



# MATHS

# **BOOKS - CENGAGE**

# VECTORS TRIPLE PRODUCTS, RECIPROCAL SYSTEM OF VECTORS



1.  $\overrightarrow{a} = 2\hat{i} + \hat{j} + \hat{k}, \overrightarrow{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k},$  $\overrightarrow{a} \times \overrightarrow{b} = 5\hat{i} + 2\hat{j} - 12\hat{k}, \overrightarrow{a}, \overrightarrow{b} = 11$ , then  $b_1 + b_2 + b_3 =$ 

A. 3

B. 5

C. 7

D. 9

# Answer: B



2. If 
$$\overrightarrow{a}$$
,  $\overrightarrow{b}$ ,  $\overrightarrow{c}$ ,  $\overrightarrow{d}$  are unit vectors such that  $\overrightarrow{a}$ .  $\overrightarrow{b} = \frac{1}{2}$ ,  $\overrightarrow{c}$ .  $\overrightarrow{d} = \frac{1}{2}$   
and angle between  $\overrightarrow{a} \times \overrightarrow{b}$  and  $\overrightarrow{c} \times \overrightarrow{d}$  is  $\frac{\pi}{6}$  then the value of  $\left| \left[ \overrightarrow{a} \overrightarrow{b} \overrightarrow{d} \right] \overrightarrow{c} - \left[ \overrightarrow{a} \overrightarrow{b} \overrightarrow{c} \right] \overrightarrow{d} \right| =$   
A.  $3/2$   
B.  $3/4$ 

C.3/8

D. 2

# Answer: C

Watch Video Solution

**3.** If  $\overrightarrow{a}$ ,  $\overrightarrow{b}$ ,  $\overrightarrow{c}$ ,  $\overrightarrow{d}$  be vectors such that  $\left[\overrightarrow{a}\overrightarrow{b}\overrightarrow{c}\right] = 2$ 

and

$$\left(\overrightarrow{a}\times\overrightarrow{b}\right)\times\left(\overrightarrow{c}\times\overrightarrow{d}\right)+\left(\overrightarrow{b}\times\overrightarrow{c}\right)\times\left(\overrightarrow{a}\times\overrightarrow{d}\right)+\left(\overrightarrow{c}\times\overrightarrow{a}\right)\times\left(\overrightarrow{b}\times\overrightarrow{c}\right)\times\left(\overrightarrow{c}\times\overrightarrow{a}\right)\times\left(\overrightarrow{b}\times\overrightarrow{c}\right)$$

Then the value of  $\mu$  is

A. 0

B. 1

C. 3

D. 4

## Answer: D

Watch Video Solution

**4.** Let 
$$\left( \hat{p} imes \overrightarrow{q} 
ight) imes \left( \hat{p}. \overrightarrow{q} 
ight) \overrightarrow{q}$$
  
 $= \left( x^2 + y^2 
ight) \overrightarrow{q} + (14 - 4x - 6y) \overrightarrow{p}$ 

Where  $\hat{p}$  and  $\hat{q}$  are two non-collinear vectors  $\overrightarrow{p}$  is unit vector and x,y are scalars. Then the value of (x+y) is

A. 4 B. 5 C. 6 D. 7

## Answer: B

Watch Video Solution

5. If  $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$  are three on-coplanar vectors such that  $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c}, \overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{a}, \overrightarrow{c} \times \overrightarrow{a} = \overrightarrow{b}$ , then the value of  $\left|\overrightarrow{a}\right| + \left|\overrightarrow{b}\right| + \left|\overrightarrow{c}\right|$  is

