©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - CENGAGE

VECTOR ALGEBRA

Solved Examples And Exercises

1. In a trapezium, vector $\vec{B} C=\alpha \vec{A} D$ We will then find that $\vec{p}=\vec{A} C+\vec{B} D$ is collinear with $\vec{A} D$ If $\vec{p}=\mu \vec{A} D$, then which of the following is true? a) $\mu=\alpha+2$ b) $\mu+\alpha=2$ c) $\alpha=\mu+1$ d) $\mu=\alpha+1$

- Watch Video Solution

2. If the vectors $\vec{a} a n d \vec{b}$ are linearly idependent satisfying $(\sqrt{3} \tan \theta+1) \vec{a}+(\sqrt{3} \sec \theta-2) \vec{b}=0$, then the most general values of θ
are \quad a. $\quad n \pi-\frac{\pi}{6}, n \in Z \quad$ b. $\quad 2 n \pi \pm \frac{11 \pi}{6}, n \in Z \quad$ c. $\quad n \pi \pm \frac{\pi}{6}, n \in Z$ d. $2 n \pi+\frac{11 \pi}{6}, n \in Z$

- Watch Video Solution

3. Given three non-zero, non-coplanar vectors \vec{a}, \vec{b}, and $\vec{c} . \vec{r}_{1}=p \vec{a}+q \vec{b}+\vec{c}$ and $\vec{r}_{2}=\vec{a}+p \vec{b}+q \vec{c} \quad$ If the vectors $\vec{r}_{1}+2 \vec{r}_{2}$ and $2 \vec{r}_{1}+\vec{r}_{2}$ are collinear, then (P, q) is a. $(0,0)$ b. $(1,-1)$ c. $(-1,1)$ d. $(1,1)$

- Watch Video Solution

4. Let $\vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3}, \vec{r}_{n}$ be the position vectors of points $P_{1}, P_{2}, P_{3}, P_{n}$ relative to the origin O If the vector equation $a_{1} \vec{r}_{1}+a_{2} \vec{r}_{2}++a_{n} \vec{r}_{n}=0$ hold, then a similar equation will also hold w.r.t. to any other origin provided a. $a_{1}+a_{2}++a_{n}=n$ b. $a_{1}+a_{2}++a_{n}=1$ c. $a_{1}+a_{2}++a_{n}=0$ d. $a_{1}=a_{2}=a_{3}+a_{n}=0$
5. Given three vectors $\vec{a}=6 \hat{i}-3 \hat{j}, \vec{b}=2 \hat{i}-6 \hat{j}$ and $\vec{c}=-2 \hat{i}+21 \hat{j}$ such that $\vec{\alpha}=\vec{a}+\vec{b}+\vec{c}$ Then the resolution of the vector $\vec{\alpha}$ into components with respect to $\vec{a} a n d \vec{b}$ is given by a. $3 \vec{a}-2 \vec{b}$ b. $3 \vec{b}-2 \vec{a}$ c. $2 \vec{a}-3 \vec{b}$ d. $\vec{a}-2 \vec{b}$

- Watch Video Solution

6. Let us define the length of a vector $a \hat{i}+b \hat{j}+c \hat{k} a s|a|+|b|+|c|$ This definition coincides with the usual definition of length of a vector $a \hat{i}+b \hat{j}+c \hat{k}$ is and only if a. $a=b=c=0 \mathrm{~b}$. any two of a, b, andc are zero c. any one of a, b, andc is zero d. $a+b+c=0$

- Watch Video Solution

7. Vectors $\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}, \vec{b}=2 \hat{i}-\hat{j}+\hat{k}$ and $\vec{c}=3 \hat{i}+\hat{j}+4 \hat{k}$, are so placed that the end point of one vector is the starting point of the next vector.

Then the vector are (A) not coplanar (B) coplanar but cannot form a
triangle (C) coplanar and form a triangle (D) coplanar and can form a right angled triangle

- Watch Video Solution

8. The position vectors of the vertices A, B, and C of a triangle are $\hat{i}+\hat{j}, \hat{j}+\hat{k} a n d \hat{i}+\hat{k}$, respectively. Find the unite vector \hat{r} lying in the plane of $A B C$ and perpendicular to $I A$, whereI is the incentre of the triangle.

- Watch Video Solution

9. A ship is sailing towards the north at a speed of $12.5 \mathrm{~m} / \mathrm{s}$. The current is taking it towards the east at the rate of $1 \mathrm{~m} / \mathrm{s}$ and sailor is climbing a vertical pole on the ship at the rate of $0.5 \mathrm{~m} / \mathrm{s}$. Find the velocity of the sailor in space.
10. $A B C D$ is a tetrahedron and O is any point. If the lines joining O to the vertices meet the opposite faces at P, Q, R and S, prove that $\frac{O P}{A P}+\frac{O Q}{B Q}+\frac{O R}{C R}+\frac{O S}{D S}=1$.

- Watch Video Solution

11. A pyramid with vertex at point P has a regular hexagonal base $A B C D E F$, Positive vector of points A and B are \hat{i} and $\hat{i}+2 \hat{j}$ The centre of base has the position vector $\hat{i}+\hat{j}+\sqrt{3} \hat{k}$ Altitude drawn from P on the base meets the diagonal $A D$ at point G find the all possible position vectors of G It is given that the volume of the pyramid is $6 \sqrt{3}$ cubic units and $A P$ is 5 units.

- Watch Video Solution

12. A straight line L cuts the lines $A B$, A Cand $A D$ of a parallelogram $A B C D$
at points $B_{1}, C_{1} a n d D_{1}$, respectively.
$(\vec{A} B)_{1}, \lambda_{1} \vec{A} B,(\vec{A} D)_{1}=\lambda_{2} \vec{A} \operatorname{Dand}(\vec{A} C)_{1}=\lambda_{3} \vec{A} C$, then prove that $\frac{1}{\lambda_{3}}=\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}}$.

- Watch Video Solution

13. A, B, CandD have position vectors $\vec{a}, \vec{b}, \vec{c}$ and \vec{d}, respectively, such that $\vec{a}-\vec{b}=2(\vec{d}-\vec{c})$ Then a. ABandCD bisect each other b. BDandAC bisect each other c . $A B$ andCD trisect each other d. BDandAC trisect each other

- Watch Video Solution

14. If $\vec{a} a n d \vec{b}$ are two unit vectors and θ is the angle between them, then the unit vector along the angular bisector of \vec{a} and \vec{b} will be given by a.
$\frac{\vec{a}-\vec{b}}{\cos (\theta / 2)}$ b. $\frac{\vec{a}+\vec{b}}{2 \cos (\theta / 2)}$ c. $\frac{\vec{a}-\vec{b}}{2 \cos (\theta / 2)}$ d. none of these

- Watch Video Solution

15. $A B C D$ is a quadrilateral. E is the point of intersection of the line joining the midpoints of the opposite sides. If O is any point and $\vec{O} A+\vec{O} B+\vec{O} C+\vec{O} D=x \vec{O} E$, thenx is equal to a. 3 b .9 c .7 d .4

- Watch Video Solution

16. If vectors $\vec{A} B=-3 \hat{i}+4 \hat{k} a n d \vec{A} C=5 \hat{i}-2 \hat{j}+4 \hat{k}$ are the sides of a Delta $A B C$, then the length of the median through Ais a. $\sqrt{14} \mathrm{~b} . \sqrt{18} \mathrm{c}$. $\sqrt{29}$ d. $\sqrt{5}$

- Watch Video Solution

17. $A B C D$ parallelogram, and $A_{1} a n d B_{1}$ are the midpoints of sides $B C$ andCD, respectivley . If $\vec{\forall}_{1}+\vec{A} B_{1}=\lambda \vec{A} C$, then λ is equal to a. $\frac{1}{2}$ b. 1 c. $\frac{3}{2}$ d. 2 e. $\frac{2}{3}$
18. The position vectors of the points PandQ with respect to the origin O are $\vec{a}=\hat{i}+3 \hat{j}-2 \hat{k}$ and $\vec{b}=3 \hat{i}-\hat{j}-2 \hat{k}$, respectively. If M is a point on $P Q$, such that $O M$ is the bisector of $\angle P O Q$, then $\overrightarrow{O M}$ is a. $2(\hat{i}-\hat{j}+\hat{k}) \mathrm{b}$. $2 \hat{i}+\hat{j}-2 \hat{k} .2(-\hat{i}+\hat{j}-\hat{k})$ d. $2(\hat{i}+\hat{j}+\hat{k})$

- Watch Video Solution

19. If G is the centroid of a triangle ABC , prove that $\overrightarrow{G A}+\overrightarrow{G B}+\overrightarrow{G C}=\overrightarrow{0}$.

- Watch Video Solution

20. If $|\vec{a}+\vec{b}|<|\vec{a}-\vec{b}|$, then the angle between $\vec{a} a n d \vec{b}$ can lie in the interval a. $(\pi / 2, \pi / 2)$ b. $(0, \pi)$ c. $(\pi / 2,3 \pi / 2)$ d. $(0,2 \pi)$

- Watch Video Solution

21. ' I ' is the incentre of triangle $A B C$ whose corresponding sides are a, b, c, rspectively. $a \vec{I} A+b \vec{I} B+c \vec{I} C$ is always equal to $a . \overrightarrow{0} b$. $(a+b+c) \vec{B} C$ c. $(\vec{a}+\vec{b}+\vec{c}) \vec{A} C$ d. $(a+b+c) \vec{A} B$

- Watch Video Solution

22. Let $x^{2}+3 y^{2}=3$ be the equation of an ellipse in the $x-y$ plane. AandB are two points whose position vectors are $-\sqrt{3} \hat{i}$ and $-\sqrt{3} \hat{i}+2 \hat{k}$ Then the position vector of a point P on the ellipse such that $\angle A P B=\pi / 4$ is $\mathrm{a} . \pm \hat{j}$ b. $\pm(\hat{i}+\hat{j})$ c. $\pm \hat{i}$ d. none of these

- Watch Video Solution

23. If \vec{x} and \vec{y} are two non-collinear vectors and $A B C$ isa triangle with side lengths $a, b, a n d c$ satisfying
$(20 a-15 b) \vec{x}+(15 b-12 c) \vec{y}+(12 c-20 a)(\vec{x} x \vec{y})=0$, then triangle $A B C$ is
a. an acute-angled triangle b. an obtuse-angled triangle c. a right-angled triangle d. an isosceles triangle

- Watch Video Solution

24. If $\hat{i}-3 \hat{j}+5 \hat{k}$ bisects the angle between $\hat{a} a n d-\hat{i}+2 \hat{j}+2 \hat{k}$, whereâ is a unit vector, then a. $\hat{a}=\frac{1}{105}(41 \hat{i}+88 \hat{j}-40 \hat{k})$ b. $\hat{a}=\frac{1}{105}(41 \hat{i}+88 \hat{j}+40 \hat{k})$
c. $\hat{a}=\frac{1}{105}(-41 \hat{i}+88 \hat{j}-40 \hat{k})$ d. $\hat{a}=\frac{1}{105}(41 \hat{i}-88 \hat{j}-40 \hat{k})$

- Watch Video Solution

25. If $4 \hat{i}+7 \hat{j}+8 \hat{k}, 2 \hat{i}+3 \hat{j}+24 a n d 2 \hat{i}+5 \hat{j}+7 \hat{k}$ are the position vectors of the vertices A, BandC, respectively, of triangle $A B C$, then the position vecrtor of the point where the bisector of angle A meets $B C$ is a. $\frac{2}{3}(-6 \hat{i}-8 \hat{j}-\hat{k})$ b. $\frac{2}{3}(6 \hat{i}+8 \hat{j}+6 \hat{k})$ c. $\frac{1}{3}(6 \hat{i}+13 \hat{j}+18 \hat{k})$ d. $\frac{1}{3}(5 \hat{j}+12 \hat{k})$

- Watch Video Solution

26. If \vec{b} is a vector whose initial point divides thejoin of $5 \hat{i} a n d 5 \hat{j}$ in the ratio $k: 1$ and whose terminal point is the origin and $|\vec{b}| \leq \sqrt{37}$, thenk lies in the interval a. $[-6,-1 / 6]$ b. $(-\infty,-6] \cup[-1 / 6, \infty)$ c. $[0,6]$ d. none of these

- Watch Video Solution

27. Find the value of λ so that the points P, Q, R and S on the sides $O A, O B, O C$ and $A B$, respectively, of a regular tetrahedron $O A B C$ are coplanar. It is given that $\frac{O P}{O A}=\frac{1}{3}, \frac{O Q}{O B}=\frac{1}{2}, \frac{O R}{O C}=\frac{1}{3}$ and $\frac{O S}{A B}=\lambda$.
$\lambda=\frac{1}{2}$ (B) $\lambda=-1$ (C) $\lambda=0$ (D) for no value of λ

- Watch Video Solution

28. A uni-modular tangent vector on the curve

$$
\begin{aligned}
& x=t^{2}+2, y=4 t-5, z=2 t^{2}-6 t=2 \text { is a. } \frac{1}{3}(2 \hat{i}+2 \hat{j}+\hat{k}) \text { b. } \frac{1}{3}(\hat{i}-\hat{j}-\hat{k}) \text { c. } \\
& \frac{1}{6}(2 \hat{i}+\hat{j}+\hat{k}) \text { d. } \frac{2}{3}(\hat{i}+\hat{j}+\hat{k})
\end{aligned}
$$

29. If \vec{x} and \vec{y} are two non-collinear vectors and a, b, and c represent the sides of a $A B C$ satisfying $(a-b) \vec{x}+(b-c) \vec{y}+(c-a)(\vec{x} x \vec{y})=0$, then $A B C$ is (where $\vec{x} x \vec{y}$ is perpendicular to the plane of xandy) a. an acute-angled triangle b. an obtuse-angled triangle c. a right-angled triangle d. a scalene triangle

- Watch Video Solution

30. The position vectors of points $A a n d B$ w.r.t. the origin are $\vec{a}=\hat{i}+3 \hat{j}-2 \hat{k}, \quad \vec{b}=3 \hat{i}+\hat{j}-2 \hat{k}$ respectively. Determine vector $\vec{O} P$ which bisects angle $A O B$, where P is a point on $A B$

- Watch Video Solution

31. What is the unit vector parallel to $\vec{a}=3 \hat{i}+4 \hat{j}-2 \hat{k}$? What vector should be added to \vec{a} so that the resultant is the unit vector \hat{i} ?

- Watch Video Solution

32. $A B C D$ is a quadrilateral and E is the point of intersection of the lines joining the middle points of opposite side. Show that the resultant
of $\quad \overrightarrow{O A}, \quad \overrightarrow{O B}, \quad \overrightarrow{O C}$ and $\quad \overrightarrow{O D}=4 \quad \overrightarrow{O E}$
where O is any point.

- Watch Video Solution

33. $A B C D$ is a parallelogram. If LandM are the mid-points of BCandDC respectively, then express $\vec{A} L a n d \vec{A} M$ in terms of $\vec{A} B a n d \vec{A} D$. Also, prove that $\vec{A} L+\vec{A} M=\frac{3}{2} \vec{A} C$

- Watch Video Solution

34. If $\vec{a}, \vec{b}, \vec{c} a n d \vec{d}$ are four vectors in three-dimensional space with the same initial point and such that $3 \vec{a}-2 \vec{b}+\vec{c}-2 \vec{d}=0$, show that terminals $A, B, C a n d D$ of these vectors are coplanar. Find the point at which ACandBD meet. Find the ratio in which P divides $A C a n d B D$

- Watch Video Solution

35. Find the vector of magnitude 3, bisecting the angle between the vectors $\vec{a}=2 \hat{i}+\hat{j}-\hat{k}$ and $\vec{b}=\hat{i}-2 \hat{j}+\hat{k}$

- Watch Video Solution

36. If $\vec{a} a n d \vec{b}$ are two vectors of magnitude 1 inclined at 120°, then find the angle between \vec{b} and $\vec{b}-\vec{a}$

- Watch Video Solution

37. If $\vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3}$ are the position vectors of the collinear points and scalar pandq exist such that $\vec{r}_{3}=p \vec{r}_{1}+q \vec{r}_{2}$, then show that $p+q=1$.

Watch Video Solution

38. Show that the vectors $2 \vec{a}-\vec{b}+3 \vec{c}, \vec{a}+\vec{b}-2 \vec{c} a n d \vec{a}+\vec{b}-3 \vec{c}$ are noncoplanar vectors (where $\vec{a}, \vec{b}, \vec{c}$ are non-coplanar vectors)

- Watch Video Solution

39. Let $\vec{a}, \vec{b} a n d \vec{c}$ be three units vectors such that $2 \vec{a}+4 \vec{b}+5 \vec{c}=0$. Then which of the following statement is true? a. \vec{a} is parallel to \vec{b} b. \vec{a} is perpendicular to \vec{b} c. \vec{a} is neither parallel nor perpendicular to \vec{b} d. none of these

- Watch Video Solution

40. Four non -zero vectors will always be a. linearly dependent
b. linearly independent
c. either a or b
d. none of
these

- Watch Video Solution

41. A boat moves in still water with a velocity which is k times less than the river flow velocity. Find the angle to the stream direction at which the boat should be rowed to minimize drifting.

- Watch Video Solution

42. In a triangle $P Q R$, SandT are points on $Q R a n d P R$, respectively, such that $Q S=3 S R a n d P T=4 T R$ Let M be the point of intersection of PSandQT Determine the ratio $Q M$: $M T$ using the vector method .
43. In a quadrilateral $P Q R S, \vec{P} Q=\vec{a}, \vec{Q} R, \vec{b}, \vec{S} P=\vec{a}-\vec{b}, M$ is the midpoint of \vec{Q} Rand X is a point on $S M$ such that $S X=\frac{4}{5} S M$ Prove that $P, X a n d R$ are collinear.

Watch Video Solution

44. If D, EandF are three points on the sides $B C, C A a n d A B$, respectively, of a triangle $A B C$ such that the $\frac{B D}{C D}, \frac{C E}{A E}, \frac{A F}{B F}=-1$

- Watch Video Solution

45. Sow that $x_{1} \hat{i}+y_{1} \hat{j}+z_{1} \hat{k}, x_{2} \hat{i}+y_{2} \hat{j}+z_{2} \hat{k}$, and $x_{3} \hat{i}+y_{3} \hat{j}+z_{3} \hat{k}$, are noncoplanar if $\left|x_{1}\right|>\left|y_{1}\right|+\left|z_{1}\right|,\left|y_{2}\right|>\left|x_{2}\right|+\left|z_{2}\right|$ and $\left|z_{3}\right|>\left|x_{3}\right|+\left|y_{3}\right|$.

- Watch Video Solution

46. The position vector of the points PandQ are $5 \hat{i}+7 \hat{j}-2 \hat{k}$ and $-3 \hat{i}+3 \hat{j}+6 \hat{k}$, respectively. Vector $\vec{A}=3 \hat{i}-\hat{j}+\hat{k}$ passes through point P and vector $\vec{B}=-3 \hat{i}+2 \hat{j}+4 \hat{k}$ passes through point Q. A third vector $2 \hat{i}+7 \hat{j}-5 \hat{k}$ intersects vectors AandB Find the position vectors of points of intersection.

- Watch Video Solution

47. Consider
the vectors
$\hat{i}+\cos (\beta-\alpha) \hat{j}+\cos (\gamma-\alpha) \hat{k}, \cos (\alpha-\beta) \hat{i}+\hat{j}+\cos (\gamma-\beta) \hat{k} a n d \cos (\alpha-\gamma) \hat{i}+\cos (\beta-\gamma) \hat{k}$
where α, β, and γ are different angles. If these vectors are coplanar, show that a is independent of α, β and γ

- Watch Video Solution

48. If $\vec{A} n d \vec{B}$ are two vectors and k any scalar quantity greater than zero,
then prove that $|\vec{A}+\vec{B}|^{2} \leq(1+k)|\vec{A}|^{2}+\left(1+\frac{1}{k}\right)|\vec{B}|^{2}$

- Watch Video Solution

49.

The
$x \hat{i}+(x+1) \hat{j}+(x+2) \hat{k},(x+3) \hat{i}+(x+4) \hat{j}+(x+5) \hat{k} \operatorname{and}(x+6) \hat{i}+(x+7) \hat{j}+(x+8$ are coplanar if x is equal to a. 1 b. -3 c. 4 d. 0

- Watch Video Solution

50. \vec{A} isa vector with direction cosines $\cos \alpha, \cos \beta a n d \cos \gamma$ Assuming the $y-z$ plane as a mirror, the directin cosines of the reflected image of \vec{A} in the plane are a. $\cos \alpha, \cos \beta, \cos \gamma$ b. $\cos \alpha,-\cos \beta, \cos \gamma$ c. $-\cos \alpha, \cos \beta, \cos \gamma \mathrm{d}$. $-\cos \alpha,-\cos \beta,-\cos \gamma$

- Watch Video Solution

51. The vector \vec{a} has the components $2 p$ and 1 w.r.t. a rectangular

Cartesian system. This system is rotated through a certain angel about
the origin in the counterclockwise sense. If, with respect to a new system, \vec{a} has components $(p+1)$ and 1 , then p is equal to a. -4 b. $-1 / 3 \mathrm{c} .1 \mathrm{~d} .2$

- Watch Video Solution

52. The sides of a parallelogram are $2 \hat{i}+4 \hat{j}-5 \hat{k}$ and $\hat{i}+2 \hat{j}+3 \hat{k}$. The unit vector parallel to one of the diagonals is a. $\frac{1}{7}(3 \hat{i}+6 \hat{j}-2 \hat{k})$ b. $\frac{1}{7}(3 \hat{i}-6 \hat{j}-2 \hat{k})$ c. $\frac{1}{\sqrt{69}}(\hat{i}+6 \hat{j}+8 \hat{k})$ d. $\frac{1}{\sqrt{69}}(-\hat{i}-2 \hat{j}+8 \hat{k})$

- Watch Video Solution

53. If $\vec{a}, \vec{b}, \vec{c}$ are non-coplanar vector and λ is a real number, then the vectors $\vec{a}+2 \vec{b}+3 \vec{c}, \lambda \vec{b}+\mu \vec{c}$ and $(2 \lambda-1) \vec{c}$ are coplanar when a. $\mu \in R$ b. $\lambda=\frac{1}{2} c . \lambda=0 \mathrm{~d}$. no value of λ

- Watch Video Solution

54. If points $\hat{i}+\hat{j}, \hat{i}-\hat{j}$ andp $\hat{i}+q \hat{j}+r \hat{k}$ are collinear, then a. $p=1 \mathrm{~b} . r=0 \mathrm{c}$. $q R$ d. $q \neq 1$

Watch Video Solution

55. If the vectors $\hat{i}-\hat{j}, \hat{j}+\hat{k}$ and \vec{a} form a triangle, then \vec{a} may be a. $-\hat{i}-\hat{k} \mathrm{~b}$. $\hat{i}-2 \hat{j}-\hat{k} c .2 \hat{i}+\hat{j}+\hat{k} \mathrm{~d} . \hat{i}+\hat{k}$

- Watch Video Solution

56. If the resultant of three forces $\vec{F}_{1}=p \hat{i}+3 \hat{j}-\hat{k}, \vec{F}_{2}=6 \hat{i}-\hat{k} a n d \vec{F}_{3}=-5 \hat{i}+\hat{j}+2 \hat{k}$ acting on a parricle has magnitude equal to 5 units, then the value of p is a. -6 b. -4 c. 2 d. 4

- Watch Video Solution

57. $\vec{a}, \vec{b}, \vec{c}$ are three coplanar unit vectors such that $\vec{a}+\vec{b}+\vec{c}=0$. If three vectors \vec{p}, \vec{q}, and \vec{r} are parallel to \vec{a}, \vec{b}, and \vec{c}, respectively, and have integral but different magnitudes, then among the following options, $|\vec{p}+\vec{q}+\vec{r}|$ can take a value equal to a. 1 b. 0 c. $\sqrt{3}$ d. 2

- Watch Video Solution

58. The vector $\hat{i}+x \hat{j}+3 \hat{k}$ is rotated through an angle θ and doubled in
magnitude, then it becomes $4 \hat{i}+(4 x-2) \hat{j}+2 \hat{k}$. Then value of x are $-\frac{2}{3}$ (b) $\frac{1}{3}$ (c) $\frac{2}{3}$ (d) 2

- Watch Video Solution

59. Prove that point $\hat{i}+2 \hat{j}-3 \hat{k}, 2 \hat{i}-\hat{j}+\hat{k}$ and $2 \hat{i}+5 \hat{j}-\hat{k}$ from a triangle in space.

