

MATHS

BOOKS - CENGAGE

VECTORS

1. A line in the 3 dimensional space makes an angle θ $\left(0 \le \theta \le \frac{\pi}{2}\right)$ both with a quie and a quie. A possible representation of θ is

with x-axis and y-axis. A possible range of $\boldsymbol{\theta}$ is

A.
$$\left[0, \frac{\pi}{4}\right]$$

B. $\left[0, \frac{\pi}{2}\right]$
C. $\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$
D. $\left[\frac{\pi}{6}, \frac{\pi}{3}\right]$

Answer: C

2. A line segment has length 63 and direction ratios

are 3, -2, 6. The components of the line vector are

- A. 27, 18, 54
- B. 27, -18, 54
- C. 27, -18,054
- D. -7, -18, -54

Answer: B

Watch Video Solution

3. If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are position vectors of A,B, and C respectively of $\triangle ABC$ and if $\left|\overrightarrow{a} - \overrightarrow{b}\right| = 4$, $\left|\overrightarrow{b} - \overrightarrow{c}\right| = 2$, $\left|\overrightarrow{c} - \overrightarrow{a}\right| = 3$, then the distance between the centroid and incenter of $\triangle ABC$ is

A. 1

B.
$$\frac{1}{2}$$

C. $\frac{1}{3}$
D. $\frac{2}{3}$

Answer: C

4. Let O be an interior point of $\triangle ABC$ such that $\overrightarrow{OA} + 2\overrightarrow{OB} + 3\overrightarrow{OC} = \overrightarrow{o}$. Then find the ratio of the area of $\triangle ABC$ to the area of $\triangle BRC$ is 1 unit.

A. 2 B. $\frac{3}{2}$

C. 3 D. $\frac{5}{2}$

Answer: C

Watch Video Solution

5. In a three-dimensional coordinate system, P, Q, andR are images of a point A(a, b, c) in the x - y, y - zandz - x planes, respectively. If G is the centroid of triangle PQR, then area of triangle AOG is (O is the origin) a. 0 b. $a^2 + b^2 + c^2$ c. $\frac{2}{3}(a^2 + b^2 + c^2)$ d. none of these

A. 0

B.
$$a^2 + b^2 + c^2$$

C. $rac{2}{3} ig(a^2 + b^2 + c^2 ig)$

D. none of these

Answer: A

6. ABCDEF is a regular hexagon in the x-y plance with vertices in the anticlockwise direction. If $\overrightarrow{A}B = 2\hat{i}$, then $\overrightarrow{C}D$ is

A. $\hat{i}+\sqrt{3}\hat{j}$ B. $\hat{i}-\sqrt{3}\hat{j}$ C. $-\hat{i}+\sqrt{3}\hat{j}$ D. $\sqrt{3}\hat{i}-\hat{j}$

Answer: C

Watch Video Solution

7. Let position vectors of point A,B and C of triangle ABC represents be $\hat{i} + \hat{j} + 2\hat{k}$, $\hat{i} + 2\hat{j} + \hat{k}$ and $2\hat{i} + \hat{j} + \hat{k}$. Let $l_1 + l_2$ and l_3 be the length of perpendicular drawn from the orthocenter 'O' on the sides AB, BC and CA, then $(l_1 + l_2 + l_3)$ equals

A.
$$\frac{2}{\sqrt{6}}$$

B.
$$\frac{3}{\sqrt{6}}$$

C. $\frac{\sqrt{6}}{2}$
D. $\frac{\sqrt{6}}{3}$

Answer: C

Watch Video Solution

8. If D,E and F are the mid-points of the sides BC, CA and AB respectively of a triangle ABC and λ is scalar, such that $\overrightarrow{AD} + \frac{2}{3}\overrightarrow{BE} + \frac{1}{3}\overrightarrow{CF} = \lambda \overrightarrow{AC}$, then λ is equal to

A.
$$rac{1}{2}$$

B. 1
C. $3/2$

D. 2

Answer: A

9. If points (1,2,3), (0,-4,3), (2,3,5) and (1,-5,-3) are vertices of tetrahedron, then the point where lines joining the mid-points of opposite edges of concurrent is

- A. (1, -1, 2)
- B. (-1, 1, 2)
- C. (1,1,-2)
- D. (-1, 1, -2)

