line $\left(\frac{x}{a}\right)+\left(\frac{y}{b}\right)=1$ moves in such a way that $\left(\frac{1}{a^{2}}\right)+\left(\frac{1}{b^{2}}\right)=\left(\frac{1}{c^{2}}\right)$, where c is a constant, prove that the foot of the perpendicular from the origin on the straight line describes the circle $x^{2}+y^{2}=c^{2}$.

- View Text Solution

8. In what ratio does the line joining the points $(2,3)$ and $(4,1)$ divide the segment joining the points $(1,2)$ and $(4,3)$?

- View Text Solution

9. $A B C D$ is a square whose vertices are $A(0,0), B(2,0), C(2,2)$, and $D(0,2)$. The square is rotated in the $X Y$ - plane through an angle 30° in the anticlockwise sense about an axis passing though A perpendicular to the $X Y$ - plane. Find the equation of the diagonal $B D$ of this rotated square.

D View Text Solution

10. In a triangle $A B C$, side $A B$ has equation $2 x+3 y=29$ and side $A C$ has equation $x+2 y=16$. If the midpoint of $B C$ is 5,6), then find the equation of $B C$.

- View Text Solution

11. Two consecutive sides of a parallelogram are $4 x+5 y=0$ and $7 x+2 y=0$. If the equation of one diagonal is $11 x=7 y=9$, find the equation of the other diagonal.
12. If one of the sides of a square is $3 x-4 y-12=0$ and the center is $(0,0)$, then find the equations of the diagonals of the square.

- View Text Solution

13. A vertex of an equilateral triangle is 2,3 and the opposite side is $x+y=2$. Find the equations of other sides.

- View Text Solution

14. A line $4 x+y=1$ passes through the point $\mathrm{A}(2,7)$ and meets line BC at B whose equation is $3 x-4 y+1=0$, the equation of line AC such that $A B=A C$ is (a) $52 \mathrm{x}+89 \mathrm{y}+519=0(\mathrm{~b}) 52 \mathrm{x}+89 \mathrm{y}-519=0$ c) 82 x $+52 y+519=0$ (d) $89 x+52 y-519=0$
15. A ray of light is sent along the line $x-2 y-3=0$ upon reaching the line $3 x-2 y-5=0$, the ray is reflected from it. Find the equation of the line containing the reflected ray.

- View Text Solution

16. Find the equation of the line which intersects the y-axis at a distance of 2 units above the origin and makes an angle of 30° with the positive direction of the x-axis.

- View Text Solution

17. Find the equation of a straight line cutting off and intercept -1 from y axis and being equally inclined to the axes.

- View Text Solution

18. Find the equation of a line that has -y-intercept 4 and is a perpendicular to the line joining $(2,-3)$ and $(4,2)$.

- View Text Solution

19. Find equation of the line passing through the point $(2,2)$ and cutting off intercepts on the axes whose sum is 9 .

- View Text Solution

20. Find the equation of the straight line that (i)makes equal intercepts on the axes and passes through the point (2;3) (ii) passes through the point $(-5 ; 4)$ and is such that the portion intercepted between the axes is devided by the point in the ratio $1: 2$

- View Text Solution

21. Line segment $A B$ of fixed length c slides between coordinate axes such that its ends A and B lie on the axes. If O is origin and rectangle OAPB is completed, then show that the locus of the foot of the perpendicular drawn from P to AB is $x^{\frac{2}{3}}+y^{\frac{2}{3}}=c^{\frac{2}{3}}$.

- View Text Solution

22. Reduce the line $2 x-3 y+5=0$ in slope-intercept, intercept, and normal forms.

- View Text Solution

23. Find the equation of the line which satisfy the given conditions :

Perpendicular distance from the origin is 5 units and the angle made by the perpendicular with the positive xaxis is $30 o$.

- View Text Solution

24. A straight line is drawn through the point $\mathrm{P}(2 ; 3)$ and is inclined at an angle of 30° with the x-axis. Find the coordinates of two points on it at a distance 4 from point P.

- View Text Solution

25. The line joining two points $A(2,0)$ and $B(3,1)$ is rotated about A in anticlockwise direction through an angle of 15°. find the equation of line in the new position. If b goes to c in the new position what will be the coordinates of C .

- View Text Solution

26. A line through point $A(1,3)$ and parallel to the line $x-y+1=0$ meets the line $2 x-3 y+9=0$ at point P. Find distance $A P$ without finding point P.

- View Text Solution

27. Two adjacent vertices of a square are $(1,2)$ and $(-2,6)$ Find the other vertices.

- View Text Solution

28. A Line through the variable point $A(1+k ; 2 k)$ meets the lines
$7 x+y-16=0 ; 5 x-y-8=0$ and $x-5 y+8=0^{\prime}$ at $B ; C ; D$ respectively. Prove that $A C ; A B$ and $A D$ are in $H P$.

- View Text Solution

29. if P is the length of perpendicular from origin to the line $\frac{x}{a}+\frac{y}{b}=1$ then prove that $\frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{1}{p^{2}}$

- View Text Solution

30. Find the coordinates of a point on $x+y+3=0$, whose distance from $x+2 y+2=0$ is $\sqrt{5}$.

Watch Video Solution

31. Find the least and greatest values of the distance of the point $(\cos \theta, \sin \theta), \theta \in R$, from the line $3 x-4 y+10=0$.

- View Text Solution

32. Prove that the product of the lengths of the perpendiculars drawn from the points $\left(\sqrt{a^{2}-b^{2}}, 0\right)$ and $\left(-\sqrt{a^{2}-b^{2}}, 0\right)$ to the line $\frac{x}{a} \cos \theta$ $+\frac{y}{b} \sin \theta=1$ is b^{2}.

- View Text Solution

33. Find the least value of $(x-1)^{2}+(y-2)^{2}$ under the condition $3 x+4 y$ $-2=0$.

- View Text Solution

34. $A B C$ is an equilateral triangle with $A(0,0)$ and $B(a, 0)$, ($\mathrm{a}>0) . \mathrm{L}, \mathrm{M}$ and N are the foot of the perpendiculars drawn from a point P to the side $A B, B C$, and $C A$, respectively. If P lies inside the triangle and satisfies the condition $P L^{2}=P M \dot{P} N$, then find the locus of P.

- View Text Solution

35. Line L has intercepts $a a n d b$ on the coordinate axes. When the axes are rotated through a given angle keeping the origin fixed, the same line L has intercepts pand q. Then $a^{2}+b^{2}=p^{2}+q^{2} \frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{1}{p^{2}}+\frac{1}{q^{2}}$ $a^{2}+p^{2}=b^{2}+q^{2}$ (d) $\frac{1}{a^{2}}+\frac{1}{p^{2}}=\frac{1}{b^{2}}+\frac{1}{q^{2}}$
36. Two sides of a square lie on the lines $x+y=1 a n d x+y+2=0$. What is its area?

- View Text Solution

37. Find equation of the line which is equidistant from parallel lines $9 x+6 y \quad 7=0$ and $3 x+2 y+6=0$.

- View Text Solution

38. If one side of the square is $2 x-y+6=0$, then one of the vertices is $(2,1)$. Find the other sides of the square.

D View Text Solution

39. Prove that the area of the parallelogram contained by the lines $4 y-3 x-a=0,3 y-4 x+a=0,4 y-3 x-3 a=0, \quad$ and
$3 y-4 x+2 a=0$ is $\left(\frac{2}{7}\right) a^{2}$.

- View Text Solution

40. The equation of straight line passing through ($-2,7$) and having an intercept of length 3 between the straight lines : $4 x+3 y=12,4 x+3 y=3$ are: (A) $7 x+24 y+182=0$ (B) $7 x+24 y+18=0$ (C) $x+2=0$ (D) $x-2=0$

- View Text Solution

41. A line L is a drawn from $P(4,3)$ to meet the lines $L-1 a n d L_{2}$ given by $3 x+4 y+5=0$ and $3 x+4 y+15=0$ at points $A a n d B$, respectively. From A, a line perpendicular to L is drawn meeting the line L_{2} at A_{1}. Similarly, from point B_{1}. Thus, a parallelogram $\forall_{1} B B_{1}$ is formed. Then the equation of L so that the area of the parallelogram $\forall_{1} B B_{1} \quad$ is \quad the least \quad is $\quad x-7 y+17=0 \quad 7 x+y+31=0$ $x-7 y-17=0 x+7 y-31=0$

- View Text Solution

42. Are the points $(3,4)$ and $(2,-6)$ on the same or opposite sides of the line $3 x-4 y=8$?

- View Text Solution

43. Find the set of positive values of b for which the origin and the point (1, 1) lie on the same side of the straight line, $a^{2} x+a b y+1=0, \forall a \in R$.

- View Text Solution

44. If the point $\left(a^{2}, a+1\right)$ lies in the angle between the lines $3 x-y+1=0$ and $x+2 y-5=0$ containing the origin, then find the value of a.

- View Text Solution

45. If the point (a, a) is placed in between the lines $|x+y|=4$, then find the values of a.

- View Text Solution

46. The complete set of real values of 'a' such that the point lies triangle $p(a, \sin a)$ lies inside the triangle formed by the lines $x-2 y+2=0 ; x+y=0$ and $x-y-\pi=0$

- View Text Solution

47. Determine all the values of α for which the point $\left(\alpha, \alpha^{2}\right)$ lies inside the triangle formed by the lines. $2 x+3 y-1=0 x+2 y-3=0$ $5 x-6 y-1=0$

- View Text Solution

48. Sketch the origin in which the points satisfying the following inequality lie.
(i) $2 x-3 y-5>0$
(ii) $-3 x+4 y+7>0$
(iii) $x>2$
(iv) $y>-3$

- View Text Solution

49. Sketch the origin in which the points satisfying the following inequalities lie.
(i) $|x+y|<2$
(ii) $|2 x-y|>3$
(iii) $|x|>|y|$

- View Text Solution

50. Find the values of b for which the points $\left(2 b+3, b^{2}\right)$ lies above of the line $3 x-4 y-a(a-2)=0 \quad \forall a \in R$.

- Watch Video Solution

51. Plot the region of the points $\mathrm{P}(\mathrm{x}, \mathrm{y})$ satisfying $|x|+|y|<1$.

- Watch Video Solution

52. Plot the region of the points $\mathrm{P}(\mathrm{x}, \mathrm{y})$ satisfying $2>$ max. $\{|x|,|y|\}$.

- View Text Solution

53. IF one of the vertices of a square is $(3,2)$ and one of the diagonalls is along the line $3 x+4 y+8=0$, then find the centre of the square and other vertices.

- View Text Solution

54. In $\triangle A B C$, vertex A is $(1,2)$. If the internal angle bisector of $\angle B$ is $2 x-y+10=0$ and the perpendicular bisector of AC is $\mathrm{y}=\mathrm{x}$, then find the equation of $B C$
55. Find the locus of image of the veriable point $\left(\lambda^{2}, 2 \lambda\right)$ in the line mirror $x-y+1=0$, where λ is a perimeter.

- Watch Video Solution

56. Lines $L_{1} \equiv a x+b y+c=0$ and $L_{2} \equiv l x+m y+n=0$ intersect at the point P and make an angle θ with each other. Find the equation of a line different from L_{2} which passes through P and makes the same angle θ with L_{1}.

- Watch Video Solution

57. For the straight lines $4 x+3 y-6=0$ and $5 x+12 y+9=0$, find the equation of the bisector of the obtuse angle between them, bisector of the acute angle between them, and bisector of the angle which

- Watch Video Solution

58. The equations of bisectors of two lines $L_{1} \& L_{2}$ are $2 x-16 y-5=0$ and $64 x+8 y+35=0$. If the line L_{1} passes through $(-11,4)$, the equation of acute angle bisector of $L_{1} \& L_{2}$ is:

- Watch Video Solution

59. If $x+y=0$ is the angle bisector of the angle containing the point $(1,0)$, for the line $3 x+4 y+b=0 ; 4 x+3 y+b=0,4 x+3 y-b=0$ then

- Watch Video Solution

60. Two equal sides of an isosceles triangle are given by $7 x-y+3=0$ and $x+y=3$, and its third side passes through the point $(1,-10)$. Find the equation of the third side.
61. The vertices BandC of a triangle $A B C$ lie on the lines $3 y=4 x$ and $y=0$, respectively, and the side $B C$ passes through the point $\left(\frac{2}{3}, \frac{2}{3}\right)$. If $A B O C$ is a rhombus lying in the first quadrant, O being the origin, find the equation of the line $B C$.

D View Text Solution

62. Two sides of a rhombus lying in the first quadrant are given by $3 x-4 y=0 a n d 12 x-5 y=0$. If the length of the longer diagonal is 12, then find the equations of the other two sides of the rhombus.

- Watch Video Solution

63. If the line $a x+b y=1$ passes through the point of intersection of $y=x \tan \alpha+p \sec \alpha, y \sin \left(30^{\circ}-\alpha\right)-x \cos \left(30^{\circ}-\alpha\right)=p$, and is inclined at 30° with $y=\tan \alpha x$, then prove that $a^{2}+b^{2}=\frac{3}{4 p^{2}}$.

- Watch Video Solution

64. Find the value of λ,if the lines $3 x-4 y-13=0,8 x-11 y-33=0$ and $2 x-3 y+\lambda=0 \quad$ are concurrent.

- Watch Video Solution

65.

the
lines
$a_{1} x+b_{1} y+1=0, a_{2} x+b_{2} y+1=0$ and $a_{3} x+b_{3} y+1=0 \quad$ are concurrent, show that the points $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)$ and $\left(a_{3}, b_{3}\right)$ are collinear.

- Watch Video Solution

66. Show that the straight lines given by $x(a+2 b)+y(a+3 b)=a+b$ for different values of a and b pass through a fixed point.
67. Let $a x+b y+c=0$ be a variable straight line, where $a, b a n d c$ are the 1st, 3rd, and 7th terms of an increasing AP, respectively. Then prove that the variable straight line always passes through a fixed point. Find that point.

- Watch Video Solution

68. Prove that all the lines having the sum of the interceps on the axes equal to half of the product of the intercepts pass through the point. Find the fixed point.

- Watch Video Solution

69. Find the straight line passing through the point of intersection of $2 x+3 y+5=0,5 x-2 y-16=0$, and through the point $(-1,3)$.
70. Consider a family of straight lines $(x+y)+\lambda(2 x-y+1)=0$. Find the equation of the straight line belonging to this family that is farthest from $(1,-3)$.

- Watch Video Solution

71. Let the sides of a parallelogram be $U=a, U=b, V=a$ and $V=b$ ', where $\mathrm{U}=\mathrm{I} \mathrm{x}+\mathrm{my} \mathrm{y}+\mathrm{n}, \mathrm{V}=\mid \mathrm{I} \mathrm{x}+\mathrm{m} \mathrm{y}+\mathrm{n}$ '. Show that the equation of the diagonal through the point of intersection of
$U=a, V=a^{\prime}$ and $U=b, V=b^{\prime}$ is given by $\left|\begin{array}{ccc}U & V & 1 \\ a & a^{\prime} & 1 \\ b & b^{\prime} & 1\end{array}\right|=0$.

