びdoubtnut

 India's Number 1 Education App
MATHS

BOOKS - CENGAGE

THREE-DIMENSIONAL GEOMETRY

Illustration

1. If α, β, and γ are the an gles which a directed line makes with the positive directions of the co-ordinates axes, then find the value of $\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma$.

- Watch Video Solution

2. A line $O P$ through origin O is inclined at 30^{0} and $45^{0} \rightarrow O X a n d O Y$, respectivley. Then find the angle at which it is inclined to $O Z$.
3. If $\cos ^{-1} x>\sin ^{-1} x$, then find the range of x

- Watch Video Solution

4. A line passes through the points $(6,-7,-1) \operatorname{and}(2,-3,1)$. Find te direction cosines off the line if the line makes an acute angle with the positive direction of the x-axis.

- Watch Video Solution

5. Find the ratio in which the YZ-plane divides the line segment formed by joining the points $(-2,4,7)$ and $(3,-5,8)$.

- Watch Video Solution

6. If $A(3,2,-4), B(5,4,-6) \operatorname{and} C(9,8,-10)$ are three collinear points, then find the ratio in which point C divides $A B$.

Watch Video Solution

7. If the sum of the squares of the distance of a point from the three coordinate axes is 36 , then find its distance from the origin.

- Watch Video Solution

8. A line makes angles $\alpha, \beta, \gamma \operatorname{and} \delta$ with the diagonals of a cube. Show that $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma+\cos ^{2} \delta=4 / 3$.

- Watch Video Solution

9. Write the direction ratios of a line parallel to $A B$:

$$
\frac{2 x-1}{2}=\frac{4-y}{7}=\frac{x-1}{2}
$$

10. A mirror and a source of light are situated at the origin O and at a point on $O X$, respectively. A ray of light from the source strikes the mirror and is reflected. If the direction ratios of the normal to the plane are $1,-1,1$, then find the $D C s$ of the reflected ray.
A. $1 / 3,2 / 3,2 / 3$
B. $-1 / 3,2 / 3,2 / 3$
C. $-1 / 3,-2 / 3,-2 / 3$
D. $-1 / 3,-2 / 3,2 / 3$

- Watch Video Solution

11. Projection of a line on axis are $-3,4,-12$. Find length of line segment and direction cosines.
12. The Cartesian equations of a line are $6 x-2=3 y+1=2 z-2$. Find its direction ratios and also find a vector equation of the line.
A. $(1,2,3), r=(1 / 3) i^{\wedge}-(1 / 3) j^{\wedge}+k^{\wedge}+$
B.
C.
D.

- Watch Video Solution

13. A line passes through the point with position vector $2 \hat{i}-3 \hat{j}+4 \hat{k}$ and is in the direction of $3 \hat{i}+4 \hat{j}-5 \hat{k}$. Find the equations of the line in vector and Cartesian forms.
14. Find the vector equation of line passing through $A(3,4-7) \operatorname{and} B(1,-1,6)$. Also find its Cartesian equations.

- Watch Video Solution

15. Find the cartesian equation of the line which passes through the point $(-2,4,-5)$ and parallel to the line given by
$\frac{x+3}{3}=\frac{y-4}{5}=\frac{z+8}{6}$.

- Watch Video Solution

16. Find the equation of a line which passes through the point $(2,3)$ and which has equal intercepts on the axes.

- Watch Video Solution

17. Find the points where line $\frac{x-1}{2}=\frac{y+2}{-1}=\frac{z}{1}$ intersects $x y, y z$ and $z x$ planes.

- Watch Video Solution

18. Find the equation of line $x+y-z-3=0=2 x+3 y+z+4$ in symmetric form. Find the direction of the line.

- Watch Video Solution

19. Find the vector equation of the line passing through the point $(1,2,-4)$ and perpendicular to the two lines: $\frac{x-8}{3}=\frac{y+19}{-16}=\frac{z-10}{7}$ and $\frac{x-15}{3}=\frac{y-29}{8}=\frac{z-5}{-5}$
20.

$\vec{r}=(\hat{i}+2 \hat{j}+3 \hat{k})+\lambda(\hat{i}-\hat{j}+\hat{k})$ and $\vec{r}=(\hat{i}+2 \hat{j}+3 \hat{k})+\mu(\hat{i}+\hat{j}$ are two lines, then find the equation of acute angle bisector of two lines.

- Watch Video Solution

21. Find the equation of the line drawn through point $(1,0,2)$ to meet the line $\frac{x+1}{3}=\frac{y-2}{-2}=\frac{z 1}{-1}$ at right angles.

- Watch Video Solution

22. Line L_{1} is parallel to vector $\vec{\alpha}=-3 \hat{i}+2 \hat{j}+4 \hat{k}$ and passes through a point $A(7,6,2)$ and line L_{2} is parallel vector $\vec{\beta}=2 \hat{i}+\hat{j}+3 \hat{k}$ and point $B(5,3,4)$. Now a line L_{3} parallel to a vector $\vec{r}=2 \hat{i}-2 \hat{j}-\hat{k}$ intersects the lines $L_{1} a n d L_{2}$ at points CandD, respectively, then find $|\vec{C} D|$.
23. Find the coordinates of a point on the $\frac{x-1}{2}=\frac{y+1}{-3}=z$ atg a distance $4 \sqrt{14}$ from the point $(1,-1,0)$.

- Watch Video Solution

24. Find the angle between the following pair of lines:
i.
$\vec{r}=2 \hat{i}-5 \hat{j}+\hat{k}+\lambda(3 \hat{i}+2 \hat{j}+6 \hat{k})$ and $\vec{r}=7 \hat{i}-6 \hat{k}+\mu(\hat{i}+2 \hat{j}+2 \hat{k}$
ii. $\frac{x}{2}=\frac{y}{2}=\frac{z}{1}$ and $\frac{x-5}{4}=\frac{y-2}{1}=\frac{z-3}{8}$

Watch Video Solution

25. Find the values of p so that the lines
$\frac{1-x}{3}=\frac{7 y-14}{2 p}=\frac{z-3}{2}$ and $\frac{7-7 x}{3 p}=\frac{y-5}{1}=\frac{6-z}{5}$ are at right angles.

- Watch Video Solution

26. Find the acute angle between the lines $\frac{x-1}{l}=\frac{y+1}{m}=\frac{1}{n}$ and $=\frac{x+1}{m}=\frac{y-3}{n}=\frac{z-1}{l}$ wherel $>m>n$, are the roots of the cubic equation $x^{3}+x^{2}-4 x=4$.

- Watch Video Solution

27.

Fid
the
condition
if
lines
$x=a y+b, z=c y+d a n d x=a^{\prime} y+b^{\prime}, z=c^{\prime} y+d^{\prime}$
perpendicular.

- Watch Video Solution

28. Find the foot of the perpendicular drawn from the point $(1,0,3)$ to the join of points (4,7,1) and (3,5,3).

- Watch Video Solution

29. Find the length of the perpendicular drawn from point $(2,3,4)$ to line $\frac{4-x}{2}=\frac{y}{6}=\frac{1-z}{3}$.

- Watch Video Solution

30. Find the shortest distance between the lines $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x-2}{3}=\frac{y-3}{4}=\frac{z-5}{5}$.

- Watch Video Solution

31. Find the angle between the lines $\vec{r}=\hat{i}-\hat{j}+\hat{k}+\lambda(2 \hat{i}-2 \hat{j}+\hat{k})$ and $\vec{r}=2 \hat{i}-\hat{j}+2 \hat{k}+\mu(\hat{i}+\hat{j}+2 \hat{k})$.

- Watch Video Solution

32. Find the shortest distance between the lines
$\vec{r}=(\hat{i}+2 \hat{j}+\hat{k})+\lambda(\hat{i}-\hat{j}+\hat{k})$

$$
\vec{r}=2 \hat{i}-\hat{j}-\hat{k}+\mu(2 \hat{i}+\hat{j}+2 \hat{k})
$$

- Watch Video Solution

33. If the straighat lines
$x=1+s, y=-3-\lambda s, z=1+\lambda s$ and $x=\frac{t}{2}, y=1+t, z=2-t$ with parameters s and t respectively, are coplanar, then λ equals (A) $-\frac{1}{2}$ (B) -1 (C) -2 (D) 0

Watch Video Solution

34. Find the equation of a line which passes through the point $(1,1,1)$

$$
\begin{aligned}
& \text { and } \\
& \frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4} \text { andersects } \frac{x+2}{1}=\frac{y-3}{2}=\frac{z+1}{4} .
\end{aligned}
$$ lines

- Watch Video Solution

35. Find the equation of plane which is at a distance $\frac{4}{\sqrt{14}}$ from the origin and is normal to vector $2 \hat{i}+\hat{j}-3 \hat{k}$.

- Watch Video Solution

36. Find the unit vector perpendicular to the plane $\vec{r} 2 \hat{i}+\hat{j}+2 \hat{k}=5$.

- Watch Video Solution

37. Find the distance of the plane $2 x-y-2 z-9=0$ from the origin.

- Watch Video Solution

38. Find the vector equation of a line passing through $3 \hat{i}-5 \hat{j}+7 \hat{k}$ and perpendicular to theplane $3 x-4 y+5 z=8$.
39. Find the equation of the plane passing through the point $(2,3,1)$ having $(5,3,2)$ as the direction ratio is of the normal to the plane.

- Watch Video Solution

40. If O is the origin and the coordinates of P be $(1,2,-3)$, then find the equation of the plane passing through P and perpendicular to OP .

- Watch Video Solution

41. Find the equation of the plane such that image of point $(1,2,3)$ in it is $(-1,0,1)$.

- Watch Video Solution

42. Find the equation of the plane passing through $A(2,2,-1), B(3,4, \quad 2) \operatorname{and} C(7,0,6)$. Also find a unit vector
perpendicular to this plane.

- Watch Video Solution

43. Show that the line of intersection of the planes
$\vec{r} \cdot(\hat{i}+2 \hat{j}+3 \hat{k})=0$ and $\vec{r} \cdot(3 \hat{i}+2 \hat{j}+\hat{k})=0$ is equally inclined to \hat{i} and \hat{k}. Also find the angleit makes with \hat{j}.

- Watch Video Solution

44. Find the vector equation of the following planes in cartesian form :

$$
\vec{r}=\hat{i}-\hat{j}+\lambda(\hat{i}+\hat{j}+\hat{k})+\mu(\hat{i}-2 \hat{j}+3 \hat{k})
$$

- Watch Video Solution

45. Prove that the plane $\vec{r} \cdot(\hat{i}+2 \hat{j}-\hat{k})=3$ contains the line $\vec{r}=\hat{i}+\hat{j}+\lambda(2 \hat{i}+\hat{j}+4 \hat{k})$.
46. Find the equation of the plane which is parallel to the lines $\vec{r}=\hat{i}+\hat{j}+\lambda(2 \hat{i}+\hat{j}+4 \hat{k})$ and $\frac{x+1}{-3}=\frac{y-3}{2}=\frac{z+2}{1} \quad$ and \quad is passing through the point $(0,1,-1)$.

- Watch Video Solution

47. If a plane meets the equations axes at $A, B a n d C$ such that the centroid of the triangle is $(1,2,4)$, then find the equation of the plane.

- Watch Video Solution

48. Find the equation of the plane passing through $(3,4,-1)$, which is parallel to the plane $\vec{r} 2 \hat{i}-3 \hat{j}+5 \hat{k}+7=0$.

- Watch Video Solution

49. Find the angel between the planes $2 x+y-2 x+3=0$ and $\vec{r} 6 \hat{i}+3 \hat{j}+2 \hat{k}=5$.

- Watch Video Solution

50. Show that $a x+b y+r=0, b y+c z+p=0 a n d c z+a x+q=0$ are perpendicular to $x-y, y-z a n d z-x$ planes, respectively.

- Watch Video Solution

51. Reduce the equation of line $x-y+2 z=5 a d n 3 x+y+z=6$ in symmetrical form. Or Find the line of intersection of planes $x-y+2 z=5 a n d 3 x+y+z=6$.

- Watch Video Solution

52. Find the angle between the lines $x-3 y-4=0,4 y-z+5=0 a n d x+3 y-11=0,2 y=z+6=0$.

Watch Video Solution

53. If the line $x=y=z$ intersect the line $s \in A \dot{x}+s \in B \dot{y}+s \in C \dot{z}=2 d^{2}, s \in 2 A \dot{x}+s \in 2 B \dot{y}+s \in 2 C \dot{z}=d^{2}$, then find the value of $\frac{\sin A}{2} \frac{\sin B}{2} \frac{\sin C}{2}$ where A, B, C are the angles of a triangle.

- Watch Video Solution

54. Find the point of intersection of line passing through $(0,0,1)$ and the intersection lines $x+2 y+z=1,-x+y-2 z a n d x+y=2, x+z=2$ with the $x y$ plane.
55. A horizontal plane $4 x-3 y+7 z=0$ is given. Find a line of greatest slope passes through the point $(2,1,1)$ in the plane $2 x+y-5 z=0$.

- Watch Video Solution

56. Find the equation of the plane passing through the points ($-1,1,1$) and $(1,-1,1)$ and perpendicular to the plane $x+2 y+2 z=5$.

- Watch Video Solution

57. Find the equation of the plane containing line $\frac{x+1}{-3}=\frac{y-3}{2}=\frac{z+2}{1}$ and point $(0,7,-7)$.

- Watch Video Solution

58. Find the distance of the point $P(3,8,2)$ from the line $\frac{1}{2}(x-1)=\frac{1}{4}(y-3)=\frac{1}{3}(z-2)$ measured parallel to the plane
$3 x+2 y-2 z+15=0$.

- Watch Video Solution

59. Find the distance of the point $(1,0,-3)$ from the plane $x-y-z=9$ measured parallel to the line $\frac{x-2}{2}=\frac{y+2}{2}=\frac{z-6}{-6}$.

- Watch Video Solution

60. Find the equation of the projection of the line $\frac{x-1}{2}=\frac{y+1}{-1}=\frac{z-3}{4}$ on the plane $x+2 y+z=9$.

- Watch Video Solution

61. Find the angle between the line $\vec{r}=(\hat{i}+2 \hat{j}-\hat{k})+\lambda(\hat{i}-\hat{j}+\hat{k})$ and the plane ver. $(2 \hat{i}-\hat{j}+\hat{k})=4$
62. Find the vector equation of the line passing through $(1,2,3)$ and parallel to the planes $\vec{r} \cdot(\hat{i}-\hat{j}+2 \hat{k})=5$ and $\vec{r} \cdot(3 \hat{i}+\hat{j}+\hat{k})=6$.