Answer: A

10. The unit vector parallel to the resultant of the vectors $2\hat{i}+3\hat{j}-\hat{k}$ and $4\hat{i}-3\hat{j}+2\hat{k}$ is

A.
$$rac{1}{\sqrt{37}} \Big(6 \hat{i} + \hat{k} \Big)$$

B. $rac{1}{\sqrt{37}} \Big(6 \hat{i} + \hat{j} \Big)$
C. $rac{1}{\sqrt{37}} \Big(6 \hat{i} + \hat{k} \Big)$

D. none of these

Answer: A

Answer: C

12. If
$$\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0$$
, $|\overrightarrow{a}| = 3$, $|\overrightarrow{b}| = 5$, $|\overrightarrow{c}| = 7$ then the angle between \overrightarrow{a} and \overrightarrow{b} is:

A.
$$\frac{\pi}{2}$$

B. $\frac{\pi}{3}$
C. $\frac{\pi}{4}$
D. $\frac{\pi}{6}$

Answer: B

Watch Video Solution

13. If sum of two unit vectors is a unit vector; prove that the magnitude of their difference is $\sqrt{3}$

A. $\sqrt{2}$

B. $\sqrt{3}$

C. 1

D. none of these

Answer: B

Watch Video Solution

14. The position vectors of the points A,B, and C are $\hat{i} + 2\hat{j} - \hat{k}, \hat{i} + \hat{j} + \hat{k}$, and $2\hat{i} + 3\hat{j} + 2\hat{k}$ respectively. If A is chosen as the origin, then the position vectors B and C are

A.
$$\vec{i} + 2\hat{k}, \, \hat{i} + \hat{j} + 3\hat{k}$$

B. $\hat{j} + 2\hat{k}, \, \hat{i} + \hat{j} + 3\hat{k}$
C. $-\hat{j} + 2\hat{k}, \, \hat{i} - \hat{j} + 3\hat{k}$

١.

D.
$$-\hat{j}+2\hat{k},\,\hat{i}+\hat{j}+3\hat{k}$$

Answer: D

15. Orthocenter of an equilateral triangle ABC is the origin O. If $\overrightarrow{OA} = \overrightarrow{a}, \overrightarrow{OB} = \overrightarrow{b}, \overrightarrow{OC} = \overrightarrow{c}$, then $\overrightarrow{AB} + 2\overrightarrow{BC} + 3\overrightarrow{CA} =$

A. $3\overrightarrow{c}$

- B. $3\overrightarrow{a}$
- $\mathsf{C}.\overrightarrow{0}$
- D. $3\overrightarrow{b}$

Answer: B

Watch Video Solution

16. If the position vectors of P and Q are i + 3j - 7k and 5i - 2j + 4k then the

cosine of the angle between PQ and y - axis is

A.
$$\frac{4}{\sqrt{162}}$$

B.
$$\frac{11}{\sqrt{162}}$$

C. $\frac{5}{\sqrt{162}}$
D. $-\frac{5}{\sqrt{162}}$

Answer: B

17. The non zero vectors
$$\overrightarrow{a}, \overrightarrow{b}$$
, and \overrightarrow{c} are related by:
 $\overrightarrow{a} = 8\overrightarrow{b}nd\overrightarrow{c} = -7\overrightarrow{b}$. Then the angle between \overrightarrow{a} and \overrightarrow{c} is (A) π (B)
0 (C) $\frac{\pi}{4}$ (D) $\frac{\pi}{2}$
A. $\frac{\pi}{4}$
B. $\frac{\pi}{2}$
C. π
D. 0