- Watch Video Solution

72. A variable line passes through a fixed point P. The algebraic sum of the perpendiculars drawn from the points $(2,0),(0,2)$ and $(1,1)$ on the line is zero. Find the coordinate of the point P.
73. Show that
$4 x+y-9=0, x-2 y+3=0,5 x-y-6=0$ make equal intercepts
on any line of slope 2.

- Watch Video Solution

74. The equations of two sides of a triangle are $3 y-x-2=0$ and $y+x-2=0$. The third side, which is variable, always passes through the point $(5,-1)$. Find the range of the values of the slope of the third side, so that the origin is an interior point of the triangle.

- Watch Video Solution

75. Find the locus of the circumcenter of a triangle whose two sides are along the coordinate axes and the third side passes through the point of
intersection of the line $a x+b y+c=0$ and $l x+m y+n=0$.

- Watch Video Solution

76. Let $A B C$ be a triangle with $A B=A C$. If D is the midpoint of $B C, E$ is the foot of the perpendicular drawn from D to $A C$, $a n d F$ is the midpoint of $D E$, then prove that $A F$ is perpendicular to $B E$.

- Watch Video Solution

77. A diagonal of rhombus $A B C D$ is member of both the families of lines
$(x+y-1)+\lambda 1(2 x+3 y-2)=0$ and
$(x-y+2)+\lambda 2(2 x-3 y+5)=0$ and rhombus is $(3,2)$. If the area of the rhombus is $12 \sqrt{5}$ sq. units, then find the remaining vertices of the rhombus.

- Watch Video Solution

78. Let $A B C$ be a given isosceles triangle with $A B=A C$. Sides $A B a n d A C$ are extended up to EandF, respectively, such that $B E x C F=A B^{2}$. Prove that the line $E F$ always passes through a fixed point.

- Watch Video Solution

79. Find the straight line passing through the point of intersection of lines $2 x+3 y+5=0$ and $5 x-2 y-16=0$ and through the point $(-1,3)$ using the concept of family of lines.

- Watch Video Solution

80. Find the normal to the curve $x=a(1+\cos \theta), y=a \sin \theta a \mathrm{~h} \eta$. Prove that it always passes through a fixed point and find that fixed point.

- Watch Video Solution

81. Consider two lines L_{1} and L_{2} given by $x-y=0$ and $x+y=0$, respectively, and a moving point $P(x, y)$. Let $d\left(P, L_{1}\right), i=1,2$, represents the distance of point P from the line L_{i}. If point P moves in a certain region R in such a way that $2 \leq d\left(P, P_{1}\right)+d\left(P, L_{1}\right) \leq 4$, find the area of region R.

- Watch Video Solution

82. about to only mathematics

- Watch Video Solution

83. A line through $A(-5,-4)$ meets the lines $x+3 y+2=0,2 x+y+4=0 a n d x-y-5=0 \quad$ at \quad the points B, CandD rspectively, if $\left(\frac{15}{A B}\right)^{2}+\left(\frac{10}{A C}\right)^{2}=\left(\frac{6}{A D}\right)^{2}$ find the equation of the line.
84. A rectangle $P Q R S$ has its side $P Q$ parallel to the line $y=m x$ and vertices $P, Q a n d S$ on the lines $y=a, x=b, \quad$ and $x=-b$, respectively. Find the locus of the vertex R.

- Watch Video Solution

Exercise 2.1

1. Find the equation of the right bisector of the line segment joining the points $(3,4)$ and $(-1,2)$.

- Watch Video Solution

2. If the coordinates of the points A, B, C and D be $(a, b),\left(a^{\prime}, b^{\prime}\right),(-a, b)$ and $\left(a^{\prime},-b^{\prime}\right)$ respectively, then the equation of the line bisecting the line segments $A B$ and $C D$ is
3. If the coordinates of the vertices of triangle $A B C$ are $(-1,6),(-3,-9)$ and $(5,-8)$, respectively, then find the equation of the median through C.

- Watch Video Solution

4. Find the equation of the line perpendicular to the line $\frac{x}{a}-\frac{y}{b}=1$ and passing through a point at which it cuts the x-axis.

- Watch Video Solution

5. If the middle points of the sides $B C, C A$, and $A B$ of triangle $A B C$ are $(1,3),(5,7)$, and $(-5,7)$, respectively, then find the equation of the side $A B$.

- Watch Video Solution

6. Find the equations of the lines which pass through the origin and are inclined at an angle $\tan ^{-1} m$ to the line $y=m x+$.

- Watch Video Solution

7. If $(-2,6)$ is the image of the point $(4,2)$ with respect to line $L=0$, then L is:

- Watch Video Solution

8. Find the area bounded by the curves $x+2|y|=1$ and $x=0$.

- Watch Video Solution

9. Find the equation of the straight line passing through the intersection of the lines $x-2 y=1$ and $x+3 y=2$ and parallel to $3 x+4 y=0$.

- Watch Video Solution

10. If the foot of perpendicular from the origin to a straight line is at the point $(3,-4)$. Then the equation of the line is

- Watch Video Solution

11. A straight line through the point $(2,2)$ intersects the lines $\sqrt{3} x+y=0$ and $\sqrt{3} x-y=0$ at the points A and B . The equation of $A B$ so that the triangle $O A B$ is equilateral, where O is the origin.

- Watch Video Solution

12. The equation of the straight line passing through the point $(4,3)$ and making intercepts on the coordinate axes whose sum is -1 is

- Watch Video Solution

13. A straight line through the point $A(3,4)$ is such that its intercept between the axis is bisected at A. its equation is

Watch Video Solution

14. A straight line L is perpendicular to the line $5 x-y=1$. The area of the triangle formed by line L, and the coordinate axes is 5 . Find the equation of line L.

- Watch Video Solution

15. One side of a rectangle lies along the line $4 x+7 y+5=0$. Two of its vertices are $(-3,1) \operatorname{and}(1,1)$. Find the equations of the other three sides.

- Watch Video Solution

16. The point of intersection of the curves $y^{2}=4 x$ and the line $\mathrm{y}=\mathrm{x}$ is

- Watch Video Solution

17. The diagonals $A C$ and $B D$ of a rhombus intersect at $(5,6)$. If $A \equiv(3,2)$, then find the equation of diagonal $B D$.

- Watch Video Solution

18. Find the equation of the straight line which passes through the origin and makes angle 60° with the line $x+\sqrt{3} y+\sqrt{3}=0$.

- Watch Video Solution

19. If $A(-6,-6)$ and $B(-6,4)$ be two points that a point P on the line AB satisfies $A P=2 / 9 A B$. find the point P
20. In the adjoining figure, $\triangle P Q R$ is an equilateral triangle. $\mathrm{QR}=\mathrm{RN}$. Prove that $P N^{2}=3 P R^{2}$

- Watch Video Solution

21. Two fixed points A and B are taken on the coordinates axes such that $O A=a$ and $O B=b$. Two variable points A^{\prime} and B^{\prime} are taken on the same axes such that $O A^{\prime}+O B^{\prime}=O A+O B$. Find the locus of the point of intersection of $A B^{\prime}$ and $A^{\prime} B$.

- Watch Video Solution

22. A regular polygon has two of its consecutive diagonals as the lines $\sqrt{3} x+y-\sqrt{3}$ and $2 y=\sqrt{3}$. Point $(1, c)$ is one of its vertices. Find the equation of the sides of the polygon and also find the coordinates of the vertices.

Watch Video Solution

23. Find the direction in which a straight line must be drawn through the point (1, 2)so that its point of intersection with the line $x+y 4$ may be at a distance of 3 units from this point.

- Watch Video Solution

Exercise 2.2

1. Find the points on the line $x+y=1$ that lie at a distance 3 units from the line $5 x+12 y=3$.

- Watch Video Solution

2. The center of a square is at the origin and its one vertex is $A(2,1)$.

Find the coordinates of the other vertices of the square.
3. The straight line passing through $P\left(x_{1}, y_{1}\right)$ and making an angle α with x -axis intersects $A x+B y+C=0$ in Q then $\mathrm{PQ}=$

- Watch Video Solution

4. The centroid of an equilateral triangle is (0,0). If two vertices of the triangle lie on $x+y=2 \sqrt{2}$, then find all the possible vertices fo triangle.

- Watch Video Solution

Exercise 2.3

1. Find the points on $y-a \xi s$ whose perpendicular distance from the line $4 x-3 y-12=0$ is 3.
2. If p and q are the lengths of perpendiculars from the origin to the lines $x \cos \theta-y \sin \theta=k \cos 2 \theta$ and $x \sec \theta+y \operatorname{cosec} \theta=k, \quad$ respectively, prove that $p^{2}+4 q^{2}=k^{2}$.

- Watch Video Solution

3. Prove that the lengths of the perpendiculars from the points $\left(m^{2}, 2 m\right),\left(m m^{\prime}, m+m^{\prime}\right)$, and $\left(m^{\prime 2}, 2 m^{\prime}\right)$ to the line $x+y+1=0$ are in GP.

- Watch Video Solution

4. The ratio in which the line $3 x+4 y+2=0$ divides the distance between $3 x$ $+4 y+5=0$ and $3 x+4 y-5=0$

- Watch Video Solution

5. Find the rectangular form of the complex numbers.

$$
\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)\left(\cos \frac{\pi}{12}+i \sin \frac{\pi}{12}\right)
$$

- Watch Video Solution

6. Find the equations of lines parallel to $3 x-4 y-5=0$ at a unit distance from it.

- Watch Video Solution

7. Find the equation of a straight line passing through the point ($-5,4$) and which cuts off an intercept of $\sqrt{2}$ units between the lines $x+y+1=0$ and $x+y-1=0$.

- Watch Video Solution

1. The point $(8,-9)$ with respect to the lines $2 x+3 y-4=0$ and $6 x+9 y+8=0$ lies on the same side of the lines the different sides of the line one of the line none of these

- Watch Video Solution

2. How the following paris of points are placed w.r.t the line $3 x-8 y-7=0$?
$(i)(-3,-4)$ and $(1,2)$
(ii)($-1,-1$) and (3, 7)

- Watch Video Solution

3. Find the range of $(\alpha, 2+\alpha)$ and $\left(\frac{3 \alpha}{2}, a^{2}\right)$ lie on the opposite sides of the line $2 x+3 y=6$.

- Watch Video Solution

4. If the point $P\left(a^{2}, a\right)$ lies in the region corresponding to the acute angle between the lines $2 y=x$ and $4 y=x$, then find the values of a.

(D) Watch Video Solution

5. If $(a, 3 a)$ is a variable point lying above the straight line $2 x+y+4=0$ and below the line $x+4 y-8=0$, then find the values of a.

D Watch Video Solution

6. Find the values of α such that the variable point $(\alpha, \tan \alpha)$ lies inside the triangle whose sides are
$y=x+\sqrt{3}-\frac{\pi}{3}, x+y+\frac{1}{\sqrt{3}}+\frac{\pi}{6}=0$ and $x-\frac{\pi}{2}=0$

- Watch Video Solution

7. Find the area of the region in which points satisfy $3 \leq|x|+|y| \leq 5$.
8. $x-y \leq 2$

- Watch Video Solution

Exercise 2.5

1. Find the equation of the bisector of the obtuse angle between the lines $3 x-4 y+7=0$ and $12 x+5 y-2=0$.

- Watch Video Solution

2. The incident ray is along the line $3 x-4 y-3=0$ and the reflected ray is along the line $24 x+7 y+5=0$. Find the equation of mirrors.

- Watch Video Solution

3. If the two sides of rhombus are $x+2 y+2=0$ and $2 x+y-3=0$, then find the slope of the longer diagonal.

- Watch Video Solution

4. In triangle $A B C$, the equation of the right bisectors of the sides $A B$ and $A C$ are $x+y=0$ and $y-x=0$, respectively. If $A \equiv(5,7)$, then find the equation of side $B C$.

- Watch Video Solution

5. Show that the reflection of the line $a x+b y+c=0$ on the line $x+y+1=0$ is the line $b+a y+(a+b-c)=0$ where $a \neq b$.

- Watch Video Solution

6. The joint equation of two altitudes of an equilateral triangle is $(\sqrt{3} x-y+8-4 \sqrt{3})(-\sqrt{3} x-y+12+4 \sqrt{3})=0$ The third altitude has the equation

- Watch Video Solution

7. The equations of the perpendicular bisectors of the sides $A B a n d A C$ of triangle $A B C$ are $x-y+5=0$ and $x+2 y=0$, respectively. If the point A is $(1,-2)$, then find the equation of the line $B C$.

- Watch Video Solution

8. about to only mathematics

- Watch Video Solution

1. If $a a n d b$ are two arbitrary constants, then prove that the straight line $(a-2 b) x+(a+3 b) y+3 a+4 b=0$ will pass through a fixed point.

Find that point.

- Watch Video Solution

2. If a, b, c are in harmonic progression, then the straight line $\left(\left(\frac{x}{a}\right)\right)+\left(\frac{y}{b}\right)+\left(\frac{1}{c}\right)=0$ always passes through a fixed point. Find that point.

- Watch Video Solution

3. A variable line passes through a fixed point P. The algebraic sum of the perpendiculars drawn from the points $(2,0),(0,2)$ and $(1,1)$ on the line is zero. Find the coordinate of the point P.

- Watch Video Solution

4. Consider the family of lines $5 x+3 y-2+\lambda_{1}(3 x-y-4)=0$ and $x-y+1+\lambda_{2}(2 x-y-2)=0$
. Find the equation of a straight line that belongs to both the families.