- Watch Video Solution

60. Show that the points A, B and C with position vectors $\vec{a}=3 \hat{i}-4 \hat{j}-4 \hat{k}$, $\vec{b}=2 \hat{i}-\hat{j}+\hat{k}$ and $\vec{c}=\hat{i}-3 \hat{j}-5 \hat{k}$, respectively form the vertices of a right angled triangle.

- Watch Video Solution

61. If $2 \vec{A} C=3 \vec{C} B$, then prove that $2 \vec{O} A=3 \vec{C} B$ then prove that $2 \vec{O} A+3 \vec{O} B$
$=5 \vec{O} C$ where O is the origin.

- Watch Video Solution

62. Find the unit vector in the direction of vector $P Q$, where P and Q are the points $(1,2,3)$ and $(4,5,6)$ respectively.

- Watch Video Solution

63. For given vectors $\vec{a}=2 \hat{i}-\hat{j}+2 \hat{k}$ and $\vec{b}=-\hat{i}+\hat{j}-\hat{k}$, find the unit vector in the direction of the vector $\vec{a}+\vec{b}$.

- Watch Video Solution

64. If the projections of vector \vec{a} on $x-y$ - and z-axes are 2,1 and 2 units ,respectively, find the angle at which vector \vec{a} is inclined to the z-axis.

- Watch Video Solution

65. Find a vector in the direction of the vector $5 \hat{i}+\hat{j}-2 \hat{k}$ which has magnitude 6 units.

- Watch Video Solution

66. If $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ respectively are the position vectors representing the vertices A, B, C, D of a parallelogram then write \vec{d} in terms of \vec{a}, \vec{b} and \vec{c}
67. Show that the four points (6,-7,0),(16,-19,-4),(0,3,-6),(2,-5,10) lie on a same plane.

- Watch Video Solution

68. Statement 1: The direction cosines of one of the angular bisectors of two intersecting line having direction cosines as l_{1}, m_{1}, n_{1} andl $_{2}, m_{2}, n_{2}$ are proportional to $l_{1}+l_{2}, m_{1}+m_{2}, n_{1}+n_{2}$

Statement 2: The angle between the two intersection lines having direction cosines as l_{1}, m_{1}, n_{1} andl $_{2}, m_{2}, n_{2}$ is given by $\cos \theta=l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}$
(a) Statement 1 and Statement 2, both are correct. Statement 2 is the correct explanation for Statement 1.
(a) Statement 1 and Statement 2, both are correct. Statement 2 is not the correct explanation for Statement 1.
(c) Statement 1 is correct but Statement 2 is not correct.
(d) Statement 2 is correct but Statement 1 is not correct.

- Watch Video Solution

69. Statement 1: In Delta $A B C, \vec{A} B+\vec{B} C+\vec{C} A=0$ Statement 2: If $\vec{O} A=\vec{a}, \vec{O} B=\vec{b}$, then $\vec{A} B=\vec{a}+\vec{b}$

- Watch Video Solution

70. Statement 1: If $\vec{u} a n d \vec{v}$ are unit vectors inclined at an angle $\alpha a n d \vec{x}$ is a unit vector bisecting the angle between them, then
$\vec{x}=(\vec{u}+\vec{v}) /(2 \sin (\alpha / 2)$ Statement 2: If DeltaABC is an isosceles triangle with $A B=A C=1$, then the vector representing the bisector of angel A is given by $\vec{A} D=(\vec{A} B+\vec{A} C) / 2$.
71. A vector has components p and 1 with respect to a rectangular Cartesian system. The axes are rotted through an angel α about the origin the anticlockwise sense. Statement 1: IF the vector has component $p+2$ and 1 with respect to the new system, then $p=-1$. Statement 2 : Magnitude of the original vector and new vector remains the same.

- Watch Video Solution

72. Let $A B C$ be a triangle, the position vectors of whose vertices are
$7 \hat{j}+10 \hat{k},-\hat{i}+6 \hat{j}+6 \hat{k}$ and $-4 \hat{i}+9 \hat{j}+6 \hat{k}$ ThenDelta $A B C$ is a. isosceles b. equilateral c. right angled d. none of these

- Watch Video Solution

73. If non-zero vectors $\vec{a} a n d \vec{b}$ are equally inclined to coplanar vector
\vec{c}, then \vec{c} can be a. $\frac{|\vec{a}|}{|\vec{a}|+2|\vec{b}|} a+\frac{|\vec{b}|}{|\vec{a}|+|\vec{b}|} \vec{b}$ b. $\frac{|\vec{b}|}{|\vec{a}|+|\vec{b}|} a+\frac{|\vec{a}|}{|\vec{a}|+|\vec{b}|} \vec{b}$ c.
$\frac{|\vec{a}|}{|\vec{a}|+2|\vec{b}|} a+\frac{|\vec{b}|}{|\vec{a}|+2|\vec{b}|} \vec{b}$ d. $\frac{|\vec{b}|}{2|\vec{a}|+|\vec{b}|} a+\frac{|\vec{a}|}{2|\vec{a}|+|\vec{b}|} \vec{b}$

- Watch Video Solution

74. If $A(-4,0,3) \operatorname{andB}(14,2,-5)$, then which one of the following points lie on the bisector of the angle between $\vec{O} A a n d \vec{O} B(O$ is the origin of reference)? a. $(2,2,4)$ b. $(2,11,5)$ c. $(-3,-3,-6)$ d. $(1,1,2)$

- Watch Video Solution

75. Prove that the sum of three vectors determined by the medians of a triangle directed from the vertices is zero.

- Watch Video Solution

76. Prove that the resultant of two forces acting at point O and represented by $\vec{O} B$ and $\vec{O} C$ is given by $2 \vec{O} D$, where D is the midpoint of

D Watch Video Solution

77. Two forces $\vec{A} B$ and $\vec{A} D$ are acting at vertex A of a quadrilateral $A B C D$ and two forces $\vec{C} B$ and $\vec{C} D$ at C prove that their resultant is given by $4 \vec{E} F$, where E and F are the midpoints of $A C$ and $B D$, respectively.

- Watch Video Solution

78. $A B C$ is a triangle and P any point on $B C$. if $\vec{P} Q$ is the sum of $\vec{A} P+\vec{P} B+$ $\vec{P} C$, show that ABPQ is a parallelogram and Q, therefore, is a fixed point.

- Watch Video Solution

79. If vector $\vec{a}+\vec{b}$ bisects the angle between \vec{a} and \vec{b}, then prove that $|\vec{a}|$ $=|\vec{b}|$.
80. ABCDE is a pentagon .prove that the resultant of force $\vec{A} B, \vec{A} E, \vec{B} C$, $\vec{D} C, \vec{E} D$ and $\vec{A} C$, is $3 \vec{A} C$.

- Watch Video Solution

81. if $\vec{A} o+\vec{O} B=\vec{B} O+\vec{O} C$, than prove that B is the midpoint of $A C$.

- Watch Video Solution

82. If the resultant of three forces
$\vec{F}_{1}=p \hat{i}+3 \hat{j}-\hat{k}, \vec{F}_{2}=6 \hat{i}-\hat{k}$ and $\vec{F}_{3}=-5 \hat{i}+\hat{j}+2 \hat{k}$ acting on a parricle has magnitude equal to 5 units, then the value of p is a. -6 b. -4 c .2 d. 4

- Watch Video Solution

83. Statement 1: Let $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} be the position vectors of four points A, B, CandD and $3 \vec{a}-2 \vec{b}+5 \vec{c}-6 \vec{d}=0$. Then points A, B, C, andD are coplanar. Statement 2: Three non-zero, linearly dependent coinitial vector $(\vec{P} Q, \vec{P}$ Rand $\vec{P} S$) are coplanar. Then $\vec{P} Q=\lambda \vec{P} R+\mu \vec{P} S$, where λ and μ are scalars.

- Watch Video Solution

84. Statement 1:Let $A(\vec{a}), B(\vec{b}) a n d C(\vec{c})$ be three points such that $\vec{a}=2 \hat{i}+\hat{k}, \vec{b}=3 \hat{i}-\hat{j}+3 \hat{k} a n d \vec{c}=-\hat{i}+7 \hat{j}-5 \hat{k}$ Then $O A B C$ is a tetrahedron. Statement 2: Let $A(\vec{a}), B(\vec{b}) a n d C(\vec{c})$ be three points such that vectors \vec{a}, \vec{b} and \vec{c} are non-coplanar. Then $O A B C$ is a tetrahedron where O is the origin.

- Watch Video Solution

85. Statement 1: $\vec{a}=3 \vec{i}+p \vec{j}+3 \vec{k}$ and $\vec{b}=2 \vec{i}+3 \vec{j}+q \vec{k}$ are parallel vectors if $p=9 / 2 a n d q=2 . \quad$ Statement $2: \quad$ if
$\vec{a}=a_{1} \vec{i}+a_{2} \vec{j}+a_{3} \vec{k}$ and $\vec{b}=b_{1} \vec{i}+b_{2} \vec{j}+b_{3} \vec{k} \quad$ are parallel, then $\frac{a_{1}}{b_{1}}=\frac{a_{2}}{b_{2}}=\frac{a_{3}}{b_{3}}$.

- Watch Video Solution

86. The position vectors of the vertices A, BandC of a triangle are three unit vectors \vec{a}, \vec{b}, and \vec{c}, respectively. A vector \vec{d} is such that $\vec{d} \vec{a}=\vec{d} \vec{b}=\vec{d} \vec{c}$ and $\vec{d}=\lambda(\vec{b}+\vec{c})$ Then triangle $A B C$ is a. acute angled b . obtuse angled c. right angled d. none of these

- Watch Video Solution

87. a and b form the consecutive sides of a regular hexagon $A B C D E F$

Column I, Column II If $\vec{C} D=x \vec{a}+y \vec{b}$, then, p. $x=-2$ If $\vec{C} E=x \vec{a}+y \vec{b}$,
then, q $x=-1$ If $\vec{A} E=x \vec{a}+y \vec{b}$, then, r. $y=1 \vec{A} D=-x \vec{b}$, then, s. $y=2$

- Watch Video Solution

88. Statement $1: \quad|\vec{a}|=3,|\vec{b}|=$ 4and $|\vec{a}+\vec{b}|=5$, then $|\vec{a}-\vec{b}|=5$.

Statement 2: The length of the diagonals of a rectangle is the same.

- Watch Video Solution

89. If $\vec{a}=7 \hat{i}-4 \hat{k} a n d \vec{b}=-2 \hat{i}-\hat{j}+2 \hat{k}$, determine vector \vec{c} along the internal bisector of the angle between of the angle between vectors \vec{a} and \vec{b} suchthat $|\vec{c}|=5 \sqrt{6}$

- Watch Video Solution

90. Find a unit vector \vec{c} if $\overrightarrow{-i}+\vec{j}-\vec{k}$ bisects the angle between \vec{c} and $3 \vec{i}+4 \vec{j}$.
91. The vectors $2 i+3 \hat{j}, 5 \hat{i}+6 \hat{j}$ and $8 \hat{i}+\lambda \hat{j}$ have initial points at (1,1). Find the value of λ so that the vectors terminate on one straight line.

- Watch Video Solution

92. If \vec{a}, \vec{b} and \vec{c} are three non-zero vectors, no two of which ar collinear, $\vec{a}+2 \vec{b}$ is collinear with \vec{c} and $\vec{b}+3 \vec{c}$ is collinear with \vec{a}, then find the value of $|\vec{a}+2 \vec{b}+6 \vec{c}|$

- Watch Video Solution

93. Check whether the given three vectors are coplanar or non-coplanar.
$-2 \hat{i}-2 \hat{j}+4 \hat{k},-2 \hat{i}+4 \hat{j}, 4 \hat{i}-2 \hat{j}-2 \hat{k}$

- Watch Video Solution

94. Prove that the four points $6 \hat{i}-7 \hat{j}, 16 \hat{i}-19 \hat{j}-4 \hat{k}, 3 \hat{j}-6 \hat{k} a n d 2 \hat{i}+5 \hat{j}+10 \hat{5}$ form a tetrahedron in space.

- Watch Video Solution

95. If \vec{a} and \vec{b} are two non-collinear vectors, show that points
$l_{1} \vec{a}+m_{1} \vec{b}, l_{2} \vec{a}+m_{2} \vec{b} \quad$ and $\quad l_{3} \vec{a}+m_{3} \vec{b} \quad$ are collinear if $\left|l_{1} l_{2} l_{3} m_{1} m_{2} m_{3} 111\right|=0$.

- Watch Video Solution

96. Show, by vector methods, that the angularbisectors of a triangle are concurrent and find an expression for the position vector of the point of concurrency in terms of the position vectors of the vertices.

- Watch Video Solution

97. Find the least positive integral value of x for which the angel between vectors $\vec{a}=x \hat{i}-3 \hat{j}-\hat{k}$ and $\vec{b}=2 x \hat{i}+x \hat{j}-\hat{k}$ is acute.

D Watch Video Solution

98. If vectors $\vec{a}=\hat{i}+2 \hat{j}-\hat{k}, \vec{b}=2 \hat{i}-\hat{j}+\hat{k}$ and $\vec{c}=$ lambdai $+\hat{j}+2 \hat{k}$ are coplanar, then find the value of $(\lambda-4)$

- Watch Video Solution

99. Find the values of λ such that $x, y, z \neq(0,0,0)$ and $(\hat{i}+\hat{j}+3 \hat{k}) x+(3 \hat{i}-3 \hat{j}+\hat{k}) y+(-4 \hat{i}+5 \hat{j}) z=\lambda(x \hat{i}+y \hat{j}+z \hat{k}$, where $\hat{i}, \hat{j}, \hat{k}$ are unit vector along coordinate axes.

- Watch Video Solution

100. A vector has component $A_{1}, A_{2} a n d A_{3}$ in a right -handed rectangular

Cartesian coordinate system $O X Y Z$ The coordinate system is rotated about the x-axis through an angel $\pi / 2$. Find the component of A in the new coordinate system in terms of A_{1}, A_{2}, and A_{3}

(Watch Video Solution

101. Let $O A C B$ be a parallelogram with O at the origin and $O C$ a diagonal.

Let D be the midpoint of $O A$ using vector methods prove that $B D a n d C O$ intersect in the same ratio. Determine this ratio.

- Watch Video Solution

102. In a triangle $A B C$, DandE are points on $B C a n d A C$, respectivley, such that $B D=2 D C a n d A E=3 E C$ Let P be the point of intersection of
$A D a n d B E$ Find $B P / P E$ using the vector method.
103. The axes of coordinates are rotated about the z-axis though an angle of $\pi / 4$ in the anticlockwise direction and the components of a vector are $2 \sqrt{2}, 3 \sqrt{2}, 4$. Prove that the components of the same vector in the original system are -1,5,4.

(Watch Video Solution

104. If $a^{\rightarrow}, b^{\rightarrow}$ are the vectors forming consecutive sides of a regular hexagon $A B C D E F$, then the vector representing side $C D$ is

- Watch Video Solution

105. If two side of a triangle are $\hat{i}+2 \hat{j} a n d \hat{i}+\hat{k}$, then find the length of the third side.

- Watch Video Solution

106. If in parallelogram $A B C D$, diagonal vectors are $\vec{A} C=2 \hat{i}+3 \hat{j}+4 \hat{k}$ and $\vec{B} D=-6 \hat{i}+7 \hat{j}-2 \hat{k}$, then find the adjacent side vectors $\vec{A} B$ and $\vec{A} D$

- Watch Video Solution

107. Check whether the three vectors $2 \hat{i}+2 \hat{j}+3 \hat{k},-3 \hat{i}+3 \hat{j}+2 \hat{k} a n d 3 \hat{i}+4 \hat{k}$ from a triangle or not

- Watch Video Solution

108. The midpoint of two opposite sides of a quadrilateral and the midpoint of the diagonals are the vertices of a parallelogram. Prove that using vectors.

- Watch Video Solution

109. The lines joining the vertices of a tetrahedron to the centroids of opposite faces are concurrent.

(D) Watch Video Solution

110. Find the angle of vector $\vec{a}=6 \hat{i}+2 \hat{j}-3 \hat{k}$ with x-axis.

- Watch Video Solution

111. If the vectors $\vec{\alpha}=a \hat{i}+a \hat{j}+c \hat{k}, \vec{\beta}=\hat{i}+\hat{k} a n d \vec{\gamma}=c \hat{i}+c \hat{j}+b \hat{k}$ are coplanar, then prove that c is the geometric mean of $a a n d b$

- Watch Video Solution

112. The points with position vectors $60 i+3 j$, $40 i-8 j$, ai-52j are collinear if a. $a=-40 \mathrm{~b} . a=40 \mathrm{c} . a=20 \mathrm{~d}$. none of these

- Watch Video Solution

113. Lett α, β and γ be distinct real numbers. The points whose position vector's are $\alpha \hat{i}+\beta \hat{j}+\gamma \hat{k} ; \beta \hat{i}+\gamma \hat{j}+\alpha \hat{k}$ and $\gamma \hat{i}+\alpha \hat{j}+\beta \hat{k}$

Watch Video Solution

114. Let $\vec{a}=\vec{i}-\vec{k}, \vec{b}=x \vec{i}+\vec{j}+(1-x) \vec{k}$ and $\vec{c}=y \vec{i}+x \vec{j}+(1+x-y) \vec{k}$. Then $[\vec{a} \vec{b} \vec{c}]$ depends on (A) only x (B) only y (C) Neither x nor y (D) both x and y

- Watch Video Solution

115. In a $\triangle O A B, E$ is the mid point of $O B$ and D is the point on $A B$ such that $A D: D B=2: 1$ If $O D$ and $A E$ intersect at P then determine the ratio of $O P: P D$ using vector methods
116. If \vec{a}, \vec{b} are two non-collinear vectors, prove that the points with position vectors $\vec{a}+\vec{b}, \vec{a}-\vec{b}$ and $\vec{a}+\lambda \vec{b}$ are collinear for all real values of λ

- Watch Video Solution

117. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=4 \hat{i}+3 \hat{j}+4 \hat{k}$ and $\vec{c}=\hat{i}+\alpha \hat{j}+\beta \hat{k}$ are linearly dependent vectors \& $|\vec{c}|=\sqrt{3}$, then ordered pair (α, β) is $(1,1)(b)(1,-1)$ $(-1,1)(d)(-1,-1)$

- Watch Video Solution

118. The number of distinct real values of λ, for which the vectors $\lambda^{2} \hat{i}+\hat{j}+k, \hat{i}-\lambda^{2} \hat{j}+\hat{k} a n d \hat{i}+\hat{j}-\lambda^{2} \hat{k}$ are coplanar is a. zero b. one c. two d . three
119. If $\vec{A} O+\vec{O} B=\vec{B} O+\vec{O} C$, then A, BnadC are (where O is the origin) a. coplanar b. collinear c. non-collinear d. none of these

- Watch Video Solution

120. Find a vector of magnitude 5 units, and parallel to the resultant of the vectors $\vec{a}=2 \hat{i}+3 \hat{j}-\hat{k}$ and $\vec{b}=\hat{i}-2 \hat{j}+\hat{k}$

- Watch Video Solution

121. Show that the points $A(1,-2,-8) B(5,0,-2)$ and $C(11,3,7)$ are collinear and find the ratio in which B divides $A C$.

- Watch Video Solution

122. The position vectors of PandQ are $5 \hat{i}+4 \hat{j}+a \hat{k}$ and $-\hat{i}+2 \hat{j}-2 \hat{k}$, respectively. If the distance between them is 7, then find the value of a
123. Given three points are $A(-3,-2,0), B(3,-3,1)$ and $C(5,0,2)$ Then find a vector having the same direction as that of $\vec{A} B$ and magnitude equal to $|\vec{A} C|$

- Watch Video Solution

124. Let $A B C D$ be a p [arallelogram whose diagonals intersect at P and let O be the origin. Then prove that $\vec{O} A+\vec{O} B+\vec{O} C+\vec{O} D=4 \vec{O} P$

- Watch Video Solution

125. If $A B C D$ is quadrilateral and EandF are the mid-points of ACandBD respectively, prove that $\vec{A} B+\vec{A} D+\vec{C} B+\vec{C} D=4 \vec{E} F$
126. If $A B C D$ is a rhombus whose diagonals cut at the origin O, then proved that $\overrightarrow{O A}+\vec{O} B+\vec{O} C+\overrightarrow{O D}+\vec{O}$

- Watch Video Solution

127. Let D, EandF be the middle points of the sides $B C, C A a n d A B$, respectively of a triangle $A B C$ Then prove that $\vec{A} D+\vec{B} E+\vec{C} F=\overrightarrow{0}$.