Answer: C

18. The unit vector bisecting \overrightarrow{OY} and \overrightarrow{OZ} is

A.
$$\frac{\overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}}{\sqrt{3}}$$

B.
$$\frac{\overrightarrow{i} - \overrightarrow{k}}{\sqrt{2}}$$

C.
$$\frac{\overrightarrow{j} + \overrightarrow{k}}{\sqrt{2}}$$

D.
$$\frac{-\overrightarrow{j} + \overrightarrow{k}}{\sqrt{2}}$$

Answer: C

Watch Video Solution

19. A unit tangent vector at t=2 on the curve $x=t^2+2, y=4t-5$ and

$$z=2t^2-6t$$
 is

A.
$$\frac{1}{\sqrt{3}} \left(\overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k} \right)$$

B. $\frac{1}{3} \left(2\overrightarrow{i} + 2\overrightarrow{j} + \overrightarrow{k} \right)$

C.
$$\frac{1}{\sqrt{6}} \left(2 \overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k} \right)$$

D. $\frac{1}{3} \left(\overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k} \right)$

Answer: B

Watch Video Solution

20. If \overrightarrow{a} and \overrightarrow{b} are position vectors of A and B respectively, then the position vector of a point C in \overrightarrow{AB} produced such that \overrightarrow{AC} =2015 \overrightarrow{AB} is

A.
$$2014\overrightarrow{a} - 2015\overrightarrow{b}$$

B. $2014\overrightarrow{b} + 2015\overrightarrow{a}$
C. $2015\overrightarrow{b} + 2014\overrightarrow{a}$
D. $2015\overrightarrow{b} - 2014\overrightarrow{a}$

Answer: D

21. Let $\overrightarrow{a} = (1, 1, -1)$, $\overrightarrow{b} = (5, -3, -3)$ and $\overrightarrow{c} = (3, -1, 2)$. If \overrightarrow{r} is collinear with \overrightarrow{c} and has length $\frac{\left|\overrightarrow{a} + \overrightarrow{b}\right|}{2}$, then \overrightarrow{r} equals

A.
$$\pm 3\overrightarrow{c}$$

B. $\pm \frac{3}{2}\overrightarrow{c}$
C. $\pm \overrightarrow{c}$
D. $\pm \frac{2}{3}\overrightarrow{c}$

Answer: C

22. A line passes through the points whose position vectors are $\hat{i} + \hat{j} - 2\hat{k}$ and $\hat{i} - 3\hat{j} + \hat{k}$. The position vector of a point on it at unit distance from the first point is

A.
$$rac{1}{5} \Big(5 \hat{i} \hat{j} - 7 \hat{k}\Big)$$

B. $rac{1}{5} \Big(4 \hat{i} + 9 \hat{j} - 15 \hat{k}$

C.
$$\left(\hat{i} - 4 \hat{j} + 3 \hat{k}
ight)$$

D. $rac{1}{5} \left(\hat{i} - 4 \hat{j} + 3 \hat{k}
ight)$

Answer: A

23. Three points A,B, and C have position vectors $-2\overrightarrow{a} + 3\overrightarrow{b} + 5\overrightarrow{c}, \overrightarrow{a} + 2\overrightarrow{b} + 3\overrightarrow{c}$ and $7\overrightarrow{a} - \overrightarrow{c}$ with reference to an

origin O. Answer the following questions?

Which of the following is true?

A.
$$\overrightarrow{AC} = 2\overrightarrow{AB}$$

B. $\overrightarrow{AC} = -3\overrightarrow{AB}$
C. $\overrightarrow{AC} = 3\overrightarrow{AB}$

D. None of these

Answer: C

24. Three points A,B, and C have position vectors $-2\overrightarrow{a} + 3\overrightarrow{b} + 5\overrightarrow{c}, \overrightarrow{a} + 2\overrightarrow{b} + 3\overrightarrow{c}$ and $7\overrightarrow{a} - \overrightarrow{c}$ with reference to an

origin O. Answer the following questions?

Which of the following is true?

A.
$$2\overrightarrow{OA} - 3\overrightarrow{OB} + \overrightarrow{OC} = \overrightarrow{0}$$

B. $2\overrightarrow{OA} + 7\overrightarrow{OB} + 9\overrightarrow{OC} = \overrightarrow{0}$
C. $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \overrightarrow{0}$

D. None of these

Answer: A

25. Three points A,B, and C have position vectors $-2\overrightarrow{a} + 3\overrightarrow{b} + 5\overrightarrow{c}, \overrightarrow{a} + 2\overrightarrow{b} + 3\overrightarrow{c}$ and $7\overrightarrow{a} - \overrightarrow{c}$ with reference to an

origin O. Answer the following questions?