- Watch Video Solution

5. If the straight lines $x+y-2-0,2 x-y+1=0 \quad$ and $a x+b y-c=0$ are concurrent, then the family of lines $2 a x+3 b y+c=0(a, b, c)$ are nonzero) is concurrent at $(2,3)$ $\left(\frac{1}{2}, \frac{1}{3}\right)\left(-\frac{1}{6},-\frac{5}{9}\right)$ (d) $\left(\frac{2}{3},-\frac{7}{5}\right)$

- Watch Video Solution

Exercise (Single)

1. Find the equations of the diagonals of the square formed by the lines
$x=o, y=0, x=1$ and $y=1$.
A. $y=x, y+x=1$
B. $y=x, x+y=2$
C. $2 y=x, y+x=1 / 3$
D. $y=2 x, y+2 x=1$

Answer: A

- Watch Video Solution

2. The coordinates of two consecutive vertices A and B of a regular hexagon $A B C D E F$ are $(1,0)$ and $(2,0)$, respectively. The equation of the diagonal $C E$ is
A. $\sqrt{3} x+y=4$
B. $x+\sqrt{3} y+4=0$
C. $x+\sqrt{3} y=4$
D. none of these

Answer: C

- Watch Video Solution

3. If each of the points ($\mathrm{x}, 4$), $(-2, \mathrm{y}$,) lie on the-line joining the points ($2,-1$) and $(5,3)$ then the point $\mathrm{P}\left(x_{1}, y_{1}\right)$ lies on the line
A. $6(x+y)-25=0$
B. $2 x+6 y+1=0$
C. $2 x+3 y-6=0$
D. $6(x+y)+25=0$

Answer: B

- Watch Video Solution

4. The equation of a straight line which passes through the point ($a \cos ^{3} \theta, a \sin ^{3} \theta$) and perpendicular to $x \sec \theta+y \cos e c \theta=a$
A. $x \cos \theta-y \sin \theta=a \cos 2 \theta$
B. $x \cos \theta+y \sin \theta=a \cos 2 \theta$
C. $x \sin \theta+y \cos \theta=a \cos 2 \theta$
D. none of these

Answer: A

- Watch Video Solution

5. The line $P Q$ whose equation is $x-y=2$ cuts the x -axis at $P, \operatorname{and} Q$ is
$(4,2)$. The line $P Q$ is rotated about P through 45° in the anticlockwise direction. The equation of the line $P Q$ in the new position is $y=-\sqrt{2}$
(b) $y=2 x=2$ (d) $x=-2$
A. $y=-\sqrt{2}$
B. $y=2$
C. $x=2$
D. $x=-2$

Answer: C

- Watch Video Solution

6. If $P(a, b)$ is the mid point of a line segment between the axes, then:
A. $x+y=2 c$
B. $x+y=c$
C. $2(x+y)=c$
D. $2 x+y=c$

Answer: C

- Watch Video Solution

7. If the x intercept of the line $y=m x+2$ is greater than $\frac{1}{2}$ then the gradient of the line lies in the interval
A. $(-1,0)$
B. $\left(\frac{-1}{4}, 0\right)$
C. $(-\infty,-4)$
D. $(-4,0)$

Answer: D

- Watch Video Solution

8. The equation of a straight line on which the length of perpendicular from the origin is four units and the line makes an angle of 120° with the x -axis \quad is $\quad x \sqrt{3}+y+8=0 \quad x \sqrt{3}-y=8 \quad x \sqrt{3}-y=8$ $x-\sqrt{3} y+8=0$
A. $x \sqrt{3}+y+8=0$
B. $x \sqrt{3}-y=8$
C. $x \sqrt{3}-y=8$
D. $x-\sqrt{3}+8=0$

- Watch Video Solution

9. $A B C D$ is a square $A \equiv(1,2), B \equiv(3,-4)$. If line $C D$ passes through $(3,8)$, then the midpoint of $C D$ is
A. $(2,6)$
B. $(6,2)$
C. $(2,5)$
D. $(28 / 5,1 / 5)$

Answer: D

D Watch Video Solution

10. Find the equation of a line which passes through the point $(2,3,4)$ and which has equal intercepts on the axes.
A. $9 x-20 y+96=0$
B. $9 x+20 y=24$
C. $20 x+9 y+53=0$
D. none of these

Answer: A

- Watch Video Solution

11. A square of side a lies above the x-axis and has one vertex at the origin.

The side passing through the origin makes and angle $\alpha\left(0<\alpha<\frac{\pi}{4}\right.$) with the positive direction of x-axis. The equation of its diagonal not passing through the origin is
A. $y(\cos \alpha+\sin \alpha)+x(\sin \alpha-\cos \alpha)=a$
B. $y(\cos \alpha+\sin \alpha)+x(\sin \alpha+\cos \alpha)=a$
C. $y(\cos \alpha+\sin \alpha)+x(\cos \alpha-\sin \alpha)=a$
D. $y(\cos \alpha-\sin \alpha)-x(\sin \alpha-\cos \alpha)=a$

D Watch Video Solution

12. Let $\mathrm{P}=(-1,0), \mathrm{Q}=(0,0)$ and $\mathrm{R}=(3,3 \sqrt{3})$ be three points. The equation of the bisector of the angle $P Q R$ is
A. $(\sqrt{3} / 2) x+y=0$
B. $x+\sqrt{3} y=0$
C. $\sqrt{3} x+y=0$
D. $x+(\sqrt{3} / 2) y=0$

Answer: C

- Watch Video Solution

13. The equation of a line through the point $(1,2)$ whose distance from the point $(3,1)$ has the greatest value, is
A. $y=2 x$
B. $\mathrm{y}=\mathrm{x}+1$
C. $x+2 y=5$
D. $y=3 x-1$

Answer: A

- Watch Video Solution

14. If one of the sides of a square is $3 x-4 y-12=0$ and the center is $(0,0)$, then find the equations of the diagonals of the square.
A. $7 x-8 y+9=0,8 x+7 y-22=0$
B. $9 x-8 y+7=0.8 x+9 y-26=0$
C. $23 x-7 y-9=0,7 x+23 y-53=0$
D. none of these

Answer: C

15. The locus of the centers of the circles $(x-1)^{2}+y^{2}=10$ and $x^{2}+(y-2)^{2}=5$ intersect is $\frac{\pi}{6}$ (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{3}$ (d) $\frac{\pi}{2}$
A. $\frac{\pi}{4}$
B. $\frac{\pi}{2}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{6}$

Answer: B

Watch Video Solution

16. A line with positive rational slope, passes through the point $A(6,0)$ and is at a distance of 5 units from $B(1,3)$. The slope of line is
A. $\frac{15}{8}$
B. $\frac{8}{15}$
C. $\frac{5}{8}$
D. $\frac{8}{5}$

Answer: B

- Watch Video Solution

17. The line $2 x-y=1$ bisects angle between two lines. If equation of one line is $y=x$, then the equation of the other line is
A. $3 x+3 y-1=0$
B. $x-3 y+2=0$
C. $5 x+5 y-3=0$
D. none of these

Answer: C

18. If R is any point on the x-axis and Q is any point on they y-axis and P is a variable point on RQ with $\mathrm{RP}=\mathrm{b}, \mathrm{PQ}=\mathrm{a}$, then find the equation of locus of
P.
A. $x+y=1$
B. $x+y=2$
C. $x+y=2 x y$
D. $2 x+2 y=1$

Answer: A

Watch Video Solution

19. The number of possible straight lines passing through point(2,3) and forming a triangle with coordiante axes whose area is 12 sq. unit is: a. one b. two c. three d. four
A. one
B. two
C. three
D. four

Answer: C

- Watch Video Solution

20. Two parallel lines lying in the same quadrant make intercepts a and b on x and y axes, respectively, between them. The distance between the lines is (a) $\frac{a b}{\sqrt{a^{2}+b^{2}}}$ (b) $\sqrt{a^{2}+b^{2}}$ (c) $\frac{1}{\sqrt{a^{2}+b^{2}}}$ (d) $\frac{1}{a^{2}}+\frac{1}{b^{2}}$
A. $\sqrt{a^{2}+b^{2}}$
B. $\frac{a b}{\sqrt{a^{2}+b^{2}}}$
C. $\frac{1}{\sqrt{a^{2}+b^{2}}}$
D. $\frac{1}{a^{2}}+\frac{1}{b^{2}}$

- Watch Video Solution

21. The line $L_{1} \equiv 4 x+3 y-12=0$ intersects the x-and y-axies at $\operatorname{Aand} B$, respectively. A variable line perpendicular to L_{1} intersects the xand the y-axis at P and Q, respectively. Then the locus of the circumcenter of triangle $A B Q$ is $3 x-4 y+2=0 \quad 4 x+3 y+7=0$ $6 x-8 y+7=0(\mathrm{~d})$ none of these
A. $3 x-4 y+2=0$
B. $4 x+3 y+7=0$
C. $6 x-8 y+7=0$
D. none of these

Answer: C

22. A beam of light is sent along the line $x-y=1$, which after refracting from the x-axis enters the opposite side by turning through 30^{0} towards the normal at the point of incidence on the x-axis. Then the equation of the refracted ray is $(2-\sqrt{3}) x-y=2+\sqrt{3}$
$(2+\sqrt{3}) x-y=2+\sqrt{3}$
$(2-\sqrt{3}) x+y=(2+\sqrt{3})$
$y=(2-\sqrt{3})(x-1)$
A. $(2-\sqrt{3}) x-y=2+\sqrt{3}$
B. $(2+\sqrt{3}) x-y=2+\sqrt{3}$
C. $(2-\sqrt{3}) x+y=(2+\sqrt{3})$
D. $y=(2+\sqrt{3})(x-1)$

Answer: D

- Watch Video Solution

23. The number of integral values of m for which the x-coordinate of the point of intersection of the lines $3 x+4 y=9$ and $y=m x+1$ is also an
integer is (a)2 (b) 0 (c) 4 (d) 1
A. 2
B. 0
C. 4
D. 1

Answer: A

- Watch Video Solution

24. If the sum of the distances of a point from two perpendicular lines in a plane is 1 , then its locus is a (a) square (b) a circle (c) a straight line
(d) two intersecting lines
A. a square
B. a circle
C. a straight line
D. two intersecting lines

Answer: A

- Watch Video Solution

25. From the differential equation of family of lines situated at a constant distance p from the origin.
A. $x+y+2=0$
B. $x+y+4=0$
C. $x \cos \alpha+y \sin \alpha=2$
D. $x \cos \alpha+y \sin \alpha=\frac{1}{2}$

Answer: C

- Watch Video Solution

26. The lines $y=m_{1} x, y=m_{2} x a n d y=m_{3} x$ make equal intercepts on the line

$$
x+y=1 .
$$

$$
2\left(1+m_{1}\right)\left(1+m_{3}\right)=\left(1+m_{2}\right)\left(2+m_{1}+m_{3}\right)
$$

$$
\left(1+m_{1}\right)\left(1+m_{3}\right)=\left(1+m_{2}\right)\left(1+m_{1}+m_{3}\right)
$$

$$
\left(1+m_{1}\right)\left(1+m_{2}\right)=\left(1+m_{3}\right)\left(2+m_{1}+m_{3}\right)
$$

$$
2\left(1+m_{1}\right)\left(1+m_{3}\right)=\left(1+m_{2}\right)\left(1+m_{1}+m_{3}\right)
$$

A. $2\left(1+m_{1}\right)\left(1+m_{3}\right)=\left(1+m_{2}\right)\left(2+m_{1}+m_{3}\right)$
B. $\left(1+m_{1}\right)\left(1+m_{3}\right)=\left(1+m_{2}\right)\left(1+m_{1}+m_{3}\right)$
C. $\left(1+m_{1}\right)\left(1+m_{2}\right)=\left(1+m_{3}\right)\left(2+m_{1}+m_{3}\right)$
D. $2\left(1+m_{1}\right)\left(1+m_{3}\right)=\left(1+m_{2}\right)\left(1+m_{1}+m_{3}\right)$

Answer: A

- Watch Video Solution

27. The condition on a and b, such that the portion of the line $a x+b y-1=0$ intercepted between the lines $a x+y=0$ and
$x+b y=0$ subtends a right angle at the origin, is (a) $a=b$ (b) $a+b=0$
(c) $a=2 b$ (d) $2 a=b$
A. $a=b$
B. $a+b=0$
C. $a=2 b$
D. $2 a=b$

Answer: B

- Watch Video Solution

28. The area of the triangle formed by the lines $y=a x, x+y-a=0$, and $y-a x i s$ is equal to
A. $\frac{1}{2|1+a|}$
B. $\frac{a^{2}}{|1+a|}$
C. $\frac{1}{2} \frac{a}{|1+a|}$
D. $\frac{a^{2}}{2|1+a|}$

Answer: D

- Watch Video Solution

29. The line $\frac{x}{a}+\frac{y}{b}=1$ meets the x -axis at A, the y -axis at B, and the line $y=x$ at C such, that the area of Delta $A O C$ is twice the area of Delta $B O C$. Then the coordinates of C are $\left(\frac{b}{3}, \frac{b}{3}\right)$ (b) $\left(\frac{2 a}{3}, \frac{2 a}{3}\right)$ $\left(\frac{2 b}{3}, \frac{2 b}{3}\right)$ (d) none of these
A. $\left(\frac{b}{3}, \frac{b}{3}\right)$
B. $\left(\frac{2 a}{3}, \frac{2 a}{3}\right)$
C. $\left(\frac{2 b}{3}, \frac{2 b}{3}\right)$
D. none of these

Answer: C

30. The lien $\frac{x}{3}+\frac{y}{4}=1$ meets the $y-$ and $x-a x y s$ at AandB, respectively. A square $A B C D$ is constructed on the line segment $A B$ away from the origin. The coordinates of the vertex of the square farthest from the origin are $(7,3)(b)(4,7)(c)(6,4)(d)(3,8)$
A. 7,3
B. 4,7
C. 6,4
D. 3,8

Answer: B

- Watch Video Solution

31. The area of a parallelogram formed by the lines $a x \pm b x \pm c=0$ is (a) $\frac{c^{2}}{(a b)}$ (b) $\frac{s c^{2}}{(a b)}$ (c) $\frac{c^{2}}{2 a b}$ (d) none of these
A. $c^{2} /(a b)$
B. $s c^{2} /(a b)$
C. $c^{2} / 2 a b$
D. none of these

Answer: D

- Watch Video Solution

32. One diagonal of a square is $3 x-4 y+8=0$ and one vertex is $(-1,1)$, then the area of square is
A. $\frac{1}{50}$ sq.unit
B. $\frac{1}{25}$ sq.unit
C. $\frac{3}{50}$ sq.unit
D. $\frac{2}{25}$ sq.unit

Answer: D

33. In an isoceles triangle $O A B$, O is the origin and $O A=O B=6$. The equation of the side $A B$ is $x-y+1=0$ Then the area of the triangle is
A. $2 \sqrt{21}$
B. $\sqrt{142}$
C. $\sqrt{\frac{142}{2}}$
D. $\sqrt{\frac{71}{2}}$

Answer: D

- Watch Video Solution

34. A straight line through the origin ' O ' meets the parallel lines $4 x+2 y=9$ and $2 x+y=-6$ at points P and Q respectively. Then the point ' O ' divides the segment PQ in the ratio
A. 1:2
B. 3:4
C. 2: 01
D. 4: 3

Answer: B

- Watch Video Solution

35. The coordinates of the foot of the perpendicular from the point $(2,3)$ on the line $-y+3 x+4=0$ are given by $\left(\frac{37}{10},-\frac{1}{10}\right)$

$$
\begin{equation*}
\left(-\frac{1}{10}, \frac{37}{10}\right)\left(\frac{10}{37},-10\right)(\mathrm{d})\left(\frac{2}{3},-\frac{1}{3}\right) \tag{b}
\end{equation*}
$$

A. $(37, / 10,-1 / 10)$
B. $(-1 / 10,37 / 10)$
C. $(10 / 37,-10)$
D. $(2 / 3,-1 / 3)$
36. The straight lines $7 x-2 y+10=0$ and $7 x+2 y-10=0$ form an isosceles triangle with the line $y=2$. The area of this triangle is equal to (a) $\frac{15}{7}$ squnits (b) $\frac{10}{7}$ squinits (c) $\frac{18}{7}$ squnits (d) none of these
A. $15 / 7$ sq. units
B. $10 / 7$ sq. units
C. 18/7 sq. units
D. none of these

Answer: C

- Watch Video Solution

37. The equations of the sides of a triangle are $x+y-5=0, x-y+1=0$, and $y-1=0$.

Then the coordinates of the circumcenter are
A. 2,1
B. 1,2
C. 2,-2
D. 1,-2

Answer: A

- Watch Video Solution

38. If the intercepts made by the line $y=m x$ by lines $x=2$ and $x=5$ is less than 5, then the range of values of m is a. $\left(-\infty,-\frac{4}{3}\right) \cup\left(\frac{4}{3}, \infty\right)$ b. $\left(-\frac{4}{3}, \frac{4}{3}\right)$ c. $\left(-\frac{3}{4}, \frac{4}{3}\right)$ d. none of these
A. $(-\infty,-4 / 3) \cup(4 / 3,+\infty)$
B. $(-4 / 3,4 / 3)$
C. $(-3 / 4,4 / 3)$
D. none of these