A. 1/3

B. 1

C. 3

#### Answer: C



6. Prove that 
$$\begin{vmatrix} 1 & x & y \\ 0 & \sin x & \sin y \\ 0 & \cos x & \cos y \end{vmatrix} = \sin(x-y)$$

Watch Video Solution

7. Let  $\overrightarrow{a}$  and  $\overrightarrow{c}$  be unit vectors inclined at  $\pi/3$  with each other. If  $\left(\overrightarrow{a} \times \left(\overrightarrow{b} \times \overrightarrow{c}\right)\right)$ .  $\left(\overrightarrow{a} \times \overrightarrow{c}\right) = 5$ , then  $\left[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}\right]$  is equal to A. -10B. -5

C. - 20

D. none of these

# Answer: A



8. if 
$$\overrightarrow{a} = \hat{i} + \hat{j} + 2\hat{k}$$
,  $\overrightarrow{b} = \hat{i} + 2\hat{j} + 2\hat{k}$  and  $\left|\overrightarrow{c}\right| = 1$   
Such that  $\left[\overrightarrow{a} \times \overrightarrow{b} \overrightarrow{b} \times \overrightarrow{c} \overrightarrow{c} \times \overrightarrow{a}\right]$  has maximum value, then the value of  $\left|\left(\overrightarrow{a} \times \overrightarrow{b}\right) \times \overrightarrow{c}\right|^2$  is

A. 0

B. 1

C. 
$$\frac{4}{3}$$

D. none of these

# Answer: A

Natch Video Solution

**9.** If the angles between the vectors  $\overrightarrow{a}$  and  $\overrightarrow{b}$ ,  $\overrightarrow{b}$  and  $\overrightarrow{c}$ ,  $\overrightarrow{c}$  an  $\overrightarrow{a}$  are respectively  $\frac{\pi}{6}$ ,  $\frac{\pi}{4}$  and  $\frac{\pi}{3}$ , then the angle the vector  $\overrightarrow{a}$  makes with the plane containing  $\overrightarrow{b}$  and  $\overrightarrow{c}$ , is

A. 
$$\cos^{-1} \sqrt{1 - \sqrt{2/3}}$$
  
B.  $\cos^{-1} \sqrt{2 - \sqrt{3/2}}$   
C.  $\cos^{-1} \sqrt{\sqrt{3/2} - 1}$   
D.  $\cos^{-1} \sqrt{\sqrt{2/3}}$ 

#### Answer: B

# Watch Video Solution

**10.** let  $\overrightarrow{a}$ ,  $\overrightarrow{b}$  and  $\overrightarrow{c}$  be three vectors having magnitudes 1, 1 and 2, respectively, if  $\overrightarrow{a} \times (\overrightarrow{a} \times \overrightarrow{c}) + \overrightarrow{b} = \overrightarrow{0}$ , then the acute angle between  $\overrightarrow{a}$  and  $\overrightarrow{c}$  is \_\_\_\_\_

A. 
$$\pi/4$$

B.  $\pi/6$ 

C.  $\pi/3$ 

D.  $\pi/2$ 

#### Answer: B

Watch Video Solution

11. If  $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$  are non coplanar vectors and  $\overrightarrow{p}, \overrightarrow{q}, \overrightarrow{r}$  are reciprocal

vectors, then

$$\left( l\overrightarrow{a}+m\overrightarrow{b}+n\overrightarrow{c}
ight) .\left( l\overrightarrow{p}+m\overrightarrow{q}+n\overrightarrow{r}
ight)$$
 is equal to

A. 
$$l^2+m^2+n^2$$

 $\mathsf{B}.\,lm+mn+nl$ 

C. 0

D. None of these

#### Answer: A

12. Let  $\overrightarrow{a} = \hat{i} - 3\hat{j} + 4\hat{k}$ ,  $\overrightarrow{B} = 6\hat{i} + 4\hat{j} - 8\hat{k}$ ,  $\overrightarrow{C} = 5\hat{i} + 2\hat{j} + 5\hat{k}$  and a vector  $\overrightarrow{R}$  satisfies  $\overrightarrow{R} \times \overrightarrow{B} = \overrightarrow{C} \times \overrightarrow{B}$ ,  $\overrightarrow{R} \cdot \overrightarrow{A} = 0$ , then the value of  $\frac{\left|\overrightarrow{B}\right|}{\left|\overrightarrow{R} - \overrightarrow{C}\right|}$  is