B divided AC in ratio

A. 2:1

B. 2:3

C. 2: -3

 $\mathsf{D}.\,1\!:\!2$

Answer: B

Watch Video Solution

Dpp 2 4

1.
$$\overrightarrow{a} = 2\hat{i} + \hat{j} + \hat{k}, \overrightarrow{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k},$$

 $\overrightarrow{a} imes \overrightarrow{b} = 5\hat{i} + 2\hat{j} - 12\hat{k}, \overrightarrow{a}, \overrightarrow{b} = 11$, then $b_1 + b_2 + b_3 =$

A. 3

B. 5

C. 7

D. 9

Answer: B

2. If
$$\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}, \overrightarrow{d}$$
 are unit vectors such that $\overrightarrow{a}, \overrightarrow{b} = \frac{1}{2}, \overrightarrow{c}, \overrightarrow{d} = \frac{1}{2}$
and angle between $\overrightarrow{a} \times \overrightarrow{b}$ and $\overrightarrow{c} \times \overrightarrow{d}$ is $\frac{\pi}{6}$ then the value of $\left| \left[\overrightarrow{a} \overrightarrow{b} \overrightarrow{d} \right] \overrightarrow{c} - \left[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c} \right] \overrightarrow{d} \right| =$
A.3/2
B.3/4
C.3/8
D.2

Answer: C

3. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} , \overrightarrow{d} be vectors such that $\left[\overrightarrow{a}\overrightarrow{b}\overrightarrow{c}\right] = 2$

and

$$\left(\overrightarrow{a}\times\overrightarrow{b}\right)\times\left(\overrightarrow{c}\times\overrightarrow{d}\right)+\left(\overrightarrow{b}\times\overrightarrow{c}\right)\times\left(\overrightarrow{a}\times\overrightarrow{d}\right)+\left(\overrightarrow{c}\times\overrightarrow{a}\right)\times\left(\overrightarrow{b}\times\overrightarrow{c}\right)\times\left(\overrightarrow{a}\times\overrightarrow{d}\right)$$

Then the value of μ is

A. 0

- B. 1
- C. 3
- D. 4

Answer: D

4. Let
$$\left(\hat{p} imes \overrightarrow{q}
ight) imes \left(\hat{p}. \overrightarrow{q}
ight) \overrightarrow{q}$$
 $= \left(x^2 + y^2
ight) \overrightarrow{q} + (14 - 4x - 6y) \overrightarrow{p}$

Where \hat{p} and \hat{q} are two non-collinear vectors \overrightarrow{p} is unit vector and x,y are scalars. Then the value of (x+y) is

A. 4 B. 5 C. 6 D. 7

Answer: B

Watch Video Solution

5. If $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are three on-coplanar vectors such that $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c}, \overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{a}, \overrightarrow{c} \times \overrightarrow{a} = \overrightarrow{b}$, then the value of $\left|\overrightarrow{a}\right| + \left|\overrightarrow{b}\right| + \left|\overrightarrow{c}\right|$ is

A. 1/3

B. 1

C. 3

Answer: C

6. Prove that
$$\begin{vmatrix} 1 & x & y \\ 0 & \sin x & \sin y \\ 0 & \cos x & \cos y \end{vmatrix} = \sin(x-y)$$

Watch Video Solution

7. Let \overrightarrow{a} and \overrightarrow{c} be unit vectors inclined at $\pi/3$ with each other. If $\left(\overrightarrow{a} \times \left(\overrightarrow{b} \times \overrightarrow{c}\right)\right)$. $\left(\overrightarrow{a} \times \overrightarrow{c}\right) = 5$, then $\left[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}\right]$ is equal to A. -10B. -5

C. - 20

D. none of these

Answer: A

8. if
$$\overrightarrow{a} = \hat{i} + \hat{j} + 2\hat{k}$$
, $\overrightarrow{b} = \hat{i} + 2\hat{j} + 2\hat{k}$ and $\left|\overrightarrow{c}\right| = 1$
Such that $\left[\overrightarrow{a} \times \overrightarrow{b} \overrightarrow{b} \times \overrightarrow{c} \overrightarrow{c} \times \overrightarrow{a}\right]$ has maximum value, then the value of $\left|\left(\overrightarrow{a} \times \overrightarrow{b}\right) \times \overrightarrow{c}\right|^2$ is