D Watch Video Solution

39. The range of values of θ in the interval $(0, \pi)$ such that the points $(3,2)$ and $(\sin \theta, \cos \theta)$ lie on the same side of the line $x+y-1=0$, is
A. $0<\theta<\frac{\pi}{4}$
B. $0<\theta<\frac{\pi}{2}$
C. $0<\theta<\pi$
D. $\frac{\pi}{4}<\theta<\frac{3 \pi}{4}$

Answer: B

- Watch Video Solution

40. about to only mathematics
A. $\frac{5}{\sqrt{2}}$
B. $5 \mathrm{sqrt}(2)+\mathrm{k}$
C. 10
D. 5

Answer: D

D Watch Video Solution

41. Consider the points $A(0,1) \operatorname{and} B(2,0)$, and P be a point on the line $4 x+3 y+9=0$. The coordinates of P such that $|P A-P B|$ is maximum are $\left(-\frac{12}{5}, \frac{17}{5}\right)$
(b) $\left(-\frac{84}{5}, \frac{13}{5}\right)\left(\frac{31}{7}, \frac{31}{7}\right)$ (d) $(, 0)$

- Watch Video Solution

42. Consider the point $A=(3,4), B(7,13)$. If ' P ' be a point on the line $y=x$ such that $P A+P B$ is minimum then coordinates of P is (A)
$\left(\frac{13}{7}, 13,7\right)$
(B) $\left(\frac{23}{7}, \frac{23}{7}\right)$
(C) $\left(\frac{31}{7}, \frac{31}{7}\right)$
(D) $\left(\frac{33}{7}, \frac{33}{7}\right)$
A. $(12 / 7,12 / 7)$
B. $(-24 / 5,17 / 5)$
C. $(31 / 7,31 / 7)$
D. $(0,0)$

Answer: C

- Watch Video Solution

43. The area enclosed by $2|x|+3|y| \leq 6$ is 3 sq. units (b) 4 sq. units 12 sq. units (d) 24 sq. units
A. 3 sq. units
B. 4 sq. units
C. 12 sq. units
D. 24 sq. units

Answer: C

44. $A B C$ is a variable triangle such that A is $(1,2)$ and B and C lie on line $y=x+\lambda$ (where λ is a variable). Then the locus of the orthocentre of triangle $A B C$ is $(x-1)^{2}+y^{2}=4 x+y=32 x-y=0$ (d) none of these
A. $x+y=0$
B. $x-y=0$
C. $x^{2}+y^{2}=4$
D. $x+y=3$

Answer: D

- Watch Video Solution

45. In $A B C$, the coordinates of the vertex A are $(4,-1)$, and lines $x-y-1=0$ and $2 x-y=3$ are the internal bisectors of angles
$B a n d C$. Then, the radius of the encircle of triangle $A B C$ is $\frac{4}{\sqrt{5}}$ (b) $\frac{3}{\sqrt{5}}$
(c) $\frac{6}{\sqrt{5}}$ (d) $\frac{7}{\sqrt{5}}$
A. $4 / \sqrt{5}$
B. $3 / \sqrt{5}$
C. $6 / \sqrt{5}$
D. $7 / \sqrt{5}$

Answer: C

- Watch Video Solution

46. P is a point on the line $y+2 x=1$, and Q and R two points on the line $3 y+6 x=6$ such that triangle $P Q R$ is an equilateral triangle. The length of the side of the triangle is (a) $\frac{2}{\sqrt{5}}$ (b) $\frac{3}{\sqrt{5}}$ (c) $\frac{4}{\sqrt{5}}$ (d) none of these
A. $2 / \sqrt{15}$
B. $3 / \sqrt{5}$
C. $4 / \sqrt{5}$
D. none of these

Answer: A

- Watch Video Solution

47. If the equation of base of an equilateral triangle is $2 x-y=1$ and the vertex is $(-1,2)$, then the length of the side of the triangle is
A. $\sqrt{20 / 3}$
B. $2 / \sqrt{15}$
C. $\sqrt{8 / 15}$
D. $\sqrt{15 / 2}$

Answer: A

48. The locus of a point that is equidistant from the lines $x+y-2 \sqrt{2}=0$ and $x+y-\sqrt{2}=0$ is (a) $x+y-5 \sqrt{2}=0$
$x+y-3 \sqrt{2}=0$ (c) $2 x+2 y-3 \sqrt{2}=0$ (d) $2 x+2 y-5 \sqrt{5}=0$
A. $x+y-5 \sqrt{2}=0$
B. $x+y-3 \sqrt{2}=0$
C. $2 x+2 y-3 \sqrt{2}=0$
D. $2 x+2 y-5 \sqrt{2}=0$

Answer: C

- Watch Video Solution

49. If the quadrilateral formed by the lines $a x+b y+c=0, a^{\prime} x+b^{\prime} y+c=0, a x+b y+c^{\prime}=0, a^{\prime} x+b^{\prime} y+c^{\prime}=$ has perpendicular diagonals, then $b^{2}+c^{2}=b^{\prime 2}+c^{\prime 2}$ $c^{2}+a^{2}=c^{\prime 2}+a^{\prime 2} a^{2}+b^{2}=a^{\prime 2}+b^{\prime 2}$ (d) none of these
A. $b^{2}+c^{2}=b^{2}+c^{2}$
B. $c^{2}+a^{2}=c^{\prime 2}+a^{\prime 2}$
C. $a^{2}+b^{2}=a^{\prime 2}+b^{2}$
D. none of these

Answer: C

- Watch Video Solution

50. A line of fixed length 2 units moves so that its ends are on the positive x-axis and that part of the line $x+y=0$ which lies in the second quadrant. Then the locus of the midpoint of the line has equation. a.
$x^{2}+5 y^{2}+4 x y-1=0$
b. $\quad x^{2}+5 y^{2}+4 x y+1=0$
$x^{2}+5 y^{2}-4 x y-1=0$ d. $4 x^{2}+5 y^{2}+4 x y+1=0$
C.
A. $x^{2}+5 y^{2}+4 x y-1=0$
B. $x^{2}+5 y^{2}+4 x y+1=0$
C. $x^{2}+5 y^{2}-4 x y-1=0$
D. $x^{2}+5 y^{2}-4 x y-1=0$

D Watch Video Solution

51. If the extremities of the base of an isosceles triangle are the points $(2 a, 0)$ and $(0, \mathrm{a})$, and the equation of one of the side is $x=2 a$, then the area of the triangle is (a) $5 a^{2}$ squinits (b) $\frac{5 a^{2}}{2}$ squinits (c) $\frac{25 a^{2}}{2}$ squinits (d) none of these
A. $5 a^{2}$ sq. units
B. $5 a^{2} / 2$ sq. units
C. $25 a^{2} / 2$ sq. units
D. none of these

Answer: B

- Watch Video Solution

52. $A \equiv(-4,0), B \equiv(4,0) \operatorname{Mand} N$ are the variable points of the y axis such that M lies below $N a n d M N=4$. Lines $A M a n d B N$ intersect at P. The locus of P is a. $2 x y-16-x^{2}=0$ b. $2 x y+16-x^{2}=0 \mathrm{c}$. $2 x y+16+x^{2}=0$ d. $2 x y-16+x^{2}=0$
A. $2 x y-16-x^{2}=0$
B. $2 x y+16-x^{2}=0$
C. $2 x y+16+x^{2}=0$
D. $2 x y-16+x^{2}=0$

Answer: D

- Watch Video Solution

53. The number of triangles that the four lines
$y=x+3, y=2 x+3, y=3 x+2$, and $y+x=3$ form is (a) 4 (b) 2
(c) 3 (d) 1
A. 4
B. 2
C. 3
D. 1

Answer: C

- Watch Video Solution

54. A variable line $\frac{x}{a}+\frac{y}{b}=1$ moves in such a way that the harmonic mean of a and b is 8 . Then the least area of triangle made by the line with the coordinate axes is (1) 8 sq. unit (2) 16 sq. unit (3) 32 sq. unit (4) 64 sq. unit
A. 8 sq. unit
B. 16 sq. unit
C. 32 sq. unit
D. 64 sq. unit

Answer: C

D Watch Video Solution

55. Two $A(0,0)$ and $B(x, y)$ with $x \in(0,1)$ and $y>0$. Let the slope of line $A B$ be m_{1} Point C lies on line $x=1$ such that the slope of $B C$ is equal to m_{2}, where ${ }^{`} 0$
A. 1
B. $1 / 2$
C. $1 / 4$
D. $1 / 8$

Answer: D

56. A triangle is formed by the lines $x+y=0, x-y=0$, and $l x+m y=1$. If landm vary subject to the condition $l^{2}+m^{2}=1$, then the locus of its circumcenter is $\left(x^{2}-y^{2}\right)^{2}=x^{2}+y^{2}$ $\left(x^{2}+y^{2}\right)^{2}=\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)^{2}=4 x^{2} y^{2}\left(x^{2}-y^{2}\right)^{2}=\left(x^{2}+y^{2}\right)^{2}$
A. $\left(x^{2}-y^{2}\right)^{2}=x^{2}+y^{2}$
B. $\left(x^{2}-y^{2}\right)^{2}=\left(x^{2}-y^{2}\right)$
C. $\left(x^{2}-y^{2}\right)=4 x^{2} y^{2}$
D. $\left(x^{2}-y^{2}\right)^{2}=\left(x^{2}+y^{2}\right)^{2}$

Answer: A

- Watch Video Solution

57. Let P be $(5,3)$ and a point R on $y=x$ and Q on the x -axis be such that $P Q+Q R+R P$ is minimum. Then the coordinates of Q are $\left(\frac{17}{4}, 0\right)$ (b) $(17,0)\left(\frac{17}{2}, 0\right)$ (d) none of these
A. $(17 / 4,0)$
B. $(17,0)$
C. $(17 / 2,0)$
D. none of these

Answer: A

- Watch Video Solution

58. If a pair of perpendicular straight lines drawn through the origin forms an isosceles triangle with the line $2 x+3 y=6$, then area of the triangle so formed is $36 / 13$ (b) 12/17 (c) 13/5 (d) 17/14
A. $\frac{36}{13}$ sq. unit
B. $\frac{12}{17}$ sq. unit
C. $\frac{13}{5}$ sq. unit
D. $\frac{17}{13} \quad$ sq. unit

- Watch Video Solution

59. A point $P(x, y)$ moves that the sum of its distance from the lines $2 x-y-3=0$ and $x+3 y+4=0$ is 7 . The area bounded by locus P is
(in sq. unit)
A. 70
B. $70 \sqrt{2}$
C. $35 \sqrt{2}$
D. 140

Answer: B

60. If AD, BE and CF are the altitudes of $\triangle A B C$ whose vertex A is $(-4,5)$. The coordinates of points E and F are (4,1) and ($-1,-4$), respectively. Equation of $B C$ is
A. $3 x-4 y+28=0$
B. $4 x+3 y+28=0$
C. $3 x-4 y-28=0$
D. $x+2 y+7=0$

Answer: C

- Watch Video Solution

61. The vertex A of $\triangle A B C$ is (3,-1). The equation of median BE and angle bisector CF are $x-4 y+10=0$ and $6 x+10 y-59=0$, respectively. Equation of $A C$ is
A. $5 x+18 y=37$
B. $15 x+8 y=37$
C. $15 x-8 y=37$
D. $15 x+8 y+37=0$

Answer: B

- Watch Video Solution

62. Suppose A, B are two points on $2 x-y+3=0$ and $P(1,2)$ is such that $P A=P B$. Then the mid point of $A B$ is
A. $\left(\frac{-1}{5}, \frac{13}{5}\right)$
B. $\left(\frac{-7}{5}, \frac{9}{5}\right)$
C. $\left(\frac{7}{5}, \frac{-9}{5}\right)$
D. $\left(\frac{-7}{5}, \frac{-9}{5}\right)$

Answer: A

63. about to only mathematics
A. equilateral
B. right angled
C. scalene
D. none of these

Answer: D

- Watch Video Solution

64. A light ray coming along the line $3 x+4 y=5$ gets reflected from the line $a x+b y=1$ and goes along the line $5 x-12 y=10$. Then, $a=\frac{64}{115}, b=\frac{112}{15} \quad a=\frac{14}{15}, b=-\frac{8}{115} \quad a=\frac{64}{115}, b=-\frac{8}{115}$ $a=\frac{64}{15}, b=\frac{14}{15}$
A. $a=\frac{64}{115}, b=\frac{112}{15}$
B. $a=\frac{14}{15}, b=-\frac{18}{115}$
C. $a=\frac{64}{115}, b=-\frac{8}{115}$
D. $a=\frac{64}{15}, b=\frac{14}{15}$

Answer: C

- Watch Video Solution

65. The point $A(2,1)$ is translated parallel to the line $x-y=3$ by a distance of 4 units. If the new position A^{\prime} is in the third quadrant, then the coordinates of A^{\prime} are (A) $\quad(2+2 \sqrt{2}, 1+2 \sqrt{2})$
$(-2+\sqrt{2},-1-2 \sqrt{2})$ (C) $(2-2 \sqrt{2}, 1-2 \sqrt{2})$ (D) none of these
A. $(2+2 \sqrt{2}, 1+2 \sqrt{2})$
B. $(-2+\sqrt{2},-1-2 \sqrt{2})$
C. $(2-2 \sqrt{2}, 1-2 \sqrt{2})$
D. none of these
66. One of the diagonals of a square is the portion of the line $\frac{x}{2}+\frac{y}{3}=2$ intercepted between the axes. Then the extremities of the other diagonal are: (a) $(5,5),(-1,1)$ (b) $(0,0),(4,6)$
$(0,0),(-1,1)(d)(5,5), 4,6)$
A. $(5,5),(-1,1)$
B. $(0,0),(4,6)$
C. (0,0),(-1,1)
D. $(5,5),(4,6)$

Answer: A

- Watch Video Solution

67. The point $\mathrm{P}(2,1)$ is shifted through a distance $3 \sqrt{2}$ units measured parallel to the line $\mathrm{x}+\mathrm{y}=1$ in the direction of decreasing ordinates, to reach
at Q. The image of Q with respect to given line is
A. $(3,-4)$
B. $(-3,2)$
C. $(0,-1)$
D. none of these

Answer: A

- Watch Video Solution

68. Let O be the origin. If $A(1,0) \operatorname{andB}(0,1) \operatorname{and} P(x, y)$ are points such that $x y>0 a n d x+y<1$, then P lies either inside the triangle $O A B$ or in the third quadrant. P cannot lie inside the triangle $O A B P$ lies inside the triangle $O A B P$ lies in the first quadrant only
A. P lies either inside the triangle $O A B$ or in the third quadrant
B. P cannot lie inside the triangle OAB
C. P lies inside the triangle OAB
D. P lies in the first quadrant only