- Watch Video Solution

63. Find the equation of the plane which contains the line of intersection of the planes $\vec{r} \cdot(\hat{i}+2 \hat{j}+3 \hat{k})-4=0$ and $\vec{r} \cdot(2 \hat{i}+\hat{j}-\hat{k})+5=0$ and which is perpendicular to the plane $\vec{r} \cdot(5 \hat{i}+3 \hat{j}-6 \hat{k})+8=0$

- Watch Video Solution

64. Find the equation of the plane containing the line of intersection of the planes $x+y+z-6=0$ and $2 x+3 y+4 z+5=0$ and passing through the point $(1,1,1)$

- Watch Video Solution

65. The plane $a x+b y=0$ is rotated about its line of intersection with the plane $z=0$ through an angle α. Prove that the equation of the plane in its new position is $a x+b y \pm\left(\sqrt{a^{2}+b^{2}} \tan \alpha\right) z=0$

- Watch Video Solution

66. Find the length and the foot of the perpendicular from the point $(7,14,5)$ to the plane $2 x+4 y-z=2$.

D Watch Video Solution

67. Find the locus of a point, the sum of squares of whose distance from the planes $x-z=0, x-2 y+z=0 a n d x+y+z=0 i s 36$.

- Watch Video Solution

68. A ray of light passing through the point $A(1,2,3)$, strikews the plane $x+y+z=12 a t B$ and on reflection passes through point $C(3,5,9)$. Find the coordinate so point B.

- Watch Video Solution

69. Find the distance between the parallel planes $x+2 y-2 z+1=0$ and $2 x+$ $4 y-4 z+5=0$.

- Watch Video Solution

70. Find the image of the line $\frac{x-1}{2}=\frac{y+1}{-1}=\frac{z-3}{4}$ in the plane $3 x-3 y+10 z-26=0$.

- Watch Video Solution

71. Find the equations of the bisectors of the angles between the planes $2 x-y+2 z+3=0 \operatorname{and} 3 x-2 y+6 z+8=0$ and specify the plane which bisects the acute angle and the plane which bisects the obtuse angle.

- Watch Video Solution

72. Find the equation of a sphere whose centre is $(3,1,2)$ radius is 5 .

- Watch Video Solution

73. Find the equation of the sphere passing through $(0,0,0),(1,0,0)$ and (0, 0, 1).

- Watch Video Solution

74. Find the equation of the sphere which has centre at the origin and touches the line $2(x+1)=2-y=z+3$.

- Watch Video Solution

75. Find the equation of the sphere which passes through $(1,0,0),(0,1,0) \operatorname{and}(0,0,1)$ and whose centre lies on the plane $3 x-y+z=2$.

- Watch Video Solution

76. Find the equation of a sphere which passes through $(1,0,0)(0,1,0) \operatorname{and}(0,0,1)$, and has radius as small as possible.

- Watch Video Solution

77. Find the locus of appoint which moves such that the sum of the squares of its distance from the points $A(1,2,3), B(2,-3,5)$ and $C(0,7,4) i s 120$.

- Watch Video Solution

78. Find the equation of the sphere described on the joint of points AandB having position vectors $2 \hat{i}+6 \hat{j}-7 \hat{k}$ and $-2 \hat{i}+4 \hat{j}-3 \hat{k}$, respectively, as the diameter. Find the center and the radius of the sphere.

- Watch Video Solution

79. Find the radius of the circular section in which the sphere $|\vec{r}|=5$ is cut by the plane $\vec{r} \hat{i}+\hat{j}+\hat{k}=3 \sqrt{3 .}$

- Watch Video Solution

80. Show that the plane $2 x-2 y+z+12=0$ touches the sphere $x^{2}+y^{2}+z^{2}-2 x-4+2 z-3=0$.

- Watch Video Solution

81. A variable plane passes through a fixed point (a, b, c) and cuts the coordinate axes at points A, B, and C. Show that eh locus of the centre of the sphere $O A B C i s \frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2$.

- Watch Video Solution

82. A sphere of constant radius k, passes through the origin and meets the axes at $A, B a n d C$. Prove that the centroid of triangle $A B C$ lies on the sphere $9\left(x^{2}+y^{2}+z^{2}\right)=4 k^{2}$.

- Watch Video Solution

1. If the x-coordinate of a point P on the join of $Q(22,1) \operatorname{and} R(5,1,-2) i s 4$, then find its z - coordinate.

- Watch Video Solution

2. Find the distance of the point $P(a, b, c)$ from the x -axis.

- Watch Video Solution

3. If \vec{r} is a vector of magnitude 21 and has direction ratios $2,-3 a n d 6$, then find \vec{r}.

- Watch Video Solution

4. If $P(x, y, z)$ is a point on the line segment joining $Q(2,2,4) \operatorname{and} R(3,5,6)$ such that the projections of $\vec{O} P$ on te axes are
$13 / 5,19 / 5$ and $26 / 5$, respectively, then find the ratio in which P divides $Q R$.

- Watch Video Solution

5. If O is the origin, $O P=3$ with direction ratios $-1,2$, and -2 , then find the coordinates of P.

- Watch Video Solution

6. A line makes angles α, β, γ with the coordinates axes. If $\alpha+\beta=90^{\circ}$ then γ is equal to

- Watch Video Solution

7. The line joining the points $-2,1,-8) a n d(a, b, c)$ is parallel to the line whose direction ratios are $6,2, \operatorname{and} 3$. Find the values of a, band .
8. If a line makes angles $\alpha, \beta a n d \gamma$ with threew-dimensional coordinate axes, respectively, then find the value of $\cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma$.

- Watch Video Solution

9. A parallelepiped is formed by planes drawn through the points $P(6,8,10) \operatorname{and}(3,4,8)$ parallel to the coordinate planes. Find the length of edges and diagonal of the parallelepiped.

- Watch Video Solution

10. Find the angel between any two diagonals of a cube.

- Watch Video Solution

11. Direction ratios of two lines are $a, b, c a n d 1 / b c, 1 / c a, 1 / a b$. Then the lines are \qquad .

- Watch Video Solution

12. Find the angle between the lines whose direction cosines are connected by the relations $l+m+n=0 a n d 2 / m+2 n l-m n=0$.

- Watch Video Solution

Exercise 3.2

1. Find the point where line which passes through point $(1,2,3)$ and is paralle to line $\vec{r}=\hat{i}+\hat{j}+2 \hat{k}+\lambda(\hat{i}-2 \hat{j}+3 \hat{k})$ meets the xy -plane.
2. Find the equation of the line passing through the points $(1,2,3) \operatorname{and}(-1,0,4)$.

- Watch Video Solution

3. Find the vector equation of the line passing through the point $(2,-1,-1)$ which is parallel to the line $6 x-2=3 y+1=2 z-2$.

- Watch Video Solution

4. Find the equation of the line passing through the point $(-1,2,3)$
and perpendicular to the lines

$$
\frac{x}{2}=\frac{y-1}{-3}=\frac{z+2}{-2} \text { and } \frac{x+3}{-1}=\frac{y+3}{2}=\frac{z-1}{3} .
$$

- Watch Video Solution

5. Find the equation of the line passing through the intersection $(-1,2,3)$ and perpendicular to the lines $\frac{x-1}{2}=\frac{y-2}{-3}=\frac{z-3}{4}$ and $\frac{x-4}{5}=\frac{y-1}{2}=z$. and also through the point $(2,1,-2)$.

Watch Video Solution

6. The straight line $\frac{x-3}{3}=\frac{y-2}{1}=\frac{z-1}{0}$ is Parallel to x -axis Parallel to the y-axis Parallel to the z-axis Perpendicular to the z-axis

- Watch Video Solution

7. Find the acute angle between the following lines.
$2 x=3 y=-z$ and $6 x=-y=-4 z$

- Watch Video Solution

8. If the lines $\frac{x-1}{-3}=\frac{y-2}{2 k}=\frac{z-3}{2}$ and $\frac{x-1}{3 k}=\frac{y-1}{1}=\frac{z-6}{-5}$ are perpendicular, find the value of k.

- Watch Video Solution

9. The equations of motion of a rocket are $x=2 t, y=-4 t a n d z=4 t$, where timet is given in seconds, and the coordinates of a moving points in kilometers. What is the path of the rocket? At what distance will be the rocket from the starting point $O(0,0,0)$ in $10 s$?

- Watch Video Solution

10. Find the length of the perpendicular drawn from the point $(5,4,-1)$ to the line $\vec{r}=\hat{i}+\lambda(2 \hat{i}+9 \hat{j}+5 \hat{k})$, wher λ is a parameter.

- Watch Video Solution

11. Find the image of point $(1,2,3)$ in the line $\frac{x-6}{3}=\frac{y-7}{2}=\frac{z-7}{-2}$.

- Watch Video Solution

12. Find the shortest distance between the two lines whose vector
equations
$\vec{r}=(1+\lambda) \hat{i}+(2-\lambda) \hat{j}+(-1+\lambda) \hat{k}$ and $\vec{r}=2(1+\mu) \hat{i}(1-\mu) \hat{j}+$

- Watch Video Solution

13. Find the shortest distance between the z-axis and the line, $x+y+2 z-3=0,2 x+3 y+4 z-4=0$.

- Watch Video Solution

14. If the two
$\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4}$ and $\frac{x-3}{1}=\frac{y-m}{2}=z$ intersect at a point, find the value of m.

- Watch Video Solution

15. Let l_{1} and l_{2} be the two skew lines. If P, Q are two distinct points on l_{1} and R, S are two distinct points on l_{2}, then prove that PR cannot be parallel to QS .

- Watch Video Solution

Exercise 3.3

1. Find the angle between the line $\frac{x-1}{3}=\frac{y-1}{2}=\frac{z-1}{4}$ and the plane $2 x+y-3 z+4=0$.
2. Find the distance between the line $\frac{x+1}{-3}=\frac{y-3}{2}=\frac{z-2}{1}$ and the plane $x+y+z+3=0$.

- Watch Video Solution

3. Find the distance of the point $(-1,-5,-10)$ from the point of intersection of the line $\frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{12}$ and plane $x-y+z=5$.

- Watch Video Solution

4. Find the equation of the plane passing through the point $(-1,3,2)$ and perpendicular to each of the planes $x+2 y+3 z=5$ and $3 x+3 y+z=0$.

- Watch Video Solution

5. Find the equation of the plane passing through the points $(1,0,-1) \operatorname{and}(3,2,2)$ and parallel to the line $x-1=\frac{1-y}{2}=\frac{z-2}{3}$.

- Watch Video Solution

6. Find the equation of the plane containing the lines $\frac{x-5}{4}=\frac{y-7}{4}=\frac{z+3}{-5}$ and $\frac{x-8}{7}=\frac{y-4}{1}=\frac{z-5}{3}$.

- Watch Video Solution

7. Find the equation of the plane passing through the straight line $\frac{x-1}{2}=\frac{y+2}{-3}=\frac{z}{5} \quad$ and perpendicular to the plane $x-y+z+2=0$.

- View Text Solution

8. Find the equation of the plane perpendicular to the line $\frac{x-1}{2}=\frac{y-3}{-1}=\frac{z-4}{2}$ and passing through the origin.

- Watch Video Solution

9. Find the equation of the plane passing through the line $\frac{x-1}{5}=\frac{y+2}{6}=\frac{z-3}{4}$ and point $(4,3,7)$.

- View Text Solution

10. Find the angle between the line $\vec{r}=(\vec{i}+2 \vec{j}-\vec{k})+\lambda(\vec{i}-\vec{j}+\vec{k})$ and the normal to the plane $\vec{r} \cdot(2 \vec{i}-\vec{j}+\vec{k})=4$.

- View Text Solution

11. Find the equation of the plane which passes through the point $(12,3)$ and which is at the maxixum distance from the point ($-1,0,2$).

- Watch Video Solution

12. The direction ratios of the line, given by the planes $x-y+z-5=0, x-3 y-6=0$ are

- Watch Video Solution

13. Find the equation of a plane which is parallel to the plane $x-2 y+2 z=5$ and whose distance from thepoint $(1,2,3)$ is 1.

- Watch Video Solution

14. Find the equation of a plane which passes through the point $(1,2,3)$
and which is equally inclined to the planes
$x-2 y+2 z-3=0 a n d 8 x-4 y+z-7=0$.

- Watch Video Solution

15. Find the equation of the image of the plane $x-2 y+2 z-3=0$ in plane $x+y+z-1=0$.

- Watch Video Solution

16. Find the equation of the plane through the points $(23,1) \operatorname{and}(4,-5,3)$ and parallel to the x-axis.

- Watch Video Solution

17. Find the distance of the point \vec{a} from the plane $\vec{r} \cdot \widehat{n}=d$ measured parallel to the line $\vec{r}=\vec{b}+\overrightarrow{t c}$.
18. Find the value of m for which thestraight line $3 x-2 y+z+3=0=4 x=3 y+4 z+1$ is parallel to the plane $2 x-y+m z-2=0$.

- Watch Video Solution

19. Show that the lines $\frac{x-a+d}{\alpha+\delta}=\frac{y-a}{\alpha}=\frac{z-a-d}{\alpha+\delta}$ and $\frac{x-b+c}{\beta+\gamma}=\frac{y-b}{\beta}=\frac{z-b-c}{\beta+\gamma}$ are coplanar.

- Watch Video Solution

Exercise 3.4

1. Find the plane of the intersection of $x^{2}+y^{2}+z^{2}+2 x+2 y+2=0 a n d 2 x^{2}+4 y^{2}+4 z^{2}+4 x+4 y+4 z-1$

- Watch Video Solution

2. Find the radius of the circular section of the sphere $|\vec{r}|=5$ by the plane $\vec{r} \cdot(\vec{i}+\vec{j}+\vec{k})=3 \sqrt{3}$.

- Watch Video Solution

3. A point $P(x, y, z)$ is such that $3 P A=2 P B$, where Aand B are the point $(1,3,4) \operatorname{and}(1,-2,-1)$, erespectivley. Find the equation to the locus of the point P and verify that the locus is a sphere.

- Watch Video Solution

4. The extremities of a diameter of a sphere lie on the positive y - and positive z-axes at distance 2 and 4, respectively. Show that the sphere passes through the origin and find the radius of the sphere.

- Watch Video Solution

5. A plane passes through a fixed point (a, b, c). Show that the locus of the foot of the perpendicular to it from the origin is the sphere $x^{2}+y^{2}+z^{2}-a x-b y-c z=0$.