A. 0

B. 1

C.
$$\frac{4}{3}$$

D. none of these

Answer: A

9. If the angles between the vectors \overrightarrow{a} and \overrightarrow{b} , \overrightarrow{b} and \overrightarrow{c} , \overrightarrow{c} an \overrightarrow{a} are respectively $\frac{\pi}{6}$, $\frac{\pi}{4}$ and $\frac{\pi}{3}$, then the angle the vector \overrightarrow{a} makes with the plane containing \overrightarrow{b} and \overrightarrow{c} , is

A.
$$\cos^{-1} \sqrt{1 - \sqrt{2/3}}$$

B. $\cos^{-1} \sqrt{2 - \sqrt{3/2}}$
C. $\cos^{-1} \sqrt{\sqrt{3/2} - 1}$
D. $\cos^{-1} \sqrt{\sqrt{2/3}}$

Answer: B

Watch Video Solution

10. let \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} be three vectors having magnitudes 1, 1 and 2, respectively, if $\overrightarrow{a} \times (\overrightarrow{a} \times \overrightarrow{c}) + \overrightarrow{b} = \overrightarrow{0}$, then the acute angle between \overrightarrow{a} and \overrightarrow{c} is _____

A.
$$\pi/4$$

B. $\pi/6$

C. $\pi/3$

D. $\pi/2$

Answer: B

Watch Video Solution

11. If $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are non coplanar vectors and $\overrightarrow{p}, \overrightarrow{q}, \overrightarrow{r}$ are reciprocal

vectors, then

$$\left(l\overrightarrow{a}+m\overrightarrow{b}+n\overrightarrow{c}
ight) .\left(l\overrightarrow{p}+m\overrightarrow{q}+n\overrightarrow{r}
ight)$$
 is equal to

A.
$$l^2+m^2+n^2$$

 $\mathsf{B}.\,lm+mn+nl$

C. 0

D. None of these

Answer: A

12. Let $\overrightarrow{a} = \hat{i} - 3\hat{j} + 4\hat{k}$, $\overrightarrow{B} = 6\hat{i} + 4\hat{j} - 8\hat{k}$, $\overrightarrow{C} = 5\hat{i} + 2\hat{j} + 5\hat{k}$ and a vector \overrightarrow{R} satisfies $\overrightarrow{R} \times \overrightarrow{B} = \overrightarrow{C} \times \overrightarrow{B}$, $\overrightarrow{R} \cdot \overrightarrow{A} = 0$, then the value of $\frac{\left|\overrightarrow{B}\right|}{\left|\overrightarrow{R} - \overrightarrow{C}\right|}$ is

A. 1

- B. 2
- C. 3

D. 4

Answer: B

13. The volume of the parallelepiped whose coterminous edges are represented by the vectors $2\overrightarrow{b} \times \overrightarrow{c}, 3\overrightarrow{c} \times \overrightarrow{a}$ and $4\overrightarrow{a} \times \overrightarrow{b}$ where

$$\overrightarrow{a} = (1 + \sin\theta)\hat{i} + \cos\theta\hat{j} + \sin2\theta\hat{k}$$
,
 $\overrightarrow{b} = \sin\left(\theta + \frac{2\pi}{3}\right)\hat{i} + \cos\left(\theta + \frac{2\pi}{3}\right)\hat{j} + \sin\left(2\theta + \frac{4\pi}{3}\right)\hat{k},$
 $\overrightarrow{c} = \sin\left(\theta - \frac{2\pi}{3}\right)\hat{i} + \cos\left(\theta - \frac{2\pi}{3}\right)\hat{j} + \sin\left(2\theta - \frac{4\pi}{3}\right)\hat{k}$ is 18 cubic

units, then the values of θ , in the interval $\left(0, \frac{\pi}{2}\right)$, is/are

A.
$$\frac{\pi}{9}$$

B. $\frac{2\pi}{9}$
C. $\frac{\pi}{3}$
D. $\frac{4\pi}{9}$

Answer: A::B::D

Watch Video Solution

14. Let \overrightarrow{a} and \overrightarrow{b} be two non-zero perpendicular vectors. A vector \overrightarrow{r} satisfying the equation $\overrightarrow{r} \times \overrightarrow{b} = \overrightarrow{a}$ can be