- Watch Video Solution

128. Consider the set of eight vector $V=\{a \hat{i}+b \hat{j}+c \hat{k} ; a, b c \in\{-1,1\}\}$ Three non-coplanar vectors can be chosen from V is 2^{p} ways. Then p is \qquad .
129. Find the direction cosines of the vector joining the points $\mathrm{A}(1,2,-3)$ and $B(-1,-2,1)$ directed from A to B.

- Watch Video Solution

130. Find the direction cosines of the vector $\hat{i}+2 \hat{j}+3 \hat{k}$

- Watch Video Solution

131. The median AD of the triangle $A B C$ is bisected at E and $B E$ meets $A C$ at F. Find AF:FC.

- Watch Video Solution

132. Vectors \vec{a} and \vec{b} are non-collinear. Find for what value of n vectors $\vec{c}=(n-2) \vec{a}+\vec{b}$ and $\vec{d}=(2 n+1) \vec{a}-\vec{b}$ are collinear?
133. Prove that the necessary and sufficient condition for any four points in three-dimensional space to be coplanar is that there exists a liner relation connecting their position vectors such that the algebraic sum of the coefficients (not all zero) in it is zero.

- Watch Video Solution

134. Points $A(\vec{a}), B(\vec{b}), C(\vec{c}) a n d D(\vec{d})$ are relates as $x \vec{a}+y \vec{b}+z \vec{c}+w \vec{d}=0$ and $x+y+z+w=0$, wherex, y, z, andw are scalars (sum of any two of $x, y, z n a d w$ is not zero). Prove that if A, B, CandD are concylic, then $|x y||\vec{a}-\vec{b}|^{2}=|w z||\vec{c}-\vec{d}|^{2}$

- Watch Video Solution

135. If \vec{a}, \vec{b} and \vec{c} are non-coplanar vectors, prove that the four points $2 \vec{a}+3 \vec{b}-\vec{c}, \vec{a}-2 \vec{b}+3 \vec{c}, 3 \vec{a}+4 \vec{b}-2 \vec{c}$ and $\vec{a}-6 \vec{b}+6 \vec{c}$ are coplanar.
136. Find the unit vector in the direction of vector $\vec{a}=\hat{i}+\hat{j}+2 \hat{k}$.

- Watch Video Solution

137. Let \vec{a}, \vec{b} and \vec{c} be unit vectors, such that $\vec{a}+\vec{b}+\vec{c}=\vec{x}, \vec{a} \vec{x}=1, \vec{b} \vec{x}=\frac{3}{2},|\vec{x}|=2$. Then find the angel between and \times

- Watch Video Solution

138. Let $\vec{A} a n d \vec{B}$ be two non-parallel unit vectors in a plane. If $(\alpha \vec{A}+\vec{B})$ bisects the internal angle between $\vec{A} a n d \vec{B}$, then find the value of α

- Watch Video Solution

139. If the vectors $3 \vec{p}+\vec{q} ; 5 p-3 \vec{q}$ and $2 \vec{p}+\vec{q} ; 4 \vec{p}-2 \vec{q}$ are pairs of mutually perpendicular vectors, then find the angle between vectors $\vec{p} a n d \vec{q}$

- Watch Video Solution

140. $P(1,0,-1), Q(2,0,-3), R(-1,2,0)$ and $S(,-2,-1)$, then find the projection length of $\vec{P} Q o n \vec{R} S$

- Watch Video Solution

141. A, B, C, D are any four points, prove that $\vec{A} B \vec{C} D+\vec{B} C \vec{A} D+\vec{C} A \vec{B} D=0$.

- Watch Video Solution

142. Let $\hat{u}=\hat{i}+\hat{j}, \hat{v}=\hat{i}-\hat{j}$ and $\hat{w}=\hat{i}+2 \hat{j}+3 \hat{k}$ If \hat{n} is a unit vector such that
$\dot{u} \hat{n}=0 a n d \dot{v} \hat{n}=0$, then find the value of
143. If the angel between unit vectors $\vec{a} a n d \vec{b} 60^{\circ}$, then find the value of $|\vec{a}-\vec{b}|$

- Watch Video Solution

144. $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0},|\vec{a}|=3,|\vec{b}|=5,|\vec{c}|=9$, find the angle between \vec{a} and \vec{c}.

(D) Watch Video Solution

145. Constant forces $P_{1}=\hat{i}+\hat{j}+\hat{k}, P_{2}=-\hat{i}+2 \hat{j}-\hat{k}$ and $P_{3}=-\hat{j}-\hat{k}$ act on a particle at a point A Determine the work done when particle is displaced from position $A(4 \hat{i}-3 \hat{j}-2 \hat{k}) \rightarrow B(6 \hat{i}+\hat{j}-3 \hat{k})$
146. If \vec{a}, and \vec{b} are unit vectors, then find the greatest value of $|\vec{a}+\vec{b}|+|\vec{a}-\vec{b}|$

- Watch Video Solution

147. Let $G_{1}, G_{2} a n d G_{3}$ be the centroids of the triangular faces $O B C, O C A a n d O A B$, respectively, of a tetrahedron $O A B C$ If V_{1} denotes the volumes of the tetrahedron $O A B C a n d V_{2}$ that of the parallelepiped with $O G_{1}, O G_{2} a n d O G_{3}$ as three concurrent edges, then prove that $4 V_{1}=9 V_{1}$

- Watch Video Solution

148. Prove that $\hat{i} \times(\vec{a} \times \hat{i}) \hat{j} \times(\vec{a} \times \hat{j})+\hat{k} \times(\vec{a} \times \hat{k})=2 \vec{a}$

- Watch Video Solution

149. If $\hat{i} \times[(\vec{a}-\hat{j}) \times \hat{i}]+\hat{j} \times[(\vec{a}-\hat{k}) \times \hat{j}]+\hat{k} \times[(\vec{a}-\hat{i}) \times \hat{k}]=0$, then find vector \vec{a}

- Watch Video Solution

150. Let \vec{a}, \vec{b}, and \vec{c} be any three vectors, then prove that $[\vec{a} \times \vec{b} \vec{b} \times \vec{c} \vec{c} \times \vec{a}]=[\vec{a} \vec{b} \vec{c}]^{2}$

- Watch Video Solution

151. If $[\vec{a} \vec{b} \vec{c}]=2$, then find the value of
$[(\vec{a}+2 \vec{b}-\vec{c})(\vec{a}-\vec{b})(\vec{a}-\vec{b}-\vec{c})]$

- Watch Video Solution

152. If \vec{a}, \vec{b}, and \vec{c} are mutually perpendicular vectors and $\vec{a}=\alpha(\vec{a} \times \vec{b})+\beta(\vec{b} \times \vec{c})+\gamma(\vec{c} \times \vec{a})$ and $[\vec{a} \vec{b} \vec{c}]=1$, then find the value of $\alpha+\beta+\gamma$

- Watch Video Solution

153. If a, bandc are non-copOlanar vector, then that prove $\left|\left(\begin{array}{c}\vec{a} \vec{d}\end{array}\right)(\vec{b} \times \vec{c})+(\vec{b} \vec{d})(\vec{c} \times \vec{a})+(\vec{c} \vec{d})(\vec{a} \times \vec{b})\right| \quad$ is independent of d, wheree is a unit vector.

- Watch Video Solution

154. Prove that vectors $\vec{u}=\left(a l+a_{1} l_{1}\right) \hat{i}+\left(a m+a_{1} m_{1}\right) \hat{j}+\left(a n+a_{1} n_{1}\right) \hat{k}$ $\vec{v}=\left(b l+b_{1} l_{1}\right) \hat{i}+\left(b m+b_{1} m_{1}\right) \hat{j}+\left(b n+b_{1} n_{1}\right) \hat{k}$
$\vec{w}=\left(b l+b_{1} l_{1}\right) \hat{i}+\left(b m+b_{1} m_{1}\right) \hat{j}+\left(b n+b_{1} n_{1}\right) \hat{k}$ are coplanar.

- Watch Video Solution

155. For any four vectors, prove that
$(\vec{b} \times \vec{c}) \vec{a} \times \vec{d}+(\vec{c} \times \vec{a}) \vec{b} \times \vec{d}+(\vec{a} \times \vec{b}) \vec{c} \times \vec{d}=0$.

D Watch Video Solution

156. If \vec{b} and \vec{c} are two-noncollinear vectors such that $\vec{a}|\mid(\vec{b} \times \vec{c})$, then prove that $(\vec{a} \times \vec{b}) \cdot(\vec{a} \times \vec{c})$ is equal to $|\vec{a}|^{2}(\vec{b} \vec{c})$.

D Watch Video Solution

157. If the vertices A, B, C of a triangle $A B C$ are $(1,2,3),(-1,0,0),(0,1,2)$, respectively, then find $\angle A B C$.

D Watch Video Solution
158. Let \vec{a}, \vec{b} and \vec{c} be pairwise mutually perpendicular vectors, such that $|\vec{a}|=1,|\vec{b}|=2,|\vec{c}|=2$. Then find the length of $\vec{a}+\vec{b}+\vec{c}$

- Watch Video Solution

159. Show that $|\vec{a}| \vec{b}+|\vec{b}| \vec{a}$, is perpendicular to $|\vec{a}| \vec{b}-|\vec{b}| \vec{a}$, for any two non-zero vectors \vec{a} and \vec{b}.

- Watch Video Solution

160. If $|\vec{a}|=3,|\vec{b}|=4$ and the angle between aandb is 120°, then find the value of $|4 \vec{a}+3 \vec{b}|$

- Watch Video Solution

161. If \vec{a}, \vec{b}, and \vec{c} be three non-coplanar vector and a^{\prime}, b^{\prime} andc constitute the reciprocal system of vectors, then prove that
$\vec{r}=\binom{\cdot}{\vec{r} \vec{a}^{\prime}} \vec{a}+\binom{\cdot}{\vec{r} \vec{b}} \vec{b}+\binom{\cdot}{\vec{r} \vec{c}} \vec{c} \vec{r}=\left(\begin{array}{c}\cdot \\ \vec{r} \vec{a}^{\prime}\end{array} \vec{a}^{\prime}+\left(\begin{array}{c}\cdot \vec{r}^{\prime} \\ \end{array}\right) \vec{b}^{\prime}+\left(\vec{r} \vec{c}^{\prime}\right) \vec{c}^{\prime}\right.$

- Watch Video Solution

162. Find $|\vec{a}|$ and $|\vec{b}|$, if $(\vec{a}+\vec{b}) \vec{a}-\vec{b}=8,|\vec{a}|=8|\vec{b}|$

- Watch Video Solution

163. Let \vec{a}, \vec{b}, and \vec{c} and $\vec{a}^{\prime}, \vec{b}^{\prime}, \vec{c}^{\prime}$ are reciprocal system of vectors, then prove that $\vec{a}^{\prime} \times \vec{b}^{\prime}+\vec{b}^{\prime} \times \vec{c}^{\prime}+\vec{c}^{\prime} \times \vec{a}^{\prime}=\frac{\vec{a}+\vec{b}+\vec{c}}{[\vec{a} \vec{b}]}$.

$$
[\vec{a} \vec{b} \vec{c}]
$$

- Watch Video Solution

164. If \vec{a}, \vec{b}, and \vec{c} are three non-coplanar non-zero vecrtors, then prove that $(\vec{a} \cdot \vec{a}) \vec{b} \times \vec{c}+(\vec{a} \cdot \vec{b}) \vec{c} \times \vec{a}+(\vec{a} \cdot \vec{c}) \vec{a} \times \vec{b}=[\vec{b} \vec{c} \vec{a}] \vec{a}$
165. Find a set of vectors reciprocal to the set $-\hat{i}+\hat{j}+\hat{k}, \hat{i}-\hat{j}+\hat{k}, \hat{i}+\hat{j}+\hat{k}$

- Watch Video Solution

166. If $\vec{a} \times \vec{b}=\vec{b} \times \vec{c} \neq 0$, where \vec{a}, \vec{b}, and \vec{c} are coplanar vectors, then for some scalar k prove that $\vec{a}+\vec{c}=k \vec{b}$

- Watch Video Solution

167. If $\vec{a}=2 \vec{i}+3 \vec{j}-\vec{k}, \vec{b}=-\vec{i}+2 \vec{j}-4 \vec{k}$ and $\vec{c}=\vec{i}+\vec{j}+\vec{k}$, then find thevalue of $(\vec{a} \times \vec{b}) \vec{a} \times \vec{c}$
168. If the vectors $\vec{c}, \vec{a}=x \hat{i}+y \hat{j}+z \hat{k} a n d \vec{b}=\hat{j}$ are such that $\vec{a}, \vec{c} a n d \vec{b}$ form a right-handed system, then find $\overrightarrow{\text {. }}$

- Watch Video Solution

169. Given that $\vec{a} \vec{b}=\vec{a} \vec{c}, \vec{a} \times \vec{b}=\vec{a} \times \vec{c}$ and \vec{a} is not a zero vector. Show that $\vec{b}=\overrightarrow{.}$

- Watch Video Solution

170. If A, B, C, D are four distinct point in space such that $A B$ is not perpendicular to
$C D$ and satisfies
$\vec{A} B \vec{C} D=k\left(|\vec{A} D|^{2}+|\vec{B} C|^{2}-|\vec{A} C|^{2}-|\vec{B} D|^{2}\right)$, then find the value of k
171. If $\vec{a}=2 \hat{i}+3 \hat{j}-5 \hat{k}, \vec{b}=m \hat{i}+n \hat{j}+12 \hat{k} a n d \vec{a} \times \vec{b}=\overrightarrow{0}$, then find (m, n)

- Watch Video Solution

172. If $|\vec{a}|=2,|\vec{b}|=5$ and $|\vec{a} \times \vec{b}|=8$, find the value of \vec{a}. \vec{b}

- Watch Video Solution

173. Show that $(\vec{a}-\vec{b}) \times(\vec{a}+\vec{b})=2(\vec{a} \times \vec{b})$

- Watch Video Solution

174.

Show
that for
any
three
vectors
\vec{a}, \vec{b} and $\vec{c}[\vec{a}+\vec{b}, \vec{b}+\vec{c}, \vec{c}+\vec{a}]=2[\vec{a}, \vec{b}, \vec{c}]$.

- Watch Video Solution

175. Let $\vec{a}, \vec{b}, \vec{c}$ be three unit vectors and $\vec{a} \cdot \vec{b}=\vec{a} . \vec{c}=0$. If the angel between \vec{b} and \vec{c} is $\frac{\pi}{3}$, then find the value of $|[\vec{a} \vec{b} \vec{c}]|$.

- Watch Video Solution

176. If the vectors $2 \hat{i}-3 \hat{j}, \hat{i}+\hat{j}-\hat{k}$ and $3 \hat{i}-\hat{k}$ form three concurrent edges of a parallelepiped, then find the volume of the parallelepiped.

- Watch Video Solution

177. If $\vec{u}, \vec{v} a n d \vec{w}$ are three non-copOlanar vectors, then prove that

$$
(\vec{u}+\vec{v}-\vec{w}) \vec{u}-\vec{v} \times(\vec{v}-\vec{w})=\vec{u} \vec{v} \times \vec{w}
$$

- Watch Video Solution

178. Find the value of a so that the volume of the parallelepiped formed by vectors $\hat{i}+a \hat{j}+k, \hat{j}+a \hat{k} a n d a \hat{i}+\hat{k}$ becomes minimum.
179. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}-\hat{j}+\hat{k}, \vec{c}=\hat{i}+2 \hat{j}-\hat{k}$, then find the vaue of $\vec{a} \vec{a} \vec{a} \vec{b} \vec{a} \vec{c} \vec{b} \vec{a} \vec{b} \vec{a} \vec{b} \vec{a} \cdot \vec{a} \cdot \vec{a} \cdot \vec{a} \mid$.

(Watch Video Solution

180. Prove that $[\vec{l} \vec{m} \vec{n}][\vec{a} \vec{b} \vec{c}]=|\vec{l} \vec{a} \vec{l} \vec{b} \vec{l} \vec{c} \vec{m} \vec{a} \vec{m} \vec{a} \vec{m} \vec{a} \vec{n} \vec{a} \vec{n} \vec{a} \vec{n} \vec{a}|$.

- Watch Video Solution

181. Find the altitude of a parallelepiped whose three coterminous edtges are vectors $\vec{A}=\hat{i}+\hat{j}+\hat{k}, \vec{B}=2 \hat{i}+4 \hat{j}-\hat{k}$ and $\vec{C}=\hat{i}+\hat{j}+3 \hat{k} w i t h \vec{A}$ and \vec{B} as the sides of the base of the parallepiped.
182. If \vec{a} and \vec{b} are two vectors such that $|\vec{a} \times \vec{b}|=2$, then find the value of $[\vec{a} \vec{b} \vec{a} \times \vec{b}]$.

- Watch Video Solution

183.

Prove
that
$\vec{R}+\frac{[\vec{R} \vec{\beta} \times(\vec{\beta} \times \vec{\alpha})] \vec{\alpha}}{|\vec{\alpha} \times \vec{\beta}|^{2}}+\frac{[\vec{R} \vec{\alpha} \times(\vec{\alpha} \times \vec{\beta})] \vec{\beta}}{|\vec{\alpha} \times \vec{\beta}|^{2}}=\frac{[\vec{R} \vec{\alpha} \vec{\beta}](\vec{\alpha} \times \vec{\beta})}{|\vec{\alpha} \times \vec{\beta}|^{2}}$

- Watch Video Solution

184. If \vec{a}, \vec{b}, and \vec{c} are non-coplanar unit vectors such that $\vec{a} \times(\vec{b} \times \vec{c})=\frac{\vec{b}+\vec{c}}{\sqrt{2}}, \vec{b}$ and \vec{c} are non-parallel, then prove that the angel between $\vec{a} a n d \vec{b} i s 3 \pi / 4$.
185. If $\vec{a} a n d \vec{b}$ are two given vectors and k is any scalar, then find the vector \vec{r} satisfying $\vec{r} \times \vec{a}+k \vec{r}=\vec{b}$

- Watch Video Solution

186. Find the vector of length 3 unit which is perpendicular to $\hat{i}+\hat{j}+\hat{k}$ and lies in the plane of $\hat{i}+\hat{j}+\hat{k} a n d 2 \hat{k}-3 \hat{j}$.

- Watch Video Solution

187. If \vec{a}, \vec{b} and \vec{c} are three non coplanar vectors, then prove that $\vec{d}=\frac{\vec{a} \vec{d}}{[\vec{a} \vec{b} \vec{c}]}(\vec{b} \times \vec{c})+\frac{\vec{b} \vec{d}}{[\vec{a} \vec{b} \vec{c}]}(\vec{c} \times \vec{a})+\frac{\vec{d} \vec{d}}{[\vec{a} \vec{b} \vec{c}]}(\vec{a} \times \vec{b})$

- Watch Video Solution

188. If $(\vec{a} \times \vec{b})^{2}+(\vec{a} \vec{b})^{2}=144 a n d|\vec{a}|=4$, then find the value of $|\vec{b}|$

- Watch Video Solution

189. A particle has an angualar speed of $3 \mathrm{rad} / \mathrm{s}$ and the axis of rotation passes through the point $(1,1,2)$ and $(1,1,-2)$ find the velocity of the particle at point $p(3,6,4)$

Watch Video Solution

190. Find the moment of \vec{F} about point (2, -1, 3), where force $\vec{F}=3 \hat{i}+2 \hat{j}-4 \hat{k}$ is acting on point $(1,-1,2)$.