- Watch Video Solution

Exercise (Subjective)

1. about to only mathematics

- Watch Video Solution

2. Find the equation of the plane containing the line $\frac{y}{b}+\frac{z}{c}=1, x=0$, and parallel to the line $\frac{x}{a}-\frac{z}{c} 1, y=0$.
3. A variable plane passes through a fixed point (α, β, γ) and meets the axes at A, B and C. show that the locus of the point of intersection of the planes through $A, B a n d C$ parallel to the coordinate planes is $\alpha x^{-1}+\beta y^{-1}+\gamma z^{-1}=1$.

- Watch Video Solution

4. Show that the straight lines whose direction cosines are given by the equations $\quad a l+b m+c n=0 a n d$ - $2+z m^{2}=v n^{2}+w n^{2}=0$ are parallel or perpendicular as $\frac{a^{2}}{u}+\frac{b^{2}}{v}+\frac{c^{2}}{w}=0$ or $a^{2}(v+w)+b^{2}(w+u)+c^{2}(u+v)=0$.

- Watch Video Solution

5. about to only mathematics

- Watch Video Solution

6. A point P moves on a plane $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$. A plane through P and perpendicular to $O P$ meets the coordinate axes at $A, B a n d C$. If the planes through $A, B a n d C$ parallel to the planes $x=0, y=0 a n d z=0$, respectively, intersect at Q, find the locus of Q.

- Watch Video Solution

7. If the planes $x-c y-b z=0, c x-y+a z=0 a n d b x+a y-z=0$ pass through a straight line, then find the value of $a^{2}+b^{2}+c^{2}+2 a b c$.

- Watch Video Solution

8. A line passes through the two points $A(2,-3,-1)$ and $B(8,-1,2)$. The coordinates of point on this line nearer to the origin and at a distance of 14 units from is

- Watch Video Solution

9. A variable plane $l x+m y+n z=p(w h e r e l, m, n$ are direction cosines of normal) intersects the coordinate axes at points $A, B a n d C$, respectively. Show that the foot of the normal on the plane from the origin is the orthocenter of triangle $A B C$ and hence find the coordinate of the circumcentre of triangle $A B C$.

- Watch Video Solution

10.

$x-y \sin \alpha-z s \in \beta=0, x s \in \alpha=z s \in \gamma-y=0 a n d x \sin \beta+y \sin \gamma-$ be the equations of the planes such that $\alpha+\beta+\gamma=\pi / 2($ where α, β and $\gamma \neq 0)$. Then show that there is a common line of intersection of the three given planes.

- Watch Video Solution

11. Let a plane $a x+b y+c z+1=0$, wherea, b, c are parameters, make an angle 60° with the line $x=y=z, 45^{\circ}$ with the line $x=y-z=0$
and θ with the plane $x=0$. The distance of the plane from point $(2,1,1)$ is 3 units. Find the value of θ and the equation of the plane.

- Watch Video Solution

12. Prove that for all values of $\lambda a n d \mu$, the planes $\frac{2 x}{a}+\frac{y}{b}+\frac{2 z}{c}-1+\lambda\left(\frac{x}{a}-\frac{2 y}{b}-\frac{z}{c}-2\right)=0$
$\frac{4 x}{a}+\frac{3 y}{b}-5+\mu\left(\frac{5 y}{b}-\frac{4 z}{c}+3\right)=0$ intersect on the same line.

- Watch Video Solution

13. If $f(x)=2 x-1, g(x)=\frac{x+1}{2}$, show that $f \circ g=g \circ f=x$

- Watch Video Solution

14. If $f(x)=1+x, g(x)=2 x-2$, show that $f o g=g o f$
15. If P is any point on the plane $l x+m y+n z=\operatorname{pand} Q$ is a point on the line $O P$ such that $O P O Q=p^{2}$, then find the locus of the point Q.

- Watch Video Solution

16. If a variable plane forms a tetrahedron of constant volume $64 k^{3}$ with the co-ordinate planes, then the locus of the centroid of the tetrahedron is:

- Watch Video Solution

SUBJECTIVE TYPE

1. Prove that the volume of tetrahedron bounded by the planes $\vec{r} m \hat{j}+n \hat{k}=0, \vec{r} n \hat{k}+l \hat{i}=0, \vec{r} l \hat{i}+m \hat{j}=0, \vec{r} l \hat{i}+m \hat{j}+n \hat{k}=\pi s \frac{2 f}{3 l n}$
2. In a three-dimensional $x y z$ space, the equation $x^{2}-5 x+6=0$ represents a. Points b. planes c. curves d. pair of straight lines
A. points
B. planes
C. curves
D. pair of straight lines

Answer: b

- Watch Video Solution

2. The line $\frac{x-2}{3}=\frac{y+1}{2}=\frac{z-1}{1}$ intersects the curve $x y=c^{I 2}, z=0$ if c is equal to $\mathrm{a} . \pm 1 \mathrm{~b} . \pm 1 / 3 \mathrm{c} . \pm \sqrt{5} \mathrm{~d}$. none of these

$$
\text { A. } \neq 1
$$

B. $\pm 1 / 3$
C. $\pm \sqrt{5}$
D. none of these

Answer: c

- Watch Video Solution

3. Let the equations of a line and plane be $\frac{x+3}{2}=\frac{y-4}{3}=\frac{z+5}{2} \operatorname{and} 4 x-2 y-z=1$, respectively, then a. the line is parallel to the plane b. the line is perpendicular to the plane c. the line lies in the plane d. none of these
A. the line is parallel to the plane
B. the line is parpendicular to the plane
C. the line lies in the plane
D. none of these

- Watch Video Solution

4. The length of the perpendicular from the origin to the plane passing through the points \vec{a} and containing the line $\vec{r}=\vec{b}+\lambda \vec{c}$ is
A. $\left.\left.\frac{[\vec{a} \vec{b}}{\mathbf{c}}\right]\right] . \vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a} \mid$
B. $\left.\left.\frac{[\vec{a} \vec{b}}{} \vec{c}\right]\right]$.
C. $\left.\left.\frac{[\vec{a} \vec{b}}{} \vec{c}\right]\right]$.
D. $\left.\frac{[\vec{a} \vec{b}}{\mathbf{c}} \mathbf{c}\right] \quad|\vec{c} \times \vec{a}+\vec{a} \times \vec{b}|$

Answer: c

- Watch Video Solution

5. The distance of point $A(-2,3,1)$ from the line $P Q$ through $P(-3,5,2)$, which makes equal angles with the axes is a. $2 / \sqrt{3} \mathrm{~b}$. $14 / \sqrt{3}$ c. $16 / \sqrt{3}$ d. $5 / \sqrt{3}$
A. $2 / \sqrt{3}$
B. $\sqrt{14 / 3}$
C. $16 / \sqrt{3}$
D. $5 / \sqrt{3}$

Answer: B

- Watch Video Solution

6. The Cartesian equation of the plane

$$
\vec{r}=(1+\lambda-\mu) \hat{i}+(2-\lambda) \hat{j}+(3-2 \lambda+2 \mu) \hat{k} \text { is a. } 2 x+y=5 \mathrm{~b} .
$$

$$
2 x-y=5 \text { c. } 2 x+z=5 \text { d. } 2 x-z=5
$$

$$
\text { A. } 2 x+y=5
$$

B. $2 x-y=5$
C. $2 x+z=5$
D. $2 x-z=5$

Answer: c

- Watch Video Solution

7. A unit vector parallel to the intersection of the planes
$\vec{r} \cdot(\hat{i}-\hat{j}+\hat{k})=5$ and $\vec{r} \cdot(2 \hat{i}+\hat{j}-3 \hat{k})=4$ is
A. $\frac{2 \hat{i}+5 \hat{j}-3 \hat{k}}{\sqrt{38}}$
B. $\frac{2 \hat{i}-5 \hat{j}+3 \hat{k}}{\sqrt{38}}$
C. $\frac{-2 \hat{i}-5 \hat{j}-3 \hat{k}}{\sqrt{38}}$
D. $\frac{-2 \hat{i}+5 \hat{j}-3 \hat{k}}{\sqrt{38}}$

Answer: C

8. Let L_{1} be the line $\vec{r}_{1}=2 \hat{i}+\hat{j}-\hat{k}+\lambda(i+1 \hat{k})$ and let L_{2} be the line $\vec{r}_{2}=3 \hat{i}+\hat{j}+\mu(i+\hat{j}-\hat{k})$. Let π be the plane which contains the line L_{1} and is parallel to L_{2}. The distance of the plane π from the origin is a. $\sqrt{6}$ b. $1 / 7$ c. $\sqrt{2 / 7}$ d. none of these
A. $\sqrt{2 / 7}$
B. $1 / 7$
C. $\sqrt{6}$
D. none

Answer: a

- Watch Video Solution

9. For the line $\frac{x-1}{1}=\frac{y-2}{2}=\frac{z-3}{3}$, which one of the following is correct? a. it lies in the plane $x-2 y+z=0 \mathrm{~b}$. it is same as line
$\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ c. it passes through $(2,3,5)$ d. it is parallel t the plane $x-2 y+z-6=0$
A. It lies in the plane $x-2 y+z=0$
B. It is same as line $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$
C. It passes through (2,3,5)
D. It is parallel to the plane $x-2 y+z-6=0$

Answer: c

- Watch Video Solution

10. Find the value of m for which thestraight line $3 x-2 y+z+3=0=4 x=3 y+4 z+1$ is parallel to the plane $2 x-y+m z-2=0$.
A. -2
B. 8
C. -18
D. 11

Answer: A

- Watch Video Solution

11. The intercept made by the plane $\vec{r} \vec{n}=q$ on the x -axis is a. $\frac{q}{\hat{i} \overrightarrow{\vec{n}}}$ b.
$\frac{\hat{i} \vec{n}}{q}$ c. $\frac{\hat{i} \vec{n}}{q}$ d. $\frac{q}{|\vec{n}|}$
A. $\frac{q}{\hat{i} \cdot \vec{n}}$
B. $\frac{\hat{i} \cdot \vec{n}}{q}$
C. $\frac{\hat{i} \cdot \vec{n}}{q}$
D. $\frac{q}{|\vec{n}|}$

Answer: a

12. Equation of a line in the plane $\pi \equiv 2 x-y+z-4=0$ which is perpendicular to the line l whse equation is $\frac{x-2}{1}=\frac{y-2}{-1}=\frac{z-3}{-2}$ and which passes through the point of intersection of land π is a.

$$
\begin{aligned}
& \frac{x-2}{1}=\frac{y-1}{5}=\frac{z-1}{-1} \quad \text { b. } \quad \frac{x-1}{3}=\frac{y-3}{5}=\frac{z-5}{-1} \\
& \frac{x+2}{2}=\frac{y+1}{-1}=\frac{z+1}{1} \text { d. } \frac{x-2}{2}=\frac{y-1}{-1}=\frac{z-1}{1}
\end{aligned}
$$

C.

$$
\text { A. } \frac{x-2}{1}=\frac{y-1}{5}=\frac{z-1}{-1}
$$

$$
\text { B. } \frac{x-1}{3}=\frac{y-3}{5}=\frac{z-1}{-5}
$$

$$
\text { c. } \frac{x+2}{2}=\frac{y+1}{-1}=\frac{z+1}{1}
$$

$$
\text { D. } \frac{x-2}{2}=\frac{y-1}{-1}=\frac{z-1}{1}
$$

Answer: B

- Watch Video Solution

13. If the foot of the perpendicular from the origin to plane is $P(a, b, c)$, the equation of the plane is a. $\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=3 \mathrm{~b} . a x+b y+c z=3 \mathrm{c}$. $a x+b y+c z=a^{I 2}+b^{2}+c^{2}$ d. $a x+b y+c z=a+b+c$
A. $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=3$
B. $a x+b y+c z=3$
C. $a x+b y+c z=a^{2}+b^{2}+c^{2}$
D. $a x+b y+c z=a+b+c$

Answer: c

- Watch Video Solution

14. The equation of the plane which passes through the point of intersection of lines

$$
\frac{x-1}{3}=\frac{y-2}{1}=\frac{z-3}{2}, \text { and } \frac{x-3}{1}=\frac{y-1}{2}=\frac{z-2}{3} \quad \text { and } \quad \text { at }
$$

greatest distance from point $(0,0,0)$ is a. $4 x+3 y+5 z=25$ b.
$4 x+3 y=5 z=50$ c. $3 x+4 y+5 z=49 \mathrm{~d} . x+7 y-5 z=2$
A. $4 x+3 y+5 z=25$
B. $4 x+3 y+5 z=50$
C. $3 x+4 y+5 z=49$
D. $x+7 y+5 z=2$

Answer: b

- Watch Video Solution

15. Let $A(\vec{a}) \operatorname{and} B(\vec{b})$ be points on two skew lines $\vec{r}=\vec{a}+\lambda \vec{p}$ and $\vec{r}=\vec{b}+u \vec{q}$ and the shortest distance between the skew lines is 1 , where \vec{p} and \vec{q} are unit vectors forming adjacent sides of a parallelogram enclosing an area of $1 / 2$ units. If angle between $A B$ and the line of shortest distance is 60°, then $A B=$ a. $\frac{1}{2}$ b. 2 c .1 d . $\lambda R=\{10\}$
A. $\frac{1}{2}$
B. 2
C. 1
D. $\lambda \varepsilon R-\{0\}$

(D) Watch Video Solution

16. Let $A(1,1,1), B(23,5) \operatorname{and} C(-1,0,2)$ be three points, then equation of a plane parallel to the plane $A B C$ which is at distance is a.
$2 x-3 y+z+2 \sqrt{14}=0$
b. $\quad 2 x-3 y+z-\sqrt{14}=0$
$2 x-3 y+z+2=0$ d. $2 x-3 y+z-2=0$
C.
A. $2 x-3 y+z+2 \sqrt{14}=0$
B. $2 x-3 y+z-2 \sqrt{14}=0$
C. $2 x-3 y+z+2=0$
D. $2 x-3 y+z-2=0$

Answer: a

- Watch Video Solution

17. The point on the line $\frac{x-2}{1}=\frac{y+3}{-2}=\frac{z+5}{-2}$ at a distance of 6 from the point $(2,-3,-5)$ is a. $(3,-5,-3)$ b. $(4,-7,-9)$
$0,2,-1 \mathrm{~d}$. none of these
A. $(3,-5,-3)$
B. $(4,-7,-9)$
C. $(0,2,-1)$
D. $(-3,5,3)$

Answer: b

- Watch Video Solution

18. The coordinates o the foot of the perpendicular drawn from the origin to the line joining the point $(-9,4,5) \operatorname{and}(10,0,-1)$ will be a. $(-3,2,1)$ b. $(1,2,2)$ c. $4,5,3 \mathrm{~d}$. none of these
A. $(-3,2,1)$
B. (1,2,2,)
C. $(4,5,3)$
D. none of these