A.
$$\overrightarrow{b} - \frac{\overrightarrow{a} \times \overrightarrow{b}}{\left|\overrightarrow{b}\right|^2}$$

$$B. 2\overrightarrow{b} - \frac{\overrightarrow{a} \times \overrightarrow{b}}{\left|\overrightarrow{b}\right|^{2}}$$
$$C. \left|\overrightarrow{a}\right| \left|\overrightarrow{b}\right| - \frac{\overrightarrow{a} \times \overrightarrow{b}}{\left|\overrightarrow{b}\right|^{2}}$$
$$D. \left|\overrightarrow{b}\right| \left|\overrightarrow{b}\right| - \frac{\overrightarrow{a} \times \overrightarrow{b}}{\left|\overrightarrow{b}\right|^{2}}$$

Answer: A::B::C::D

15. If $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are three non-zero vectors, then which of the following statement(s) is/are true?

$$\mathsf{A}.\overrightarrow{a}\times\left(\overrightarrow{b}\times\overrightarrow{c}\right),\overrightarrow{b}\times\left(\overrightarrow{c}\times\overrightarrow{a}\right),\left(\overrightarrow{c}\times\overrightarrow{a}\right),\left(\overrightarrow{c}\times\left(\overrightarrow{a}\times\overrightarrow{b}\right)\right)$$

form a right handed system

B.
$$\overrightarrow{c}$$
, $\left(\overrightarrow{a} \times \overrightarrow{b}\right) \times \overrightarrow{c}$, $\overrightarrow{a} \times \overrightarrow{b}$ from a right handed system
C. \overrightarrow{a} . $\overrightarrow{b} + \overrightarrow{b}$. $\overrightarrow{c} + \overrightarrow{c}$. $\overrightarrow{a} < 0$ if $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$

$$\mathsf{D}.\frac{\left(\overrightarrow{a}\times\overrightarrow{b}\right).\left(\overrightarrow{b}\times\overrightarrow{c}\right)}{\left(\overrightarrow{b}\times\overrightarrow{c}\right).\left(\overrightarrow{a}\times\overrightarrow{c}\right)} = -1 \text{ if } \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}=0$$

Answer: B::C::D

Watch Video Solution

16. Vectors \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are three unit vectors and \overrightarrow{c} is equally inclined to both \overrightarrow{a} and \overrightarrow{b} . Let $\overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c}) + \overrightarrow{b} \times (\overrightarrow{c} \times \overrightarrow{a})$ $= (4 + x^2) \overrightarrow{b} - (4x \cos^2 \theta) \overrightarrow{a}$, then \overrightarrow{a} and \overrightarrow{b} are non-collinear vectors, x > 0A. x = 2

 $B. \theta = 0^{\circ}$

 $\mathsf{C}.\, \theta = x$

 $\mathsf{D}.\,x=4$

Answer: A::B::C

17. If \overrightarrow{a} and \overrightarrow{b} are unequal unit vectors such that $\left(\overrightarrow{a} - \overrightarrow{b}\right) \times \left[\left(\overrightarrow{b} + \overrightarrow{a}\right) \times \left(2\overrightarrow{a} + \overrightarrow{b}\right)\right] = \overrightarrow{a} + \overrightarrow{b}$ then angle θ between \overrightarrow{a} and \overrightarrow{b} is A. $\frac{\pi}{2}$ B. 0 C. π D. $\frac{\pi}{4}$

Answer: A::C

Watch Video Solution

18. $\overrightarrow{a} = 2\hat{i} + \hat{j} + 2\hat{k}, \ \overrightarrow{b} = \hat{i} - \hat{j} + \hat{k}$ and non zero vector \overrightarrow{c} are such that $\left(\overrightarrow{a} \times \overrightarrow{b}\right) \times \overrightarrow{c} = \overrightarrow{a} \times \left(\overrightarrow{b} \times \overrightarrow{c}\right)$.