Answer: A

- Watch Video Solution

69. In a triangle $A B C$, the bisectors of angles BandC lies along the lines
$x=$ yandy $=0$. If A is $(1,2)$, then the equation of line $B C$ is
$2 x+y=1$ (b) $3 x-y=5 x-2 y=3$ (d) $x+3 y=1$
A. $2 x+y=1$
B. $3 x-y=5$
C. $x-2 y=3$
D. $x+3 y=1$

Answer: B

- Watch Video Solution

70. Lin $a x+b y+p=0$ makes angle
with $x \cos \alpha+y \sin \alpha=p, p \in R^{+}$. If these lines and the line $x \sin \alpha-y \cos \alpha=0 \quad$ are concurrent, then $\quad(\mathrm{a}) a^{2}+b^{2}=1$ $a^{2}+b^{2}=2(\mathrm{c}) 2\left(a^{2}+b^{2}\right)=1$ (d) none of these
A. $a^{2}+b^{2}=1$
B. $a^{2}+b^{2}=2$
C. $2\left(a^{2}+b^{2}\right)=1$
D. none of these

Answer: B

- Watch Video Solution

71. The equation of the line AB is $y=x$. If A and B lie on the same side of the line mirror $2 x-y=1$, then the equation of the image of $A B$ is (a) $x+y-2=0$ (b) $8 x+y-9=0$ (c) $7 x-y-6=0$ (d) 'None of these A. $x+y=2$
B. $8 x+y=9$
C. $7 x-y=6$
D. none of these

Answer: C

- Watch Video Solution

72. The equation of the bisector of the acute angle between the lines
$2 x-y+4=0$ and $x-2 y=1$ is $x-y+5=0 \quad x-y+1=0$ $x-y=5$ (d) none of these
A. $x+y+5=0$
B. $x-y+1=0$
C. $x-y=5$
D. none of these

Answer: B

73. The straight lines $4 a x+3 b y+c=0$, where $a+b+c(4,3)$
$\left(\frac{1}{4}, \frac{1}{3}\right)\left(\frac{1}{2}, \frac{1}{3}\right)$ (d) none of these
A. $(4,3)$
B. $(1 / 4,1 / 3)$
C. $(1 / 2,1 / 3)$
D. none of these

Answer: B

- Watch Video Solution

74. If the lines $a x+y+1=0, x+b y+1=0 a n d x+y+c=0(a, b, c$ being distinct and different from 1) are concurrent, then prove that $\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}=1$.
A. 0
B. 1
C. $1 /(a+b+c)$
D. none of these

Answer: B

- Watch Video Solution

75. If lines $x+2 y-1=0, a x+y+3=0$, and $b x-y+2=0$ are concurrent, and S is the curve denoting the locus of (a, b), then the least distance of S from the origin is $\frac{5}{\sqrt{57}}$ (b) $5 / \sqrt{51} 5 / \sqrt{58}$ (d) $5 / \sqrt{59}$
A. $5 / \sqrt{57}$
B. $5 / \sqrt{51}$
C. $5 / \sqrt{58}$
D. $5 / \sqrt{59}$

- Watch Video Solution

76. The straight lines $x+2 y-9=0,3 x+5 y-5=0$, and $a x+b y-1=0$ are concurrent, if the straight line $35 x-22 y+1=0$ passes through the point (a) (a, b) (b) (b, a) (c) $(-a,-b)$ (d) none of these
A. (a, b)
B. (b, a)
C. (-a,-b)
D. none of these

Answer: A

- Watch Video Solution

$2 x+3 y-1=0, x+2 y-1=0$, and $a x+b y-1=0$ form a triangle with the origin as orthocentre, then (a, b) is given by
A. $(6,4)$
B. $(-3,3)$
C. $(-8,8)$
D. $(0,7)$

Answer: C

- Watch Video Solution

78. If $\frac{a}{\sqrt{b c}}-2=\sqrt{\frac{b}{c}}+\sqrt{\frac{c}{b}}$, where $a, b, c>0$, then the family of lines $\sqrt{a} x+\sqrt{b} y+\sqrt{c}=0$ passes though the fixed point given by (a) $(1,1)$ (b) $(1,-2)(c)(-1,2)(d)(-1,1)$
A. $(1,1)$
B. $(1,-2)$
C. $(-1,2)$
D. $(-1,1)$

Answer: D

- Watch Video Solution

79. Distance possible to draw a line which belongs to all the given family of lines
$y-2 x+1+\lambda_{1}(2 y-x-1)=0,3 y-x-6+\lambda_{2}(y-3 x+6)=0, a x+$
, then $a=4$ (b) $a=3 a=-2$ (d) $a=2$
A. $a=4$
B. $a=3$
C. $a=-2$
D. $a=2$

- Watch Video Solution

80. If two members of family $(2+\lambda) x+(1+2 \lambda) y-3(1+\lambda)=0$ and line $x+y=0$ make an equilateral triangle, the the incentre of triangle so formed is
A. $\left(\frac{1}{3}, \frac{1}{3}\right)$
B. $\left(\frac{7}{6},-\frac{5}{6}\right)$
C. $\left(\frac{5}{6}, \frac{5}{6}\right)$
D. $\left(-\frac{3}{2},-\frac{3}{2}\right)$

Answer: A

81. The set of lines $x \tan ^{-1} a+y \sin ^{-1}\left(\frac{1}{\sqrt{1+a^{2}}}\right)+2=0$ where $a \in(0,1)$ are concurrent at

Watch Video Solution

82. If $\sin (\alpha+\beta) \sin (\alpha-\beta)=\sin \gamma(2 \sin \beta+\sin \gamma)$, where ${ }^{\circ} 0$
A. $(1,1)$
B. $(-1,1)$
C. $(1,-1)$
D. none of these

Answer: C

- Watch Video Solution

1. If P is a point (x, y) on the line $y=-3 x$ such that P and the point $(3,4)$ are on the opposite sides of the line $3 x-4 y=8$, then $x>\frac{8}{15}$
(b) $x>\frac{8}{5} y<-\frac{8}{5}$ (d) $y<-\frac{8}{15}$
A. $x>8 / 15$
B. $x>8 / 5$
C. $x<-8 / 5$
D. $y<-8 / 15$

Answer: A::C

- Watch Video Solution

2. If (x, y) is a variable point on the line $y=2 x$ lying between the lines $2(x+1)+y=0$ and $x+3(y-1)=0$, then $x \in\left(-\frac{1}{2}, \frac{6}{7}\right)$
$x \in\left(-\frac{1}{2}, \frac{3}{7}\right) y \in\left(-1, \frac{3}{7}\right)$ (d) $y \in\left(-1, \frac{6}{7}\right)$
A. $x \in(-1 / 2,6 / 7)$
B. $x \in(-1 / 2,3 / 7)$
C. $y \in(-1,3 / 7)$
D. $y \in(-1,6 / 7)$

Answer: B::D

- Watch Video Solution

3. Let $P(\sin \theta, \cos \theta)(0 \leq \theta \leq 2 \pi)$ be a point and let OAB be a triangle with vertices $(0,0),\left(\sqrt{\frac{3}{2}}, 0\right)$ and $\left(0, \sqrt{\frac{3}{2}}\right)$ Find θ if P lies inside $\triangle O A B$
A. $0<\theta<\pi / 12$
B. $5 \pi / 2<\theta<\pi / 2$
C. $0<\theta<5 \pi / 2$
D. $5 \pi / 2<\theta<\pi$
4. The lines $x+2 y+3=0, x+2 y-7=0$, and $2 x-y-4=0$ are the sides of a square. The equation of the remaining side of the square can be $2 x-y+6=0$
(b) $2 x-y+8=0 \quad 2 x-y-10=0$
$2 x-y-14=0$
A. $2 x-y+6=0$
B. $2 x-y+8=0$
C. $2 x-y-10=0$
D. $2 x-y-14=0$

Answer: A:D

- Watch Video Solution

5. Angle made with the x-axis by a straight line drawn through $(1,2)$ so that it intersects $x+y=4$ at a distance $\frac{\sqrt{6}}{3}$ from $(1,2)$ is 105^{0} (b) 75^{0}

(c) 60^{0} (d) 15^{0}

A. 105°
B. 75°
C. 60°
D. 15°

Answer: B::D

- Watch Video Solution

6. Given three straight lines $2 x+11 y-5=0,24 x+7 y-20=0$, and $4 x-3 y-2=0$. Then, they form a triangle one line bisects the angle between the other two two of them are parallel
A. they from a triangle
B. they are concurrent
C. one line bisects the angle between the other two
D. two of them are parallel

Answer: C

- Watch Video Solution

7. A triangle is formed by the lines whose equations are $A B: x+y-5=0, B C$:
$x+7 y-7=0$ and CA: $7 x+y+14=0$.

Then
A. angle at A is acute
B. angle at C is acute
C. internal angle bisector at angle B is $3 x+6 y-16=0$
D. external angle bisector at angle C is $8 x+8 y+7=0$

Answer: A::C::D

- Watch Video Solution

8. If the points $\left(\frac{a^{3}}{(a-1)}\right),\left(\frac{\left(a^{2}-3\right)}{(a-1)}\right),\left(\frac{b^{3}}{b-1}\right),\left(\left(\frac{b^{2}-3}{(b-1)}\right)\right.$, and $\left(\frac{\left(c^{2}-3\right)}{(c-1)}\right)$, where a, b, c are different from 1 , lie on the $l x+m y+n=0 \quad$, then $\quad a+b+c=-\frac{m}{l} \quad a b+b c+c a=\frac{n}{l}$ $a b c=\frac{(m+n)}{l} a b c-(b c+c a+a b)+3(a+b+c)=0$
A. $a+b+c=-\frac{m}{l}$
B. $a b+b c+c a=\frac{n}{l}$
C. $a b c=\frac{(m+n)}{l}$
D. $a b c-(b c+c a+a b)+3(a+b+c)=0$

Answer: A::B::D

- Watch Video Solution

9. Two sides of a rhombus OABC (lying entirely in first quadrant or fourth quadrant) of area equal to 2 sq. units, are $y=\frac{x}{\sqrt{3}}, y=\sqrt{3} x$ Then possible coordinates of B is / are (' O ' being the origin)
A. $(1+\sqrt{3}, 1+\sqrt{3})$
B. $(-1-\sqrt{3},-1-\sqrt{3})$
C. $(3+\sqrt{3}, 3+\sqrt{3})$
D. $(\sqrt{3}-1, \sqrt{3}-1)$

Answer: A::B

- Watch Video Solution

10. If the ellipse $\frac{x^{2}}{4}+y^{2}=1$ meets the ellipse $x^{2}+\frac{y^{2}}{a^{2}}=1$ at four distinct points and $a=b^{2}-5 b+7$, then b does not lie in (a) $[4,5]$ (b) $(-\infty, 2) \cup(3, \infty)(\mathrm{c})(-\infty, 0)(\mathrm{d})[2,3]$
A. $(1,1)$
B. $(1,-1)$
C. (2,-2)
D. $(3,3)$

- Watch Video Solution

11. $\frac{d}{d x}\left[\tan ^{-1}\left(\frac{\sqrt{x}(3-x)}{1-3 x}\right)\right]=\frac{1}{2(1+x) \sqrt{x}} \quad$ (b) $\frac{3}{(1+x) \sqrt{x}}$
$\frac{2}{(1+x) \sqrt{x}}$ (d) $\frac{3}{2(1+x) \sqrt{x}}$
A. $\left(2\left(1-\frac{3 \sqrt{3}}{4}\right), \frac{3}{2}\left(1-\frac{4}{\sqrt{3}}\right)\right)$
B. $\left(-2(1+\sqrt{3}), \frac{3}{2}(1-\sqrt{3})\right)$
C. $\left(2(1+\sqrt{3}), \frac{3}{2}(1+\sqrt{3})\right)$
D. $\left(2\left(1+\frac{3 \sqrt{3}}{4}\right), \frac{3}{2}\left(1+\frac{4}{\sqrt{3}}\right)\right)$

Answer: A:D

- Watch Video Solution

12. The equation of the lines passing through the point $(1,0)$ and at a distance $\frac{\sqrt{3}}{2}$ from the origin is (a) $\sqrt{3} x+y-\sqrt{3}=0$
$x+\sqrt{3} y-\sqrt{3}=0$ (c) $\sqrt{3} x-y-\sqrt{3}=0$ (d) $x-\sqrt{3} y-\sqrt{3}=0$
A. $\sqrt{3} x+y-\sqrt{3}=0$
B. $x+\sqrt{3} y-\sqrt{3}=0$
C. $\sqrt{3} x-y-\sqrt{3}=0$
D. $x-\sqrt{3} y-\sqrt{3}=0$

Answer: A::C

- Watch Video Solution

13. The sides of a triangle are the straight lines $x+y=1,7 y=x$, and $\sqrt{3} y+x=0$. Then which of the following is an interior point of the triangle? Circumcenter (b) Centroid Incenter (d) Orthocenter

A. Circumcenter

B. Centroid
C. Incenter
D. Orthocenter

Answer: B::C

D Watch Video Solution

14. If the straight line $a x+c y=2 b$, where $a, b, c>0$, makes a triangle of area 2 sq. units with the coordinate axes, then a, b, c are in GP a, $-\mathrm{b} ; \mathrm{c}$ are in GP $a, 2 b, c$ are in GP (d) $a,-2 b, c$ are in GP
A. a, b, c are in GP
B. a,-b, c are in GP
C. $a, 2 b, c$ are in GP
D. $a,-2 b, c$ are in GP

Answer: A::B

15. Consider the equation $y-y_{1}=m\left(x-x_{1}\right)$. If $\operatorname{mand} x_{1}$ are fixed and different lines are drawn for different values of y_{1}, then (a)the lines will pass through a fixed point (b)there will be a set of parallel lines (c)all the lines intersect the line $x=x_{1}$ (d)all the lines will be parallel to the line $y=x_{1}$
A. the lines will pass through a fixed point
B. there will be a set of parallel lines
C. all the lines intersect the line $x=x_{1}$
D. all the lines will be parallel to the line $y=x_{1}$

Answer: B::C

- Watch Video Solution

16. Equation(s) of the straight line(s), inclined at 30^{0} to the x-axis such that the length of its (each of their) line segment(s) between the coordinate axes is 10 units, is (are) (a) $x+\sqrt{3} y+5 \sqrt{3}=0$ $x-\sqrt{3} y+5 \sqrt{3}=0$ (c) $x+\sqrt{3} y-5 \sqrt{3}=0(\mathrm{~d}) x-\sqrt{3} y-5 \sqrt{3}=0$
A. $x+\sqrt{3} y+5 \sqrt{3}=0$
B. $x-\sqrt{3} y+5 \sqrt{3}=0$
C. $x+\sqrt{3} y-5 \sqrt{3}=0$
D. $x-\sqrt{3} y-5 \sqrt{3}=0$

Answer: B::D

- Watch Video Solution

17. The lines $x+y-1=0,(m-1) x+\left(m^{2}-7\right) y-5=0$, and $(m-2) x+(2 m-5) y=0$ are concurrent for three values of m concurrent for no value of m parallel for one value of m parallel for two value of m
A. concurrent for three values of m
B. concurrent for one value of m
C. concurrent for no value of m
D. parallel for $\mathrm{m}-3$