Answer: D

- Watch Video Solution

19. about to only mathematics
A. parallel lines
B. coplanar lines
C. coincident lines
D. concurrent lines

Answer: d

(Watch Video Solution

20. The length of projection of the line segment joining the points $(1,0,-1) \operatorname{and}(-1,2,2)$ on the plane $x+3 y-5 z=6$ is equal to a. 2
b. $\sqrt{\frac{271}{53}}$ c. $\sqrt{\frac{472}{31}}$ d. $\sqrt{\frac{474}{35}}$
A. 2
B. $\sqrt{\frac{271}{53}}$
C. $\sqrt{\frac{472}{31}}$
D. $\sqrt{\frac{474}{35}}$

Answer: d

- Watch Video Solution

21. The number of planes that are equidistant from four non-coplanar points is a. 3 b .4 c .7 d .9
A. 3
B. 4
C. 7
D. 9

Answer: c

- Watch Video Solution

22. In a three-dimensional coordinate system, P, Q, and R are images of a point $A(a, b, c)$ in the $x-y, y-z a n d z-x$ planes, respectively. If G is the centroid of triangle $P Q R$, then area of triangle $A O G$ is (O is the origin) a. 0 b. $a^{2}+b^{2}+c^{2}$ c. $\frac{2}{3}\left(a^{2}+b^{2}+c^{2}\right)$ d. none of these
A. 0
B. $a^{2}+b^{2}+c^{2}$
C. $\frac{2}{3}\left(a^{2}+b^{2}+c^{2}\right)$
D. none of these

Answer: a

23. A plane passing through $(1,1,1)$ cuts positive direction of coordinates axes at $A, B a n d C$, then the volume of tetrahedron $O A B C$ satisfies a. $V \leq \frac{9}{2}$ b. $V \geq \frac{9}{2}$ c. $V=\frac{9}{2}$ d. none of these
A. $V \leq \frac{9}{2}$
B. $V \geq \frac{9}{2}$
C. $V=\frac{9}{2}$
D. none of these

Answer: b

- Watch Video Solution

24. If lines $x=y=\operatorname{zandx}=\frac{y}{2}=\frac{z}{3}$ and third line passing through
$(1,1,1)$ form a triangle of area $\sqrt{6}$ units, then the point of intersection
of third line with the second line will be a. $(1,2,3)$ b. $2,4,6$ c. $\frac{4}{3}, \frac{6}{3}, \frac{12}{3}$
d. none of these
A. $(1,2,3)$
B. $(2,4,6)$
C. $\left(\frac{4}{3}, \frac{8}{3}, \frac{12}{3}\right)$
D. none of these

Answer: b

- Watch Video Solution

25. Find the point of intersection of line passing through $(0,0,1)$ and the intersection lines
$x+2 y+z=1,-x+y-2 z a n d x+y=2, x+z=2$ with the $x y$ plane.
A. $\left(\frac{5}{3},-\frac{1}{3}, 0\right)$
B. $(1,1,0)$
C. $\left(\frac{2}{3},-\frac{1}{3}, 0\right)$
D. $\left(-\frac{5}{3}, \frac{1}{3}, 0\right)$

Answer: a

- Watch Video Solution

26.

Shortest distance
between the
lines
$\frac{x-1}{1}=\frac{y-1}{1}=\frac{z-1}{1}$ and $\frac{x-2}{1}=\frac{y-3}{1}=\frac{z-4}{1}$ is equal to a.
$\sqrt{14}$ b. $\sqrt{7}$ c. $\sqrt{2}$ d. none of these
A. $\sqrt{14}$
B. $\sqrt{7}$
C. $\sqrt{2}$
D. none of these

Answer: c

27. Distance of point $P(\vec{P})$ from the plane $\vec{r} \cdot \vec{n}=0$ is
A. $|\vec{p} \cdot \vec{n}|$
B. $\frac{|\vec{p} \times \vec{n}|}{|\vec{n}|}$
C. $\frac{|\vec{p} \cdot \vec{n}|}{|\vec{n}|}$
D. none of these

Answer: c

- Watch Video Solution

28. The reflection of the point \vec{a} in the plane $\vec{r} \cdot \vec{n}=q$ is (A)

$$
\begin{equation*}
\vec{a}+\frac{\vec{q}-\vec{a} \cdot \vec{n}}{|\vec{n}|} \quad \text { (B) } \quad \vec{a}+2\left(\frac{\vec{q}-\vec{a} \cdot \vec{n}}{|\vec{n}|^{2}}\right) \vec{n} \tag{C}
\end{equation*}
$$

$\vec{a}+\frac{2(\vec{q}+\vec{a} \cdot \vec{n})}{|\vec{n}|}$ (D) none of these
A. $\vec{a}+\frac{(\vec{q}-\vec{a} \cdot \vec{n})}{|\vec{n}|}$
B. $\vec{a}+2\left(\frac{(\vec{q}-\vec{a} \cdot \vec{n})}{|\vec{n}|^{2}}\right) \vec{n}$
C. $\vec{a}+\frac{2(\vec{q}-\vec{a} \cdot \vec{n})}{|\vec{n}|} \vec{n}$
D. none of these

Answer: b

- Watch Video Solution

29. The angle θ between the line $\vec{r}=\vec{a}+\lambda \vec{b}$ and the plane $\vec{r} \cdot \widehat{n}=d$ is given by
A. $\vec{b} \cdot \vec{n}=0, \vec{a} \cdot \vec{n}=q$
B. $\vec{b} \cdot \vec{n} \quad \neq 0, \vec{a} \cdot \vec{n} \quad \neq q$
C. $\vec{b} \cdot \vec{n}=0, \vec{a} \cdot \vec{n} \quad \neq q$
D. $\vec{b} \cdot \vec{n} \quad \neq 0, \vec{a} \cdot \vec{n} \quad \neq q$

Answer: c

- Watch Video Solution

30. If a line makes an angel of $\frac{\pi}{4}$ with the positive direction of each of x axis and y-axis, then the angel that the line makes with the positive direction of the z-axis is a. $\frac{\pi}{3}$ b. $\frac{\pi}{4}$ c. $\frac{\pi}{2}$ d. $\frac{\pi}{6}$
A. $\frac{\pi}{3}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{2}$
D. $\frac{\pi}{6}$

Answer: c

31. The ratio in which the plane $\vec{r} \vec{i}-2 \vec{j}+3 \vec{k}=17$ divides the line joining the points $-2 \vec{i}+4 \vec{j}=7 \vec{k}$ and $3 \vec{i}-5 \vec{j}+8 \vec{k}$ is a. $1: 5 \mathrm{~b}$. 1: 10 c. $3: 5$ d. $3: 10$
A. 1:5
B. $1: 10$
C. 3:5
D. 3: 10

Answer: d

- Watch Video Solution

32. then image of the point $(-1,3,4)$ in the plane $x-2 y=0$
A. $\left(-\frac{17}{3}, \frac{19}{3}, 4\right)$
B. $(15,11,4)$
C. $\left(-\frac{17}{3}, \frac{19}{3}, 1\right)$
D. $\left(\frac{9}{5},-\frac{13}{5}, 4\right)$

Answer: d

- Watch Video Solution

33. The perpendicular distance between the line
$\vec{r}=2 \hat{i}-2 \hat{j}+3 \hat{k}+\lambda(\hat{i}-\hat{j}+4 \hat{k})$ and the plane $\vec{r} \cdot(\hat{i}|5 \hat{j}| \hat{k})=5$ is
A. $\frac{10}{3 \sqrt{3}}$
B. $\frac{10}{9}$
C. $\frac{10}{3}$
D. $\frac{3}{10}$

Answer: a

- Watch Video Solution

34. Let L be the line of intersection of the planes $2 x+3 y+z=1$ and $x+3 y+2 z=2$. If L makes an angle α with the positive x -axis, then $\cos \alpha$ equals a. $\frac{1}{2}$ b. 1 c. $\frac{1}{\sqrt{2}}$ d. $\frac{1}{\sqrt{3}}$
A. $\frac{1}{2}$
B. 1
C. $\frac{1}{\sqrt{2}}$
D. $\frac{1}{\sqrt{3}}$

Answer: d

- Watch Video Solution

35. The length of the perpendicular drawn from $(1,2,3)$ to the line $\frac{x-6}{3}=\frac{y-7}{2}=\frac{z-7}{-2}$ is a. 4 b. 5 c. 6 d. 7
A. 4
B. 5
C. 6
D. 7

Answer: d

- Watch Video Solution

36. If the angle θ between the line $\frac{x+1}{1}=\frac{y-1}{2}=\frac{z-2}{2}$ and the plane $2 x-y+\sqrt{p z}+4=0$ is such that $\sin \theta=\frac{1}{3}$, then the values of p is (A) O (B) $\frac{1}{3}$ (C) $\frac{2}{3}$ (D) none of these`
A. $\frac{-3}{5}$
B. $\frac{5}{3}$
C. $\frac{-4}{3}$
D. $\frac{3}{4}$

Answer: b
37. The intersection of the spheres $x^{2}+y^{2}+z^{2}+7 x-2 y-z=13 a n d x^{2}+y^{2}=z^{2}-3 x+3 y+4 z=8$ is the same as the intersection of one of the spheres and the plane a. $x-y-z=1$ b. $x-2 y-z=1$ c. $x-y-2 z=1$ d. $2 x-y-z=1$
A. $x-y-z=1$
B. $x-2 y-z=1$
C. $x-y-2 z=1$
D. $2 x-y-z=1$

Answer: d

- Watch Video Solution

38. If a plane cuts off intercepts $O A=a, O B=b, O C=c$ from the coordinate axes 9 where ' O ' is the origin). then the area of the triangle $A B C$ is equal to
A. $\frac{1}{2}(a b+b c+a c)$
B. $\frac{1}{2} a b c$
C. $\frac{1}{2}\left(a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}\right)^{1 / 2}$
D. $\frac{1}{2}(a+b+c)^{2}$

Answer: c

- Watch Video Solution

39. A line makes an angel θ with each of the x -and z -axes. If the angel β, which it makes with the y-axis, is such that $\sin ^{2} \beta=3 \sin ^{2} \theta$, then $\cos ^{2} \theta$ equals a. $\frac{2}{3}$ b. $\frac{1}{5}$ c. $\frac{3}{5}$ d. $\frac{2}{5}$
A. $\frac{2}{3}$
B. $\frac{1}{5}$
C. $\frac{3}{5}$
D. $\frac{2}{5}$

- Watch Video Solution

40. The shortest distance from the plane $12 x+y+3 z=327$ to the sphere $x^{2}+y^{2}+z^{2}+4 x-2 y-6 z=155$ is a. 39 b. 26 c. $41-\frac{4}{13} \mathrm{~d}$. 13
A. 39
B. 26
C. $41 \frac{4}{13}$
D. 13

Answer: d

$O(0,0,0), A(1,2,1), B(2,1,3)$, and $C(-1,1,2)$, then angle between face $O A B a n d A B C$ will be a. $\cos ^{-1}\left(\frac{17}{31}\right)$ b. 30^{0} c. 90^{0} d. $\cos ^{-1}\left(\frac{19}{35}\right)$
A. $\cos ^{-1}\left(\frac{17}{31}\right)$
B. 30°
C. 90°
D. $\cos ^{-1}\left(\frac{19}{35}\right)$

Answer: d

- Watch Video Solution

42. The radius of the circle in which the sphere $x^{I 2}+y^{2}+z^{2}+2 z-2 y-4 z-19=0 \quad$ is cut by the plane $x+2 y+2 z+7=0$ is a. 2 b. 3 c. 4 d. 1
A. 2
B. 3
C. 4
D. 1

- Watch Video Solution

43.

$\frac{x-2}{1}=\frac{y-3}{2}=\frac{z-4}{-k}$ and $=\frac{x-1}{k}=\frac{y-4}{2}=\frac{z-5}{1}$
are coplanar if a. $k=1$ or -1 b. $k=0$ or -3 c. $k=3$ or -3 d . $k=0$ or -1
A. $k=1$ or -1
B. $\mathrm{k}=0$ or -3
C. $\mathrm{k}=3$ or -3
D. $\mathrm{k}=0$ or -1

D Watch Video Solution

44. The point of intersection of the lines

$$
\frac{x-5}{3}=\frac{y-7}{-1}=\frac{z+2}{1} \text { and }=\frac{x+3}{-36}=\frac{y-3}{2}=\frac{z-6}{4} \quad \text { is } \quad \text { a. }
$$

$\left(21, \frac{5}{3}, \frac{10}{3}\right)$ b. $(2,10,4)$ c. $(-3,3,6)$ d. $(5,7,-2)$
A. $\left(21, \frac{5}{3}, \frac{10}{3}\right)$
B. $(2,10,4)$
C. $(-3,3,6)$
D. $(5,7,-2)$

Answer: a

45. Two systems of rectangular axes have the same origin. If a plane cuts them at distance a, b, cand $d, b^{\prime}, c^{\prime}$ from the origin, then a. $\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}+\frac{1}{a^{\prime 2}}+\frac{1}{b^{\prime 2}}+\frac{1}{c^{\prime 2}}=0$
$\frac{1}{a^{2}}-\frac{1}{b^{2}}-\frac{1}{c^{2}}+\frac{1}{a^{\prime 2}}-\frac{1}{b^{\prime 2}}-\frac{1}{c^{\prime 2}}=0$
$\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}-\frac{1}{a^{\prime 2}}-\frac{1}{b^{\prime 2}}-\frac{1}{c^{\prime 2}}=0$
$\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}+\frac{1}{a^{\prime 2}}+\frac{1}{b^{\prime 2}}+\frac{1}{c^{\prime 2}}=0$ b.
d.
A. $\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}+\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{\prime 2}}=0$
B. $\frac{1}{a^{2}}-\frac{1}{b^{2}}-\frac{1}{c^{2}}-\frac{1}{a^{\prime 2}}-\frac{1}{b^{\prime 2}}-\frac{1}{c^{\prime 2}}=0$
C. $\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}-\frac{1}{a^{\prime 2}}-\frac{1}{b^{2}}-\frac{1}{c^{\prime 2}}=0$
D. $\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}+\frac{1}{a^{\prime 2}}+\frac{1}{b^{\prime 2}}+\frac{1}{c^{\prime 2}}=0$

Answer: c

- Watch Video Solution

46. Find the equation of a plane which passes through the point $(3,2,0)$ and contains the line $\frac{x-3}{1}=\frac{y-6}{5}=\frac{z-4}{4}$
A. $x-y+z=1$
B. $x+y+z=5$
C. $x+2 y-z=1$
D. $2 x-y+z=5$