- Watch Video Solution

191. Given $|\vec{a}|=|\vec{b}|=1$ and $|\vec{a}+\vec{b}|=\sqrt{3}$. If \vec{c} is a vector such that $\vec{c}-\vec{a}-2 \vec{b}=3(\vec{a} \times \vec{b})$, then find the value of $\vec{c} \vec{b}$

- Watch Video Solution

192. Let $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}, \vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k} a n d \vec{c}=c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$ be three non-zero vectors such that \vec{c} is a unit vector perpendicular to both $\vec{a} a n d \vec{b}$. If the angle between $a a n d b$ is $\frac{\pi}{6}$, then prove that $\left|\left(a_{1} a_{2} a_{3}\right)\left(b_{1} b_{2} b_{3}\right)\left(c_{1} c_{2} c_{3}\right)\right|=\frac{1}{4}(a 12+a 22+a 32)(b 12+b 22+b 32)$

- Watch Video Solution

193. If $\vec{a}, \vec{b}, \vec{c}$, and \vec{d} are four non-coplanar unit vector such that \vec{d} make equal angles with all the three vectors \vec{a}, \vec{b} and \vec{c}, then prove that $[\vec{d} \vec{a} \vec{b}]=[\vec{d} \vec{c} \vec{b}]=[\vec{d} \vec{c} \vec{a}]$
194. If the volume of a parallelepiped whose adjacent edges are $\vec{a}=2 \hat{i}+3 \hat{j}+4 \hat{k}, \vec{b}=\hat{i}+\alpha \hat{j}+2 \hat{k}, \vec{c}=\hat{i}+2 \hat{j}+\alpha \hat{k}$ is 15 , then find the value of α if $(\alpha>0)$

- Watch Video Solution

195. Find λ if the vectors $\vec{a}=\vec{i}+3 \vec{j}+\vec{k} \quad \vec{b}=2 \vec{i}-\vec{j}-\vec{k}$ and $\vec{c}=\lambda \vec{i}+7 \vec{j}+3 \vec{k}$ are coplanar

- Watch Video Solution

196. Using dot product of vectors, prove that a parallelogram, whose diagonals are equal , is a rectangle.

- Watch Video Solution

197. If $a+2 b+3 c=4$, then find the least value of $a^{2}+b^{2}+c^{2}$

D Watch Video Solution

198. Prove that an angle inscribed in a semi-circle is a right angle using vector method.

- Watch Video Solution

199. If $\vec{a} \cdot \hat{i}=\vec{a} \cdot(\hat{i}+\hat{j})=\vec{a} \cdot(\hat{i}+\hat{j}+\hat{k})$, then find the unit vector \vec{a}

- Watch Video Solution

200. Prove by vector method that $\cos (A+B) \cos A \cos B-\sin A \sin B$

D Watch Video Solution

201. If the scalar projection of vector $x \hat{i}-\hat{j}+\hat{k}$ on vector $2 \hat{i}-\hat{j}+5 \hat{k} i s \frac{1}{\sqrt{30}}$, then find the value of x

- Watch Video Solution

202. A unit vector a makes angle $\frac{\pi}{4}$ with z -axis. If $a+i+j$ is a unit vector, then a can be equal to

- Watch Video Solution

203. if \vec{a}, \vec{b} and \vec{c} are there mutually perpendicular unit vectors and \vec{a} ia a unit vector make equal angles which \vec{a}, \vec{b} and \vec{c} then find the value of $|\vec{a}+\vec{b}+\vec{c}+\vec{d}|^{2}$

- Watch Video Solution

204. If \vec{a}, \vec{b}, and \vec{c} be non-zero vectors such that no tow are collinear or $(\vec{a} \times \vec{b}) \times \vec{c}=\frac{1}{3}|\vec{b}||\vec{c}| \vec{a}$ If θ is the acute angle between vectors \vec{b} and \vec{c}, then find the value of $\sin \theta$

- Watch Video Solution

205. If $\vec{p}, \vec{q}, \vec{r}$ denote vector $\vec{b} \times \vec{c}, \vec{c} \times \vec{a}, \vec{a} \times \vec{b}$, respectively, show that \vec{a} is parallel to $\vec{q} \times \vec{r}, \vec{b}$ is parallel $\vec{r} \times \vec{p}, \vec{c}$ is parallel to $\vec{p} \times \vec{q}$

- Watch Video Solution

206. If \vec{a}, and \vec{b} be two non-collinear unit vector such that $\vec{a} \times(\vec{a} \times \vec{b})=\frac{1}{2} \vec{b}$, then find the angle between \vec{a}, and \vec{b}

- Watch Video Solution

207. Prove that $(\vec{a}(\vec{b} \times \hat{i})) \hat{i}+(\vec{a}(\vec{b} \times \hat{j})) \hat{j}+(\vec{a}(\vec{b} \times \hat{k})) \hat{k}=\vec{a} \times \vec{b}$

- Watch Video Solution

208. If \vec{a}, \vec{b}, and \vec{c} are three vectors such that
$\vec{a} \times \vec{b}=\vec{c}, \vec{b} \times \vec{c}=\vec{a}, \vec{c} \times \vec{a}=\vec{b}$, then prove that $|\vec{a}|=|\vec{b}|=|\vec{c}|$

- Watch Video Solution

$$
\vec{b} \times(\vec{a} \times \vec{b})
$$

209. If $\vec{a}=\vec{p}+\vec{q}, \vec{p} \times \vec{b}=0$ and $\vec{q} \vec{b}=0$, then prove that $=\vec{q}$
210. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}$ and $\vec{b}=\hat{i}-2 \hat{j}+\hat{k}$, then find vector \vec{c} such that $\vec{a} \vec{c}=2 a n d \vec{a} \times \vec{c}=\vec{b}$

- Watch Video Solution

211. If $\vec{a}, \vec{b}, \vec{c}$ are any three mutually perpendicular vectors of equal magnitude a, then $|\vec{a}+\vec{b}+\vec{c}|$ is equal to

- Watch Video Solution

212. If three unit vectors \vec{a}, \vec{b}, and \vec{c} satisfy $\vec{a}+\vec{b}+\vec{c}=0$, then find the angle between $\vec{a} a n d \vec{b}$

- Watch Video Solution

213. If $|\vec{a}|+|\vec{b}|=|\vec{c}|$ and $\vec{a}+\vec{b}=\vec{c}$, then find the angle between $\vec{a} a$ and \vec{b}
214. Find the angle between the vectors $\hat{i}-2 \hat{j}+3 \hat{k}$ and $3 \hat{i}-2 \hat{j}+\hat{k}$

- Watch Video Solution

215. If $\hat{r} \hat{i}=\vec{r} \hat{j}=\vec{r} \hat{k}$ and $|\vec{r}|=3$, then find the vector \vec{r}

- Watch Video Solution

216. If \vec{a}, \vec{b}, and \vec{c} are non-zero vectors such that $\vec{a} \vec{b}=\vec{a} \vec{c}$, then find the geometrical relation between the vectors.

- Watch Video Solution

217. Find the projection of vector $\hat{i}+3 \hat{j}+7 \hat{k}$ on the vector $7 \hat{i}-\hat{j}+8 \hat{k}$
218. If θ is th angel between the unit vectors a and b, then prove that
$\cos \left(\frac{\theta}{2}\right)=\frac{1}{2}|\vec{a}+\vec{b}| \ldots, \sin \left(\frac{\theta}{2}\right)=\frac{1}{2}|\vec{a}-\vec{b}|$

- Watch Video Solution

219. Given unit vectors \hat{m}, n̂and \hat{p} such that angel between $\hat{m} a n d \hat{n}$ is α and angle between $\hat{p} a n d(\hat{m} \times \hat{n})$ is also α, if $[\hat{n} \hat{p} \hat{m}]=1 / 4$, then find the value of α

- Watch Video Solution

220. The base of the pyramid $A O B C$ is an equilateral triangle $O B C$ with each side equal to $4 \sqrt{2}, O$ is the origin of reference, $A O$ is perpendicualar to the plane of $O B C$ and $|\vec{A} O|=2$. Then find the cosine of the angle
between the skew straight lines, one passing though A and the midpoint of $O B a n d$ the other passing through O and the mid point of $B C$

- Watch Video Solution

221. Find $|\vec{a} \times \vec{b}|$, if $\vec{a}=\hat{i}-7 \hat{j}+7 \hat{k} a n d \vec{b}=3 \hat{i}-2 \hat{j}+2 \hat{k}$

- Watch Video Solution

222. Let the vectors $\vec{a} a n d \vec{b}$ be such that $|\vec{a}|=3|\vec{b}|=\frac{\sqrt{2}}{3}$, then $\vec{a} \times \vec{b}$ is a unit vector, if the angel between $\vec{a} a n d \vec{b}$ is?

- Watch Video Solution

223. Show that $(\vec{a}-\vec{b}) \times(\vec{a}+\vec{b})=2(\vec{a} \times \vec{b})$

- Watch Video Solution

224. If A, B and C are the vectices of a triangle $A B C$, then prove sine rule $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$

- Watch Video Solution

225. Application of cross product trigonometric proof; $\sin (A+B)=$ $\sin A \cos B+\cos A \sin B$

- Watch Video Solution

226. Find a unit vector perpendicular to the plane determined by the points (1, - 1, 2), (2, 0, - 1)and(0, 2, 1)

- Watch Video Solution

227. If \vec{a} and \vec{b} are two vectors, then prove that $(\vec{a} \times \vec{b})^{2}=|\vec{a} \vec{a} \vec{a} \vec{b} \vec{b} \vec{a} \vec{b} \vec{b}|$.
228. In isosceles triangles $A B C,|\vec{A} B|=|\vec{B} C|=8$, a point E divides $A B$ internally in the ratio $1: 3$, then find the angle between \vec{C} Eand $\vec{C} A($ where $|\vec{C} A|=12$)

- Watch Video Solution

229. Prove that in a tetrahedron if two pairs of opposite edges are perpendicular , then the third pair is also perpendicular.

- Watch Video Solution

230. If $|\vec{a}|=|\vec{b}|=|\vec{a}+\vec{b}|=1$, then find the value of $|\vec{a}-\vec{b}|$

- Watch Video Solution

231. If $\vec{a}=4 \hat{i}+6 \hat{j} a n d \vec{b}=3 \hat{j}+4 \hat{k}$, then find the component of $\vec{a} a n d \vec{b}$

- Watch Video Solution

232. If \vec{a}, \vec{b}, and \vec{c} are there mutually perpendicular unit vectors and \vec{d} is a unit vector which makes equal angles with \vec{a}, \vec{b}, and \vec{c}, the find the value off $|\vec{a}+\vec{b}+\vec{c}+\vec{d}|^{2}$

- Watch Video Solution

233. The position vectors of the vertices of a quadrilateral with A as origin are $B(\vec{b}), D(\vec{d})$ and $C(\vec{l} \vec{b}+m \vec{d})$ Prove that the area of the quadrial is $\frac{1}{2}(l+m)|\vec{b} \times \vec{d}|$

- Watch Video Solution

234. If $\vec{a} \times \vec{b}=\vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c}=\vec{b} \times \vec{d}$, then show that $\vec{a}-\vec{d}$, is parallel to $\vec{b}-\vec{c}$ provided $\vec{a} \neq \leftrightarrow d$ and $\vec{b} \neq \vec{c}$

- Watch Video Solution

235. Show by a numerical example and geometrically also that $\vec{a} \times \vec{b}=\vec{a} \times \vec{c}$ does not imply $\vec{b}=\vec{c}$.

- Watch Video Solution

236. In triangle $A B C, p o \in t s D$, EandF are taken on the sides $B C, C A a n d A B$, respectigvely, such that $\frac{B D}{D C}=\frac{C E}{E A}=\frac{A F}{F B}=n$. Prove that $-(D E F)=\frac{n^{2}-n+1}{\left((n+1)^{2}\right)_{A B C}}$.

(Watch Video Solution

237. Let $\vec{a} a n d \vec{b}$ be unit vectors such that $|\vec{a}+\vec{b}|=\sqrt{3}$. Then find the
value of $(2 \vec{a}+5 \vec{b}) 3 \vec{a}+\vec{b}+\vec{a} \times \vec{b}$

- Watch Video Solution

238. A rigid body is spinning about a fixed point ($3,-2,-1$) with an angular velocity of $4 \mathrm{rad} / \mathrm{s}$, the axis of rotation being in the direction of $(1,2,-2)$.

Find the velocity of the particle at point $(4,1,1)$.

- Watch Video Solution

239. $\vec{r} \times \vec{a}=\vec{b} \times \vec{a} ; \vec{r} \times \vec{b}=\vec{a} \times \vec{b} ; \vec{a} \neq \overrightarrow{0} ; \vec{b} \neq \overrightarrow{0} ; \vec{a} \neq \lambda \vec{b}$, and \vec{a} is not perpendicular to \vec{b}, then find \vec{r} in terms of $\vec{a} a n d \vec{b}$

- Watch Video Solution

240. If $|\vec{a}|=2$, then find the value of $|\vec{a} \times \hat{i}|^{2}+|\vec{a} \times \hat{j}|^{2}+|\vec{a} \times \hat{k}|^{2}$

- Watch Video Solution

241. If \vec{a}, \vec{b} and \vec{c} are the position vectors of the vertices A, BandC respectively, of $A B C$, prove that the perpendicular distance of the vertex
A from the base $B C$ of the triangle $A B C$ is $\frac{|\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}|}{}$.

$$
|\vec{c}-\vec{b}|
$$

- Watch Video Solution

242. If A, B, C, D are any four points in space, prove that
$|\overrightarrow{A B} \times \overrightarrow{C D} \times \overrightarrow{B C} \times \overrightarrow{A D}+\overrightarrow{C A} \times \overrightarrow{B D}|=4$ (area of triangle $A B C$).
243. Find the area of the parallelogram whose adjacent sides are determined by the vectors $\vec{a}=\hat{i}-\hat{j}+3 \hat{k} a n d \vec{b}=2 \hat{i}-7 \hat{j}+\hat{k}$

Watch Video Solution

244. Using vectors, find the area of the triangle with vertices A (1, 1, 2), B $(2,3,5)$ and $C(1,5,5)$.

- Watch Video Solution

245. Find the area a parallelogram whose diagonals are $\vec{a}=3 \hat{i}+\hat{j}-2 \hat{k} a n d \vec{b}=\hat{i}-3 \hat{j}+4 \hat{k}$

- Watch Video Solution

246. If $\vec{a} a n d \vec{b}$ are unit vectors such that
$(\vec{a}+\vec{b}) \cdot(2 \vec{a}+3 \vec{b}) \times(3 \vec{a}-2 \vec{b})=0$, then angle between \vec{a} and \vec{b} is a. 0 b.

- Watch Video Solution

247. If the vectors \vec{a}, \vec{b}, and \vec{c} form the sides $B C, C A a n d A B$, respectively, of triangle $A B C$, then (a) $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}=0$ (b) $\vec{a} \times \vec{b}=\vec{b} \times \vec{c}=\vec{c} \times \vec{a}$ (c)
$\vec{a} \vec{b}=\vec{b} \vec{c}=\vec{c} \vec{a}$ (d) $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}=0$

- Watch Video Solution

248. Let \vec{u} be a vector on rectangular coordinate system with sloping angle 60° Suppose that $|\vec{u}-\hat{i}|$ is geometric mean of $|\vec{u}|$ and $|\vec{u}-2 \hat{i}|$, where \hat{i} is the unit vector along the x -axis. Then find the value of $(\sqrt{2}+1)|\vec{u}|$

- Watch Video Solution

249. Two adjacent sides of a parallelogram $A B C D$ are given by $\vec{A} B=2 \hat{i}+10 \hat{j}+11 \hat{k}$ and $\vec{A} D=-\hat{i}+2 \hat{j}+2 \hat{k}$ The side $A D$ is rotated by an acute angle α in the plane of the parallelogram so that $A D$ becomes $A D^{\prime}$ If $A D^{\prime}$ makes a right angle with the side $A B$, then the cosine of the angel α is given by a. $\frac{8}{9}$ b. $\frac{\sqrt{17}}{9}$ c. $\frac{1}{9}$ d. $\frac{4 \sqrt{5}}{9}$

- Watch Video Solution

250. Let \vec{a}, \vec{b}, and \vec{c} be non-coplanar unit vectors, equally inclined to one another at angle θ. If $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}=p \vec{a}+q \vec{b}+r \vec{c}$, find scalars p, qandr in terms of θ

- Watch Video Solution

251. Given three vectors \vec{a}, \vec{b}, and \vec{c} two of which are non-collinear. Further if $(\vec{a}+\vec{b})$ is collinear with $\vec{c},(\vec{b}+\vec{c})$ is collinear with
$\vec{a},|\vec{a}|=|\vec{b}|=|\vec{c}|=\sqrt{2}$ Find the value of $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$ a. $3 \mathrm{~b} .-3 \mathrm{c} .0 \mathrm{~d}$. cannot be evaluated

D Watch Video Solution

252. $A_{1}, A_{2}, \ldots, A_{n}$ are the vertices of a regular plane polygon with n sides and O as its centre. Show that $\sum_{i=1}^{n} \overrightarrow{O A_{i}} \times \overrightarrow{O A_{i+1}}=(1-n)\left(\overrightarrow{O A_{2}} \times \overrightarrow{O A_{1}}\right)$

Watch Video Solution

253. If \vec{C} is a given non-zero scalar, and \vec{A} and \vec{B} are given non-zero vector such that $\vec{A} \perp B$, then find vector \vec{X} which satisfies the equation $\vec{A} \cdot \vec{X}=c$ and $\vec{A} \times \vec{X}=\vec{B}$

- Watch Video Solution

254. If A, B, C, D are any four points in space, prove that
$|\overrightarrow{A B} \times \overrightarrow{C D} \times \overrightarrow{B C} \times \overrightarrow{A D}+\overrightarrow{C A} \times \overrightarrow{B D}|=4$ (area of triangle $A B C$).

- Watch Video Solution

255. If vectors \vec{a}, \vec{b}, and \vec{c} are coplanar, show that \mid vec a vec b vec c vec adot vec a vec adot vec b vec adot vec c vec bdot vec a vec bdot vec b vec bdot vec c|=0

- Watch Video Solution

256. Let $\vec{A}=2 \vec{i}+\vec{k}, \vec{B}=\vec{i}+\vec{j}+\vec{k} \vec{C}=4 \hat{i}-3 \hat{j}+7 \hat{k}$ Determine a vector \vec{R} satisfying $\vec{R} \times \vec{B}=\vec{C} \times \vec{B}$ and $\vec{R} \vec{A}=0$.

- Watch Video Solution

257. Determine the value of c so that for all real x, vectors $c x \hat{i}-6 \hat{j}-3 \hat{k} a n d x \hat{i}+2 \hat{j}+2 c x \hat{k}$ make an obtuse angle with each other.

- Watch Video Solution

258. If $\vec{r}=x_{1}(\vec{a} \times \vec{b})+x_{2}(\vec{b} \times \vec{c})+x_{3}(\vec{c} \times \vec{a})$ and $4[\vec{a} \vec{b} \vec{c}]=1$, then $x_{1}+x_{2}+x_{3}$ is equal to (A) $\frac{1}{2} \vec{r} \cdot(\vec{a}+\vec{b}+\vec{c})$ (B) $\frac{1}{4} \vec{r} \cdot(\vec{a}+\vec{b}+\vec{c})$
$2 \vec{r} \cdot(\vec{a}+\vec{b}+\vec{c})$ (D) $4 \vec{r} \cdot(\vec{a}+\vec{b}+\vec{c})$

- Watch Video Solution

259. $[(\vec{a} \times \vec{b}) \times(\vec{b} \times \vec{c})(\vec{b} \times \vec{c}) \times(\vec{c} \times \vec{a})(\vec{c} \times \vec{a}) \times(\vec{a} \times \vec{b})]$ is equal to (where \vec{a}, \vec{b} and \vec{c} are nonzero non-coplanar vector) $[\vec{a} \vec{b} \vec{c}]^{2} \mathrm{~b}$. $[\vec{a} \vec{b} \vec{c}]^{3} \mathrm{c}$. $[\vec{a} \vec{b} \vec{c}]^{4}$ d. $[\vec{a} \vec{b} \vec{c}]$

- Watch Video Solution

260. If \vec{a}, \vec{b} and \vec{c} are non coplanar vectors and $\vec{a} \times \vec{c}$ is perpendicular to $\vec{a} \times(\vec{b} \times \vec{c})$, then the value of $[a \times(\vec{b} \times \vec{c})] \times \vec{c}$ is equal to a. $[\vec{a} \vec{b} \vec{c}]$ b. $2[\vec{a} \vec{b} \vec{c}] \vec{b}$ c. $\overrightarrow{0}$ d. $[\vec{a} \vec{b} \vec{c}] \vec{a}$

- Watch Video Solution

261. Let \vec{a}, \vec{b} and \vec{c} be three non-coplanar vectors and $\vec{p}, \vec{q} a n d \vec{r}$ the vectors
defined by the relation $\vec{p}=\frac{\vec{b} \times \vec{c}}{[\vec{a} \vec{b} \vec{c}]}, \vec{q}=\frac{\vec{c} \times \vec{a}}{[\vec{a} \vec{b} \vec{c}]}$ and $\vec{r}=\frac{\vec{a} \times \vec{b}}{[\vec{a} \vec{b} \vec{c}]}$. Then the
value of the expression $(\vec{a}+\vec{b}) \vec{p}+(\vec{b}+\vec{c}) \vec{q}+(\vec{c}+\vec{a}) \vec{r}$ is a. 0 b. 1 c. 2 d . 3

- Watch Video Solution

262. Let \vec{a}, \vec{b} and \vec{c} be three non-coplanar vecrors and \vec{r} be any arbitrary vector. Then $(\vec{a} \times \vec{b}) \times(\vec{r} \times \vec{c})+(\vec{b} \times \vec{c}) \times(\vec{r} \times \vec{a})+(\vec{c} \times \vec{a}) \times(\vec{r} \times \vec{b})$ is always equal to $[\vec{a} \vec{b} \vec{c}] \vec{r}$ b. $2[\vec{a} \vec{b} \vec{c}] \vec{r}$ c. $3[\vec{a} \vec{b} \vec{c}] \vec{r}$ d. none of these

(D) Watch Video Solution

263. The position vectors of point A, B, and C are $\hat{i}+\hat{j}+\hat{k}, \hat{i}+5 \hat{j}-\hat{k}$ and $2 \hat{i}+3 \hat{j}+5 \hat{k}$, respectively. Then greatest angel of triangle $A B C$ is $120^{0} \mathrm{~b} \cdot 90^{0} \mathrm{c} \cdot \cos ^{-1}(3 / 4) \mathrm{d}$. none of these

- Watch Video Solution

264. Let $\vec{a}(x)=(\sin x) \hat{i}+(\cos x) \hat{j} a n d \vec{b}(x)=(\cos 2 x) \hat{i}+(\sin 2 x \hat{j})$ be two variable vectors $(x \in R)$ Then $\vec{a}(x) a n d \vec{b}(x)$ are a. collinear for unique value of x b. perpendicular for infinite values of x c. zero vectors for unique value of x d. none of these

- Watch Video Solution

265. If $\vec{a}=2 \hat{i}+\hat{j}+\hat{k} \quad, \vec{b}=\hat{i}+2 \hat{j}+2 \hat{k} \quad, \vec{c}=\hat{i}+\hat{j}+2 \hat{k} \quad$ a $\quad \mathrm{n} \quad \mathrm{d}$ $(1+\alpha) \hat{i}+\beta(1+\alpha) \hat{j}+\gamma(1+\alpha)(1+\beta) \hat{k}=\vec{a} \times(\vec{b} \times \vec{c})$, then α, β and γ area.
$-2,-4,-\frac{2}{3} b .2,-4, \frac{2}{3} c .-2,4, \frac{2}{3}$ d. 2, 4, - $\frac{2}{3}$

Watch Video Solution

266. If \vec{a}, \vec{b} and \vec{c} are unit vectors satisfying
$|\vec{a}-\vec{b}|^{2}+|\vec{b}-\vec{c}|^{2}+|\vec{c}-\vec{a}|^{2}=9$, then $|2 \vec{a}+5 \vec{b}+5 \vec{c}|$ is.