Answer: C::D

- Watch Video Solution

18. The equation of a straight line passing through the point $(2,3)$ and inclined at an angle of $\tan ^{-1}\left(\frac{1}{2}\right)$ with the line $y+2 x=5 y=3$

$$
x=23 x+4 y-18=0 \text { (d) } 4 x+3 y-17=0
$$

A. $y=3$
B. $x=2$
C. $3 x+4 y-18=0$
D. $4 x+3 y-17=0$

- Watch Video Solution

19. The equation of the line on which the perpendicular from the origin makes an angle of 30° with x - axis and which forms a triangle of area $\frac{50}{\sqrt{3}}$ with the axes is
A. $\sqrt{3} x+y-10=0$
B. $\sqrt{3} x+y+10=0$
C. $x+\sqrt{3} y-10=0$
D. $x-\sqrt{3} y-10=0$

Answer: A: B

- Watch Video Solution

20. A line is drawn perpendicular to line $y=5 x$, meeting the coordinate axes at AandB. If the area of triangle $O A B$ is 10 sq. units, where O is the origin, then the equation of drawn line is (a) $3 x-y-9$ $5 y+x=10$ (c) $5 y+x=-10$ (d) $x-4 y=10$
A. 12
B. -12
C. 10
D. -10

Answer: A::B

- Watch Video Solution

21. If $x-2 y+4=0 \operatorname{and} 2 x+y-5=0$ are the sides of an isosceles triangle having area 10 squinits , the equation of the third side is $3 x-y=-9$ (b) $3 x-y+11=0 x-3 y=19$ (d) $3 x-y+15=0$
A. $x+3 y=-1$
B. $x+3 y=19$
C. $3 x-y=-9$
D. $3 x-y=11$

Answer: A::B::C::D

- Watch Video Solution

22. The number of values of a for which the lines $2 x+y-1=0$, $a x+3 y-3=0$, and $3 x+2 y-2=0$ are concurrent is 0 (b) 1 (c) 2 (d) infinite
A. -3
B. -1
C. 1
D. 4

D Watch Video Solution

23. Three lines $p x+q y+r=0, q x+r y+p=0$ and $r x+p y+q=0$ are concurrent of
A. $p+p+r=0$
B. $p^{2}+q^{2}+r^{2}=p r+r p+p q$
C. $p^{3}+q^{3}+r^{3}=3 p q r$
D. none of these

Answer: A::B::C

- Watch Video Solution

24. The equation of bisector of two lines L_{1} and L_{2} are $2 \mathrm{x}-16 \mathrm{y}-5=0$ and $64 x+8 y+35=0$. If the line L_{1} passes through ($-11,4$), then identify the
equation of acute angle bisector of L_{1} and L_{2}.
A. $\frac{x-x_{1}}{\cos \left(\frac{\theta_{1}+\theta_{2}}{2}\right)}=\frac{y-y_{1}}{\sin \left(\frac{\theta_{1}+\theta_{2}}{2}\right)}$
B. $\frac{x-x_{1}}{-\sin \left(\frac{\theta_{1}-\theta_{2}}{2}\right)}=\frac{y-y_{1}}{\cos \left(\frac{\theta_{1}-\theta_{2}}{2}\right)}$
C. $\frac{x-x_{1}}{\sin \left(\frac{\theta_{1}+\theta_{2}}{2}\right)}=\frac{y-y_{1}}{\cos \left(\frac{\theta_{1}+\theta_{2}}{2}\right)}$
D. $\frac{x-x_{1}}{-\sin \left(\frac{\theta_{1}+\theta_{2}}{2}\right)}=\frac{y-y_{1}}{\cos \left(\frac{\theta_{1}+\theta_{2}}{2}\right)}$

Answer: A: D

- Watch Video Solution

25.

Consider
the
lines
$L_{1} \equiv 3 x-4 y+2=0$ and $L_{2} \equiv 3 y-4 x-5=0$. Now, choose the correct statement(s).
A. The line $\mathrm{x}+\mathrm{y}=\mathrm{O}$ bisects the acute angle between L_{1} and L_{2} containing the origin.
B. The line $x-y+1=0$ bisects the obtuse angle between L_{1} and L_{2} not containing the origin.
C. The line $x+y+3=0$ bisects the obtuse angle between L_{1} and L_{2} containing the origin.
D. The line $\mathrm{x}-\mathrm{y}+1=0$ bisects the acute angle between L_{1} and L_{2} not containing the origin.

Answer: A:B

- Watch Video Solution

26. The sides of a rhombus are parallel to the lines $x+y-1=0$ and $7 x-y-5=0$. It is given that the diagonals of the rhombus intersect at $(1,3)$ and one vertex, A of the rhombus lies on the line $y=2 x$. Then the coordinates of vertex A are $\left(\frac{8}{5}, \frac{16}{5}\right)$ (b) $\left(\frac{7}{15}, \frac{14}{15}\right)\left(\frac{6}{5}, \frac{12}{5}\right)$ $\left(\frac{4}{15}, \frac{8}{15}\right)$
A. $(8 / 5,16 / 5)$
B. $(7 / 15,14 / 15)$
C. $(6 / 5,12 / 5)$
D. $(4 / 15,8 / 15)$

Answer: A::C

- Watch Video Solution

27. The system of equations $x+2 y+3 z=1, x-y+4 z=0,2 x+y+7 z=1$ has
A. $y+3 x=0$ and $3 y+2 x=0$
B. $2 y+3 x=0$ and $3 y+x=0$
C. $2 y=3 x$ and $3 y=0$
D. $y=3 x$ and $3 y=2 x$

Answer: A::B::C::D

28. Let $u \equiv a x+b y+a b 3=0, v \equiv b x-a y+b a 3=0, a, b \in R$, be two straight lines. The equations of the bisectors of the angle formed by $k_{1} u-k_{2} v=0$ and $k_{1} u+k_{2} v=0$, for nonzero and real k_{1} and k_{2} are $u=0$ (b) $k_{2} u+k_{1} v=0 k_{2} u-k_{1} v=0$ (d) $v=0$
A. $u=0$
B. $k_{2} u+k_{1} v=0$
C. $k_{2} u-k_{1} v=0$
D. $\mathrm{v}=0$

Answer: A:D

- Watch Video Solution

29. Two sides of a triangle are parallel to the coordinate axes. If the slopes of the medians through the acute angles of the triangle are 2 and m, the $m=\frac{1}{2}$ (b) 2 (c) 4 (d) 8
A. $1 / 2$
B. 2
C. 4
D. 8

Answer: A::D

- Watch Video Solution

30. about to only mathematics
A. $P R=3 \sec \theta$
B. $P S=4 \operatorname{cosec} \theta$
C. $P R+P S=\frac{2(3 \sin \theta+4 \cos \theta)}{\sin 2 \theta}$
D. $\frac{9}{(P R)^{2}}+\frac{16}{(P S)^{2}}=1$

Answer: A::B::C::D

Exercise (Comprehension)

1. Let L be the line belonging to the family of straight lines $(a+2 b) x+(a-$ $3 b) y+a-8 b=0, a, b \in R$, which is the farthest from the point $(2,2)$.

Area enclosed by the line L and the coordinate axes is
A. $x+4 y+7=0$
B. $2 x+3 y+4=0$
C. $4 x-y-6=0$
D. none of these

Answer: A

- Watch Video Solution

2. Let l be the line belonging to the family of straight lines $(a+2 b) x+(a-3 b) y+a-8 b=0, a, b \in R$, which is farthest from
the point $(2,2)$, then area enclosed by the line L and the coordinate axes is
A. $4 / 3$ sq. units
B. $9 / 2$ sq. units
C. $49 / 8$ sq. units
D. none of these

Answer: C

- Watch Video Solution

3. Let L be the line belonging to the family of straight lines $(a+2 b) x+(a-$ $3 b) y+a-8 b=0, a, b \in R$, which is the farthest from the point $(2,2)$. If L is concurrent with the lines $\mathrm{x}-2 \mathrm{y}+1=0$ and $3 x-4 y+\lambda=0$, then the value of λ is
A. 2
B. 1
C. -4
D. 5

Answer: D

- Watch Video Solution

4. The perimeter of an equilateral triangle is 30 cm . The area is
A. 1
B. 2
C. 3
D. 4

Answer: B

5. The perimeter of an equilateral triangle is 30 cm . The area is
A. 0,0
B. $0,2 \sqrt{3}$
C. $3,-\sqrt{3}$
D. none of these

Answer: D

- Watch Video Solution

6. The perimeter of an equilateral triangle is 30 cm . The area is
A. $1, \sqrt{3}$
B. $0, \sqrt{3}$
C. 0,2
D. none of these

D Watch Video Solution

7. a variable line L is drawn trough $O(0,0)$ to meet the lines
$L_{1}: y-x-10=0$ and $L_{2}: y-x-20=0$ at point $A \& B$ respectively
.A point P is taken on line L the (1) if $\frac{2}{O P}=\frac{1}{O A}+\frac{1}{O B}$ then locus of P is (2) if $(O P)^{2}=(O A) \cdot(O B)$ then locus of P is (3) if $\frac{1}{(O P)^{2}}=\frac{1}{(O A)^{2}}+\frac{1}{(O B)^{2}}$ then locus of point P is:
A. $3 x+3 y=40$
B. $3 x+3 y+40=0$
C. $3 x-3 y=40$
D. $3 y-3 x=40$

Answer: D

8. A variable line L is drawn through $\mathrm{O}(0,0)$ to meet the line L_{1} and L_{2} given by $y-x-10=0$ and $y-x-20=0$ at Points A and B, respectively. Locus of P , if $O P^{2}=O A \times O B$, is
A. $(y-x)^{2}=100$
B. $(y+x)^{2}=50$
C. $(y-x)^{2}=200$
D. none of these

Answer: C

- Watch Video Solution

9. a variable line L is drawn trough $O(0,0)$ to meet the lines $L_{1}: y-x-10=0$ and $L_{2}: y-x-20=0$ at point $A \& B$ respectively A point P is taken on line L the (1) if $\frac{2}{O P}=\frac{1}{O A}+\frac{1}{O B}$ then locus of P is (2) if $(O P)^{2}=(O A) \cdot(O B)$ then locus of P is (3) if $\frac{1}{(O P)^{2}}=\frac{1}{(O A)^{2}}+\frac{1}{(O B)^{2}}$ then locus of point P is:
A. $(y-x)^{2}=80$
B. $(y-x)^{2}=100$
C. $(y-x)^{2}=64$
D. none of these

Answer: A

- Watch Video Solution

10. The line $6 x+8 y=48$ intersects the coordinates axes at A and B, respecively. A line L bisects the area and the perimeter of triangle $O A B$, where O is the origin.

Slope of Line L is
A. 1
B. 2
C. 3
D. more than 3

D Watch Video Solution

11. The line $6 x+8 y=48$ intersects the coordinates axes at A and B, respecively. A line L bisects the area and the perimeter of triangle $O A B$, where O is the origin.

The slope of line L can be
A. $(10+5 \sqrt{6}) / 10$
B. $(10-5 \sqrt{6}) / 10$
C. $(8+3 \sqrt{6}) / 10$
D. none of these

Answer: B

D Watch Video Solution

12. The line $6 x+8 y=48$ intersects the coordinates axes at A and B, respecively. A line L bisects the area and the perimeter of triangle OAB, where O is the origin.

Slope of Line L is

- Watch Video Solution

13. $A(1,3)$ and $c\left(-\frac{2}{5},-\frac{2}{5}\right)$ are the vertices of a $\triangle A B C$ and the equation of the angle bisector of $\angle A B C$ is $x+y=2$.
A. $7 x+3 y-4=0$
B. $7 x+3 y+4=0$
C. $7 x-3 y+4=0$
D. $7 x-3 y-4=0$

Answer: B

14. $A(1,3)$ and $c\left(-\frac{2}{5},-\frac{2}{5}\right)$ are the vertices of a $\triangle A B C$ and the equation of the angle bisector of $\angle A B C$ is $x+y=2$.
A. $(3 / 10,17 / 10)$
B. $(17 / 10,3 / 10)$
C. (-5/2, 9/2)
D. $(1,1)$

Answer: C

- Watch Video Solution

15. $A(1,3)$ and $c\left(-\frac{2}{5},-\frac{2}{5}\right)$ are the vertices of a $\triangle A B C$ and the equation of the angle bisector of $\angle A B C$ is $x+y=2$.
16. Let $A B C D$ be a parallelogram the equation of whose diagonals are $A C: x+2 y=3$; BD: $2 \mathrm{x}+\mathrm{y}=3$. If length of diagonal $A C=4$ units and area of $A B C D=8$ sq. units. (i) The length of the other diagonal is (ii) the length of side $A B$ is equal to
A. $10 / 3$
B. 2
C. $20 / 3$
D. none of these

Answer: C

- Watch Video Solution

17. Let $A B C D$ be a parallelogram whose equations for the diagonals $A C$ and $B D$ are $x+2 y=3$ and $2 x+y=3$, respectively.

The length of side $A B$ is equal to
A. $2 \sqrt{58} / 3$
B. $4 \sqrt{58} / 9$
C. $3 \sqrt{58} / 9$
D. $4 \sqrt{58} / 9$

Answer: A

- Watch Video Solution

18. Let $A B C D$ be parallelogram whose equations for the diagonals $A C$ and $B D$ are $x+2 y=3$ and $2 x+y=3$, respectively. If length of diagonal $A C=4$ units and area of parallologram $A B C D=8$ sq. units then
(i)the length of other diagonal BD is
(a) $\frac{10}{3}$ (b)
(b) $\frac{20}{3}$
(c) 2 (d) 5
(ii) length of side $A B$ equals to
(a) $\frac{2 \sqrt{58}}{3}$ (b) $\frac{2 \sqrt{58}}{9}$ (c) $\frac{3 \sqrt{58}}{9}$ (d) $\frac{4 \sqrt{58}}{9}$

Watch Video Solution

19. Consider a triangle $P Q R$ with coordinates of its vertices as $P(-8,5), \mathrm{Q}(-15$, $-19)$, and $R(1,-7)$. The bisector of the interior angle of P has the equation which can be written in the form $a x+2 y+c=0$.

The distance between the orthocenter and the circumcenter of triangle PQR is
A. $25 / 2$
B. $29 / 2$
C. $37 / 2$
D. $51 / 2$

Answer: A

- Watch Video Solution

20. Evaluate $\int_{-1}^{1}(x-[x]) d x$, where [.] denotes the greatest integer function.
21. Evaluate $\int_{2}^{5}(x-[x]) d x$, where [.] denotes the greatest integer function.

- Watch Video Solution

22. The base of an isosceles triangle measures 4 units base angle is equal to 45°. A straight line cuts the extension of the base at a point M at the angle θ and bisects the lateral side of the triangle which is nearest to M .