Then vector \overrightarrow{c} may be given as

A.
$$4\hat{i} + 2\hat{j} + 4\hat{k}$$

B. $4\hat{i} - 2\hat{j} + 4\hat{k}$
C. $\hat{i} + \hat{j} + \hat{k}$
D. $\hat{i} - 4\hat{j} + \hat{k}$

Answer: A

Watch Video Solution

19. The area of a parallelogram whose adjacent sides are represented by the vectors $a=-\hat{i}-2\hat{j}-3\hat{k}$ and $b=-\hat{i}+2\hat{j}-3\hat{k}$ is

A. $\sqrt{14}$

B. $\sqrt{6}$

C. $4\sqrt{10}$

D. 36

Answer: D

20. A vector along the bisector of angle between the vectors \overrightarrow{b} and \overrightarrow{c} is,

A.
$$(2+\sqrt{3})\hat{i} + (1-\sqrt{3})\hat{j} + (2+\sqrt{3})\hat{k}$$

B. $(2+\sqrt{3})\hat{i} + (1-\sqrt{3})\hat{j} - (2+\sqrt{3})\hat{k}$

C.
$$ig(2+\sqrt{3}ig) \hat{i} - ig(1-\sqrt{3}ig) \hat{j} - ig(2+\sqrt{3}ig) \hat{k}$$

D.
$$\left(2+\sqrt{3}
ight)\hat{i}-\left(1-\sqrt{3}
ight)\hat{j}+\left(2+\sqrt{3}
ight)\hat{k}$$

Answer: A

D View Text Solution

Question Bank

1. If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are mutually perpendicular unit vectors such that $x\overline{a} - y\overrightarrow{b} + \overrightarrow{c} - 2\hat{i} = \overrightarrow{0}, x, y \in R$, then the value of $x^2 + y^2$ is

2. Let
$$\overrightarrow{a}$$
 and \overrightarrow{b} be two vectors such that $\left|\overrightarrow{a}\right| = 1$ and $\overrightarrow{a} \cdot \left(\overrightarrow{b} \times \left(\overrightarrow{a} \times \overrightarrow{b}\right)\right) = 8$. If the angle between \overrightarrow{a} and \overrightarrow{b} is $\cos ec^{-1}\sqrt{2}$, then magnitude of \overrightarrow{b} is

Watch Video Solution

3. Given
$$f^2(x)+g^2(x)+h^2(x)\leq 9$$
 and

U(x)=3f(x)+4g(x)+10h(x), where $f(x),\,g(x)$ and h(x) are

continuous $\ orall x \ \in R.$ If maximum value of U(x) is \sqrt{N} , then find N.

Watch Video Solution

4. Vectors
$$\overrightarrow{a}$$
 and \overrightarrow{b} are inclined at an angle $\theta = 120^{\circ}$. If $\left|\overrightarrow{a}\right| = 1, \left|\overrightarrow{b}\right| = 2, \operatorname{then}\left[\left(\overrightarrow{a} + 3\overrightarrow{b}\right) \times \left(3\overrightarrow{a} - \overrightarrow{b}\right)\right]^2$ is equal to

5. If \overline{a} and \overrightarrow{b} are non zero, non collinear vectors, and the linear combination $(2x - y)\overrightarrow{a} + 4\overrightarrow{b} = 5\overrightarrow{a} + (x - 2y)\overrightarrow{b}$ holds for real x and y then x + y has the value equal to

Watch Video Solution

6. Let \overrightarrow{u} , \overrightarrow{v} and \overrightarrow{w} be such that $\left|\overrightarrow{u}\right| = 1$, $\left|\overrightarrow{v}\right| = 2and \left|\overrightarrow{w}\right| = 3$. If the projection of \overrightarrow{v} along \overrightarrow{u} is equal to that of \overrightarrow{w} along \overrightarrow{u} and vectors \overrightarrow{v} and \overrightarrow{w} are perpendicular to each other, then $\left|\overrightarrow{u} - \overrightarrow{v} + \overrightarrow{w}\right|$ equals a. 2 b. $\sqrt{7}$ c. $\sqrt{14}$ d. 14

Watch Video Solution

7. Given three vectors $e\overrightarrow{a}$, \overrightarrow{b} and \overrightarrow{c} two of which are non-collinear. Futrther if $\left(\overrightarrow{a} + \overrightarrow{b}\right)$ is collinear with \overrightarrow{c} , $\left(\overrightarrow{b} + \overrightarrow{c}\right)$ is collinear with \overrightarrow{a} , $\left|\overrightarrow{a}\right| = \left|\overrightarrow{b}\right| = \left|\overrightarrow{c}\right| = \sqrt{2}$ find the value of \overrightarrow{a} . $\overrightarrow{b} + \overrightarrow{b}$. $\overrightarrow{c} + \overrightarrow{c}$. \overrightarrow{a}

$$\left| 3\overrightarrow{a} + 4\overrightarrow{b}
ight| + \left| 4\overrightarrow{a} - 3\overrightarrow{b}
ight| = 20$$
, then $\left| \overrightarrow{a}
ight|$ equals