A. 1

- B. 2
- C. 3

D. 4

#### Answer: B



**13.** The volume of the parallelepiped whose coterminous edges are represented by the vectors  $2\overrightarrow{b} \times \overrightarrow{c}, 3\overrightarrow{c} \times \overrightarrow{a}$  and  $4\overrightarrow{a} \times \overrightarrow{b}$  where

$$\overrightarrow{a} = (1 + \sin\theta)\hat{i} + \cos\theta\hat{j} + \sin2\theta\hat{k}$$
,  
 $\overrightarrow{b} = \sin\left(\theta + \frac{2\pi}{3}\right)\hat{i} + \cos\left(\theta + \frac{2\pi}{3}\right)\hat{j} + \sin\left(2\theta + \frac{4\pi}{3}\right)\hat{k},$   
 $\overrightarrow{c} = \sin\left(\theta - \frac{2\pi}{3}\right)\hat{i} + \cos\left(\theta - \frac{2\pi}{3}\right)\hat{j} + \sin\left(2\theta - \frac{4\pi}{3}\right)\hat{k}$  is 18 cubic

units, then the values of  $\theta$ , in the interval  $\left(0, \frac{\pi}{2}\right)$ , is/are

A. 
$$\frac{\pi}{9}$$
  
B.  $\frac{2\pi}{9}$   
C.  $\frac{\pi}{3}$   
D.  $\frac{4\pi}{9}$ 

## Answer: A::B::D

Watch Video Solution

14. Let  $\overrightarrow{a}$  and  $\overrightarrow{b}$  be two non-zero perpendicular vectors. A vector  $\overrightarrow{r}$  satisfying the equation  $\overrightarrow{r} \times \overrightarrow{b} = \overrightarrow{a}$  can be

A. 
$$\overrightarrow{b} - \frac{\overrightarrow{a} \times \overrightarrow{b}}{\left|\overrightarrow{b}\right|^2}$$

$$B. 2\overrightarrow{b} - \frac{\overrightarrow{a} \times \overrightarrow{b}}{\left|\overrightarrow{b}\right|^{2}}$$
$$C. \left|\overrightarrow{a}\right| \left|\overrightarrow{b}\right| - \frac{\overrightarrow{a} \times \overrightarrow{b}}{\left|\overrightarrow{b}\right|^{2}}$$
$$D. \left|\overrightarrow{b}\right| \left|\overrightarrow{b}\right| - \frac{\overrightarrow{a} \times \overrightarrow{b}}{\left|\overrightarrow{b}\right|^{2}}$$

### Answer: A::B::C::D



**15.** If  $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$  are three non-zero vectors, then which of the following statement(s) is/are true?

$$\mathsf{A}.\overrightarrow{a}\times\left(\overrightarrow{b}\times\overrightarrow{c}\right),\overrightarrow{b}\times\left(\overrightarrow{c}\times\overrightarrow{a}\right),\left(\overrightarrow{c}\times\overrightarrow{a}\right),\overrightarrow{c}\times\left(\overrightarrow{a}\times\overrightarrow{b}\right)$$

form a right handed system

B. 
$$\overrightarrow{c}$$
,  $\left(\overrightarrow{a} \times \overrightarrow{b}\right) \times \overrightarrow{c}$ ,  $\overrightarrow{a} \times \overrightarrow{b}$  from a right handed system  
C.  $\overrightarrow{a}$ .  $\overrightarrow{b} + \overrightarrow{b}$ .  $\overrightarrow{c} + \overrightarrow{c}$ .  $\overrightarrow{a} < 0$  if  $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$ 

$$\mathsf{D}.\frac{\left(\overrightarrow{a}\times\overrightarrow{b}\right).\left(\overrightarrow{b}\times\overrightarrow{c}\right)}{\left(\overrightarrow{b}\times\overrightarrow{c}\right).\left(\overrightarrow{a}\times\overrightarrow{c}\right)} = -1 \text{ if } \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}=0$$