The area of quadrilateral which the straight line cuts off from the given triangle is
A. $\frac{3+\tan \theta}{1+\tan \theta}$
B. $\frac{3+5 \tan \theta}{1+\tan \theta}$
C. $\frac{3+\tan \theta}{1-\tan \theta}$
D. $\frac{3+2 \tan \theta}{1+\tan \theta}$

Answer: B

(D) Watch Video Solution

23. The base of an isosceles triangle measures 4 units base angle is equal to 45°. A straight line cuts the extension of the base at a point M at the angle θ and bisects the lateral side of the triangle which is nearest to M . The length of portion of straight line inside the triangle may lie in the range

- Watch Video Solution

24. The base of an isosceles triangle measures 4 units base angle is equal to 45°. A straight line cuts the extension of the base at a point M at the angle θ and bisects the lateral side of the triangle which is nearest to M . The length of portion of straight line inside the triangle may lie in the range
A. $(2,4)$
B. $\left(\frac{3}{2}, \sqrt{3}\right)$
C. $(\sqrt{2}, 2)$
D. $(\sqrt{2}, \sqrt{3})$

Answer: C

- Watch Video Solution

25. Consider point $A(6,30)$, point $B(24,6)$ and line $A B: 4 x+3 y=114$.

Point $P(0, \lambda)$ is a point on y-axis such that $0<\lambda<38$ and point $Q(0, \lambda)$ is a point on y -axis such that $\lambda>38$.

For all positions of pont P , angle APB is maximum when point P is
A. $(0,12)$
B. $(0,15)$
C. $(0,18)$
D. $(0,21)$

Answer: C

26. Consider point $A(6,30)$, point $B(24,6)$ and line $A B: 4 x+3 y=114$.

Point $P(0, \lambda)$ is a point on y-axis such that $0<\lambda<38$ and point $Q(0, \lambda)$ is a point on y -axis such that $\lambda>38$. The maximum value of angle APB is
A. $\frac{\pi}{3}$
B. $\frac{\pi}{2}$
C. $\frac{2 \pi}{3}$
D. $\frac{3 \pi}{3}$

Answer: B

- Watch Video Solution

27. Consider point $A(6,30)$, point $B(24,6)$ and line $A B: 4 x+3 y=114$.

Point $P(0, \lambda)$ is a point on y-axis such that
$0<\lambda<38$ and point $Q(0, \lambda)$ is a point on y-axis such that $\lambda>38$.
For all positions of pont Q, and $A Q B$ is maximum when point Q is
A. $(0,54)$
B. $(0,58)$
C. $(0,60)$
D. $(0,1)$

Answer: B

- Watch Video Solution

Exercise (Matrix)

1. Consider the lines represented by equation $\left(x^{2}+x y-x\right) \times(x-y)=0$ forming a triangle. Then match the

following lists:

List I	List II
a. Orthocenter of triangle	p. $(1 / 6,1 / 2)$
b. Circumcenter	q. $(1 /(2+2 \sqrt{2}), 1 / 2)$
c. Centroid	r. $(0,1 / 2)$
d. Incenter	s. $(1 / 2,1 / 2)$

- Watch Video Solution

2. Consider the triangle formed by the lines
$y+3 x+2=0,3 y-2 x-5=0,4 y+x-14=0$

Match the following lists:

List I	List II
a. Values of α if $(0, \alpha)$ lies in- side the triangle	p. $(-\infty, 7 / 3) \cup(13 / 4, \infty)$
b. Values of α if $(\alpha, 0)$ lies in- side the triangle	q. $-4 / 3<\alpha<1 / 2$
c.Values of α if $(\alpha, 2)$ side the triangle d. Value of α if $(1, \alpha)$ lies out- side the triangle r. No value of α s/3< $5<7 / 2$	

3. A straight line with negative slope passing the point $(1,4)$ meets the coordinate axes at A and B. The minimum value of $O A+O B=$

- Watch Video Solution

4. If the point P is symmetric to the point $Q(4,-1)$ with respect to the bisector of the first quadrant then the length of $P Q$ is

- Watch Video Solution

5. The point $A(1,2), B(2,-3), C(-1,-5)$ and $D(-2,4)$ in order are the vertices of

- Watch Video Solution

6. Differentiate $y=\sin \left(x^{2}+3\right)$.
7. Consider the lines given by
$L_{1}: x+3 y-5=0$
$L_{2}: 3 x-k y-1=0$
$L_{3}: 5 x+2 y-12=0$
Match the following lists.

List I	List II
a. L_{1}, L_{2}, L_{3} are concurrent if	p. $k=-9$
b. One of L_{1}, L_{2}, L_{3} is parallel to at least one of the other two if	q. $k=-6 / 5$
c. L_{1}, L_{2}, L_{3} form a triangle if	r. $k=5 / 6$
d. L_{1}, L_{2}, L_{3} do not form a triangle if	s. $k=5$

- Watch Video Solution

8. Consider a $\triangle A B C$ in which sides $A B$ and $A C$ are perpendicular to $x-y-$
$4=0$ and $2 x-y-5=0$, repectively. Vertex A is $(-2,3)$ and the circumcenter of $\triangle A B C$ is (3/2, 5/2).

The equation of the line in List 1 is of the form $a x+b y+c=0$, where
$a, b, c \in I$. Match it with the corresponding value of c in list II and then choose the correct code.

List I	List II
a. Equation of the perpendicular bisector of side $A B$	p. -1
b. Equation of the perpendicular bisector of side $A C$.	q. 1
c. Equation of side $A C$	r. -16
d. Equation of the median through A	s. -4

Codes:

a	b	c	d
r	s	p	q
s	r	q	p
q	p	s	r
r	p	s	q

- Watch Video Solution

Exercise (Numerical)

1. straight line L with negative slope passes through the point $(9,4)$ cuts the positive coordinate axes at the point P and W As L. Varies, find the minimum value of $|O P|+|O Q|$, where O is origin .
2. The number of values of k for which the lines $(k+1) x+8 y=4 k a n d k x+(k+3) y=3 k-1 \quad$ are coincident is

- Watch Video Solution

3. The sides of a triangle ABC lie on the lines $3 x+4 y=0,4 x+3 y=0$ and $x=3$. Let (h, k) be the centre of the circle inscribed in $\triangle A B C$. The value of $(h+k)$ equals

- Watch Video Solution

4. The absolute value of the sum of the abscissas of all the points on the line $x+y=4$ that lie at a unit distance from the line $4 x+3 y-10=0$ is \qquad
5. Two sides of a rectangle are $3 x+4 y+5=0,4 x-3 y+15=0$ and one of its vertices is $(0,0)$. The area of rectangle is \qquad .

- Watch Video Solution

6. The line $x=c$ cuts the triangle with corners $(0,0),(1,1)$ and $(9,1)$ into two region. two regions to be the same c must be equal to (A) $\frac{5}{2}$ (B) 3 (C) $\frac{7}{2}$ (D) 5 or 15

- Watch Video Solution

7. For all real values of aandb, lines $(2 a+b) x+(a+3 b) y+(b-3 a)=0 \quad$ and $\quad m x+2 y+6=0 \quad$ are concurrent. Then m is equal to \qquad

- Watch Video Solution

8. The line $3 x+2 y=24$ meets the y -axis at A and the x -axis at B. The perpendicular bisector of $A B$ meets the line through $(0,-1)$ parallel to the x -axis at C. If the area of triangle $A B C$ is A, then the value of $\frac{A}{13}$ is \qquad

- Watch Video Solution

9. Consider a $\triangle A B C$ whose sides $A B, B C$ and $C A$ are represented by the straight lines $2 x+y=0, x+p y=q$ and $x-y=3$ respectively. The point P is $(2,3)$. If P is orthocentre,then find the value of $(p+q)$ is

- Watch Video Solution

10. Triangle $A B C$ with $A B=13, B C=5$, and $A C=12$ slides on the coordinates axes with AandB on the positive x -axis and positive y -axis respectively. The locus of vertex C is a line $12 x-k y=0$. Then the value of k is \qquad
11. The line $y=\frac{3 x}{4}$ meets the lines $x-y=0$ and $2 x-y=0$ at points AandB, respectively. If P on the line $y=\frac{3 x}{4}$ satisfies the condition $P A \dot{P} B=25$, then the number of possible coordinates of P is \qquad

- Watch Video Solution

12. In a plane there are two families of lines $y=x+r, y=-x+r$, where $r \in\{0,1,2,3,4\}$. The number of squares of diagonals of length 2 formed by the lines is:

- Watch Video Solution

13. If $5 a+5 b+20 c=t$, then find the value of t for which the line $a x+b y+c-1=0$ always passes through a fixed point.

- Watch Video Solution

1. The line L given by $\frac{x}{5}+\frac{y}{b}=1$ passes through the point (13,32).the line K is parallel to L and has the equation $\frac{x}{c}+\frac{y}{3}=1$ then the distance between L and K is
A. $\frac{23}{\sqrt{17}}$
B. $\frac{23}{\sqrt{15}}$
C. $\sqrt{17}$
D. $\frac{17}{\sqrt{15}}$

Answer: A

- Watch Video Solution

2. The line $L_{1}: y-x=0$ and $L_{2}: 2 x+y=0$ intersect the line $L_{3}: y+2=0$ at P and Q respectively. The bisector of the acute angle between L_{1} and L_{2} intersects L_{3} at R. Statement-1 : The ratio $P R: R Q$
equals $2 \sqrt{2}: \sqrt{5}$ Statement- 2 : In any triangle, bisector of an angle divides the triangle into two similar triangles. Statement-1 is true, Statement-2 is true ; Statement-2 is correct explanation for Statement-1 Statement-1 is true, Statement-2 is true ; Statement-2 is not a correct explanation for Statement-1 Statement-1 is true, Statement-2 is false Statement-1 is false, Statement-2 is true
A. Statement 1 is true, statement 2 is false.
B. Statement 1 is true, statement 2 is true, statement 2 is the correct explanation of statement1.
C. Statement 1 is true, statement 2 is true, statement 2 is not the correct explanation of statement 1.
D. Statement 1 is false, statement 2 is true.

Answer: A

- Watch Video Solution

3. A line is drawn through the point $(1,2)$ to meet the coordinate axes at P and Q such that it forms a triangle $O P Q$, where O is the origin. If the area of the triangle $O P Q$ is least, then the slope of the line $P Q$ is
A. $-\frac{1}{4}$
B. -4
C. -2
D. $-\frac{1}{2}$

Answer: C

- Watch Video Solution

4. The x-coordinate of the incentre of the triangle where the midpoints of the sides are $(0,1)(1,1)$ and $(1,0)$ is
A. $2+\sqrt{2}$
B. $2-\sqrt{2}$
C. $1+\sqrt{2}$
D. $1-\sqrt{2}$

Answer: B

- Watch Video Solution

5. A ray of light along $x+\sqrt{3} y=\sqrt{3}$ gets reflected upon reaching x -axis, the equation of the reflected ray is
A. $y=x+\sqrt{3}$
B. $\sqrt{3} y=x-\sqrt{3}$
C. $y=\sqrt{3} x-\sqrt{3}$
D. $\sqrt{3} y=x-1$

Answer: B

6. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d be non-zero numbers. If the point of intersection of the lines $4 a x+2 a y+c=0$ and $5 b x+2 b y+d=0$ lies in the fourth quadrant and is equidistant from the two axes, then
A. $2 b c-3 a d=0$
B. $2 b c+3 a d=0$
C. $3 \mathrm{bc}-2 \mathrm{ad}=0$
D. $3 b c+2 a d=0$

Answer: C

- Watch Video Solution

7. Let $P S$ be the median of the triangle with vertices $P(2,2), Q(6,-1) \operatorname{and} R(7,3)$. The equation of the line passing through (1, - 1) and parallel to PS is (1) $4 x-7 y-11=0$ (2) $2 x+9 y+7=0$ (3) $4 x+7 y+3=0(4) 2 x-9 y-11=0$
B. $2 x+9 y+7=0$
C. $4 x+7 y+3=0$
D. $2 x-9 y-11=0$

Answer: B

- Watch Video Solution

8. Locus of the image of the point $(2,3)$ in the line $(2 x-3 y+4)+k(x-2 y+3)=0, k \varepsilon R$, is a : (1) straight line parallel to x-axis. (2) straight line parallel to y-axis (3) circle of radius $\sqrt{2}$ (4) circle of radius $\sqrt{3}$
A. Straight line parallel to x-axis
B. straight line parallel to y-axis
C. circle of radius $\sqrt{2}$
D. circle of radius 3

- Watch Video Solution

9. Two sides of a rhombus are along the lines, $x-y+1=0$ and $7 x-y-5=0$. If its diagonals intersect at $(-1,-2)$, then which one of the following is a vertex of this rhombus ? (1) $(-3,-9)$ (2) $(-3,-8)(3)\left(\frac{1}{3},-\frac{8}{3}\right)(4)\left(-\frac{10}{3},-\frac{7}{3}\right)$
A. $(-3,-8)$
B. $\left(\frac{1}{3},-\frac{8}{3}\right)$
C. $\left(\left(-\frac{10}{3},-\frac{7}{3}\right)\right.$
D. $(-3,-9)$

Answer: B

1. about to only mathematics
A. a hyperbola
B. a parabola
C. an ellipse
D. a straight line

Answer: D

- Watch Video Solution

2. about to only mathematics
A. $y+\sqrt{3} x+2-3 \sqrt{3}=0$
B. $y-\sqrt{3} x+2+3 \sqrt{3}=0$
C. $\sqrt{3} y-x+3+2 \sqrt{3}=0$
D. $\sqrt{3} y+x-3+2 \sqrt{3}=0$

Answer: B

- Watch Video Solution

3. about to only mathematics
A. $a+b-c>0$
B. $a-b+c<0$
C. $a-b+c>0$
D. $a+b-c<0$

Answer: A

- Watch Video Solution

4. For a point P in the plane, let $d_{1}(P) a n d d_{2}(P)$ be the distances of the point P from the lines $x-y=0 a n d x+y=0$ respectively. The area of the region R consisting of all points P lying in the first quadrant of the plane and satisfying $2 \leq d_{1}(P)+d_{2}(P) \leq 4$, is

- Watch Video Solution

Single Correct Answer Type

1. In the $x y$-plane, how many straight lines whose x-intercept is a prime number and whose y-intercept is a positive integer pass through the point $(4,3)$?