- Watch Video Solution

267. If $\vec{d}=\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}$ is non-zero vector and
$|(\vec{d} \cdot \vec{c})(\vec{a} \times \vec{b})+(\vec{d} \cdot \vec{a})(\vec{b} \times \vec{c})+(\vec{d} \cdot \vec{b})(\vec{c} \times \vec{a})|=0, \quad$ then
a.
$|\vec{a}|=|\vec{b}|=|\vec{c}| \mathrm{b} .|\vec{a}|+|\vec{b}|+|\vec{c}|=|d|$ c. \vec{a}, \vec{b}, and \vec{c} are coplanar d. none of these

- Watch Video Solution

268. The vector(s) which is/are coplanar with vectors $\hat{i}+\hat{j}+2 \hat{k} a n d \hat{i}+2 \hat{j}+\hat{k}$, and perpendicular to vector $\hat{i}+\hat{j}+\hat{k}$, is/are a. $\hat{j}-\hat{k}$

b. $. \hat{i}+\hat{j}$ c. $\hat{i}-\hat{j}$ d. $-\hat{j}+\hat{k}$

- Watch Video Solution

269. Let $\vec{a}=-\hat{i}-\hat{k}, \vec{b}=-\hat{i}+\hat{j}$ and $\vec{c}=\hat{i}+2 \hat{j}+3 \hat{k}$ be three given vectors. If \vec{r} is a vector such that $\vec{r} \times \vec{b}=\vec{c} \times \mathrm{b}$ and $\vec{r} . \vec{a}=0$, then find the value of $\vec{r} . \vec{b}$

- Watch Video Solution

270. Let \vec{a}, \vec{b}, and \vec{c} be vectors forming right-hand traid. Let $\vec{p}=\frac{\vec{b} \times \vec{c}}{[\vec{b} \vec{c}]}, \vec{q}=\frac{\vec{c} \times \vec{a}}{[\vec{a} \vec{c}]}$, and $\vec{r}=\frac{\vec{a} \times \vec{b}}{[\vec{a} \vec{c}]}, \quad$ If $\quad x \cup R^{+}, \quad$ then $[\vec{a} \vec{b} \vec{c}] \quad[\vec{a} \vec{b} \vec{c}] \quad[\vec{a} \vec{b} \vec{c}]$
$x[\vec{a} \vec{b} \vec{c}]+\frac{[\vec{p} \vec{q} \vec{r}]}{x}$ b. $x^{4}[\vec{a} \vec{b} \vec{c}]^{2}+\frac{[\vec{p} \vec{q} \vec{r}]}{x^{2}}$ has least value $=\left(\frac{3}{2}\right)^{2 / 3}$ $[\vec{p} \vec{q} \vec{r}]>0 \mathrm{~d}$. none of these

- Watch Video Solution

271. from a point O inside a triangle $A B C$, perpendiculars, $O D, O E$ and $O F$ are drawn to the sides, $B C, C A$ and $A B$ respectively, prove that the perpendiculars from A, B and C to the sides EF, FD and DE are concurrent.

- Watch Video Solution

272. If $a a n d b$ are vectors in space given by $\vec{a}=\frac{\hat{i}-2 \hat{j}}{\sqrt{5}}$ and $\vec{b}=\frac{\hat{2} i+\hat{j}+3 \hat{k}}{\sqrt{14}}$, then find the value of $(2 \vec{a}+\vec{b})(\vec{a} \times \vec{b}) \times(\vec{a}-2 \vec{b})$

- Watch Video Solution

273. Find the work done by the force $F=3 \hat{i}-\hat{j}-2 \hat{k}$ acting on a particle such that the particle is displaced from point
$A(-3,-4,1)$ and $B(-1,-1,-2)$

- Watch Video Solution

274. If $\vec{a}, \vec{b}, \vec{c}$ are three given non-coplanar vectors and any arbitrary
vector $\vec{r} \quad$ in space, where $\quad \Delta 1=|\vec{r} \vec{a} \vec{b} \vec{a} \cdot \vec{a} \vec{r} \vec{b} \vec{b} \vec{b} \cdot \vec{b} \vec{r} \vec{c} \vec{b} \vec{c} \cdot \vec{c}|$
$\Delta 2=|\vec{a} \vec{a} \vec{r} \vec{a} \cdot \vec{a} \vec{a} \vec{b} \vec{r} \vec{b} \cdot \vec{b} \vec{a} \vec{c} \vec{r} \vec{c} \cdot \vec{c}| \quad \Delta 3=|\vec{a} \vec{a} \vec{b} \vec{a} \vec{r} \vec{a} \vec{a} \vec{b} \vec{b} \vec{b} \vec{r} \vec{b} \vec{a} \vec{c} \vec{b} \vec{c} \vec{r} \vec{c}|$
$\Delta=|\vec{a} \vec{a} \vec{b} \vec{a} \cdot \vec{a} \vec{a} \vec{b} \vec{b} \vec{b} \cdot \vec{b} \vec{a} \vec{c} \vec{b} \vec{c} \cdot \vec{c}|$
then
prove
$\vec{r}=\frac{\Delta 1}{\Delta} \vec{a}+\frac{\Delta 2}{\Delta} \vec{b}+\frac{\Delta 3}{\Delta} \vec{c}$.

- Watch Video Solution

275. $O A B C$ is regular tetrahedron in which D is the circumcentre of $O A B$ and E is the midpoint of edge $A C$ Prove that $D E$ is equal to half the edge of tetrahedron.

- Watch Video Solution

276. If $\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}$ and $\vec{E}_{1}, \vec{E}_{2}, \vec{E}_{3}$ are two sets of vectors such that $\vec{e}_{i} \vec{E}_{j}=1$, if $i=\operatorname{jand}_{\vec{e}}^{i} \vec{E}_{j}=0$ and if $i \neq j$, then prove that $\left[\vec{e}_{1} \vec{e}_{2} \vec{e}_{3}\right]\left[\vec{E}_{1} \vec{E}_{2} \vec{E}_{3}\right]=1$.

- Watch Video Solution

277. A line l is passing through the point \vec{b} and is parallel to vector \vec{c} Determine the distance of point $A(\vec{a})$ from the line l in the form $\vec{b}-\vec{a}+\frac{(\vec{a}-\vec{b}) \vec{c}}{|\vec{c}|^{2}} \vec{c}$ or $\frac{|(\vec{b}-\vec{a}) \times \vec{c}|}{|\vec{c}|}$.

- Watch Video Solution

278. Let a three dimensional vector \vec{V} satisfy the condition, $2 \vec{V}+\vec{V} \times(\hat{i}+2 \hat{j})=2 \hat{i}+\hat{k}$ If $3|\vec{V}|=\sqrt{m}$ Then find the value of m
$\vec{u}=\hat{i}-2 \hat{j}+3 \hat{k} ; \vec{v}=2 \hat{i}+\hat{j}+4 \hat{k} ; \vec{w}=\hat{i}+3 \hat{j}+3 \hat{k}$ and $(\vec{u} \vec{R}-15) \hat{i}+(\vec{v} \vec{R}-30) \hat{j}+($
Then find the greatest integer less than or equal to $|\vec{R}|$

- Watch Video Solution

280. Let $\vec{O} A-\vec{a}, \vec{O} B=10 \vec{a}+2 \vec{b}$ and $\overrightarrow{O C}=\vec{b}$, where O, AandC are noncollinear points. Let p denotes the areaof quadrilateral OACB, and let q denote the area of parallelogram with OAandOC as adjacent sides. If $p=k q$, then find k

- Watch Video Solution

281. If \vec{x}, \vec{y} are two non-zero and non-collinear vectors satisfying $\left[(a-2) \alpha^{2}+(b-3) \alpha+c\right] \vec{x}+\left[(a-2) \beta^{2}+(b-3) \beta+c\right] \vec{y}+\left[(a-2) \gamma^{2}+(b-3) \gamma+c\right.$ are three distinct real numbers, then find the value of $\left(a^{2}+b^{2}+c^{2}-4\right)$
282. Let $\vec{a}=\alpha \hat{i}+2 \hat{j}+3 \hat{k}, \vec{b}=\alpha \hat{i}+2 \alpha \hat{j}-2 \hat{k}$, and $\vec{c}=2 \hat{i}+\alpha \hat{j}+\hat{k} \quad$ Find thevalue of 6α, such that $\{(\vec{a} \times \vec{b}) \times(\vec{b} \times \vec{c})\} \times(\vec{c} \times \vec{a})=0$.

- Watch Video Solution

283. Let \vec{a}, \vec{b} and \vec{c} be three vectors having magnitudes 1 , 5and 3 , respectively, such that the angel between \vec{a} and $\vec{b} i s \theta$ and $\vec{a} \times(\vec{a} \times \vec{b})=c$. Then $\tan \theta$ is equal to a. 0 b. $2 / 3 \mathrm{c} .3 / 5 \mathrm{~d} .3 / 4$

- Watch Video Solution

284. Two vectors in space are equal only if they have equal component in
a. a given direction
b. two given directions c. three given directions
d. in any arbitrary direction
285. Let $\vec{a}=\hat{i}-\hat{j}, \vec{b}=\hat{j}-\hat{k}$ and $\vec{c}=\hat{k}-\hat{i}$. If \vec{d} is a unit vector such that $\vec{a} \cdot \vec{d}=0=[\vec{b} \vec{c} \vec{d}]$, then d equals a. $\pm \frac{\hat{i}+\hat{j}-2 \hat{k}}{\sqrt{6}}$ b. $\pm \frac{\hat{i}+\hat{j}-\hat{k}}{\sqrt{3}}$ c. $\pm \frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{3}}$ d. $\pm \hat{k}$

- Watch Video Solution

286. If vectors $\vec{a} a n d \vec{b}$ are two adjacent sides of a parallelogram, then the vector respresenting the altitude of the parallelogram which is the perpendicular to a is $\vec{b}+\frac{\vec{b} \times \vec{a}}{|\vec{a}|^{2}}$ b. $\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^{2}}$ c. $\vec{b}-\frac{\vec{b} \cdot \vec{a}}{|\vec{a}|^{2}}$ d. $\frac{\vec{a} \times(\vec{b} \times \vec{a})}{|\vec{b}|^{2}}$

- Watch Video Solution

287. If $\vec{a} \times(\vec{b} \times \vec{c})$ is perpendicular to $(\vec{a} \times \vec{b}) \times \vec{c}$, we may have a.

$$
(\vec{a} \cdot \vec{c})|\vec{b}|^{2}=(\vec{a} \cdot \vec{b})(\vec{b} \cdot \vec{c}) \text { b. } \vec{a} \vec{b}=0 \text { c. } \vec{a} \vec{c}=0 \text { d. } \vec{b} \vec{c}=0
$$

288. $[\vec{a} \times \vec{b} \vec{c} \times \vec{d} \vec{e} \times \vec{f}]$ is equal to (a) $[\vec{a} \vec{b} \vec{d}][\vec{c} \vec{e} \vec{f}]-[\vec{a} \vec{b} \vec{c}][\vec{d} \vec{e} \vec{f}]$

$[\vec{a} \vec{c} \vec{e}][\vec{b} \vec{d} \vec{f}]$

- Watch Video Solution

289.

\vec{b} and \vec{c}
are
non-collinear
if
$\vec{a} \times(\vec{b} \times \vec{c})+(\vec{a} \vec{b}) \vec{b}=(4-2 x-\sin y) \vec{b}+\left(x^{2}-1\right) \vec{c}$ and $(\vec{c} . \vec{c}) \vec{a}=\vec{c}$ Then a. $x=1$ b. $x=-1$ c. $y=(4 n+1) \pi / 2, n \in I$ d. $y=(2 n+1) \pi / 2, n \in I$

- Watch Video Solution

290. Let the vectors $\vec{a} a n d \vec{b}$ be such that $|\vec{a}|=3|\vec{b}|=\frac{\sqrt{2}}{3}$, then $\vec{a} \times \vec{b}$ is a unit vector, if the angel between $\vec{a} a n d \vec{b}$ is?
291. If $\vec{a} \perp \vec{b}$, then vector \vec{v} in terms of $\vec{a} a n d \vec{b}$ satisfying the equation s
$\vec{v} \cdot \vec{a}=\operatorname{and} \vec{v} \cdot \vec{b}=1 \operatorname{and}[\vec{v} \vec{a} \vec{b}]=1$ is a. $\frac{\vec{b}}{|\vec{b}|^{2}}+\frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|^{2}}$ b. $\frac{\vec{b}}{|\vec{b}|^{2}}+\frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|^{2}}$
c. $\frac{\vec{b}}{|\vec{b}|^{2}}+\frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|^{2}}$ d. none of these

(Watch Video Solution

292. If $\vec{a}^{\prime}=\hat{i}+\hat{j}, \vec{b}^{\prime}=\hat{i}-\hat{j}+2 \hat{k}$ and $\vec{c}^{\prime}=2 \hat{i}+\hat{j}-\hat{k}$, then the altitude of the parallelepiped formed by the vectors \vec{a}, \vec{b} and \vec{c} having base formed by \vec{b} and \vec{c} is (where \vec{a}^{\prime} is reciprocal vector \vec{a})

- Watch Video Solution

293. If $\vec{a}=\hat{i}+\hat{j}, \vec{b}=\hat{j}+\hat{k}, \vec{c}=\hat{k}+\hat{i}$, then in the reciprocal system of vectors $\vec{a}, \vec{b}, \vec{c}$ reciprocal \vec{a}^{\prime} of vector \vec{a} is a. $\frac{\hat{i}+\hat{j}+\hat{k}}{2}$ b. $\frac{\hat{i}-\hat{j}+\hat{k}}{2}$ c. $\frac{-\hat{i}-\hat{j}+\hat{k}}{2}$
d. $\frac{\hat{i}+\hat{j}-\hat{k}}{2}$

(Watch Video Solution

294. If unit vectors $\vec{a} a n d \vec{b}$ are inclined at angle 2θ such that $|\vec{a}-\vec{b}|<1$ and $0 \leq \theta \leq \pi$, then θ lies in interval a. $[0, \pi / 6]$ b. $[5 \pi / 6, \pi]$ $[\pi / 6, \pi / 2]$ d. $[\pi / 2,5 \pi / 6]$

- Watch Video Solution

295. A, B, CandD are four points such that
$\vec{A} B=m(2 \hat{i}-6 \hat{j}+2 \hat{k}), \vec{B} C=(\hat{i}-2 \hat{j})$ and $\vec{C} D=n(-6 \hat{i}+15 \hat{j}-3 \hat{k}) \quad$ If $\quad C D$ intersects $A B$ at some point E, then a. $m \geq 1 / 2$ b. $n \geq 1 / 3 \mathrm{c} . m=n$ d. $m<n$

- Watch Video Solution

296. Let $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}-\hat{j}+\hat{k} a n d \vec{c}=\hat{i}-\hat{j}-\hat{k}$ be three vectors. A vector \vec{v} in the plane of $\vec{a} a n d \vec{b}$, whose projection on \vec{c} is $\frac{1}{\sqrt{3}}$ is given by a. $\hat{i}-3 \hat{j}+3 \hat{k}$ b. $-3 \hat{i}-3 \hat{j}+3 \hat{k}$ c. $3 \hat{i}-\hat{j}+3 \hat{k}$ d. $\hat{i}+3 \hat{j}-3 \hat{k}$

- Watch Video Solution

297. If \hat{a}, \hat{b}, and \hat{c} are unit vectors, then $|\hat{a}-\hat{b}|^{2}+|\hat{b}-\hat{c}|^{2}+|\hat{c}-\hat{a}|^{2}$ does not exceed

- Watch Video Solution

298. Which of the following expressions are meaningful? a. $\vec{u}(\vec{v} \times \vec{w})$ b. $(\vec{u} \cdot \vec{v}) \cdot \vec{w} c \cdot(\vec{u} \cdot \vec{v}) \vec{w} \mathrm{~d} \cdot \vec{u} \times(\vec{v} \cdot \vec{w})$

- Watch Video Solution

299. Find the value of λ if the volume of a tetrashedron whose vertices are with position vectors $\hat{i}-6 \hat{j}+10 \hat{k},-\hat{i}-3 \hat{j}+3 \hat{k}, 5 \hat{i}-\hat{j}+\lambda \hat{k}$ and $7 \hat{i}-4 \hat{j}+7 \hat{k}$ is 11 cubic unit.

- Watch Video Solution

300. If $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d}) \vec{a} \times \vec{d}=0$, then which of the following may be true? a. $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are necessarily coplanar b. \vec{a} lies in the plane of \vec{c} and \vec{d}
c. \vec{b} lies in the plane of $\vec{a} a n d \vec{d}$ d. \vec{c} lies in the plane of \vec{a} and \vec{d}

- Watch Video Solution

301. Vector $\frac{1}{3}(2 i-2 j+k)$ is (A) a unit vector (B) makes an angle $\pi / 3$ with vector $(2 \hat{i}-4 \hat{j}+3 \hat{k})$ (C) parallel to vector $\left(-\hat{i}+\hat{j}-\frac{1}{2} \hat{k}\right)$ (D) perpendicular to vector $3 \hat{i}+2 \hat{j}-2 \hat{k}$
302. Let $\vec{u} a n d \vec{v}$ be unit vectors such that $\vec{u} \times \vec{v}+\vec{u}=\vec{w}$ and $\vec{w} \times \vec{u}=\vec{v}$ Find the value of [$\vec{u} \vec{v} \vec{w}$]

- Watch Video Solution

303. The scalarslandm such that $l \vec{a}+m \vec{b}=\vec{c}$, where \vec{a}, \vec{b} and \vec{c} are given vectors, are equal to $\left.\left.a) l=(c x b) .(a x b) /(a x b)^{\wedge} 2 b\right) b . l=(c x b) .(b x a) /(b \times a)^{\wedge} 2 c\right)$ c). $\left.\left.m=(c x b) .(b x a) /(b x a)^{\wedge} 2 d\right) d\right) m=(c x b) .(a x b) /(a x b)^{\wedge} 2$
A. $I=(c x b) .(a x b) /(a x b)^{\wedge} 2$
B. b.l=(cxb).(bxa)/(bxa)^2
C. c). $m=(c x b) .(b x a) /(b x a)^{\wedge} 2$
D. d) $m=(c x b) .(b x a) /(b x a)^{\wedge} 2$

Answer: null

304. If $O A B C$ is a tetrahedron where O is the orogin anf A, B, and C are the other three vertices with position vectors, \vec{a}, \vec{b}, and \vec{c} respectively, then prove that the centre of the sphere circumscribing the tetrahedron $a^{2}(\vec{b} \times \vec{c})+b^{2}(\vec{c} \times \vec{a})+c^{2}(\vec{a} \times \vec{b})$
is given by position vector

$$
2[\vec{a} \vec{b} \vec{c}]
$$

- Watch Video Solution

305. Let k be the length of any edge of a regular tetrahedron (a tetrahedron whose edges are equal in length is called a regular tetrahedron). Show that the angle between any edge and a face not containing the edge is $\cos ^{-1}(1 / \sqrt{3})$.

- Watch Video Solution

306. In $\triangle A B C$ a point P is taken on $A B$ such that $A P / B P=1 / 3$ and a point Q is taken on $B C$ such that $C Q / B Q=3 / 1$. If R is the point of intersection of
the lines $A Q$ and $C P$, using vector method, find the area of $\triangle A B C$ if the area of $\triangle A O C$.

- Watch Video Solution

307. Let $A B C D$ be a p[arallelogram whose diagonals intersect at P and let O be the origin. Then prove that $\vec{O} A+\vec{O} B+\vec{O} C+\vec{O} D=4 \vec{O} P$

- Watch Video Solution

308. If $\left|(a-x)^{2}(a-y)^{2}(a-z)^{2}(b-x)^{2}(b-y)^{2}(b-z)^{2}(c-x)^{2}(c-y)^{2}(c-a)^{2}\right|=0$ and vectors \vec{A}, \vec{B}, and \vec{C}, where $\vec{A}=a^{2} \hat{i}+a \hat{j}+\hat{k}$, etc, are non-coplanar, then prove that vectors \vec{X}, \vec{Y} and \vec{Z}, where $\vec{X}=x^{2} \hat{i}+x \hat{j}+\hat{k}$, etc. may be coplanar.

- Watch Video Solution

309. The lengths of two opposite edges of a tetrahedron are a and b; the shortest distane between these edges is d, and the angel between them
is θ Prove using vectors that the volume of the tetrahedron is $\frac{a b d s i n \theta}{6}$.

- Watch Video Solution

310. Find the valume of a parallelepiped having three coterminus vectors of equal magnitude $|\vec{a}|$ and equal inclination θ with each other.