Answer: a

- Watch Video Solution

47. The direction ratios of a normal to the plane through $(1,0,0) \operatorname{and}(0,1,0)$, which makes and angle of $\frac{\pi}{4}$ with the plane $x+y=3$, are a. $\langle 1, \sqrt{2}$,$\rangle b. \langle 1,1, \sqrt{2}\rangle$ c. $\langle 1,1,2\rangle$ d. ${ }^{\prime}<>’$
A. $\langle 1, \sqrt{2}, 1\rangle$
B. $\langle 1,1, \sqrt{2}\rangle$
C. $\langle 1,1,2\rangle$
D. $\langle\sqrt{2}, 1,1\rangle$

D Watch Video Solution

48. The centre of the circle given by
$\vec{r} \cdot(\hat{i}+2 \hat{j}+2 \hat{k})=15$ and $\mid \vec{r}-(\hat{j}+2 \hat{k})=4$ is
A. $(0,1,2)$
B. $(1,3,4)$
C. $(-1,3,4)$
D. none of these

Answer: b

- Watch Video Solution

49. The lines which intersect the skew lines $y=m x, z=c ; y=-m x, z=-c$ and the x-axis lie on the surface a.
$c z=m x y$ b. $x y=c m z$ c. $c y=m x z \mathrm{~d}$. none of these
A. $c z=m x y$
B. $x y=c m z$
C. $c y=m x z$
D. none of these

Answer: c

- Watch Video Solution

50. Distance of the point $P(\vec{c})$ from the line $\vec{r}=\vec{a}+\lambda \vec{b}$ is
A. $\left|(\vec{a}=\vec{p})+\frac{((\vec{p}-\vec{a}) \cdot \vec{b}) \vec{b}}{|\vec{b}|^{2}}\right|$
в. $\left|(\vec{b}-\vec{p})+\frac{((\vec{p}-\vec{a}) \cdot \vec{b}) \vec{b}}{|\vec{b}|^{2}}\right|$
C. $\left|(\vec{a}-\vec{p})+\frac{((\vec{p}-\vec{a}) \cdot \vec{b}) \vec{b}}{|\vec{b}|^{2}}\right|$
D. none of these

Answer: c

- Watch Video Solution

51. From the point $P(a, b, c)$, let perpendicualars $P L a n d P M$ be drawn to $Y O Z a n d Z O X$ planes, respectively. Then the equation of the plane $O L M$ is a. $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0$ b. $\frac{x}{a}+\frac{y}{b}-\frac{z}{c}=0$ c. $\frac{x}{a}-\frac{y}{b}-\frac{z}{c}=0 \mathrm{~d}$. $\frac{x}{a}-\frac{y}{b}+\frac{z}{c}=0$
A. $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0$
B. $\frac{x}{a}+\frac{y}{b}-\frac{z}{c}=0$
C. $\frac{x}{a}-\frac{y}{b}-\frac{z}{c}=0$
D. $\frac{x}{a}-\frac{y}{b}+\frac{z}{c}=0$

- Watch Video Solution

52. The plane $\vec{r} \cdot \vec{n}=q$ will cotain the line $\vec{r}=\vec{a}+\lambda \vec{b}$ if
A. $\vec{b} \cdot \vec{n} \neq 0, \vec{a} \cdot \vec{n} \neq q$
B. $\vec{b} \cdot \vec{n}=0, \vec{a} \cdot \vec{n} \neq q$
C. $\vec{b} \cdot \vec{n}=0, \vec{a} \cdot \vec{n}=q$
D. $\vec{b} \cdot \vec{n} \neq 0, \vec{a} \cdot \vec{n}=q$

Answer: c

Watch Video Solution

53. The projection of point $P(\vec{p})$ on the plane $\vec{r} \cdot \vec{n}=q$ is (\vec{s}), then
A. $\vec{s}=\frac{(q-\vec{p} \cdot \vec{n}) \vec{n}}{|\vec{n}|^{2}}$
B. $\vec{s}=\vec{p}+\frac{(q-\vec{p} \cdot \vec{n}) \vec{n}}{|\vec{n}|^{2}}$
C. $\vec{s}=\vec{p}-\frac{(\vec{p} \cdot \vec{n}) \vec{n}}{|\vec{n}|^{2}}$
D. $\vec{s}=\vec{p}-\frac{(q-\vec{p} \cdot \vec{n}) \vec{n}}{|\vec{n}|^{2}}$

Answer: b

- Watch Video Solution

54. The angle between \hat{i} and line of the intersection of the plane $\vec{r} \cdot(\hat{i}+2 \hat{j}+3 \hat{k})=0$ and $\vec{r} \cdot(3 \hat{i}+3 \hat{j}+\hat{k})=0$ is
A. $\cos ^{-1}\left(\frac{1}{3}\right)$
B. $\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right)$
C. $\cos ^{-1}\left(\frac{2}{\sqrt{3}}\right)$
D. none of these

- Watch Video Solution

55. The line $\frac{x+6}{5}=\frac{y+10}{3}=\frac{z+14}{8}$ is the hypotenuse of an isosceles right-angled triangle whose opposite vertex is $(7,2,4)$. Then which of the following in not the side of the triangle? a.
$\frac{x-7}{2}=\frac{y-2}{-3}=\frac{z-4}{6}$
b. $\quad \frac{x-7}{3}=\frac{y-2}{6}=\frac{z-4}{2}$
$\frac{x-7}{3}=\frac{y-2}{5}=\frac{z-4}{-1}$ d. none of these
A. $\frac{x-7}{2}=\frac{y-2}{-3}=\frac{z-4}{6}$
B. $\frac{x-7}{3}=\frac{y-2}{6}=\frac{z-4}{2}$
C. $\frac{x-7}{3}=\frac{y-2}{5}=\frac{z-4}{-1}$
D. none of these

Answer: c

- Watch Video Solution

56. The equation of the plane which passes through the line of intersection of planes $\vec{r} \vec{n}_{1}=, q_{1}, \vec{r} \vec{n}_{2}=q_{2}$ and the is parallel to the line of intersection of planers $\vec{r} \vec{n}_{3}=q_{3}$ and $\vec{r} \vec{n}_{4}-q_{4}$ is
A. $\left[\vec{n}_{2} \vec{n}_{3} \vec{n}_{4}\right]\left(\vec{r} \cdot \vec{n}_{1}-q_{1}\right)=\left[\vec{n}_{1} \vec{n}_{3} \vec{n}_{4}\right]\left(\vec{r} \cdot \vec{n}_{2}-q_{2}\right)$
B. $\left[\vec{n}_{1} \vec{n}_{2} \vec{n}_{3}\right]\left(\vec{r} \cdot \vec{n}_{4}-q_{4}\right)=\left[\vec{n}_{4} \vec{n}_{3} \vec{n}_{1}\right]\left(\vec{r} \cdot \vec{n}_{2}-q_{2}\right)$
c. $\left[\vec{n}_{4} \vec{n}_{3} \vec{n}_{1}\right]\left(\vec{r} \cdot \vec{n}_{4}-q_{4}\right)=\left[\vec{n}_{1} \vec{n}_{2} \vec{n}_{3}\right]\left(\vec{r} \cdot \vec{n}_{2}-q_{2}\right)$
D. none of these

Answer: a

- Watch Video Solution

57. Consider triangle $A O B$ in the $x-y$ plane, where $A \equiv(1,0,0), B \equiv(0,2,0)$ and $O \equiv(0,0,0)$. The new position of O, when triangle is rotated about side $A B$ by 90° can be
A. $\left(\frac{4}{5}, \frac{3}{5}, \frac{2}{\sqrt{5}}\right)$
B. $\left(\frac{-3}{5}, \frac{\sqrt{2}}{5}, \frac{2}{\sqrt{5}}\right)$
C. $\left(\frac{4}{5}, \frac{2}{5}, \frac{2}{\sqrt{5}}\right)$
D. $\left(\frac{4}{5}, \frac{2}{5}, \frac{1}{\sqrt{5}}\right)$

Answer: c

- Watch Video Solution

58. Let $\vec{a}=\hat{i}+\hat{j}$ and $\vec{b}=2 \hat{i}-\hat{k}$. Then the point of intersection of the lines $\vec{r} \times \vec{a}=\vec{b} \times \vec{a}$ and $\vec{r} \times \vec{b}=\vec{a} \times \vec{b}$ is
A. $(3,-1,1)$
B. $(3,1,-1)$
C. $(-3,1,1)$
D. $(-3,-1,-1)$
59. The co-ordinates of the point P on the line
$\vec{r}=(\hat{i}+\hat{j}+\hat{k})+\lambda(-\hat{i}+\hat{j}-\hat{k})$ which is nearest to the origin is
A. $\left(\frac{2}{3} \frac{4}{3}, \frac{2}{3}\right)$
B. $\left(-\frac{2}{3}-\frac{4}{3}, \frac{2}{3}\right)$
C. $\left(\frac{2}{3} \frac{4}{3},-\frac{2}{3}\right)$
D. none of these

Answer: a

- Watch Video Solution

60. The ratio in which the line segment joining the points whose position vectors are $2 \hat{i}-4 \hat{j}-7 \hat{k}$ and $-3 \hat{i}+5 \hat{j}-8 \hat{k}$ is divided by the plane whose equation is $\hat{r} \hat{i}-2 \hat{j}+3 \hat{k}=13$ is a. $13: 12$ internally b. $12: 25$ externally c. $13: 25$ internally d. $37: 25$ internally
A. 13:12 internally
B. 12:25 externally
C. 13:25 internally
D. 37:25 internally

Answer: B

- Watch Video Solution

61. Which of the following are equation for the plane passing through the points $P(1,1,-1), Q(3,0,2)$ and $(-2,1,0)$?
A. $(2 \hat{i}-3 \hat{j}+3 \hat{k}) \cdot((x+2) \hat{i}+(y-1) \hat{j}+z \hat{k})=0$
B. $x=3-t, y=-11 t, z=2-3 t$
C. $(x+2)+11(y-1)=3 z$
D. $(2 \hat{i}-\hat{j}+3 \hat{k}) \times(-3 \hat{i}+\hat{j}) \cdot((x+2) \hat{i}+(y-1) \hat{j}+z \hat{k})=0$
62. Given $\vec{\alpha}=3 \hat{i}+\hat{j}+2 \hat{k}$ and $\vec{\beta}=\hat{i}-2 \hat{j}-4 \hat{k}$ are the position vectors of the points AandB. Then the distance of point $\hat{i}+\hat{j}+\hat{k}$ from the plane passing through B and perpendicular to $A B$ is a. 5 b .10 c .

15 d .20
A. 5
B. 10
C. 15
D. 20

Answer: a

- Watch Video Solution

63. L_{1} and L_{2} and two lines whose vector equations are $L_{1}: \vec{r}=\lambda((\cos \theta+\sqrt{3}) \hat{i}(\sqrt{2} \sin \theta) \hat{j}+(\cos \theta-\sqrt{3}) \hat{k})$
$L_{2}: \vec{r}=\mu(a \hat{i}+b \hat{j}+c \hat{k})$, where $\lambda a n d \mu$ are scalars and α is the acute angel between $L_{1} a n d L_{2}$. If the angel α is independent of θ, then the value of α is a. $\frac{\pi}{6}$ b. $\frac{\pi}{4}$ c. $\frac{\pi}{3}$ d. $\frac{\pi}{2}$
A. $\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer: a

- Watch Video Solution

64. The shortest distance between the lines

$$
\frac{x-3}{3}=\frac{y-8}{-1}=\frac{z-3}{1} \text { and } \frac{x+3}{-3}=\frac{y+7}{2}=\frac{z-6}{4} \text { is }
$$

A. $\sqrt{30}$
B. $2 \sqrt{30}$
C. $5 \sqrt{30}$
D. $3 \sqrt{30}$

Answer: d

- Watch Video Solution

65. The line through $\hat{i}+3 \hat{j}+2 \hat{k}$ and perpendicular to the lines
$\vec{r}=(\hat{i}+2 \hat{j}-\hat{k})+\lambda(2 \hat{i}+\hat{j}+\hat{k})$
and
$\vec{r}=(2 \hat{i}+6 \hat{j}+\hat{k})+\mu(\hat{i}+2 \hat{j}+3 \hat{k})$ is
A. $\vec{r}=(\hat{i}+2 \hat{j}-\hat{k})+\lambda(-\hat{i}+5 \hat{j}-3 \hat{k})$
B. $\vec{r}=\hat{i}+3 \hat{j}+2 \hat{k}+\lambda(\hat{i}-5 \hat{j}+3 \hat{k})$
C. $\vec{r}=\hat{i}+3 \hat{j}+2 \hat{k}+\lambda(\hat{i}+5 \hat{j}+3 \hat{k})$
D. $\vec{r}=\hat{i}+3 \hat{j}+2 \hat{k}+\lambda(-\hat{i}-5 \hat{j}-3 \hat{k})$

Answer: b

- Watch Video Solution

66. The line through of the plane passing through the lines $\frac{x-4}{1}=\frac{y-3}{1}=\frac{z-2}{2}$ and $\frac{x-3}{1}=\frac{y-2}{-4}=\frac{z}{5}$ is
A. $11 x-y-3 z=35$
B. $11 x+y-3 z=35$
C. $11 x-y+3 z=35$
D. none of these

Answer: d

- Watch Video Solution

67. The
three
planes
$4 y+6 z=5,2 x+3 y+5 z=5 a n d 6 x+5 y+9 z=10$ a. meet in a point b. have a line in common c. form a triangular prism d. none of these
A. meet in a point
B. have a line in common
C. form a triangular prism
D. none of these

Answer: b

- Watch Video Solution

68. The equation of the plane through the line of intersection of the planes $a x+b y+c z+d=0$ and $a^{\prime} x+b^{\prime} y+c^{\prime} z+d^{\prime}=0$ parallel to the line $y=0$ and $z=0$ is
A. $\left(a b^{\prime}-a^{\prime} b\right) x+\left(b c^{\prime}-b^{\prime} c\right) y+\left(a d^{\prime}-a^{\prime} d\right)=0$
B. $\left(a b^{\prime}-a^{\prime} b\right) x+\left(b c^{\prime}-b^{\prime} c\right) y+\left(a d^{\prime}-a^{\prime} d\right) z=0$
C. $\left(a b^{\prime}-a^{\prime} b\right) y+\left(b c^{\prime}-b^{\prime} c\right) z+\left(a d^{\prime}-a^{\prime} d\right)=0$
D. none of these