- Watch Video Solution

2. The condition that the equation $l x+m y+n=0$ represents the equatio of a straight line in the normal form is
3. In an isosceles triangle $A B C$, the coordinates of the points B and C on the base $B C$ are respectively $(1,2)$ and (2.1). If the equation of the line $A B$ is $y=2 x$, then the equation of the line $A C$ is

- Watch Video Solution

4. If the coordinates of the points A, B, C be $(-1,5),(0,0)$ and $(2,2)$ respectively, and D be the middle point of $B C$, then the equation of the perpendicular drawn from B to the line $A D$ is

- Watch Video Solution

5. Two lines are drawn through (3,4), each of which makes angle of 45° with the line $x-y=2$. Then area of the triangle formed by these lines is
6. The line $y=2 x+4$ is shifted 2 units along $+y$ axis, keeping parallel to itself and then 1 unit along $+x$ axis direction in the same manner, then equation of the line in its new position is,

- Watch Video Solution

7. A ray of light passing through the point $A(2,3)$ reflected at a point B on line $x+y=0$ and then passes through $(5,3)$. Then the coordinates of B are

- Watch Video Solution

8. If the transversal $y=m_{r} x: r=1,2,3$ cut off equal intercepts on the transversal $x+y=1$ then $1+m_{1}, 1+m_{2}, 1+m_{3}$ are in
A. A.P.
B. G.P.
C. H.P.
D. None of these

Answer: C

- View Text Solution

9. The straight line $y=x-2$ rotates about a point where it cuts x-axis and become perpendicular on the straight line $a x+b y+c=0$ then its equation is
A. $a x+b y+20=0$
B. $a x-b y-2 a=0$
C. $b x+a y-2 b=0$
D. $a y-b x+2 b=0$

Answer: D

- Watch Video Solution

10. The two adjacent sides of parallelogram are $\mathrm{y}=0$ and $y=\sqrt{3}(x-1)$. If equation of one diagonal is $\sqrt{3} y=(x+1)$, then equation of other diagonal is

- Watch Video Solution

11. $\mathrm{A}(3,0)$ and $\mathrm{B}(6,0)$ are two fixed points and $\mathrm{U}\left(x_{1}, y_{1}\right)$ is a variable point of the plane $A U$ and $B U$ meets the y axis at C and D respectively and $A D$ meets OU at V . Then for any position of U in the plane CV passes through fixed point (p, q) whose distance from origin is \qquad units
A. 1units
B. 2 units
C. 3 units
D. 4 units

Answer: B

12. If h denotes the A.M. and k denote G.M. of te e intercept made on axes by the lines passing through $(1,1)$ then (h, k) lies on
A. $y^{2}=2 x$
B. $y^{2}=4 x$
C. $y=2 x$
D. $x+y=2 x y$

Answer: A

- View Text Solution

13. Let $A(a, 0)$ and $B(b, 0)$ be fixed distinct points on the x-axis, none of which coincides with the $O(0,0)$, and let C be a point on the y -axis. Let L be a line through the $O(0,0)$ and perpendicular to the line AC . The locus of the point of intersection of the lines L and $B C$ if C varies along is (provided $c^{2}+a b \neq 0$)
A. $\frac{x^{2}}{a}+\frac{y^{2}}{b}=x$
B. $\frac{x^{2}}{a}+\frac{y^{2}}{b}=y$
C. $\frac{x^{2}}{b}+\frac{y^{2}}{a}=x$
D. $\frac{x^{2}}{b}+\frac{y^{2}}{a}=y$

Answer: C

- Watch Video Solution

14. If $A D, B E$ and $C F$ are the altitudes of a triangle $A B C$ whose vertex A is the point $(-4,5)$. The coordinates of the points E and F are $(4,1)$ and $(-1,-4)$ respectively, then equation of $B C$ is
A. $3 x-4 y-28=0$
B. $4 x+3 y-28=0$
C. $3 x-4 y+28=0$
D. $x+2 y+7=0$

Answer: A

D View Text Solution

15. Let P and Q be any two points on the lines represented by $2 x-3 y=0$ and $2 x+3 y=0$ respectively. If the area of triangle OPQ (where O is origin) is 5 , then which of the following is not the possible equation of the locus of mid-point of
(a) $4 x^{2}-9 y^{2}+30=0(b) 4 x^{2}-9 y^{2}-30=0(c) 9 x^{2}-4 y^{2}-30=0(d)$ none of these
A. $4 x^{2}-9 y^{2}+30=0$
B. $4 x^{2}-9 y^{2}-30=0$
C. $9 x^{2}-4 y^{2}-30=0$
D. none of these

Answer: C

16. The acute angle between two straight lines passing through the point $M(-6,-8)$ and the points in which the line segment $2 x+y+10=0$ enclosed between the co-ordinate axes is divided in the ratio 1:2:2 in the direction from the point of its intersection with the x axis to the point of intersection with the y-axis is: (a) $\frac{\pi}{3}$ (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{6}$ (d) $\frac{\pi}{12}$
A. $\pi / 3$
B. $\pi / 4$
C. $\pi / 6$
D. $\pi / 12$

Answer: B

- Watch Video Solution

17. A variable line L is drawn through $O(0,0)$ to meet lines $L 1: 2 x+3 y=5$ and $L 2$: $2 x+3 y=10$ at point P and Q, respectively. A point R is taken on L such that 2OP.OQ = OR.OP + OR.OQ. Locus of R is
A. $9 x+6 y=20$
B. $6 x-9 y=20$
C. $6 x+9 y=20$
D. none of these

Answer: C

- View Text Solution

18. The complete set of values of the parameter α so that the point $P\left(\alpha,\left(1+\alpha^{2}\right)^{-1}\right)$ does not lie outside the triangle formed by the lines $L_{1}: 15 y=x+1, L_{2}: 78 y=118-23 x$ and $L_{3}: y+2=0$ is
A. $(0,5)$
B. $[2,5]$
C. $[1,5]$
D. $[0,2]$

Answer: C

- View Text Solution

19. if P, Q are two points on the line $3 x+4 y+15=0$ such that $O P=O Q=9$ then the area of triangle $O P Q$ is
A. 18 sq. units
B. $18 \sqrt{2}$ sq. units
C. 27 sq. units
D. none of these

Answer: B

20. The number of points on the line $3 x+4 y=5$, which are at a distance of $\sec ^{2} \theta+2 \cos \sec ^{2} \theta, \theta \in R$, from the point $(1,3)$ is
A. 1
B. 2
C. 3
D. infinite

Answer: B

- Watch Video Solution

21. $A B C$ is an equilateral triangle whose centroid is origin and base $B C$ is along the line $11 x+60 y=122$. Then
A. Area of the triangle is numerically equal to the perimeter
B. Area of triangle is numerically double the perimeter
C. Area of triangle is numerically three times the perimeter
D. Area of triangle is numerically half of the perimeter

Answer: A

- Watch Video Solution

22. If the distance of a given point (α, β) from each of two straight lines $y=m x$ through the origin is d , then $(\alpha \gamma-\beta x)^{2}$ is equal to
A. $x^{2}+y^{2}$
B. $d^{2}\left(x^{2}+y^{2}\right)$
C. d^{2}
D. none of these

Answer: B

23. The values of k for which lines $k x+2 y+2=0,2 x+k y+3=0,3 x+3 y+k=0$ are concurrent are
A. $\{2,3,5\}$
B. $\{2,3,-5\}$
C. $\{3,-5\}$
D. $\{-5\}$

Answer: C

- Watch Video Solution

24. The set of real values of k for which the lines $x+3 y+1=0, k x+2 y-2=0$ and $2 x-y+3=0$ form a triangle is
A. $R-\left\{-4, \frac{2}{3}\right\}$
B. $R-\left\{-4, \frac{-6}{5}, \frac{2}{3}\right\}$
C. $R-\left\{\frac{-2}{3}, 4\right\}$

D. R

Answer: B

- Watch Video Solution

25. Locus of the points which are at equal distance from $3 x+4 y-11=0$ and $12 x+5 y+2=0$ and which is near the origin is:
A. $21 x-77 y+153=0$
B. $99 x+77 y-133=0$
C. $7 x-11 y=19$
D. None of these

Answer: B

- Watch Video Solution

26. Pair of lines through $(1,1)$ and making equal angle with $3 x-4 y=1$ and $12 x+9 y=1$ intersect x -axis at P_{1} and P_{2}, then P_{1}, P_{2} may be
A. $\left(\frac{8}{7}, 0\right)$ and $\left(\frac{9}{7}, 0\right)$
B. $\left(\frac{6}{7}, 0\right)$ and $(8,0)$
C. $\left(\frac{8}{7}, 0\right)$ and $\left(\frac{1}{8}, 0\right)$
D. $(8,0)$ and $\left(\frac{1}{8}, 0\right)$

Answer: B

- Watch Video Solution

27. The algebraic sum of distances of the line $a x+b y+2=0$ from $(1,2),(2,1)$ and $(3,5)$ is zero and the lines $b x-a y+4=0$ and $3 x+4 y+5=0$ cut the coordinate axes at concyclic points. Then (a) $a+b=-\frac{2}{7}$ (b) area of triangle formed by the line $a x+b y+2=0$ with coordinate axes is $\frac{14}{5}$ (c) line $a x+b y+3=0$ always passes through the point $(-1,1)$ (d) $\max \{a, b\}=\frac{5}{7}$
A. $a+b=-\frac{2}{7}$
B. area of the triangle formed by the line $a x+b y+2=0$ with coordinate axes is $\frac{14}{5}$
C. line $a x+b y+3=0$ always passes through the point $(-1,1)$
D. $\max \{a, b\}=\frac{5}{7}$

Answer: C

- View Text Solution

28. Equation of line which is equally inclined to the axis and passes through a common points of family of lines $4 a c x+y(a b+b c+c a-a b c)+a b c=0 \quad$ (where $\quad a, b, c>0$ are in H. P.) is
A. $y-x=\frac{7}{4}$
B. $y-x=-\frac{7}{4}$
C. $y-x=\frac{1}{4}$
D. $y-x=-\frac{1}{4}$

Answer: A

- Watch Video Solution

29. The base $B C$ of a $A B C$ is bisected at the point $(p, q) \&$ the equation to the side $A B \& A C$ are $p x+q y=1 \& q x+p y=1$. The equation of the median through A is: (a) $(p-2 q) x+(q-2 p) y+1=0$
$(p+q)(x+y)-2=0$
$(2 p q-1)(p x+q y-1)=\left(p^{2}+q^{2}-1\right)(q x+p y-1)(\mathrm{d})$ none of these
A. $q x-p y=0$
B. $\frac{x}{p}+\frac{y}{q}=2$
C. $(2 p q-1)(p x+q y-1)=\left(p^{2}+q^{2}-1\right)(q x+p y-1)$
D. $(p-2 q) x+(q-2 p) y=p^{2}+r^{2}$

Answer: C

30. $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right), C\left(x_{3}, y_{3}\right)$ are three vertices of a triangle ABC . $l x+m y+n=0$ is an equation of the line L . If the centroid of the triangle $A B C$ is at the origin and algebraic sum of the lengths of the perpendicular from O the vertices of triangle $A B C$ on the line L is equal to, then sum of the squares of reciprocals of the intercepts made by L on the coordinate axes is equal to
A. 0
B. 4
C. 9
D. 16

Answer: C

- Watch Video Solution

31. A straight line passes through the point of Intersection of the lines $x-2 y-2=0$ and $2 x-b y-6=0$ and the origin, then the set of values of ' b ' for which the acute angle between this line and $y=0$ is less than 45° is
A. $(-\infty, 4) \cup(7, \infty)$
B. $(-\infty, 5) \cup(7, \infty)$
C. $(-\infty, 4) \cup(5,7) \cup(7, \infty)$
D. $(-\infty, 4) \cup(4,5) \cup(7, \infty)$

Answer: D

- Watch Video Solution

32. The locus of the foot of the perpendicular from the origin on each member of the family $(4 a+3) x-(a+1) y-(2 a+1)=0$
A. $(2 x-1)^{2}+4(y+1)^{2}=5$
B. $(2 x-1)^{2}+(y+1)^{2}=5$
C. $(2 x+1)^{2}+4(y-1)^{2}=5$
D. $(2 x-1)^{2}+4(y-1)^{2}=5$

Answer: C

- Watch Video Solution

Comprehension Type

1. In a $\Delta A B C, A=(2,3)$ and medians through B and C have equations

$$
x+y-1=0 \text { and } 2 y-1=0
$$

Equation of median through A is
A. $x+y=4$
B. $5 x-3 y=1$
C. $5 x+3 y=1$
D. $5 x=3 y$

D Watch Video Solution

2. In a $\triangle A B C, A=(2,3)$ and medians through B and C have equations $x+y-1=0$ and $2 y-1=0$

Equation of side $B C$ is
A. $5 x+13 y+11=0$
B. $5 x-3 y=1$
C. $5 x=3 y$
D. $5 x+13 y-11=0$

Answer: A

3. Let $\mathrm{A}, \mathrm{B}, \mathrm{C}$ be angles of triangles with vertex $A \equiv(4,-1)$ and internal angular bisectors of angles B and C be $x-1=0$ and $x-y-1=0$ respectively.

Slope of $B C$ is
A. $1 / 2$
B. 2
C. 3
D. 12

Answer: B

- View Text Solution

Multiple Correct Answers Type

1. The point $P(\alpha, \alpha+1)$ will lie inside the triangle whose vertices are
$A(0,3), B(-2,0)$ and $C(6,1)$ if
A. $\alpha=-1$
B. $\alpha=-\frac{1}{2}$
C. $\alpha=\frac{1}{2}$
D. $-\frac{6}{7}<\alpha<\frac{3}{2}$

Answer: B::C::D

- View Text Solution

2. A straight line passing through the point $A(-2,-3)$ cuts lines $x+3 y=9$ and $x+y+1=0$ at B and C , respectively. If $A B . A C=20$, then equation of the possible line is
A. $x-y=1$
B. $x-y+1=0$
C. $3 x-y+3=0$
D. $3 x-y=3$

- View Text Solution

3. If $A(3,4)$ and $B(-5,-2)$ are the extremities of the base of an isosceles triangle ABC with $\tan C=2$, then point C can be
A. $\left(\frac{3 \sqrt{5}-1}{2},-(1+2 \sqrt{5})\right)$
B. $\left(-\frac{(3 \sqrt{5}+5)}{2}, 3+2 \sqrt{5}\right)$
C. $\left(\frac{3 \sqrt{5}-1}{2}, 3-2 \sqrt{5}\right)$
D. $\left(-\frac{(3 \sqrt{5}-5)}{2},-(1-2 \sqrt{5})\right)$

Answer: A: B

- View Text Solution

4. If (a, b) be an end of a diagonal of a square and the other diagonal has the equation $x-y=a$, then another vertex of the square can be
A. $(a-b, a)$
B. $(a, 0)$
C. $(0,-a)$
D. $(a+b, b)$

Answer: B::D

- Watch Video Solution

5. The equation of the diagonals of a rectangle are $y+8 x-17=0$ and $y-8 x+7=0$. If the area of the rectangle is 8 squnits then find the sides of the rectangle
A. $x=1$
B. $x+y=1$
C. $y=9$
D. $x-2 y=3$

Answer: A:C

- View Text Solution

6. If $6 a^{2}-3 b^{2}-c^{2}+7 a b-a c+4 b c=0$ then the family of lines $a x+b y+c=0,|a|+|b| \neq 0$ can be concurrent at concurrent (A) $(-2,3)$
(B) $(3,-1)(C)(2,3)(D)(-3,1)$
A. $(-2,-3)$
B. $(3,-1)$
C. $(2,3)$
D. $(-3,1)$

Answer: A: B

7. If graph of $x y=1$ is reflected in $y=2 x$ to give the graph $12 x^{2}+r x y+s y^{2}+t=0$, then
A. $r=7$
B. $s=-12$
C. $t=25$
D. $r+s=-19$

Answer: B::C::D

- View Text Solution

8. Let $\mathrm{A}, \mathrm{B}, \mathrm{C}$ be angles of triangles with vertex $A \equiv(4,-1)$ and internal angular bisectors of angles B and C be $x-1=0$ and $x-y-1=0$ respectively.

If A, B, C are angles of triangle at vertices A, B, C respectively then $\cot \left(\frac{B}{2}\right) \cot .\left(\frac{C}{2}\right)=$
A. 2
B. 3
C. 4
D. 6

Answer: D

- Watch Video Solution