- Watch Video Solution

311. If vectors $\vec{A}=2 \hat{i}+3 \hat{j}+4 \hat{k}, \vec{B}=\hat{i}+\hat{j}+5 \hat{k} a n d \vec{C}$ form a left-handed system, then \vec{C} is a. $11 \hat{i}-6 \hat{j}-\hat{k}$ b. $-11 \hat{i}+6 \hat{j}+\hat{k}$ c. $11 \hat{i}-6 \hat{j}+\hat{k}$ d. $-11 \hat{i}+6 \hat{j}-\hat{k}$

- Watch Video Solution

312. A vector \vec{d} is equally inclined to three vectors $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=2 \hat{i}+\hat{j}$ and $\vec{c}=3 \hat{j}-2 \hat{k}$ Let \vec{x}, \vec{y}, and \vec{z} be thre vectors in the
plane of $\vec{a}, \vec{b} ; \vec{b}, \vec{c} ; \vec{c}, \vec{a}$, respectively. Then $\vec{x} \vec{d}=-1 \mathrm{~b} . \vec{y} \vec{d}=1 \mathrm{c} . \vec{z} \vec{d}=0 \mathrm{~d}$.
$\vec{r} \vec{d}=0$, where $\vec{r}=\lambda \vec{x}+\mu \vec{y}+\delta \vec{z}$

- Watch Video Solution

313. Vectors $\vec{A} a n d \vec{B}$ satisfying the vector equation
$\vec{A}+\vec{B}=\vec{a}, \vec{A} \times \vec{B}=\vec{b} \operatorname{and} \vec{A} \cdot \vec{a}=1$, where $\vec{a} a n d \vec{b}$ are given vectors, are a.
$\vec{A}=\frac{(\vec{a} \times \vec{b})-\vec{a}}{a^{2}}$ b. $\quad \vec{B}=\frac{(\vec{b} \times \vec{a})+\vec{a}\left(a^{2}-1\right)}{a^{2}}$
c. $\vec{A}=\frac{(\vec{a} \times \vec{b})+\vec{a}}{a^{2}}$
d.
$\vec{B}=\frac{(\vec{b} \times \vec{a})-\vec{a}\left(a^{2}-1\right)}{a^{2}}$

- Watch Video Solution

314. if $\left.\vec{\alpha}|\mid(\vec{\beta} \times \vec{\gamma})$, then $(\vec{\alpha} \times \beta) \vec{\alpha} \times \vec{\gamma}$ equals to $| \vec{\alpha}\right|^{2}(\vec{\beta} \vec{\gamma})$ b.
$|\vec{\beta}|^{2}(\vec{\gamma} \vec{\alpha})$ c. $|\vec{\gamma}|^{2}(\vec{\alpha} \vec{\beta})$ d. $|\vec{\alpha}||\vec{\beta}||\vec{\gamma}|$
315. Let $\vec{\alpha}=a \hat{i}+b \hat{j}+c \hat{k}, \vec{\beta}=b \hat{i}+c \hat{j}+a \hat{k} a n d \vec{\gamma}=c \hat{i}+a \hat{j}+b \hat{k}$ are three coplanar vectors with $a \neq b$, and $\vec{v}=\hat{i}+\hat{j}+\hat{k}$ Then v is perpendicular to $\vec{\alpha}$ b. $\vec{\beta}$ c. $\vec{\gamma}$ d. none of these

- Watch Video Solution

316. $a_{1}, a_{2}, a_{3}, \in R-\{0\}$ and $a_{1}+a_{2} \cos 2 x+a_{3} \sin ^{2} x=0$ or allx $\in R$, then (a)vector $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k} a n d \vec{b}=4 \hat{i}+2 \hat{j}+\hat{k}$ are perpendicular to each other (b)vector $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k} a n d \vec{b}=-\hat{i}+\hat{j}+2 \hat{k}$ are parallel to each other (c)vector $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$ is of length $\sqrt{6}$ units, then one of the ordered triple $\left(a_{1}, a_{2}, a_{3}\right)=(1,-1,-2)$ (d)are perpendicular to each other if $2 a_{1}+3 a_{2}+6 a_{3}=26$, then $\left|a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}\right|$ is $2 \sqrt{6}$

- Watch Video Solution

317. If P is any arbitrary point on the circumcirlce of the equllateral trangle of side length l units, then $|\vec{P} A|^{2}+|\vec{P} B|^{2}+|\vec{P} C|^{2}$ is always equal to $2 l^{2}$ b. $2 \sqrt{3} l^{2}$ c. l^{2} d. $3 l^{2}$

- Watch Video Solution

318. Let $\vec{a} a n d \vec{b}$ be two non-zero perpendicular vectors. A vecrtor \vec{r} satisfying the equation $\vec{r} \times \vec{b}=\vec{a}$ can be $\vec{b}-\frac{\vec{a} \times \vec{b}}{|\vec{b}|^{2}}$ b. $2 \vec{b}-\frac{\vec{a} \times \vec{b}}{|\vec{b}|^{2}}$ $|\vec{a}| \vec{b}-\frac{\vec{a} \times \vec{b}}{|\vec{b}|^{2}}$ d. $|\vec{b}| \vec{b}-\frac{\vec{a} \times \vec{b}}{|\vec{b}|^{2}}$

- Watch Video Solution

319. If $\vec{a} a n d \vec{b}$ are two vectors and angle between them is θ, then
$|\vec{a} \times \vec{b}|^{2}+(\vec{a} \vec{b})^{2}=|\vec{a}|^{2}|\vec{b}|^{2} \quad|\vec{a} \times \vec{b}|=(\vec{a} \vec{b})$, if $\theta=\pi / 4$
$\vec{a} \times \vec{b}=(\vec{a} \vec{b}) \hat{n}$, (wheren is unit vector,) if $\theta=\pi / 4(\vec{a} \times \vec{b}) \vec{a}+\vec{b}=0$

(Watch Video Solution

320. Let \vec{r} be a unit vector satisfying $\vec{r} \times \vec{a}=\vec{b}$, where $|\vec{a}|=$ 3and $|\vec{b}|=2$.

Then $\quad \vec{r}=\frac{2}{3}(\vec{a}+\vec{a} \times \vec{b}) \quad$ b. $\quad \vec{r}=\frac{1}{3}\left(\vec{a}+\vec{a} \times \vec{b} \quad\right.$ c. $\quad \vec{r}=\frac{2}{3}(\vec{a}-\vec{a} \times \vec{b} \quad$ d.
$\vec{r}=\frac{1}{3}(-\vec{a}+\vec{a} \times \vec{b}$

- Watch Video Solution

321. If vector $\vec{b}=(\tan \alpha,-1,2 \sqrt{\sin \alpha / 2})$ and $\vec{c}=\left(\tan \alpha, \tan \alpha, \frac{3}{\sqrt{\sin \alpha / 2}}\right)$ are orthogonal and vector $\vec{a}=(1,3, \sin 2 \alpha)$ makes an obtuse angle with the $z-$ axis, then the value of α is $\mathrm{a} \alpha=\tan ^{-1} 2$ b. $\alpha=-\tan ^{-1} 2$ c. $\alpha=\tan ^{-1} 2 \mathrm{~d}$. $\alpha=\tan ^{-1} 2$

- Watch Video Solution

322. Let \vec{a}, \vec{b}, and \vec{c} be non-zero vectors and $\vec{V}_{1}=\vec{a} \times(\vec{b} \times \vec{c}) \operatorname{and} \vec{V}_{2}(\vec{a} \times \vec{b}) \times \vec{\cdot}$ Vectors $\vec{V}_{1} \operatorname{and} \vec{V}_{2}$ are equal. Then $\vec{a} a n \vec{b}$ are orthogonal b. $\vec{a} a n d \vec{c}$ are collinear c. \vec{b} and \vec{c} are orthogonal d. $\vec{b}=\lambda(\vec{a} \times \vec{c})$ when λ is a scalar

- Watch Video Solution

323. $\vec{a}=2 \hat{i}-\hat{j}+\hat{k}, \vec{b}=\hat{i}+2 \hat{j}-\hat{k}, \vec{c}=\hat{i}+\hat{j}-2 \hat{k} \quad A$ vector coplanar with \vec{b} and \vec{c} whose projectin on \vec{a} is magnitude $\sqrt{\frac{2}{3}}$ is $2 \hat{i}+3 \hat{j}-3 \hat{k}$ b. $-2 \hat{i}-\hat{j}+5 \hat{k}$
c. $2 \hat{i}+3 \hat{j}+3 \hat{k}$ d. $2 \hat{i}+\hat{j}+5 \hat{k}$

- Watch Video Solution

324. Let $\vec{P} R=3 \hat{i}+\hat{j}-2 \hat{k} a n d \vec{S} Q=\hat{i}-3 \hat{j}-4 \hat{k}$ determine diagonals of a parallelogram PQRS, and $\vec{P} T=\hat{i}+2 \hat{j}+3 \hat{k}$ be another vector. Then the volume of the parallelepiped determine by the vectors $\vec{P} T, \vec{P} Q$ and $\vec{P} S$ is 5 b. 20 c. 10 d. 30
325. If in a right-angled triangle $A B C$, the hypotenuse $A B=p$,then
$\overrightarrow{A B} \cdot \overrightarrow{A C}+\overrightarrow{B C} \cdot \overrightarrow{B A}+\overrightarrow{C A} \cdot \overrightarrow{C B}$ is equal to $2 p^{2}$ b. $\frac{p^{2}}{2}$ c. p^{2} d. none of these

- Watch Video Solution

326. If $\vec{a}=(\hat{i}+\hat{j}+\hat{k}), \vec{a} \vec{b}=1$ and $\vec{a} \times \vec{b}=\hat{j}-\hat{k}$, then \hat{b} is $\hat{i}-\hat{j}+\hat{k}$ b. $2 \hat{j}-\hat{k}$ c. \hat{i} d. $-i+2 \hat{i}$

- Watch Video Solution

327. If a satisfies $\vec{a} \times(\hat{i}+2 \hat{j}+\hat{k})=\hat{i}-\hat{k}$, then \vec{a} is equal to $\lambda \hat{i}+(2 \lambda-1) \hat{j}+\lambda \hat{k}, \lambda R$ b. $\lambda \hat{i}+(1-2 \lambda) \hat{j}+\lambda \hat{k}, \lambda R$
c. $\lambda \hat{i}+(2 \lambda+1) \hat{j}+\lambda \hat{k}, \lambda R$ d.
$\lambda \hat{i}-(1+2 \lambda) \hat{j}+\lambda \hat{k}, \lambda R$
328. If $\vec{r} \vec{a}=\vec{r} \vec{b}=\vec{r} \vec{c}=0$, where \vec{a}, \vec{b}, and \vec{c} are non-coplanar, then $\vec{r} \perp(\vec{c} \times \vec{a})$ b. $\vec{r} \perp(\vec{a} \times \vec{b})$ c. $\vec{r} \perp(\vec{b} \times \vec{c})$ d. $\vec{r}=\overrightarrow{0}$

- Watch Video Solution

329. The unit vector orthogonal to vector $\hat{i}+\hat{j}+2 \hat{k}$ and making equal angles with the x and y-axis a. $\pm \frac{1}{3}(2 \hat{i}+2 \hat{j}-\hat{k})$ b. $\pm \frac{1}{3}(\hat{i}+\hat{j}-\hat{k})$
C. $\pm \frac{1}{3}(2 \hat{i}-2 \hat{j}-\hat{k})$ d. none of these

- Watch Video Solution

330. Vectors $3 \vec{a}-5 \vec{b}$ and $2 \vec{a}+\vec{b}$ are mutually perpendicular. If $\vec{a}+4 \vec{b} a n d \vec{b}-\vec{a}$ are also mutually perpendicular, then the cosine of the angel between $a a n d b$ is a. $\frac{19}{5 \sqrt{43}}$ b. $\frac{19}{3 \sqrt{43}}$ c. $\frac{19}{2 \sqrt{45}}$ d. $\frac{19}{6 \sqrt{43}}$

- Watch Video Solution

331. If vectors $\vec{a} a n d \vec{b}$ are two adjacent sides of a parallelogram, then the vector respresenting the altitude of the parallelogram which is the perpendicular to a is $\vec{b}+\frac{\vec{b} \times \vec{a}}{|\vec{a}|^{2}}$ b. $\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^{2}}$ c. $\vec{b}-\frac{\vec{b} \cdot \vec{a}}{|\vec{a}|^{2}}$ d. $\frac{\vec{a} \times(\vec{b} \times \vec{a})}{|\vec{b}|^{2}}$

- Watch Video Solution

332. The value of x for which the angle between $\vec{a}=2 x^{2} \hat{i}+4 x \hat{j}+\hat{k} a n d \vec{b}=7 \hat{i}-2 \hat{j}+\hat{k}$ is obtuse and the angle between b and the z-axis acute and less that $\pi / 6$ is
A. a) a
B. b. $1 / / 2$
C. C. $x>1 / 2$ or $x<0$
D. d. none of these

Answer: null

333. Let $\vec{a} \cdot \vec{b}=0$, where $\vec{a} a n d \vec{b}$ are unit vectors and the unit vector \vec{c} is inclined at an angle θ to both $\vec{a} a n d \vec{b}$ If $\vec{c}=m \vec{a}+n \vec{b}+p(\vec{a} \times \vec{b}),(m, n, p \in R)$, then a.- $\frac{\pi}{4} \leq \theta \leq \frac{\pi}{4}$ b. $\frac{\pi}{4} \leq \theta \leq \frac{3 \pi}{4}$
c. $0 \leq \theta \leq \frac{\pi}{4}$ d. $0 \leq \theta \leq \frac{3 \pi}{4}$

- Watch Video Solution

334. A parallelogram is constructed on $3 \vec{a}+\vec{b}$ and $\vec{a}-4 \vec{b}$, where $|\vec{a}|=6$ and $|\vec{b}|=8$, and \vec{a} and \vec{b} are anti-parallel. Then the length of the longer diagonal is a .40 b .64 c .32 d .48

- Watch Video Solution

335. Let the position vectors of the points PandQ be $4 \hat{i}+\hat{j}+\lambda \hat{k}$ and $2 \hat{i}-\hat{j}+\lambda \hat{k}$, respectively. Vector $\hat{i}-\hat{j}+6 \hat{k}$ is perpendicular to
the plane containing the origin and the points PandQ. Then λ equals $1 / 2$
b. 1/2 c. 1 d . none of these

- Watch Video Solution

336. aandc are unit vectors and $|b|=4$. The angel between aandc is $\cos ^{-1}(1 / 4) a n d b-2 c=\lambda a$ The value of λ is $3,-4$ b. $1 / 4,3 / 4 \mathrm{c} .-3,4 \mathrm{~d}$. $-1 / 4,3 / 4$

- Watch Video Solution

337. If $\vec{d}=\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}$ is non-zero vector and
$|(\vec{c})(\vec{a} \times \vec{b})+(\vec{a})(\vec{b} \times \vec{c})+(\vec{b})(\vec{c} \times \vec{a})|=0, \quad$ then $\quad|\vec{a}|=|\vec{b}|=|\vec{c}|$
$|\vec{a}|+|\vec{b}|+|\vec{c}|=|d|$ c. $\vec{a}, \vec{b}, \operatorname{and} \vec{c}$ are coplanar d. none of these
338. Let \vec{a}, \vec{b}, and \vec{c} be three non-coplanar vectors and \vec{d} be a non-zero vector, which is perpendicular to $(\vec{a}+\vec{b}+\vec{c})$ Now
$\vec{d}=(\vec{a} \times \vec{b}) \sin x+(\vec{b} \times \vec{c}) \cos y+2(\vec{c} \times \vec{a})$ Then a. $\frac{\vec{a}+\vec{b}}{[\vec{a} \vec{b} \vec{c}]}=2$
b.
$\vec{a}+\vec{b}$ $=-2$
c. minimum value of $x^{2}+y^{2}$ is $\pi^{2} / 4 \mathrm{~d}$. minimum value of [$\vec{a} \vec{b} \vec{c}$]
$x^{2}+y^{2}$ is $5 \pi^{2} / 4$

- Watch Video Solution

339. If $\vec{a}+2 \vec{b}+3 \vec{c}=0$, then $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}=2(\vec{a} \times \vec{b})$ b. $6(\vec{b} \times \vec{c})$
c. $3(\vec{c} \times \vec{a})$ d. $\overrightarrow{0}$

- Watch Video Solution

340. $\vec{a} a n d \vec{b}$ are two non-collinear unit vector, and $\vec{u}=\vec{a}-(\vec{a} \vec{b}) \vec{b}$ and $\vec{v}=\vec{a} \times \vec{b}$ Then $|\vec{v}|$ is $|\vec{u}|$ b. $|\vec{u}|+|\vec{u} \vec{b}|$ c. $|\vec{u}|+|\vec{u} \vec{a}|$ d. none of these

- Watch Video Solution

341. prove that sec theta

- Watch Video Solution

342. \vec{a}, \vec{b}, and \vec{c} are unimodular and coplanar. A unit vector \vec{d} is perpendicular to then. If $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=\frac{1}{6} \hat{i}-\frac{1}{3} \hat{j}+\frac{1}{3} \hat{k}$, and the angel between $\vec{a} a n d \vec{b}$ is 30^{0}, then \vec{c} is a. $(\hat{i}-2 \hat{j}+2 \hat{k}) / 3$ b. $(-\hat{i}+2 \hat{j}-2 \hat{k}) / 3$
c. $(2 \hat{i}+2 \hat{j}-\hat{k}) / 3$ d. $(-2 \hat{i}-2 \hat{j}+\hat{k}) / 3$

- Watch Video Solution

343. Vectors perpendicular to $\hat{i}-\hat{j}-\hat{k}$ and in the plane of $\hat{i}+\hat{j}+\hat{k}$ and $-\hat{i}+\hat{j}+\vec{k}$ are $\hat{i}+\hat{k}$ b. $2 \hat{i}+\hat{j}+\hat{k}$ c. $3 \hat{i}+2 \hat{j}+\hat{k}$ d. $-4 \hat{i}-2 \hat{j}-2 \hat{k}$

- Watch Video Solution

344. If side $\vec{A} B$ of an equilateral trangle $A B C$ lying in the $x-y$ plane $3 \hat{i}$, then side $\vec{C} B$ can be $-\frac{3}{2}(\hat{i}-\sqrt{3 \hat{j}})$ b. $-\frac{3}{2}(\hat{i}-\sqrt{3 \hat{j}})$ c. $-\frac{3}{2}(\hat{i}+\sqrt{3} \hat{j})$ $\frac{3}{2}(\hat{i}+\sqrt{3} \hat{j})$

- Watch Video Solution

345. If $A=\{1,2,3,4\}, f: R \rightarrow R=x^{2}+3 x+1$ and $g: R \rightarrow R, 8(x)=2 x-3$ then find $f o f(x)$

- Watch Video Solution

346. Let two non-collinear unit vector \hat{a} a $\mathrm{n} \mathrm{d} \hat{b}$ form an acute angle. A point P moves so that at any time t, the position vector $O P$ (where O is the origin) is given by âcost $+\hat{b} \sin t W h e n P$ is farthest from origin O, let M be the length of OPandû be the unit vector along $O P$ Then (a)
$\hat{u}=\frac{\hat{a}+\hat{b}}{|\hat{a}+\hat{b}|}$ andM $=(1+\hat{a} \hat{b})^{1 / 2}$
(b) $\hat{u}=\frac{\hat{a}-\hat{b}}{|\hat{a}-\hat{b}|}$ andM $=\left(1+\hat{a}^{\wedge}\right)^{1 / 2}$
$\hat{u}=\frac{\hat{a}+\hat{b}}{|\hat{a}+\hat{b}|} \operatorname{andM}=(1+2 \hat{a} \hat{b})^{1 / 2}$ (d) $\hat{u}=\frac{\hat{a}-\hat{b}}{|\hat{a}-\hat{b}|}$ andM $=(1+2 \hat{a} \hat{b})^{1 / 2}$

- Watch Video Solution

347. Let $\vec{a}=\hat{i}+2 \hat{j}+\hat{k}, \vec{b}=\hat{i}-\hat{j}+\hat{k}$ and $\vec{c}=\hat{i}+\hat{j}-\hat{k}$ A vector in the plane of \vec{a} and \vec{b} whose projection of c is $1 / \sqrt{3}$ is a. $4 \hat{i}-\hat{j}+4 \hat{k}$ b. $3 \hat{i}+\hat{j}+3 \hat{k}$ c. $2 \hat{i}+\hat{j}+2 \hat{k}$ d. $4 \hat{i}+\hat{j}-4 \hat{k}$

- Watch Video Solution

348. If \vec{a}, \vec{b} and \vec{c} are three non-zero, non coplanar vector $\vec{b}=\vec{b}-\frac{\vec{b} \vec{a}}{|\vec{a}|^{2}} \vec{a}$,
$\vec{c}_{1}=\vec{c}-\frac{\vec{\cdot} \vec{a}}{|\vec{a}|^{2}} \vec{a}+\frac{\vec{b} \vec{c}}{|\vec{c}|^{2}} \vec{b}_{1}$

$$
, c_{2}=\vec{c}-\frac{\vec{\cdot} \vec{a}}{|\vec{a}|^{2}} \vec{a}-\frac{\vec{b} \vec{c}}{\left|\vec{b}_{1}\right|^{2}}
$$

$b_{1}, \vec{c}_{3}=\vec{c}-\frac{\vec{b} \vec{a}}{|\vec{c}|^{2}} \vec{a}+\frac{\vec{b} \vec{c}}{|\vec{c}|^{2}} \vec{b}_{1}, \vec{c}_{4}=\vec{c}-\frac{\vec{a} \vec{a}}{|\vec{c}|^{2}} \vec{a}=\frac{\vec{b} \vec{c}}{|\vec{b}|^{2}} \vec{b}_{1}$ then the set of orthogonal vectors is $\left(\vec{a}, \vec{b}_{1}, \vec{c}_{3}\right)$ b. $\left(\vec{a}, \vec{b}_{1}, \vec{c}_{2}\right)$ c. $\left(\vec{a}, \vec{b}_{1}, \vec{c}_{1}\right)$ d. $\left(\vec{a}, \vec{b}_{2}, \vec{c}_{2}\right)$

- Watch Video Solution

349. The unit vector which is orthogonal to the vector $5 \hat{j}+2 \hat{j}+6 \hat{k}$ and is coplanar with vectors $2 \hat{i}+\hat{j}+\hat{k}$ and $d \hat{i}-\hat{j}+\hat{k}$ is $\frac{2 \hat{i}-6 \hat{j}+\hat{k}}{\sqrt{41}}$ b. $\frac{2 \hat{i}-3 \hat{j}}{\sqrt{13}}$ c. $\frac{3 \hat{i}-\hat{k}}{\sqrt{10}}$ d. $\frac{4 \hat{i}+3 \hat{j}-3 \hat{k}}{\sqrt{34}}$
350. If \vec{a} and \vec{b} are unequal unit vectors such that $(\vec{a}-\vec{b}) \times[(\vec{b}+\vec{a}) \times(2 \vec{a}+\vec{b})]=\vec{a}+\vec{b}$, then angle θ between $\vec{a} a n d \vec{b}$ is 0 b. $\pi / 2$ c. $\pi / 4$ d. π

- Watch Video Solution

351. If in triangle $A B C, \vec{A} B=\frac{\vec{u}}{|\vec{u}|}-\frac{\vec{v}}{|\vec{v}|} \operatorname{and} \vec{A} C=\frac{2 \vec{u}}{|\vec{u}|}$, where $|\vec{u}| \neq|\vec{v}|$, then $1+\cos 2 A+\cos 2 B+\cos 2 C=0$ b.sin$A=\cos C$ c. projection of $A C$ on $B C$ is equal to $B C$ d. projection of $A B$ on $B C$ is equal to $A B$

- Watch Video Solution

352. A vector \vec{d} is equally inclined to three vectors $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=2 \hat{i}+\hat{j}$ and $\vec{c}=3 \hat{j}-2 \hat{k}$ Let \vec{x}, \vec{y}, and \vec{z} be thre vectors in the plane of $\vec{a}, \vec{b} ; \vec{b}, \vec{c} ; \vec{c}, \vec{a}$, respectively. Then $\vec{x} \vec{d}=-1 \mathrm{~b} . \vec{y} \vec{d}=1 \mathrm{c} . \vec{z} \vec{d}=0 \mathrm{~d}$.
$\vec{r} \vec{d}=0$, where $\vec{r}=\lambda \vec{x}+\mu \vec{y}+\delta \vec{z}$
353. If $a \times(b \times c)=(a \times b) \times c$, then $(\vec{c} \times \vec{a}) \times \vec{b}=\overrightarrow{0} b . \vec{c} \times(\vec{a} \times \vec{b})=\overrightarrow{0} c$. $\vec{b} \times(\vec{c} \times \vec{a}) \overrightarrow{0}$ d. $(\vec{c} \times \vec{a}) \times \vec{b}=\vec{b} \times(\vec{c} \times \vec{a})=\overrightarrow{0}$

- Watch Video Solution

354. If \hat{a}, \hat{b} and \hat{c} are three unit vectors inclined to each other at an angle
θ. The maximum value of θ is

- Watch Video Solution

355. Let the pairs a, bandc, d each determine a plane. Then the planes are

$$
\text { parallel if } \quad(\vec{a} \times \vec{c}) \times(\vec{b} \times \vec{d})=\overrightarrow{0} \quad \text { b. } \quad(\vec{a} \times \vec{c}) \vec{b} \times \vec{d}=\overrightarrow{0}
$$

C.