Answer: c

69. Equation of the pane passing through the points $(2,2,1) \operatorname{and}(9,3,6)$, and \perp to the plane $2 x+6 y+6 z-1=0$ is a. $3 x+4 y+5 z=9$ b. $3 x+4 y-5 z=-9$ c. $3 x+4 y-5 z=9$ d. none of these
A. $3 x+4 y+5 z=9$
B. $3 x+4 y-5 z=-9$
C. $3 x+4 y-5 z=9$
D. none of these

Answer: b

- Watch Video Solution

70. Value of λ such that the line $\frac{x-1}{2}=\frac{y-1}{3}=\frac{z-1}{\lambda}$ is \perp to normal to the plane $\vec{r} \cdot(2 \vec{i}+3 \vec{j}+4 \vec{k})=0$ is

$$
\text { A. }-\frac{13}{4}
$$

B. $-\frac{17}{4}$
C. 4
D. none of these

Answer: a

- Watch Video Solution

71. The equation of the plane passing through the intersection of $x+2 y+3 x+4=0$ and $4 x+3 y+2 z+1=0$ and the origin $(0.0,0)$ is
A. $x+y+z=0$
B. $3 x+2 y+z+1=0$
C. $2 x+3 y+z=0$
D. $3 x+2 y+z=0$

Answer: a

72. The plane $4 x+7 y+4 z+81=0$ is rotated through a right angle about its line of intersection with the plane $5 x+3 y+10 z=25$. The equation of the plane in its new position is a. $x-4 y+6 z=106 \mathrm{~b}$. $x-8 y+13 z=103$ c. $x-4 y+6 z=110$ d. $x-8 y+13 z=105$
A. $x-4 y+6 z=106$
B. $x-8 y+13 z=103$
C. $x-4 y+6 z=110$
D. $x-8 y+13 z=19=105$

Answer: a

- Watch Video Solution

73. The vector equation of the plane passing through the origin and the line of intersection of the planes $\vec{r} \cdot \vec{a}=\lambda$ and $\vec{r} \cdot \vec{b}=\mu$ is
A. $\vec{r} \cdot(\lambda \vec{a}-\mu \vec{b})=0$
B. $\vec{r} \cdot(\lambda \vec{b}-\mu \vec{a})=0$
c. $\vec{r} \cdot(\lambda \vec{a}+\mu \vec{b})=0$
D. $\vec{r} \cdot(\lambda \vec{b}+\mu \vec{a})=0$

Answer: b

- Watch Video Solution

74. The two lines $\vec{r}=\vec{a}+\vec{\lambda}(\vec{b} \times \vec{c})$ and $\vec{r}=\vec{b}+\mu(\vec{c} \times \vec{a})$ intersect at a point where $\vec{\lambda}$ and μ are scalars then
A. $\vec{a} \times \vec{c}=\vec{b} \times \vec{c}$
B. $\vec{a} \cdot \vec{c}=\vec{b} \cdot \vec{c}$
c. $\vec{b} \times \vec{a}=\vec{c} \times \vec{a}$
D. none of these

Watch Video Solution

75. The projection of the line $\frac{x+1}{-1}=\frac{y}{2}=\frac{z-1}{3}$ on the plane $x-2 y+z=6$ is the line of intersection of this plane with the plane a. $2 x+y+2=0$ b. $3 x+y-z=2$ c. $2 x-3 y+8 z=3 \mathrm{~d}$. none of these
A. $2 x+y+2=0$
B. $3 x+y-z=2$
C. $2 x-3 y+8 z=3$
D. none of these

Answer: a

- Watch Video Solution

76. The direction cosines of a line satisfy the relations $\lambda(l+m)=n$ and $m n+n l+l m=0$. The value of λ, for which the two lines are perpendicular to each other, is
A. 1
B. 2
C. $1 / 2$
D. none of these

Answer: b

- Watch Video Solution

77. The line through the points $(-2, a)$ and $(9,3)$ has slope $\frac{-1}{2}$. Find the value of a.
A. $\left(-\frac{9}{2}, 9,9\right)$
B. $\left(\frac{9}{2}, 9,9\right)$
C. $\left(9,-\frac{9}{2}, 9\right)$
D. $\left(9, \frac{9}{2}, 9\right)$
78. Find the angle between the lines whose direction cosines are given by the equations $3 l+m+5 n=0$ and $6 m n-2 n l+5 l m=0$
A. parallel
B. perpendicular
C. inclined at $\cos (-1)\left(\frac{1}{6}\right)$
D. none of these

Answer: c

- Watch Video Solution

79. A sphere of constant radius $2 k$ passes through the origin and meets the axes in $A, B, a n d C$. The locus of a centroid of the tetrahedron
$O A B C$ is
a. $\quad x^{2}+y^{2}+z^{2}=4 k^{2}$
b. $x^{2}+y^{2}+z^{2}=k^{2}$
c.
$2\left(k^{2}+y^{2}+z\right)^{2}=k^{2}$ d. none of these
A. $x^{2}+y^{2}+z^{2}=k^{2}$
B. $x^{2}+y^{2}+z^{2}=k^{2}$
C. $2\left(k^{2}+y^{2}+z\right)^{2}=k^{2}$
D. none of these

Answer: b

- Watch Video Solution

80. A plane passes through a fixed point (a, b, c). The locus of the foot of the perpendicular to it from the origin is a sphere of radius a. $\frac{1}{2} \sqrt{a^{2}+b^{2}+c^{2}}$ b. $\sqrt{a^{2}+b^{2}+c^{2}}$ c. $a^{2}+b^{2}+c^{2}$ d. $\frac{1}{2}\left(a^{2}+b^{2}+c^{2}\right)$
A. $\frac{1}{2} \sqrt{a^{2}+b^{2}+c^{2}}$
B. $\sqrt{a^{2}+b^{2}+c^{2}}$
C. $a^{2}+b^{2}+c^{2}$
D. $\frac{1}{2}\left(a^{2}+b^{2}+c^{2}\right)$

Answer: a

D Watch Video Solution

81. What is the nature of the intersection of the set of planes $x+a y+(b+c) z+d=0, x+b y+(a+a) z+d=0 a n d x+c y+(a+$
a. they meet at a point b. the form a triangular prism c. the pass through a line d. they are at equal distance from the origin
A. They meet at a point
B. They form a triangular prism
C. They pass through a line
D. They are at equal distance from the origin

Answer: c

- Watch Video Solution

82. Find the equation of a straight line in the plane $\vec{r} \cdot \vec{n}=d$ which is parallel to $\vec{r} \cdot \vec{n}=d($ where $\vec{n} \cdot \vec{b}=0)$.
A. $\vec{r}=\vec{a}+\left(\frac{d-\vec{a} \cdot \vec{n}}{n^{2}}\right) \vec{n}+\lambda \vec{b}$
B. $\vec{r}=\vec{a}+\left(\frac{d-\vec{a} \cdot \vec{n}}{n}\right) \vec{n}+\lambda \vec{b}$
c. $\vec{r}=\vec{a}+\left(\frac{\vec{a} \cdot \vec{n}-d}{n^{2}}\right) \vec{n}+\lambda \vec{b}$
D. $\vec{r}=\vec{a}+\left(\frac{\vec{a} \cdot \vec{n}-d}{n}\right) \vec{n}+\lambda \vec{b}$

Answer: a

- Watch Video Solution

83. What is the equation of the plane which passes through the z -axis and is perpendicular to the line $\frac{x-a}{\cos \theta}=\frac{y+2}{\sin \theta}=\frac{z-3}{0}$?
A. $x+y \tan \theta=0$
B. $y+x \tan \theta=0$
C. $x \cos \theta-y \sin \theta=0$
D. $x \sin \theta-y \cos \theta=0$

Answer: a

- Watch Video Solution

84. A straight line L on the $x y$-plane bisects the angle between OXandOY. What are the direction cosines of L ? a. $\langle(1 / \sqrt{2}),(1 / \sqrt{2}), 0\rangle$ b. $\langle(1 / 2),(\sqrt{3} / 2), 0\rangle$ c. $\langle 0,0,1\rangle$ d. $\left\langle\begin{array}{l}2 / 3 \\ 2 / 3 \\ 1 / 3\end{array}\right\rangle$
A. $<(1 / \sqrt{2}),(1 / \sqrt{2}), 0>$
B. $<(1 / 2),(\sqrt{3} / 2), 0>$
C. $\langle 0,0,1\rangle$
D. $\langle(2 / 3),(2 / 3),(1 / 3)\rangle$

Answer: a

85. For what value (s) of a will the two points $(1, a, 1)$ and $(-3,0, a)$ lie on opposite sides of the plane $3 x+4 y-12 z+13=0$? a. $a \succ 1$ or $a>1 / 3$ b. $a=0$ only c. ${ }^{\text {o }}$
A. $a<-1$ or $a>1 / 3$
B. $a=0$ only
C. $0<a<1$
D. $-1<a<1$

Answer: a

- Watch Video Solution

86. If the plane $\frac{x}{2}+\frac{y}{3}+\frac{z}{6}=1$ cuts the axes of coordinates at points, A, B, and C, then find the area of the triangle $A B C$
A. 18 sq unit
B. 36 sq unit
C. $3 \sqrt{14}$ sq unit
D. $2 \sqrt{14}$ sq unit

Answer: c

- Watch Video Solution

Exercise (Multiple)

1. Let $P M$ be the perpendicular from the point $P(1,2,3)$ to the $x-y$ plane. If $\vec{O} P$ makes an angle θ with the positive direction of the $z-$ axis and $\vec{O} M$ makes an angle φ with the positive direction of $x-$ axis, where O is the origin and $\operatorname{\theta and\varphi }$ are acute angels, then a. $\cos \theta \cos \varphi=1 / \sqrt{14} \quad$ b. $\quad \sin \theta \sin \varphi=2 / \sqrt{14} \quad$ c. $\quad \tan \varphi=2 \quad$ d. $\tan \theta=\sqrt{5} / 3$
A. $\cos \theta \cos \phi=\frac{1}{\sqrt{14}}, \tan \phi=2, \tan \theta=\frac{\sqrt{5}}{3}$
B. $\sin \theta \sin \phi=\frac{2}{\sqrt{14}}, \tan \phi=2, \tan \theta=\frac{\sqrt{5}}{3}$
C. $\tan \phi=2, \cos \theta \cos \phi=\frac{1}{\sqrt{14}}, \tan \theta=\frac{\sqrt{5}}{3}$
D. $\tan \theta=\frac{\sqrt{5}}{3}, \cos \theta \cos \phi=\frac{1}{\sqrt{14}}, \tan \phi=2$

Answer: B

- Watch Video Solution

2. Find $\vec{a} \cdot \vec{b}$, when $\vec{a}=\hat{i}+3 \hat{j}+\hat{k}$ and $\vec{b}=2 \hat{i}-\hat{j}-\hat{k}$

- Watch Video Solution

3.

If
the
planes
$\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=q_{1}, \vec{r} \cdot(\hat{i}+2 a \hat{j}+\hat{k})=q_{2}$ and $\vec{r} \cdot\left(a \hat{i}+a^{2} \hat{j}+\hat{k}\right)=$ intersect in a line, then the value of a is
A. 1
B. $1 / 2$
C. 2
D. 0

Answer: a, b

D Watch Video Solution

4. A line with direction cosines proportional to $1,-5$, and -2 meets lines $x=y+5=z+1 a n d x+5=3 y=2 z$. The coordinates of each of the points of the intersection are given by a. $(2,-3,1) \mathrm{b} .(1,2,3) \mathrm{c}$. $(0,5 / 3,5 / 2)$ d. $(3,-2,2)$
A. $(2,-3,1)$
B. $(1,2,3)$
C. $(0,5 / 3,5 / 2)$
D. $(3,-2,2)$
5. Let $P=0$ be the equation of a plane passing through the line of intersection of the planes $2 x-y=0 a n d 3 z-y=0$ and perpendicular to the plane $4 x+5 y-3 z=8$. Then the points which lie on the plane $P=0$ is/are a. $(0,9,17)$ b. $(1 / 7,21 / 9)$ c. $(1,3,-4)$ d. $(1 / 2,1,1 / 3)$
A. $(0,9,17)$
B. $(1 / 7,2,1 / 9)$
C. $(1,3,-4)$
D. $(1 / 2,1,1 / 3)$

Answer: a, d

- Watch Video Solution

6. about to only mathematics

$$
\text { A. } \frac{x-1}{2}=\frac{y+2}{-1}=\frac{z-2}{2}
$$

B. $\frac{x+(1 / 2)}{1}=\frac{y-1}{-2}=\frac{z-(1 / 2)}{1}$
C. $\frac{x}{1}=\frac{y}{-2}=\frac{z-1}{1}$
D. $\frac{x+1}{1}=\frac{y-2}{-2}=\frac{z=0}{1}$

Answer: b, c, d

- Watch Video Solution

7. Consider the planes $3 x-6 y+2 z+5=0 a n d 4 x-12+3 z=3$. The plane $67 x-162 y+47 z+44=0$ bisects the angel between the given planes which a. contains origin b. is acute c. is obtuse d. none of these
A. contains origin
B. is acute
C. is obtuse
D. none of these
8. If the lines $\frac{x-2}{1}=\frac{y-3}{1}=\frac{z-4}{-k}$ and $\frac{x-1}{k}=\frac{y-4}{2}=\frac{z-5}{1}$ are coplanar, then find the value of k.
A. $\lambda=-1$
B. $\lambda=2$
C. $\lambda=-3$
D. $\lambda=0$

Answer: a,d

Watch Video Solution

9. The equations of the plane which passes through $(0,0,0)$ and which is equally inclined to the planes $x-y+z-3=0 a n d x+y=z+4=0$ is/are a. $y=0$ b. $x=0$ c. $x+y=0$ d. $x+z=0$
A. $y=0$
B. $x=0$
C. $x+y=0$
D. $x+z=0$

Answer: a, c

- Watch Video Solution

10. The x-y plane is rotated about its line of intersection with the y-z plane by 45^{0}, then the equation of the new plane is/are a. $z+x=0 \mathrm{~b}$. $z-y=0$ c. $x+y+z=0$ d. $z-x=0$
A. $z+x=0$
B. $z-y=0$
C. $x+y+z=0$
D. $z-x=0$

- Watch Video Solution

11. The equation of the plane which is equally inclined to the lines $\frac{x-1}{2}=\frac{y}{-2}=\frac{z+2}{-1}$ and $=\frac{x+3}{8}=\frac{y-4}{1}=\frac{z}{-4} \quad$ and \quad passing through the origin is/are a. $14 x-5 y-7 z=0$ b. $2 x+7 y-z=0$ c. $3 x-4 y-z=0$ d. $x+2 y-5 z=0$
A. $14 x-5 y-7 z=0$
B. $2 x+7 y-z=0$
C. $3 x-4 y-z=0$
D. $x+2 y-5 z=0$