Answer: B::C::D

Watch Video Solution

16. Vectors  $\overrightarrow{a}$ ,  $\overrightarrow{b}$ ,  $\overrightarrow{c}$  are three unit vectors and  $\overrightarrow{c}$  is equally inclined to both  $\overrightarrow{a}$  and  $\overrightarrow{b}$ . Let  $\overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c}) + \overrightarrow{b} \times (\overrightarrow{c} \times \overrightarrow{a})$  $= (4 + x^2) \overrightarrow{b} - (4x \cos^2 \theta) \overrightarrow{a}$ , then  $\overrightarrow{a}$  and  $\overrightarrow{b}$  are non-collinear vectors, x > 0A. x = 2

 $B. \theta = 0^{\circ}$ 

 $\mathsf{C}.\, \theta = x$ 

 $\mathsf{D}.\,x=4$ 

Answer: A::B::C

17. If  $\overrightarrow{a}$  and  $\overrightarrow{b}$  are unequal unit vectors such that  $\left(\overrightarrow{a} - \overrightarrow{b}\right) \times \left[\left(\overrightarrow{b} + \overrightarrow{a}\right) \times \left(2\overrightarrow{a} + \overrightarrow{b}\right)\right] = \overrightarrow{a} + \overrightarrow{b}$  then angle  $\theta$  between  $\overrightarrow{a}$  and  $\overrightarrow{b}$  is A.  $\frac{\pi}{2}$ B. 0 C.  $\pi$ D.  $\frac{\pi}{4}$ 

# Answer: A::C

# Watch Video Solution

**18.**  $\overrightarrow{a} = 2\hat{i} + \hat{j} + 2\hat{k}, \ \overrightarrow{b} = \hat{i} - \hat{j} + \hat{k}$  and non zero vector  $\overrightarrow{c}$  are such that  $\left(\overrightarrow{a} \times \overrightarrow{b}\right) \times \overrightarrow{c} = \overrightarrow{a} \times \left(\overrightarrow{b} \times \overrightarrow{c}\right)$ .

Then vector  $\overrightarrow{c}$  may be given as

A. 
$$4\hat{i} + 2\hat{j} + 4\hat{k}$$
  
B.  $4\hat{i} - 2\hat{j} + 4\hat{k}$   
C.  $\hat{i} + \hat{j} + \hat{k}$   
D.  $\hat{i} - 4\hat{j} + \hat{k}$ 

### Answer: A

Watch Video Solution

**19.** The area of a parallelogram whose adjacent sides are represented by the vectors  $a=-\hat{i}-2\hat{j}-3\hat{k}$  and  $b=-\hat{i}+2\hat{j}-3\hat{k}$  is

A.  $\sqrt{14}$ 

B.  $\sqrt{6}$ 

C.  $4\sqrt{10}$ 

D. 36

#### Answer: D

**20.** A vector along the bisector of angle between the vectors  $\overrightarrow{b}$  and  $\overrightarrow{c}$  is,

A. 
$$(2 + \sqrt{3})\hat{i} + (1 - \sqrt{3})\hat{j} + (2 + \sqrt{3})\hat{k}$$
B.  $(2 + \sqrt{3})\hat{i} + (1 - \sqrt{3})\hat{j} - (2 + \sqrt{3})\hat{k}$ 
C.  $(2 + \sqrt{3})\hat{i} - (1 - \sqrt{3})\hat{j} - (2 + \sqrt{3})\hat{k}$ 

D. 
$$\left(2+\sqrt{3}
ight)\hat{i}-\left(1-\sqrt{3}
ight)\hat{j}+\left(2+\sqrt{3}
ight)\hat{k}$$

# Answer: A

View Text Solution