$$
(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=\overrightarrow{0} \text { d. }(\vec{a} \times \vec{b}) \vec{c} \times \vec{d}=\overrightarrow{0}
$$

356. $P(\vec{p})$ and $Q(\vec{q})$ are the position vectors of two fixed points and $R(\vec{r})$ is the position vectorvariable point. If R moves such that $(\vec{r}-\vec{p}) \times(\vec{r}-\vec{q})=0$ then the locus of R is

- Watch Video Solution

357. Two adjacent sides of a parallelogram $A B C D$ are $2 \hat{i}+4 \hat{j}-5 \hat{k}$ and $\hat{i}+2 \hat{j}+3 \hat{k}$. Then the value of $|A C \times B D|$ is $20 \sqrt{5}$ b. $22 \sqrt{5}$ c. $24 \sqrt{5}$ d. $26 \sqrt{5}$

- Watch Video Solution

358. If \hat{a}, \hat{b}, and \hat{c} are three unit vectors, such that $\hat{a}+\hat{b}+\hat{c}$ is also a unit vector and θ_{1}, θ_{2} andth η_{3} are angles between the vectors $\hat{a}, \hat{b} ; \hat{b}, \hat{c} a n d \hat{c}, \hat{a}$ respectively, then among θ_{1}, θ_{2}, andth η_{3} a. all are acute angles b . all are right angles c. at least one is obtuse angle d. none of these

- Watch Video Solution

359. If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors such that $\vec{a} \vec{b}=0=\vec{a} \vec{c}$ and the angle between \vec{b} and \vec{c} is $\pi / 3$, then the value of $|\vec{a} \times \vec{b}-\vec{a} \times \vec{c}|$ is $1 / 2 \mathrm{~b} .1 \mathrm{c} .2 \mathrm{~d}$. none of these

- Watch Video Solution

360. Let $\vec{a}=\hat{i}+\hat{j} ; \vec{b}=2 \hat{i}-\hat{k}$ Then vector \vec{r} satisfying
$\vec{r} \times \vec{a}=\vec{b} \times \vec{a}$ and $\vec{r} \times \vec{b}=\vec{a} \times \vec{b}$ is $\hat{i}-\hat{j}+\hat{k}$ b. $3 \hat{i}-\hat{j}+\hat{k}$ c. $3 \hat{i}+\hat{j}-\hat{k}$ d. $\hat{i}-\hat{j}-\hat{k}$

- Watch Video Solution

361. If $\vec{a} a n d \vec{b}$ are two vectors, such that $\vec{a} \vec{b}<0$ and $|\vec{a} \vec{b}|=|\vec{a} \times \vec{b}|$, then the angle between vectors $\vec{a} a n d \vec{b}$ is $\pi \mathrm{b} .7 \pi / 4 \mathrm{c} . \pi / 4 \mathrm{~d} .3 \pi / 4$

- Watch Video Solution

362. \vec{a}, \vec{b}, and \vec{c} are three vectors of equal magnitude. The angel between each pair of vectors is $\pi / 3$ such that $|\vec{a}+\vec{b}+\vec{c}|=6$. Then $|\vec{a}|$ is equal to 2b. -1 c. 1 d. $\sqrt{6} / 3$

- Watch Video Solution

363. If \vec{a}, \vec{b} and \vec{c} are three mutually perpendicular vectors, then the vector which is equally inclined to these vectors is a. $\vec{a}+\vec{b}+\vec{c}$ b.
$\frac{\vec{a}}{|\vec{a}|}+\frac{\vec{b}}{|\vec{b}|}+\frac{\vec{c}}{|\vec{c}|}$ c. $\frac{\vec{a}}{|\vec{a}|^{2}}+\frac{\vec{b}}{|\vec{b}|^{2}}+\frac{\vec{c}}{|\vec{c}|^{2}}$ d. $|\vec{a}| \vec{a}-|\vec{b}| \vec{b}+|\vec{c}| \vec{c}$

- Watch Video Solution

364. $\vec{a} a n d \vec{b}$ are two non-collinear unit vector, and
$\vec{u}=\vec{a}-(\vec{a} \vec{b}) \vec{b}$ and $\vec{v}=\vec{a} \times \vec{b}$ Then $|\vec{v}|$ is $|\vec{u}|$ b. $|\vec{u}|+|\vec{u} \vec{b}|$ c. $|\vec{u}|+|\vec{u} \vec{a}|$ d. none of these
365. The vertex A triangle $A B C$ is on the line $\vec{r}=\hat{i}+\hat{j}+\lambda \hat{k}$ and the vertices Band have respective position vectors $\hat{\text { ian }} \hat{j}$ Let Delta be the area of the triangle and Delta $[3 / 2, \sqrt{33} / 2]$. Then the range of values of λ corresponding to A is a. $[-8,4] \cup[4,8]$ b. $[-4,4]$ c. $[-2,2]$ d. $[-4,-2] \cup[2,4]$

- Watch Video Solution

366. If a is real constant A, Band are variable angles and $\sqrt{a^{2}-4} \tan A+a \tan B+\sqrt{a^{2}+4} \tan c=6 a$, then the least vale of $\tan ^{2} A+\tan ^{2} b+\tan ^{2}$ Cis 6 b. 10 c. 12 d. 3

- Watch Video Solution

367. The position vectors of the vertices A, Band of a triangle are three unit vectors \vec{a}, \vec{b}, and \vec{c}, respectively. A vector \vec{d} is such that
$\vec{d} \vec{a}=\vec{d} \vec{b}=\vec{d} \vec{c}$ and $\vec{d}=\lambda(\vec{b}+\vec{c})$ Then triangle $A B C$ is a. acute angled b . obtuse angled c. right angled d. none of these

- Watch Video Solution

368. Given that $\vec{a}, \vec{b}, \vec{p}, \vec{q}$ are four vectors such that $\vec{a}+\vec{b}=\mu \vec{p}, \vec{b} \cdot \vec{q}=$ oand $|\vec{b}|^{2}=1$, where $\mu \quad$ is a scalar. Then
$|(\vec{a} \vec{q}) \vec{p}-(\vec{p} \vec{q}) \vec{a}|$ is equal to (a) $2|\vec{p} \cdot \vec{q}|$ (b) (1/2) $|\vec{p} \cdot \vec{q}|$ (c) $|\vec{p} \times \vec{q}|$
$|\vec{p} \cdot \vec{q}|$

- Watch Video Solution

369. In fig. $A B, D E a n d G F$ are parallel to each other and $A D, B G a n d E F$ are parallel to each other. If $C D: C E=C G: C B=2: 1$, then the value of area (AEG): area (ABD) is equal to $7 / 2 \mathrm{~b} .3 \mathrm{c} .4 \mathrm{~d} .9 / 2$

- Watch Video Solution

370. In a quadrilateral $A B C D, \vec{A} C$ is the bisector of $\vec{A} B a n d \vec{A} D$, angle between $\vec{A} B a n d \vec{A} D$ is $2 \pi / 3,15|\vec{A} C|=3|\vec{A} B|=5|\vec{A} D|$ Then the angle between \vec{B} Aand $\vec{C} D$ is $\frac{\cos ^{-1}(\sqrt{14})}{7 \sqrt{2}}$ b. $\frac{\cos ^{-1}(\sqrt{21})}{7 \sqrt{3}}$
c. $\frac{\cos ^{-1} 2}{\sqrt{7}}$
d. $\cos ^{-1}(2 \sqrt{7})$

14

- Watch Video Solution

371. Position vector \hat{k} is rotated about the origin by angle 135° in such a way that the plane made by it bisects the angle between $\hat{i} a n d \dot{\hat{j}}$ Then its new position is a. $\frac{\hat{i}}{\sqrt{2}} \pm \frac{\hat{j}}{\sqrt{2}}$ b. $\pm \frac{\hat{i}}{2} \pm \frac{\hat{j}}{2}-\frac{\hat{k}}{\sqrt{2}}$ c. $\frac{\hat{i}}{\sqrt{2}}-\frac{\hat{k}}{\sqrt{2}}$ d. none of these

- Watch Video Solution

372. A non-zero vector \vec{a} is such that its projections along vectors $\frac{\hat{i}+\hat{j}}{\sqrt{2}}, \frac{-\hat{i}+\hat{j}}{\sqrt{2}}$ and \hat{k} are equal, then unit vector along \vec{a} is $\frac{\sqrt{2} \hat{j}-\hat{k}}{\sqrt{3}}$ b. $\frac{\hat{j}-\sqrt{2} \hat{k}}{\sqrt{3}}$
c. $\frac{\sqrt{2}}{\sqrt{3}} \hat{j}+\frac{\hat{k}}{\sqrt{3}}$ d. $\frac{\hat{j}-\hat{k}}{\sqrt{2}}$

- Watch Video Solution

373. Let $\vec{a}=2 i+j+k, \vec{b}=i+2 j-k$ and a unit vector \vec{c} be coplanar. If \vec{c} is perpendicular to \vec{a}, then \vec{c} is $\frac{1}{\sqrt{2}}(-j+k)$ b. $\frac{1}{\sqrt{3}}(-i-j-k)$ c. $\frac{1}{\sqrt{5}}(-k-2 j)$ d. $\frac{1}{\sqrt{3}}(i-j-k)$

- Watch Video Solution

374. Let $\vec{a}=2 i+j-2 k a n d \vec{b}=i+j$ If \vec{c} is a vector such that $\vec{a} \vec{c}=|\vec{c}|,|\vec{c}-\vec{a}|=2 \sqrt{2}$ between $\vec{a} \times \vec{b}$ and $\vec{c} i s 30^{0}$, then $|(\vec{a} \times \vec{b}) \times \vec{c}|$ । equal to a.2/3 b. $3 / 2$ c. 2 d. 3

- Watch Video Solution

375. Vector \vec{a} in the plane of $\vec{b}=2 \hat{i}+\hat{j}$ and $\vec{c}=\hat{i}-\hat{j}+\hat{k}$ is such that it is equally inclined to \vec{b} and \vec{d} where $\vec{d}=\hat{j}+2 \hat{k}$ The value of \vec{a} is a. $\frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{2}}$ b. $\frac{\hat{i}-\hat{j}+\hat{k}}{\sqrt{3}}$ c. $\frac{2 \hat{i}+\hat{j}}{\sqrt{5}}$ d. $\frac{2 \hat{i}+\hat{j}}{\sqrt{5}}$

(Watch Video Solution

376. If $\vec{a}, \vec{b}, \vec{c}$ are three non-coplanar vectors such that $\vec{a} \times(\vec{b} \times \vec{c})=\frac{b+c}{\sqrt{2}}$, then the angle between \vec{a} and \vec{b} is

(Watch Video Solution

377. Let \vec{u}, \vec{v} and \vec{w} be vectors such that $\vec{u}+\vec{v}+\vec{w}=0$. If $|\vec{u}|=3,|\vec{v}|=$ 4and $|\vec{w}|=5$, then $\vec{u} \vec{v}+\vec{v} \vec{w}+\vec{w} \vec{u}$ is a. 47 b. -25 c. 0 d. 25

- Watch Video Solution

378. If \vec{a}, \vec{b} and \vec{c} are three non-coplanar vectors, then
$(\vec{a}+\vec{b}+\vec{c})(\vec{a}+\vec{b}) \times(\vec{a}+\vec{c})$ equals a. 0 b. $[\vec{a} \vec{b} \vec{c}]$
c. $2[\vec{a} \vec{b} \vec{c}]$ d. $-[\vec{a} \vec{b} \vec{c}]$

- Watch Video Solution

379. \vec{p}, \vec{q}, and \vec{r} are three mutually perpendicular vectors of the same magnitude. If vector \vec{x} satisfies the equation $\vec{p} \times((\vec{x}-\vec{q}) \times \vec{p})+\vec{q} \times((\vec{x}-\vec{r}) \times \vec{q})+\vec{r} \times((\vec{x}-\vec{p}) \times \vec{r})=0$, then \vec{x} is given by a. $\frac{1}{2}(\vec{p}+\vec{q}-2 \vec{r})$ b. $\frac{1}{2}(\vec{p}+\vec{q}+\vec{r})$ c. $\frac{1}{3}(\vec{p}+\vec{q}+\vec{r})$ d. $\frac{1}{3}(2 \vec{p}+\vec{q}-\vec{r})$

- Watch Video Solution

380. If vectors b, candd are not coplanar, then prove that vector $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})+(\vec{a} \times \vec{c}) \times(\vec{d} \times \vec{b})+(\vec{a} \times \vec{d}) \times(\vec{b} \times \vec{c})$ is parallel to \vec{a}
381. The position vectors of the vertices, A, B and C of a tetrahedron are $\hat{i}+\hat{j}+\hat{k}, \hat{i}$ and $3 \hat{i}$ respectively. The altitude from vertex D to the opposite face $A B C$ meets the median line through A of triangle $A B C$ at a point E. if the length of the side $A D$ is 4 and the volume of the tetrahedron is $2 \sqrt{2} / 3$ find teh position vectors of the point E for all its possible positions.

D Watch Video Solution

382. If \vec{A}, \vec{B} and \vec{C} are vectors such that $|\vec{B}|=|\vec{C}|$. Prove that $[(\vec{A}+\vec{B}) \times(\vec{A}+\vec{C})] \times(\vec{B}+\vec{C}) \cdot(\vec{B}+\vec{C})=0$

(D) Watch Video Solution

383.

$3 \vec{a}+\vec{b}$ and $\vec{a}-4 \vec{b}$, where $|\vec{a}|=6$ and $|\vec{b}|=8$, and $\vec{a} a n d \vec{b}$ are anti-parallel. Then the length of the longer diagonal is a .40 b .64 c .32 d .48
384. Statement 1: Vector $\vec{c}=5 \hat{i}+7 \hat{j}+2 \hat{k}$ is along the bisector of angel between $\vec{a}=\hat{i}+2 \hat{j}+2 \hat{k} a n d \vec{b}=-8 \hat{i}+\hat{j}-4 \hat{k}$ Statement $2: \quad \vec{c}$ is equally inclined to $\vec{a} a n d \vec{b}$

- Watch Video Solution

385. Statement 1: A component of vector $\vec{b}=4 \hat{i}+2 \hat{j}+3 \hat{k}$ in the direction perpendicular to the direction of vector $\vec{a}=\hat{i}+\hat{j}+\hat{k} i s \hat{i}-\hat{j}$ Statement 2: A component of vector in the direction of $\vec{a}=\hat{i}+\hat{j}+\hat{k}$ is $2 \hat{i}+2 \hat{j}+2 \hat{k}$

- Watch Video Solution

386. Statement 1 : Points $A(1,0), B(2,3), C(5,3)$, and $D(6,0)$ are concyclic.

Statement 2 : Points $A, B, C, a n d D$ form an isosceles trapezium or
$A B a n d C D$ meet at E Then $E A . E B=E C . E D$

- Watch Video Solution

387. Let \vec{r} be a non-zero vector satisfying $\vec{r} \cdot \vec{a}=\vec{r} \cdot \vec{b}=\vec{r} \cdot \vec{c}=0$ for given non-zero vectors \vec{a}, \vec{b} and $\vec{?}$ Statement $1:[\vec{a}-\vec{b} \vec{b}-\vec{c} \vec{c}-\vec{a}]=0$ Statement 2: $[\vec{a} \vec{b} \vec{c}]=0$

- Watch Video Solution

388. Let $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k} ; \vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k} ; \vec{c}=c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$ be three non-zero vectors such that \vec{c} is a unit vector perpendicular to both
$\vec{a} \& \vec{b}$. If the angle between \vec{a} and \vec{b} is $\frac{\pi}{6}$, then $\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|^{2}=$

- Watch Video Solution

389. Statement 1: If $\vec{A}=2 \hat{i}+3 \hat{j}+6 \hat{k}, \vec{B}=\hat{i}+\hat{j}-2 \hat{k} a n d \vec{C}=\hat{i}+2 \hat{j}+\hat{k}$, then
$|\vec{A} \times(\vec{A} \times(\vec{A} \times \vec{B})) \cdot \vec{C}|=243$
Statement 2: $|\vec{A} \times(\vec{A} \times(\vec{A} \times \vec{B})) \cdot \vec{C}|=|\vec{A}|^{2}|[\vec{A} \vec{B} \vec{C}]|$
a. Statement 1 and Statement 2 , both are true and Statement 2 is the correct explanation for Statement 1.
b. Statement 1 and Statement 2 , both are true and Statement 2 is not the correct explanation for Statement 1.
c. Statement 1 is true but Statement 2 is false.
c. Statement 2 is true but Statement 1 is false.

- Watch Video Solution

390. Statement $1: \vec{a}, \vec{b}$, and \vec{c} are three mutually perpendicular unit vectors and \vec{d} is a vector such that $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are non-coplanar. If $[\vec{d} \vec{b} \vec{c}]=[\vec{d} \vec{a} \vec{b}]=[\vec{d} \vec{c} \vec{a}]=1$, then $\vec{d}=\vec{a}+\vec{b}+\vec{c} \quad$ Statement $\quad 2:$ $[\vec{d} \vec{b} \vec{c}]=[\vec{d} \vec{a} \vec{b}]=[\vec{d} \vec{c} \vec{a}] \Rightarrow \vec{d}$ is equally inclined to $\vec{a}, \vec{b}, \vec{c}$.
391. Let vectors $\vec{a}, \vec{b}, \vec{c}$, and \vec{d} be such that $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=0$. Let $P_{1} a n d P_{2}$ be planes determined by the pair of vectors \vec{a}, \vec{b}, and \vec{c}, \vec{d}, respectively. Then the angle between $P_{1} \operatorname{and} P_{2}$ is a. $0 \mathrm{~b} . \pi / 4 \mathrm{c} . \pi / 3 \mathrm{~d} . \pi / 2$

- Watch Video Solution

392. The number of vectors of unit length perpendicular to vectors
$\vec{a}=(1,1,0) a n d \vec{b}=(0,1,1)$ is a. one b. two c. three d. infinite

- Watch Video Solution

393. For any two \vec{a} and $\vec{b},(\vec{a} \times \hat{i}) \vec{b} \times \hat{i}+(\vec{a} \times \hat{j}) \vec{b} \times \hat{j}+(\vec{a} \times \hat{k}) \vec{b} \times \hat{k}$ is always equal to a. $\vec{a} \cdot \vec{b}$ b. $2 \vec{a} \cdot \vec{b}$ c. zero d. none of these
394. Let $f(t)=[t] \hat{i}+(t-[t]) \hat{j}+[t+1] \hat{k}$, where[.] denotes the greatest integer function. Then the vectors $f\left(\frac{5}{4}\right)$ and $f(t), 0<t<i$ are(a) parallel to each other(b) perpendicular(c) inclined at $\cos ^{-1} 2\left(\sqrt{7\left(1-t^{2}\right)}\right)$ (d)inclined at $\cos ^{-1}\left(\frac{8+t}{\sqrt{1+t^{2}}}\right)$;

- Watch Video Solution

395. If \vec{a} is parallel to $\vec{b} \times \vec{c}$, then $(\vec{a} \times \vec{b}) \vec{a} \times \vec{c}$ is equal to a. $|\vec{a}|^{2}(\vec{b} . \vec{c})$ b. $|\vec{b}|^{2}(\vec{a} . \vec{c}) \mathrm{c} .|\vec{c}|^{2}(\vec{a} . \vec{b}) \mathrm{d}$. none of these

- Watch Video Solution

396. The three vectors $\hat{i}+\hat{j}, \hat{j}+\hat{k}, \hat{k}+\hat{i}$ taken two at a time form three planes, The three unit vectors drawn perpendicular to these planes form a parallelopiped of volume:

(D) Watch Video Solution

397. If $\vec{d}=\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}$ is non-zero vector and
$|(\vec{c})(\vec{a} \times \vec{b})+(\vec{a})(\vec{b} \times \vec{c})+(\vec{b})(\vec{c} \times \vec{a})|=0, \quad$ then $\quad|\vec{a}|=|\vec{b}|=|\vec{c}| \quad$ b. $|\vec{a}|+|\vec{b}|+|\vec{c}|=|d| c . \vec{a}, \vec{b}$, and \vec{c} are coplanar d. none of these

- Watch Video Solution

398. If $|a|=2 a n d|b|=3$ and $a b=0$, then $(a \times(a \times(a \times(a \times b))))$ is equal to a. $48 \hat{b}$ b. $-48 \hat{b}$ c. 48 â d. $-48 \hat{a}$

- Watch Video Solution

399. If the two diagonals of one its faces are $6 \hat{i}+6 \hat{k} a n d 4 \hat{j}+2 \hat{k}$ and of the edges not containing the given diagonals is $c=4 \hat{j}-8 \hat{k}$, then the volume of a parallelepiped is a. 60 b .80 c .100 d .120
400. The volume of a tetrahedron formed by the coterminous edges \vec{a}, \vec{b}, and \vec{c} is 3 . Then the volume of the parallelepiped formed by the coterminous edges $\vec{a}+\vec{b}, \vec{b}+\vec{c}$ and $\vec{c}+\vec{a}$ is a. 6 b .18 c .36 d .9

- Watch Video Solution

401. If \vec{a}, \vec{b}, and \vec{c} are three mutually orthogonal unit vectors, then the triple product $[\vec{a}+\vec{b}+\vec{c} \vec{a}+\vec{b} \vec{b}+\vec{c}]$ equals: (a.) 0 (b.) 1 or -1 (c.) 1 (d.) 3

- Watch Video Solution

402. Vector \vec{c} is perpendicular to vectors $\vec{a}=(2,-3,1)$ and $\vec{b}=(1,-2,3)$ and satisfies the condition $\vec{c} \cdot(\hat{i}+2 \hat{j}-7 \hat{k})=10$. Then vector \vec{c} is equal to a. $(7,5,1)$ b. $-7,-5,-1$ c. $1,1,-1$ d. none of these
403. Given $\vec{a}=x \hat{i}+y \hat{j}+2 \hat{k}, \vec{b}=\hat{i}-\hat{j}+\hat{k}, \vec{c}=\hat{i}+2 \hat{j} ; \vec{a} \perp \vec{b}, \vec{a} . \vec{c}=4$. Then
a. $[\vec{a} \vec{b} \vec{c}]^{2}=|\vec{a}|$
b. $[\vec{a} \vec{b} \vec{c}]=|\vec{a}|$
c. $[\vec{a} \vec{b} \vec{c}]^{=} 0$ d. $[\vec{a} \vec{b} \vec{c}]=|\vec{a}|^{2}$