Answer: a, b

- Watch Video Solution

12. Which of the following lines lie on the plane $x+2 y-z+4=0$? a. $\frac{x-1}{1}=\frac{y}{-1}=\frac{z-5}{1} \quad$ b. $\quad x-y+z=2 x+y-z=0$
$\hat{r}=2 \hat{i}-\hat{j}+4 \hat{k}+\lambda(3 \hat{i}+\hat{j}+5 \hat{k})$ d. none of these
A. $\frac{x-1}{1}=\frac{y}{-1}=\frac{z-5}{-1}$
B. $x-y+z=2 x+y-z=0$
C. $\vec{r}=2 \hat{i}-\hat{j}+4 \hat{k}+\lambda(3 \hat{i}+\hat{j}+5 \hat{k})$
D. none of these

Answer: a, c

- Watch Video Solution

13. If the volume of tetrahedron $A B C D$ is 1 cubic units, where $A(0,1,2), B(-1,2,1)$ and $C(1,2,1)$, then the locus of point D is a. $x+y-z=3$ b. $y+z=6$ c. $y+z=0$ d. $y+z=-3$
A. $x+y-z=0$
B. $y+x=6$
C. $y+z=0$
D. $y+z=-3$

Answer: b, c

- Watch Video Solution

14. A rod of length 2 units whose one end is $(1,0,-1)$ and other end touches the plane $x-2 y=2 Z+4=0$, then a. the rod sweeps the figure whose volume is b. πc. d. cubic units. e. the area of the region which the rod traces on the plane is $f . g .2 \pi h$. i. j. the length of projection of the rod on the plane is $k . l . \sqrt{m .3 n .} \odot p$. q. units. r. the centre of the region which the rod traces on the plane is s. t. (u. v. w $\frac{.2}{x} .3 y . z ., a a \frac{.2}{b} b .3 c c$. d.,$~-e e \frac{.5}{f} f .3 g g$.hh.ii.) jj. kk.
A. the rod sweeps the figure whose volume is π cubic units.
B. the area of the region which the rod traces on the plane is 2π.
C. the length of projection of the rod on the plane is $\sqrt{3}$ units.
D. the centre of the region which the rod traces on the plane is

$$
\left(\frac{2}{3}, \frac{2}{3}, \frac{-5}{3}\right)
$$

Answer: b

- Watch Video Solution

15. Find the angle between the line $\frac{x-2}{3}=\frac{y-1}{-1}=\frac{z-3}{2}$ and the plane $3 x+4 y+z+5=0$.
A. The volume of the bounded figure by points R and the planes is $(10 / 3 \sqrt{3}) \pi$ cube units.
B. The area of the curved surface formed by the set of points R is
$(20 \pi / \sqrt{6})$ sq. units.
C. The volume of the bounded figure by the set of points R and the planes is $(20 \pi / \sqrt{6})$ cubic units.
D. The area of the curved surface formed by the set of points R is $(10 / \sqrt{3}) \pi$ sq. units.

Answer: b,c

- Watch Video Solution

16. The equation of the line throgh the point \vec{a} parallel to the plane $\vec{r} \cdot \vec{n}=\mathrm{q} \quad$ and \quad perpendicar \rightarrow thel \in evecr=vecb+tveccis (A) vecr=veca+lamda (vecnxxvecc) (B) (vecr-veca) $\mathrm{xx}($ vecn xxvecc$)=0(C)$ vecr=vecb+lamda(vecnxxvecc) ($(\mathrm{D}$) none of these
A. $\vec{r}=\vec{a}+\lambda(\vec{n} \times \vec{c})$
B. $(\vec{r}-\vec{a}) \times(\vec{n} \times \vec{c})=0$
C. $\vec{r}=\vec{b}+\lambda(\vec{n} \times \vec{c})$
D. none of these

Answer: a, d
17. about to only mathematics
A. $\frac{x+1}{1}=\frac{y-2}{-2}=\frac{z-0}{1}$
B. $\frac{x}{1}=\frac{y}{-2}=\frac{z-1}{1}$
C. $\frac{x+1 / 2}{1}=\frac{y-1}{-2}=\frac{z-1 / 2}{1}$
D. $\frac{x-1}{2}=\frac{y+2}{-1}=\frac{z-2}{2}$

Answer: a,b,c

- Watch Video Solution

Exercise (Reasoning Questions)

1.

Statement 1
:
Lines
$\vec{r}=\hat{i}-\hat{j}+\lambda(\hat{i}+\hat{j}-\hat{k})$ and $\vec{r}=2 \hat{i}-\hat{j}+\mu(\hat{i}+\hat{j}-\hat{k})$ do not
intersect.

Statement 2 : Skew lines never intersect.
A. Both the statements are true, and Statement 2 is the correct explanation for Statement 1.
B. Both the Statements are true, but Statement 2 is not the correct explanation for Statement 1.
C. Statement 1 is true and Statement 2 is false.
D. Statement 1 is false and Statement 2 is true.

Answer: b

- Watch Video Solution

2. If $f(x)=2 x+1$ and $g(x)=\frac{x}{2}$, then find $(f o g(x))-(g \circ f(x))$
3. The equation of two straight lines are $\frac{x-1}{2}=\frac{y+3}{1}=\frac{z-2}{-3}$ and $\frac{x-2}{1}=\frac{y-1}{-3}=\frac{z+3}{2}$. Statement 1: the given lines are coplanar. Statement 2 : The equations $2 x_{1}-y_{1}=1, x_{1}+3 y_{1}=4 a n d 3 x-1+2 y_{1}=5$ are consistent.
A. Both the statements are true, and Statement 2 is the correct explanation for Statement 1.
B. Both the Statements are true, but Statement 2 is not the correct explanation for Statement 1.
C. Statement 1 is true and Statement 2 is false.
D. Statement 1 is false and Statement 2 is true.

Answer: d

- Watch Video Solution

4. Statement 1: A plane passes through the point $A(2,1,-3)$. If distance of this plane from origin is maximum, then its equation is $2 x+y-3 z=14$. Statement 2: If the plane passing through the point $A(\vec{a})$ is at maximum distance from origin, then normal to the plane is vector \vec{a}.
A. Both the statements are true, and Statement 2 is the correct explanation for Statement 1.
B. Both the Statements are true, but Statement 2 is not the correct explanation for Statement 1.
C. Statement 1 is true and Statement 2 is false.
D. Statement 1 is false and Statement 2 is true.

Answer: b

- Watch Video Solution

5. Statement 1: Line $\frac{x-1}{1}=\frac{y-0}{2}=\frac{z 2}{-1}$ lies in the plane $2 x-3 y-4 z-10=0$. Statement 2: if line $\vec{r}=\vec{a}+\lambda \vec{b}$ lies in the plane $\vec{r} \vec{c}=n($ wheren is scalar $)$, then $\vec{b} \vec{c}=0$.
A. Both the statements are true, and Statement 2 is the correct explanation for Statement 1.
B. Both the Statements are true, but Statement 2 is not the correct explanation for Statement 1.
C. Statement 1 is true and Statement 2 is false.
D. Statement 1 is false and Statement 2 is true.

Answer: c

- Watch Video Solution

6. Statement 1 : Let θ be the angle between the line $\frac{x-2}{2}=\frac{y-1}{-3}=\frac{z+2}{-2}$ and the plane $x+y-z=5$. Then
$\theta=\sin ^{-1}(1 / \sqrt{51})$. Statement 2: The angle between a straight line and a plane is the complement of the angle between the line and the normal to the plane.
A. Both the statements are true, and Statement 2 is the correct explanation for Statement 1.
B. Both the Statements are true, but Statement 2 is not the correct explanation for Statement 1.
C. Statement 1 is true and Statement 2 is false.
D. Statement 1 is false and Statement 2 is true.

Answer: c

- Watch Video Solution

7. Statement 1: let $A(\vec{i}+\vec{j}+\vec{k}) \operatorname{andB}(\vec{i}-\vec{j}+\vec{k})$ be two points. Then point $P(2 \vec{i}+3 \vec{j}+\vec{k})$ lies exterior to the sphere with $A B$ as its diameter. Statement 2: If $\operatorname{Aand} B$ are any two points and P is a
point in space such that $\vec{P} A \vec{P} B>0$, then point P lies exterior to the sphere with $A B$ as its diameter.
A. Both the statements are true, and Statement 2 is the correct explanation for Statement 1.
B. Both the Statements are true, but Statement 2 is not the correct explanation for Statement 1.
C. Statement 1 is true and Statement 2 is false.
D. Statement 1 is false and Statement 2 is true.

Answer: b

- Watch Video Solution

8. Statement 1: there exists a unique sphere which passes through the three non-collinear points and which has the least radius. Statement 2 :

The centre of such a sphere lies on the plane determined by the given three points.
A. Both the statements are true, and Statement 2 is the correct explanation for Statement 1.
B. Both the Statements are true, but Statement 2 is not the correct explanation for Statement 1.
C. Statement 1 is true and Statement 2 is false.
D. Statement 1 is false and Statement 2 is true.

Answer: c

- Watch Video Solution

9. Statement 1: There exist two points on the $\frac{x-1}{1}=\frac{y}{-1}=\frac{z+2}{2}$ which are at a distance of 2 units from point $(1,2,-4)$ Statement 2 : Perpendicular distance of point $(1,2,-4)$ form the line $\frac{x-1}{1}=\frac{y}{-1}=\frac{z+2}{2}$ is 1 unit.
A. Both the statements are true, and Statement 2 is the correct explanation for Statement 1.
B. Both the Statements are true, but Statement 2 is not the correct explanation for Statement 1.
C. Statement 1 is true and Statement 2 is false.
D. Statement 1 is false and Statement 2 is true.

Answer: b

- Watch Video Solution

10. The shortest distance between the lines
$\frac{x}{-3}=\frac{y-1}{1}=\frac{z+1}{-1}$ and $\frac{x-2}{1}=\frac{y-3}{2}=\left(\frac{z+(13 / 7)}{-1}\right)$ is zero.
Statement 2: The given lines are perpendicular.
A. Both the statements are true, and Statement 2 is the correct explanation for Statement 1.
B. Both the Statements are true, but Statement 2 is not the correct explanation for Statement 1.
C. Statement 1 is true and Statement 2 is false.
D. Statement 1 is false and Statement 2 is true.

Answer: d

- Watch Video Solution

Exercise (Comprehension)

1. Given four points $A(2,1,0), B(1,0,1), C(3,0,1)$ and $D(0,0,2)$.

Point D lies on a line L orthogonal to the plane determined by the points
A, B and C.
The equation of the plane $A B C$ is
A. $x+y+z-3=0$
B. $y+z-1=0$
C. $x+z-1=0$
D. $2 y+z-1=0$

- Watch Video Solution

2. Given four points $A(2,1,0), B(1,0,1), C(3,0,1)$ and $D(0,0,2)$.

Point D lies on a line L orthogonal to the plane determined by the points
A, B and C.
The equation of the line L is
A. $\vec{r}=2 \hat{k}+\lambda(\hat{i}+\hat{k})$
B. $\vec{r}=2 \hat{k}+\lambda(2 \hat{j}+\hat{k})$
C. $\vec{r}=2 \hat{k}+\lambda(\hat{j}+\hat{k})$
D. none

Answer: c

3. Given four points $A(2,1,0), B(1,0,1), C(3,0,1)$ and $D(0,0,2)$. Point D lies on a line L orthogonal to the plane determined by the points A, B and C.
A. $\sqrt{2}$
B. $1 / 2$
C. 2
D. $1 / \sqrt{2}$

Answer: d

- Watch Video Solution

4. A ray of light comes light comes along the line $L=0$ and strikes the plane mirror kept along the plane $\mathrm{P}=0$ at $\mathrm{B} . A(2,1,6)$ is a point on the line $\mathrm{L}=0$ whose image about $\mathrm{P}=0$ is A^{\prime}. It is given that $\mathrm{L}=0$ is $\frac{x-2}{3}=\frac{y-1}{4}=\frac{z-6}{5}$ and $P=0$ is $x+y-2 z=3$.
The coordinates of A^{\prime} are
A. $(6,5,2)$
B. $(6,5,-2)$
C. $(6,-5,2)$
D. none of these

Answer: b

- Watch Video Solution

5. A ray of light comes light comes along the line $L=0$ and strikes the plane mirror kept along the plane $\mathrm{P}=0$ at $\mathrm{B} . A(2,1,6)$ is a point on the line $\mathrm{L}=0$ whose image about $\mathrm{P}=0$ is A^{\prime}. It is given that $\mathrm{L}=0$ is $\frac{x-2}{3}=\frac{y-1}{4}=\frac{z-6}{5}$ and $P=0$ is $x+y-2 z=3$.

The coordinates of B are
A. $(5,10,6)$
B. $(10,15,11)$
C. $(-10,-15,-14)$
D. none of these

Answer: c

- Watch Video Solution

6. A ray of light comes light comes along the line $L=0$ and strikes the plane mirror kept along the plane $\mathrm{P}=0$ at $\mathrm{B} . A(2,1,6)$ is a point on the line $\mathrm{L}=0$ whose image about $\mathrm{P}=0$ is A^{\prime}. It is given that $\mathrm{L}=0$ is $\frac{x-2}{3}=\frac{y-1}{4}=\frac{z-6}{5}$ and $P=0$ is $x+y-2 z=3$.