 $\left(\overrightarrow{a} imes\overrightarrow{b}
ight) imes\overrightarrow{a}$ then maximum value of $(\sin 2A+\sin 2B+\sin 2C)$, is

14. If
$$\left| \overrightarrow{a} \right| = \left| \overrightarrow{b} \right| = \left| \overrightarrow{c} \right| = 2$$
 and $\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{b} \cdot \overrightarrow{c} = \overrightarrow{c} \times \overrightarrow{a} = 2$, then $\left[\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c} \right] \cos 45^{\circ}$ is equal to

15. Let $\overrightarrow{a} = -\hat{i} + \hat{j} + \hat{k}, \overrightarrow{b} = 2\hat{i} + \hat{k}$ and vector \overrightarrow{c} satisfying

conditions

(i) $\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix} = 0$ (ii). $\overrightarrow{b} \cdot \overrightarrow{c} = 0$ (iii) $\overrightarrow{a} \cdot \overrightarrow{c} = 7$ Then the value of $\frac{2}{7} |\overline{c}|^2$ is equal to

Watch Video Solution

16. If three points
$$(2\overrightarrow{p} - \overrightarrow{q} + 3\overrightarrow{r}), (\overrightarrow{p} - 2\overrightarrow{q} + \alpha\overrightarrow{r})$$
 and $(\beta\overrightarrow{p} - 5\overrightarrow{q})$ (where $\overrightarrow{p}, \overline{q}, \overrightarrow{r}$ are non-coplanar vectors) are collinear, then the value of $\frac{1}{\alpha + \beta}$ is

Watch Video Solution

17. If
$$\left|\overrightarrow{\alpha}\right| = \left|\overrightarrow{\beta}\right| = \left|\overrightarrow{\alpha} + \overrightarrow{\beta}\right| = 4$$
, then the value of $\left|\overrightarrow{\alpha} - \overrightarrow{\beta}\right|$ is

18. Let a, b, c in R and alpha, beta are the real roots of the equation $ax^2 + bx + c = 0$ and if a + b + c > 0, a - b + c > 0 and c < 0 then [alpha] + [beta] is equal to (where [.] denotes the greatest integer function.)

20. If the vectors $(1-x)\hat{i} + \hat{j} + \hat{k}$, $\hat{i} + (I-y)\hat{j} + \hat{k}$ and $\hat{i} + \hat{j} + (1-z)\hat{k}$ are coplanar vectors, then value of $\frac{1}{x} + \frac{1}{y} + \frac{1}{z}$ is (x, y, z are non zero numbers)

21. If
$$\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}, \hat{b} = \hat{i} - \hat{j} + \hat{k}, \overrightarrow{c} = \hat{i} + 2\hat{j} - \hat{k}$$
, then find the
value of $\begin{vmatrix} \overrightarrow{a} & \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{a} & \overrightarrow{c} \\ \overrightarrow{b} & \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{b} & \overrightarrow{c} \\ \overrightarrow{b} & \overrightarrow{a} & \overrightarrow{c} & \overrightarrow{b} & \overrightarrow{c} & \overrightarrow{c} \end{vmatrix}$

Watch Video Solution

22. The sum of all possible real values of ' a ' for which vectors $\overrightarrow{r}_1 = \ln|a|\hat{i} + a\hat{j} - \hat{k}$ and $\overrightarrow{r}_2 = (1 + a^2)\hat{i} - \hat{j}$ $(a - 1)\hat{k}$ are

orthogonal is

Watch Video Solution

23. If
$$\bar{a} = 3\hat{i} - \hat{j} + \hat{k}$$
, $\overrightarrow{b} = 2\hat{i} - 3\hat{j} - \hat{k}$, \overrightarrow{c} and $\overrightarrow{d} = 2\hat{j} + \hat{k}$, then the value of \overrightarrow{d} . $\left(\overrightarrow{a} \times \overrightarrow{b} \times \left(\overrightarrow{c} \times \overrightarrow{d}\right)\right)$ equals