- Watch Video Solution

404. $\vec{a} a n d \vec{b}$ are two unit vectors that are mutually perpendicular. A unit vector that is equally inclined to \vec{a}, \vec{b} and $\vec{a} \times \vec{b}$ is a. $\frac{1}{\sqrt{2}}(\vec{a}+\vec{b}+\vec{a} \times \vec{b})$ b. $\frac{1}{2}(\vec{a} \times \vec{b}+\vec{a}+\vec{b})$ c. $\frac{1}{\sqrt{3}}(\vec{a}+\vec{b}+\vec{a} \times \vec{b})$ d. $\frac{1}{3}(\vec{a}+\vec{b}+\vec{a} \times \vec{b})$

- Watch Video Solution

405. If $\vec{r} a n d \vec{s}$ are non-zero constant vectors and the scalar b is chosen such that $|\vec{r}+b \vec{s}|$ is minimum, then the value of $|b \vec{s}|^{2}+|\vec{r}+b \vec{s}|^{2}$ is equal to a.2 $|\vec{r}|^{2}$ b. $|\vec{r}|^{2} / 2$ c. $3|\vec{r}|^{2}$ d. $|r|^{2}$

- Watch Video Solution

406. The scalar $\vec{A}(\vec{B}+\vec{C}) \times(\vec{A}+\vec{B}+\vec{C})$ equals a. 0 b. $[\vec{A} \vec{B} \vec{C}]+[\vec{B} \vec{C} \vec{A}]$ c. $[\vec{A} \vec{B} \vec{C}]$ d. none of these

- Watch Video Solution

407. The volume of he parallelepiped whose sides are given by $\vec{O} A=2 i-2, j, \vec{O} B=i+j-k a n d \vec{O} C=3 i-k$ is a. $\frac{4}{13}$ b. 4 c. $\frac{2}{7}$ d. 2

- Watch Video Solution

408. For non-zero vectors \vec{a}, \vec{b}, and $\vec{c},|(\vec{a} \times \vec{b}) \vec{c}|=|\vec{a}||\vec{b}||\vec{c}|$ holds if and only if a. $\vec{a} \cdot \vec{b}=0, \vec{b} \cdot \vec{c}=0 \mathrm{~b} . \vec{b} \cdot \vec{c}=0, \vec{c} \cdot \vec{a}=0 \mathrm{c} . \vec{c} \cdot \vec{a}=0, \vec{a} \cdot \vec{b}=0 \mathrm{~d}$. $\vec{a} \cdot \vec{b}=0, \vec{b} \cdot \vec{c}=0, \vec{c} \cdot \vec{a}=0$

- Watch Video Solution

409. For three vectors $\vec{u}, \vec{v} a n d \vec{w}$ which of the following expressions is not equal to any of the remaining three ? a. $\vec{u} .(\vec{v} \times \vec{w})$ b. $(\vec{v} \times \vec{w}) \cdot \vec{u}$ c. $\vec{v} \cdot(\vec{u} \times \vec{w}) \mathrm{d} \cdot(\vec{u} \times \vec{v}) \cdot \vec{w}$

(Watch Video Solution

410. Let \vec{A} be a vector parallel to the line of intersection of planes P_{1} and P_{2} Plane P_{1} is parallel to vectors $2 \hat{j}+3 \hat{k}$ and $4 \hat{j}-3 k a n d P_{2}$ is parallel to $\hat{j}-\hat{k}$ and $3 \hat{i}+3 \dot{\hat{j}}$ Then the angle betweenvector \vec{A} and a given vector $2 \hat{i}+\hat{j}-2 \hat{k}$ is a. $\pi / 2$ b. $\pi / 4$ c. $\pi / 6$ d. $3 \pi / 4$

- Watch Video Solution

411. If $\vec{a} \cdot \vec{b}=\beta$ and $\times \vec{b}=\vec{c}$, hen \vec{b} is $(\beta \vec{a}-\vec{a} \times \vec{c})$
b. $\underline{(\beta \vec{a}+\vec{a} \times \vec{c})}$
b.
$|\vec{a}|^{2} \quad|\vec{a}|^{2}$
$\frac{(\beta \vec{c}-\vec{a} \times \vec{c})}{|\vec{a}|^{2}}$ d. $\frac{(\beta \vec{a}+\vec{a} \times \vec{c})}{|\vec{a}|^{2}}$
412. \vec{b} and \vec{c} are unit vectors. Then for any arbitrary vector $\vec{a},(((\vec{a} \times \vec{b})+(\vec{a} \times \vec{c})) \times(\vec{b} \times \vec{c})) \cdot(\vec{b}-\vec{c})$ is always equal to a. $|\vec{a}|$ b. $\frac{1}{2}|\vec{a}|$ c. $\frac{1}{3}|\vec{a}|$ d. none of these

- Watch Video Solution

413. Let $\vec{a} a n d \vec{b}$ be mutually perpendicular unit vectors. Then for any arbitrary $\quad \vec{r}, \quad$ a. $\quad \vec{r}=(\vec{r} \cdot \hat{a}) \hat{a}+(\vec{r} \cdot \hat{b}) \hat{b}+(\vec{r} \cdot(\hat{a} \times \hat{b}))(\hat{a} \times \hat{b})$ $\vec{r}=(\vec{r} \cdot \hat{a})-(\vec{r} \cdot \hat{b}) \hat{b}-(\vec{r} \cdot(\hat{a} \times \hat{b}))(\hat{a} \times \hat{b})$
$\vec{r}=(\vec{r} . \hat{a}) \hat{a}-(\vec{r} \cdot \hat{b}) \hat{b}+(\vec{r} .(\hat{a} \times \hat{b}))(\hat{a} \times \hat{b})$ d. none of these

- Watch Video Solution

414. Value of $[\vec{a} \times \vec{b} \vec{a} \times \vec{c} \vec{d}]$ is always equal to $(\vec{a} \cdot \vec{d})[\vec{a} \vec{b} \vec{c}]$
b. $(\vec{a} . \vec{c})[\vec{a} \vec{b} \vec{d}]$ c. $(\vec{a} \cdot \vec{b})[\vec{a} \vec{b} \vec{d}]$ d. none of these
415. Let $\vec{a} a n d \vec{b}$ be unit vectors that are perpendicular to each other. Then $[\vec{a}+(\vec{a} \times \vec{b}) \vec{b}+(\vec{a} \times \vec{b}) \vec{a} \times \vec{b}]$ will always be equal to a. 1 b . 0 c. -1 d . none of these

- Watch Video Solution

416. Let $\vec{r}, \vec{a}, \vec{b}$ and \vec{c} be four nonzero vectors such that $\vec{r} \vec{a}=0,|\vec{r} \times \vec{b}|=|\vec{r}||\vec{b}|$ and $|\vec{r} \times \vec{c}|=|\vec{r}||\vec{c}|$ Then [abc] is equal to a. $|a \| b||c|$ b. $-|a||b||c| c .0 \mathrm{~d}$. none of these

- Watch Video Solution

417. Let $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}, \vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k} a n d \vec{c}=c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$ be three nonzero vectors such that \vec{c} is a unit vector perpendicular to both $\vec{a} a n d \vec{b}$ If the angle between $\vec{a} a n d \vec{b}$ is $\pi / 6$, then the value of
$\left|a_{1} b_{1} c_{1} a_{2} b_{2} c_{2} a_{3} b_{3} c_{3}\right|$ is a.0 b. 1 c. $\frac{1}{4}\left(a_{1} 2+a 22+a 32\right)(b 12+b 22+b 32)$ d. $\frac{3}{4}(a 12+a 22+a 32)(b 12+b 22+b 32)$

- Watch Video Solution

418. If $4 \vec{a}+5 \vec{b}+9 \vec{c}=0$, then $(\vec{a} \times \vec{b}) \times[(\vec{b} \times \vec{c}) \times(\vec{c} \times \vec{a})]$ is equal to
a. vector perpendicular to the plane of $a, b, c b$. a scalar quantity $c . \overrightarrow{0} d$. none of these

- Watch Video Solution

419. If \vec{a}, \vec{b}, and \vec{c} are such that $[\vec{a} \vec{b} \vec{c}]=1, \vec{c}=\lambda \vec{a} \times \vec{b}$, angle, between $\vec{a} a n d \vec{b}$ is $\frac{2 \pi}{3},|\vec{a}|=\sqrt{2},|\vec{b}|=\sqrt{3} a n d|\vec{c}|=\frac{1}{\sqrt{3}}$, then the angel between \vec{a} and \vec{b} is a. $\frac{\pi}{6}$ b. $\frac{\pi}{4}$ c. $\frac{\pi}{3}$ d. $\frac{\pi}{2}$

- Watch Video Solution

420. A vector of magnitude $\sqrt{2}$ coplanar with the vecrtor $\vec{a}=\hat{i}+\hat{j}+2 \hat{k} a n d \vec{b}=\hat{i}+2 \hat{j}+\hat{k}, \quad$ and perpendicular to the vector $\vec{c}=\hat{i}+\hat{j}+\hat{k}$, is a. $-\hat{j}+\hat{k}$ b. $\hat{i}-\hat{k}$ c. $\hat{i}-\hat{j}$ d. $\hat{i}-\hat{j}$

Watch Video Solution

421. Let P be a point interior to the acute triangle $A B C$ If $P A+P B+P C$ is a null vector, then w.r.t traingel $A B C$, point P is its a. centroid b . orthocentre c. incentre d. circumcentre

- Watch Video Solution

422. G is the centroid of triangle $A B C a n d A_{1}$ and B_{1} are rthe midpoints of sides $A B a n d A C$, respectively. If Delta $_{1}$ is the area of quadrilateral $G A_{1} A B_{1}$ andDelta is the area of triangle $A B C$, then Delta/Delta ${ }_{1}$ is equal to a. $\frac{3}{2}$ b. 3 c. $\frac{1}{3}$ d. none of these
423. Points $\vec{a}, \vec{b}, \vec{c}$, and \vec{d} are coplanar and $(\sin \alpha) \vec{a}+(2 \sin 2 \beta) \vec{b}+(3 \sin 3 \gamma) \vec{c}-\vec{d}=0$. Then the least value of $\sin ^{2} \alpha+\sin ^{2} 2 \beta+\sin ^{2} 3$ yis a. $\frac{1}{14}$ b. 14 c. 6 d. $1 / \sqrt{6}$

Watch Video Solution

424. If $\vec{a} a n d \vec{b}$ are any two vectors of magnitudes 1 and 2 , respectively, and
$(1-3 \vec{a} \vec{b})^{2}+|2 \vec{a}+\vec{b}+3(\vec{a} \times \vec{b})|^{2}=47$, then the angel between \vec{a} and \vec{b} is $\mathrm{a} \cdot \pi / 3 \mathrm{~b} \cdot \pi-\cos ^{-1}(1 / 4) \mathrm{c} \cdot \frac{2 \pi}{3} \mathrm{~d} \cdot \cos ^{-1}(1 / 4)$

- Watch Video Solution

425. If $\vec{a} a n d \vec{b}$ are any two vectors of magnitudes 2 and 3 , respectively, such that $|2(\vec{a} \times \vec{b})|+|3(\vec{a} \vec{b})|=k$, then the maximum value of k is a.
$\sqrt{13}$ b. $2 \sqrt{13}$ c. $6 \sqrt{13}$ d. $10 \sqrt{13}$

- Watch Video Solution

426. \vec{a}, \vec{b} and \vec{c} are unit vectors such that $|\vec{a}+\vec{b}+3 \vec{c}|=4$. Angle between \vec{a} and $\vec{b} i s \theta_{1}$, between \vec{b} and \vec{c} is θ_{2} and between $\vec{a} a n d \vec{c}$ varies $[\pi / 6,2 \pi / 3]$ Then the maximum of $\cos \theta_{1}+3 \cos \theta_{2}$ is a. 3 b. 4 c. $2 \sqrt{2}$ d. 6

- Watch Video Solution

427. If the vector product of a constant vector $\vec{O} A$ with a variable vector $\vec{O} B$ in a fixed plane $O A B$ be a constant vector, then the locus of B is a. a straight line perpendicular to $\vec{O} A \mathrm{~b}$. a circle with centre O and radius equal to $|\vec{O} A|$ c. a straight line parallel to $\vec{O} A$ d. none of these

- Watch Video Solution

428. Let \vec{u}, \vec{v} and \vec{w} be such that $|\vec{u}|=1,|\vec{v}|=2 a n d|\vec{w}|=3$. If the projection of \vec{v} along \vec{u} is equal to that of \vec{w} along \vec{u} and vectors \vec{v} and \vec{w} are perpendicular to each other, then $|\vec{u}-\vec{v}+\vec{w}|$ equals a. 2 b. $\sqrt{7}$ c. $\sqrt{14}$ d. 14

- Watch Video Solution

429. If the two adjacent sides of two rectangles are represented by vectors

$$
\vec{p}=5 \vec{a}-3 \vec{b} ; \vec{q}=-\vec{a}-2 \vec{b} \text { and } \vec{r}=-4 \vec{a}-\vec{b} ; \vec{s}=-\vec{a}+\vec{b},
$$

respectively, then the angel between the vector
$\vec{x}=\frac{1}{3}(\vec{p}+\vec{r}+\vec{s})$ and $\vec{y}=\frac{1}{5}(\vec{r}+\vec{s})$ is a.cos ${ }^{-1}\left(\frac{19}{5 \sqrt{43}}\right)$ b. $\cos ^{-1}\left(\frac{19}{5 \sqrt{43}}\right)$
c. $\pi-\cos ^{-1}\left(\frac{19}{5 \sqrt{43}}\right)$ d. cannot be evaluate

- Watch Video Solution

430. Let P, Q, R and S be the points on the plane with position vectors $-2 i-j, 4 i, 3 i+3 j a n d-3 j+2 j$, respectively. The quadrilateral PQRS must be a Parallelogram, which is neither a rhombus nor a rectangle Square Rectangle, but not a square Rhombus, but not a square

- Watch Video Solution

431. $\vec{u}, \vec{v} a n d \vec{w}$ are three non-coplanar unit vecrtors anf $\alpha, \beta a n d \gamma$ are the angles between $\vec{u} a n d \vec{v}, \vec{v} a n d \vec{w}$, and $\vec{w} a n d \vec{u}$, respectively, and \vec{x}, \vec{y} and \vec{z} are unit vectors along the bisectors of the angles $\alpha, \beta a n d \gamma$, respectively. Prove that $[\vec{x} x \vec{y} \vec{y} \times \vec{z} \vec{z} \times \vec{x}]=\frac{1}{16}[\vec{u} \vec{v} \vec{w}]^{2} \frac{\sec ^{2} \alpha}{2} \frac{\sec ^{2} \beta}{2} \frac{\sec ^{2} \gamma}{2}$.

- Watch Video Solution

432. Find the absolute value of parameter t for which the area of the triangle whose vertices the $A(-1,1,2) ; B(1,2,3) a n d C(t, 1,1)$ is minimum.
433. The condition for equations $\vec{r} \times \vec{a}=\vec{b}$ and $\vec{r} \times \vec{c}=\vec{d}$ to be consistent is a $\cdot \vec{b} \cdot \vec{c}=\vec{a} \cdot \vec{d} \mathrm{~b} \cdot \vec{a} \cdot \vec{b}=\vec{c} \cdot \vec{d} \mathrm{c} \cdot \vec{b} \cdot \vec{c}+\vec{a} \cdot \vec{d}=0 \mathrm{~d} \cdot \vec{a} \vec{b}+\vec{c} \cdot \vec{d}=0$

- Watch Video Solution

434. If $a a n d b$ are nonzero non-collinear vectors, then $[\vec{a} \vec{b} \hat{i}] \hat{i}+[\vec{a} \vec{b} \hat{j}] \hat{j}+[\vec{a} \vec{b} \hat{k}] \hat{k}$ is equal to a. $\vec{a}+\vec{b}$ b. $\vec{a} \times \vec{b}$ c. $\vec{a}-\vec{b}$ d. $\vec{b} \times \vec{a}$

- Watch Video Solution

435. If $\vec{r} \cdot \vec{a}=\vec{r} \cdot \vec{b}=\vec{r} \vec{c}=\frac{1}{2}$ or some nonzero vector \vec{r}, then the area of the triangle whose vertices are $A(\vec{a}), B(\vec{b}) \operatorname{and} C(\vec{c})$ is $(\vec{a}, \vec{b}, \vec{c}$ are noncoplanar) a. $|[\vec{a} \vec{b} \vec{c}]|$ b. $|\vec{r}|$ c. $|[\vec{a} \vec{b} \vec{c}] \vec{r}|$ d. none of these

- Watch Video Solution

436. A vector of magnitude 10 along the normal to the curve $3 x^{2}+8 x y+2 y^{2}-3=0$ at its point $P(1,0)$ can be (A) $6 \hat{i}+8 \hat{j}$ (B) $-8 \hat{i}+3 \hat{j}$ (C) $6 \hat{i}-8 \hat{j}$ (D) $8 \hat{i}+6 \hat{j}$

- Watch Video Solution

437. If $a(\vec{\alpha} \times \vec{\beta})+b(\vec{\beta} \times \vec{\gamma})+c(\vec{\gamma} \times \vec{\alpha})=0$ and at least one of a, bandc is nonzero, then vectors $\vec{\alpha}, \vec{\beta}$ and $\vec{\gamma}$ are a. parallel b. coplanar c. mutually perpendicular d. none of these

- Watch Video Solution

438. If $(\vec{a} \times \vec{b}) \times(\vec{b} \times \vec{c})=\vec{b}$, where \vec{a}, \vec{b}, and \vec{c} are nonzero vectors, then
(a) \vec{a}, \vec{b}, and \vec{c} can be coplanar (b) \vec{a}, \vec{b}, and \vec{c} must be coplanar (c) \vec{a}, \vec{b}, and \vec{c} cannot be coplanar (d)none of these

- Watch Video Solution

439. If $\vec{a}, \vec{b}, \vec{c}$ are any three noncoplanar vector, then the equaltion $[\vec{b} \times \vec{c} \vec{c} \times \vec{a} \vec{a} \times \vec{b}] x^{2}+[\vec{a}+\vec{b} \vec{b}+\vec{c} \vec{c}+\vec{a}] x+1+[\vec{b}-\vec{c} \vec{c}-\vec{a} \vec{a}-\vec{b}]=0$ has roots a. real and distinct b. real c. equal d. imaginary

- Watch Video Solution

440. If $\vec{x}+\vec{c} \times \vec{y}=\vec{a}$ and $\vec{y}+\vec{c} \times \vec{x}=\vec{b}$, where \vec{c} is a nonzero vector, then which of the following is not correct?
a. $\vec{x}=\frac{\vec{b} \times \vec{c}+\vec{a}+(\vec{c} \cdot \vec{a}) \vec{c}}{1+\vec{c} \cdot \vec{c}}$
b. $\vec{x}=\frac{\vec{c} \times \vec{b}+\vec{b}+(\vec{c} \cdot \vec{a}) \vec{c}}{1+\vec{c} \cdot \vec{c}}$
c. $\vec{y}=\underline{\vec{a} \times \vec{c}+\vec{b}+(\vec{c} \cdot \vec{b}) \vec{c}}$
c. $\vec{y}=$

$$
1+\vec{c} \cdot \vec{c}
$$

d. none of these

- Watch Video Solution

441. If $\vec{a} a n d \vec{b}$ are two unit vectors incline at angle $\pi / 3$, then $\{\vec{a} \times(\vec{b}+\vec{a} \times \vec{b})\} \vec{b}$ is equal to a. $\frac{-3}{4}$ b. $\frac{1}{4}$ c. $\frac{3}{4}$ d. $\frac{1}{2}$

- Watch Video Solution

442. If \vec{a} and \vec{b} are orthogonal unit vectors, then for a vector \vec{r} noncoplanar with \vec{a} and \vec{b}, vector $r \times a$ is equal to a. $[\vec{r} \vec{a} \vec{b}] \vec{b}-(\vec{r} \cdot \vec{b})(\vec{b} \times \vec{a})$ b. $[\vec{r} \vec{a} \vec{b}](\vec{a}+\vec{b})$ c. $[\vec{r} \vec{a} \vec{b}] \vec{a}-(\vec{r} \cdot \vec{a}) \vec{a} \times \vec{b} \mathrm{~d}$. none of these

- Watch Video Solution

443. Find the volume of a parallelopiped whose edges are represented by the vectors $\vec{a}=2 \hat{i}-3 \hat{j}-4 \hat{k}$ and $\vec{b}=\hat{i}+2 \hat{j}-\hat{k}$ and $\vec{c}=3 \hat{i}+\hat{j}+2 \hat{k}$.

- Watch Video Solution

- Watch Video Solution

445. For any two vectors \vec{u} and \vec{v} prove that $(\vec{u} . \vec{v})^{2}+|\vec{u} \times \vec{v}|^{2}=|\vec{u}|^{2}|\vec{v}|^{2}$

- Watch Video Solution

446. If the incident ray on a surface is along the unit vector \vec{v}, the reflected ray is along the unit vector \vec{w} and the normal is along the unit vector \vec{a} outwards, express \vec{w} in terms of \vec{a} and \vec{v}

- Watch Video Solution

447. If $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are distinct vectors such that
$\vec{a} \times \vec{c}=\vec{b} \times \vec{d}$ and $\vec{a} \times \vec{b}=\vec{c} \times \vec{d}$, prove that $(\vec{a}-\vec{d}) \vec{b}-\vec{c} \neq 0$,
448. Let $\vec{V}=2 \hat{i}+\hat{j}-\hat{k} a n d \vec{W}=\hat{i}+3 \hat{k}$ if \vec{U} is a unit vector, then the maximum value of the scalar triple product [UVW] is a. $-1 \mathrm{~b} . \sqrt{10}+\sqrt{6} \mathrm{c}$. $\sqrt{59}$ d. $\sqrt{60}$

- Watch Video Solution

449. If the vectors $\vec{a}, \vec{b}, \vec{c}$ are non-coplanar and I,m,n are distinct real numbers, then $[(l \vec{a}+m \vec{b}+n \vec{c})(l \vec{b}+m \vec{c}+n \vec{a})(l \vec{c}+m \vec{a}+n \vec{b})]=0$, implies
(A) $|m+m n+n|=0$ (B) $l+m+n=0$ (C) $l^{2}+m^{2}+n^{2}=0$

- Watch Video Solution

450. If \vec{a}, \vec{b} and \vec{c} are unit coplanar vectors, then the scalar triple product
$[2 \vec{a}-\vec{b} 2 \vec{b}-\vec{c} 2 \vec{c}-\vec{a}]$ is a. 0 b. 1 c. $-\sqrt{3}$ d. $\sqrt{3}$
\square