If $L_{1}=0$ is the reflected ray, then its equation is
A. $\frac{x+10}{4}=\frac{y-5}{4}=\frac{z+2}{3}$
B. $\frac{x+10}{3}=\frac{y+15}{5}=\frac{z+14}{5}$
C. $\frac{x+10}{4}=\frac{y+15}{5}=\frac{z+14}{3}$
D. none of these

Answer: c

7. for what values of p and q the system of equations
$2 x+p y+6 z=8 x+2 y+q z=5, x+y+3 z=4$ has
(i) no solutions
(ii) a unique solution
(iii) infinitely many solution.
A. $p=2, q \neq 3$.
B. $p \neq 2, q \neq 3$
C. $p \neq 2, q=3$
D. $p=2, q=3$

Answer: b

- Watch Video Solution

8. for what values of p and q the system of equations $2 x+p y+6 z=8 x+2 y+q z=5, x+y+3 z=4$ has
(i) no solutions
(ii) a unique solution
(iii) infinitely many solution.
A. $p=2, q \neq 3$.
B. $p \neq 2, q \neq 3$
C. $p \neq 2, q=3$
D. $p=2, q=3$

Answer: c

D Watch Video Solution

9. for what values of p and q the system of equations
$2 x+p y+6 z=8 x+2 y+q z=5, x+y+3 z=4$ has
(i) no solutions
(ii) a unique solution
(iii) infinitely many solution.
A. $p=2, q \in 3$
B. $p \in 2, q \in 3$
C. $p \neq 2, q=3$
D. $p=2, q=3$

Answer: b

- Watch Video Solution

10. Consider a plane $x+y-z=1$ and point $A(1,2,-3)$. A line L has the equation $x=1+3 r, y=2-r$ and $z=3+4 r$.

The coordinate of a point B of line L such that $A B$ is parallel to the plane is
A. $(10,-1,15)$
B. $(-5,4,-5)$
C. $(4,1,7)$
D. $(-8,5,-9)$

D Watch Video Solution

11. Consider a plane $x+y-z=1$ and point $A(1,2,-3)$. A line L has the equation $x=1+3 r, y=2-r$ and $z=3+4 r$. the equation of plane containing line Land point A has the equation $x-3 y+5=0 x+3 y$ $-7=03 x-y-1=03 x+y-5=0$
A. $x-3 y+5=0$
B. $x+3 y-7=0$
C. $3 x-y-1=0$
D. $3 x+y-5=0$

Answer: b

D Watch Video Solution

12. Find the direction cosines of the vector joining the points $A(1,2,-3)$ and $B(-1,-2,3)$ directed from A to B.

- Watch Video Solution

Exercise (Matrix)

1. Find the angle between the vectors $\vec{a}=3 \hat{i}+4 \hat{j}+\hat{k}$ and $\vec{b}=2 \hat{i}+3 \hat{j}-\hat{k}$

- Watch Video Solution

2. Prove that the vectors $\vec{a}=3 \hat{i}+\hat{j}+3 \hat{k}$ and $\vec{b}=\hat{i}-\hat{k}$ are perpendicular.
3. Find the shortest distance between the lines whose vector equations

$$
\begin{aligned}
& \operatorname{are} \vec{r}=(4 \hat{i}-\hat{j})+\lambda(\hat{i}+2 \hat{j}-3 \hat{k}) \\
& \vec{r}=(\hat{i}-\hat{j}+2 \hat{k})+\mu(\hat{i}+4 \hat{j}-5 \hat{k})
\end{aligned}
$$

- Watch Video Solution

4. Prove that the vectors $\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}$ and $\vec{b}=2 \hat{i}-\hat{j}$ are perpendicular.

- Watch Video Solution

5. Match the following Column I to Column II

Column 1	Column II
a. Image of the point ($3,5,7$) in the plane $2 x+y+z=-18$ is	p. $(-1,-1,-1)$
b. The point of intersection of the line $\frac{x-2}{-3}=\frac{y-1}{-2}=\frac{z-3}{2}$ and the plane $2 r+y-z=3$ is	q. $(-21,-7,-5)$
c. The foot of the perpendicular from the point $(1,1,2)$ to the plane $2 x-2 y$ $+4 z+5=0$ is	r. $\left(\frac{5}{2}, \frac{2}{3}, \frac{8}{3}\right)$
d. The intersection point of the lines $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x-4}{5}=\frac{y-1}{2}=z$	s. $\left(-\frac{1}{12}, \frac{25}{12}, \frac{-2}{12}\right)$

Exercise (Numerical)

1. Find the number of sphere of radius r touching the coordinate axes.

- Watch Video Solution

2. Find the distance of the z -axis from the image of the point $M(2-3,3)$ in the plane $x-2 y-z+1=0$.

- Watch Video Solution

3. The length of projection of the line segment joining the points
$(1,0,-1) \operatorname{and}(-1,2,2)$ on the plane $x+3 y-5 z=6$ is equal to a. 2
b. $\sqrt{\frac{271}{53}}$ c. $\sqrt{\frac{472}{31}}$ d. $\sqrt{\frac{474}{35}}$

- Watch Video Solution

4. If the angle between the plane $x-3 y+2 z=1$ and the line $\frac{x-1}{2}=\frac{y-1}{1}=\frac{z-1}{-3} i s \theta$, then the find the value of $\cos e c \theta$.

- Watch Video Solution

5. Let $A_{1}, A_{2}, A_{3}, A_{4}$ be the areas of the triangular faces of a tetrahedron, and $h_{1}, h_{2}, h_{3}, h_{4}$ be the corresponding altitudes of the tetrahedron. If the volume of tetrahedron is $\frac{1}{6}$ cubic units, then find the minimum value of $\left(A_{1}+A_{2}+A_{3}+A_{4}\right)\left(h_{1}+h_{2}+h_{3}+h_{4}\right)$ (in cubic units).

- Watch Video Solution

6. about to only mathematics
A. 4
B. 2
C. 6
D. 8

Answer: C

- Watch Video Solution

7. about to only mathematics

- Watch Video Solution

8. The plane denoted by $P_{1}: 4 x+7 y+4 z+81=0$ is rotated through a right angle about its line of intersection with the plane $P_{2}: 5 x+3 y+10 z=25$. If the plane in its new position is denoted by P, and the distance of this plane from the origin is d , then find the value of $[k / 2]$ (where $[\cdot]$ represents greatest integer less than or equal to k).

- Watch Video Solution

9. Find the distance of the point $(-2,3, \backslash-4)$ from the line $\frac{\mathrm{x}+2}{3}=\frac{2 \mathrm{y}+3}{4}=\frac{3 \mathrm{z}+4}{5}$ measured parallel to the plane $4 x+12 y-3 z+1=0$.

- Watch Video Solution

10. about to only mathematics

- Watch Video Solution

JEE Previous Year

1. (i) Find the equation of the plane passing through the points $(2,1,0),(5,0,1) \operatorname{and}(4,11) \cdot($ ii) If $P s$ the point $(2,1,6)$, then the find the point Q such that $P Q$ is perpendicular to the plane in (i) and the midpoint of $P Q$ lies on it.
2. about to only mathematics

- Watch Video Solution

3. A parallelepiped S has base points $A, B, C a n d D$ and upper face points $A^{\prime}, B^{\prime}, C^{\prime}$, and D^{\prime}. The parallelepiped is compressed by upper face $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ to form a new parallepiped T having upper face points $A, \mathrm{~B}, C \mathrm{an} \mathrm{dD}$. The volume of parallelepiped T is 90 percent of the volume of parallelepiped S. Prove that the locus of A is a plane.

- Watch Video Solution

4. about to only mathematics

- Watch Video Solution

5. A line with positive direction cosines passes through the point $P(2,-1$, 2) and makes equal angles with the coordinate axes. The line meets the plane $2 x+y+z=9$ at point Q. The length of the line segment $P Q$ equals

- Watch Video Solution

6. The value of k such that $\frac{x-4}{1}=\frac{y-2}{1}=\frac{z-k}{2}$ lies in the plane $2 x-4 y=z=7$ is a. 7 b. -7 c. no real value d. 4
A. 7
B. -7
C. no real value
D. 4

Answer: a

- Watch Video Solution

7. If the two lines $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4}$ and $\frac{x-3}{1}=\frac{y-m}{2}=z$ intersect at a point, find the value of m.
A. $3 / 2$
B. $9 / 2$
C. $-2 / 9$
D. $-3 / 2$

Answer: b

- Watch Video Solution

8. about to only mathematics
A. 3
B. 1
C. $1 / 3$
D. 9

- Watch Video Solution

9. A plane passes through ($1,-2,1$) and is perpendicualr to two planes $2 x-2 y+z=0$ and $x-y+2 z=4$, then the distance of the plane from the point $(1,2,2)$ is
A. 0
B. 1
C. $\sqrt{2}$
D. $2 \sqrt{2}$

Answer: d

10. Let $P(3,2,6)$ be a point in space and Q be a point on line $\vec{r}=(\hat{i}-\hat{j}+2 \hat{k})+\mu(-3 \hat{i}+\hat{j}+5 \hat{k})$. Then the value of μ for which the vector $\vec{P} Q$ is parallel to the plane $x-4 y+3 z=1$ is a. $1 / 4 \mathrm{~b} .-1 / 4 \mathrm{c}$. 1/8 d. $-1 / 8$
A. $1 / 4$
B. $-1 / 4$
C. $1 / 8$
D. $-1 / 8$

Answer: a

Watch Video Solution

11. about to only mathematics
A. $x+2 y-2 z=0$
B. $3 x+2 y-2 z=0$
C. $x-2 y+z=0$
D. $5 x+2 y-4 z=0$

Answer: c

- Watch Video Solution

12. If the distance of the point $P(1,-2,1)$ from the plane $x+2 y-2 z=\alpha$, where $\alpha>0, i s 5$, then the foot of the perpendicular from P to the place is a. $\left(\frac{8}{3}, \frac{4}{3},-\frac{7}{3}\right)$ b. $\left(\frac{4}{3},-\frac{4}{3}, \frac{1}{3}\right)$ C. $\left(\frac{1}{3}, \frac{2}{3}, \frac{10}{3}\right)$ d. $\left(\frac{2}{3},-\frac{1}{3},-\frac{5}{3}\right)$
A. $\left(\frac{8}{3}, \frac{4}{3},-\frac{7}{3}\right)$
B. $\left(\frac{4}{3},-\frac{4}{3}, \frac{1}{3}\right)$
C. $\left(\frac{1}{3}, \frac{2}{3}, \frac{10}{3}\right)$
D. $\left(\frac{2}{3},-\frac{1}{3}, \frac{5}{2}\right)$

Answer: a

13. about to only mathematics
A. $\frac{1}{\sqrt{2}}$
B. $\sqrt{2}$
C. 2
D. $2 \sqrt{2}$

Answer: a

- Watch Video Solution

14. about to only mathematics
A. $\frac{x}{5}=\frac{y-1}{8}=\frac{z-2}{-13}$
B. $\frac{x}{2}=\frac{y+1}{3}=\frac{z-2}{-5}$
C. $\frac{x}{4}=\frac{y-1}{3}=\frac{z-2}{-7}$
D. $\frac{x}{2}=\frac{y-1}{-7}=\frac{z-2}{5}$

Answer: d

- Watch Video Solution

15. Two lines $L_{1} x=5, \frac{y}{3-\alpha}=\frac{z}{-2}$ and $L_{2}: x=\alpha \frac{y}{-1}=\frac{z}{2-\alpha}$ are coplanar. Then α can take value (s) a. 1 b. 2 c. 3 d. 4
A. 1
B. 2
C. 3
D. 4

Answer: a, d
16. about to only mathematics
A. $\left(\frac{7}{3}, \frac{7}{3}, \frac{5}{3}\right)$
B. $(-1,-1,0)$
C. $(1,1,1)$
D. $\left(\frac{7}{9}, \frac{7}{9}, \frac{8}{9}\right)$

Answer: b, d

- Watch Video Solution

17. In R^{3} let L be straight line passing through the origin. Suppose that all the points on L are at a constant distance from the two planes $P_{1}: x+2 y-z+1=0$ and $P_{2}: 2 x-y+z-1=0$ Let M be the locus of the feet of the perpendiculars drawn from the points on L to the plane P_{1}. which of the following points lie (s) on M ?
A. $\left(0,-\frac{5}{9},-\frac{2}{3}\right)$
B. $\left(-\frac{1}{6},-\frac{1}{3}, \frac{1}{6}\right)$
C. $\left(-\frac{5}{6}, 0, \frac{1}{6}\right)$
D. $\left(-\frac{1}{3}, 0, \frac{2}{3}\right)$

Answer: a, b

- Watch Video Solution

18. In R_{3}, consider the planes $P_{1}: y=0$ and $P_{2}: x+z=1 . \operatorname{Let} P_{3}$ be a plane, different from P_{1} and P_{2}, which passes through the interesection of P_{1} and P_{2} I fhte distance of the $(0,1,0)$ from p_{3} is 1 and the distance of a point (α, β, γ) from P_{3} is 2 , then which of the following relations is (are) true?
A. $2 \alpha+\beta+2 \gamma+2=0$
B. $2 \alpha-\beta+2 \gamma+4=0$
C. $2 \alpha+\beta-2 \gamma-10=0$
D. $2 \alpha-\beta+2 \gamma-8=0$

- Watch Video Solution

19. Consider the planes $3 x-6 y-2 z=15 a n d 2 x+y-2 z=5$. Statement 1:The parametric equations of the line intersection of the given planes are $x=3+14 t, y=2 t, z=15 t$. Statement 2 : The vector $14 \hat{i}+2 \hat{j}+15 \hat{k}$ is parallel to the line of intersection of the given planes.
A. Both the statements are true, and Statement 2 is the correct explanation for Statement 1.
B. Both the Statements are true, but Statement 2 is not the correct explanation for Statement 1.
C. Statement 1 is true and Statement 2 is false.
D. Statement 1 is false and Statement 2 is true.

Answer: d

20. about to only mathematics
A. Both the statements are true, and Statement 2 is the correct explanation for Statement 1.
B. Both the Statements are true, but Statement 2 is not the correct explanation for Statement 1.
C. Statement 1 is true and Statement 2 is false.
D. Statement 1 is false and Statement 2 is true.

Answer: d

- Watch Video Solution

> 21. Consider $L 1: \frac{x+1}{3}=\frac{y+2}{1}=\frac{z+1}{2}, L 2: \frac{x-2}{1}=\frac{y+2}{2}=\frac{z-3}{3}$ A. $\frac{-\hat{i}+7 \hat{j}+7 \hat{k}}{\sqrt{99}}$
line
B. $\frac{-\hat{i}-7 \hat{j}+5 \hat{k}}{5 \sqrt{3}}$
C. $\frac{-\hat{i}+7 \hat{j}+5 \hat{k}}{5 \sqrt{3}}$
D. $\frac{7 \hat{i}-7 \hat{j}-\hat{k}}{\sqrt{99}}$

Answer: b

- Watch Video Solution

22. Find the direction cosines of the vector $3 \hat{i}+2 \hat{j}+\hat{k}$

- Watch Video Solution

23. If $f(x)=3 x-2$ and $g(x)=2 x+a$ and if $f o g=g \circ f$, then find the value of a

- Watch Video Solution

$a x+b y+c z=0, b x+c y+a z=0$ and $c x+a y+b z=0$.
Match the conditions/expressions in Column I with statements in Column
II.

- Watch Video Solution

25. Let $f: R \rightarrow R: f(x)=x^{2}$ and $g: R \rightarrow R: g(x)=(x+1)$. Show that $(g o f) \neq(f o g)$.

- Watch Video Solution

26. If the distance between the plane $A x 2 y+z=d$ and the plane containing the lines $21 x=32 y=43 z$ and $32 x=43 y=54 z$ is 6 , then $|d|$ is
