©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - KC SINHA ENGLISH

3D - COMPETITION

Solved Examples

1. Show that the three lines drawn from the origin with direction cosines proportional to (1,-1,1),(2,-3,0) and (1,0,3) are coplanar

- Watch Video Solution

2. Prove that the two lines whose direction cosines are given by the relations

$$
p l+q m+r n=0 \text { and } a l^{2}+b m^{2}+c n^{2}=0 \quad \text { are }
$$

perpendicular if $p^{2}(b+c)+q^{2}(c+a)+r^{2}(a+b)=0$ and parallel if $\frac{p^{2}}{a}+\frac{q^{2}}{b}+\frac{r^{2}}{c}=0$

- Watch Video Solution

3. The direction cosines of two lines satisfying the
conditions $l+m+n=0$ and $3 l m-5 m n+2 n l=0$
where $\mathrm{I}, \mathrm{m}, \mathrm{n}$ are the direction cosines.
The value of $(l-m)^{2}+(m-n)^{2}+(n-l)^{2}$ is

- Watch Video Solution

4. If the direction cosines of two lines given by the equations $p m+q n+r l=0$ and $l m+m n+n l=0$, prove that the lines are parallel if $p^{2}+q^{2}+r^{2}=2(p q+q r+r p)$ and perpendicular if $p q+q r+r p=0$
5. Prove that in a tetrahedron if two pairs of opposite edges are perpendicular, then the thrid pair is also perpendicular.

- Watch Video Solution

6. If $P, Q, R, \operatorname{Sare}(3,6,4),(2,5,2),(6,4,4),(0,2,1)$ respectively. The projection of PQ on RS is

- Watch Video Solution

7. Find the length and direction cosines of a line segment whose projection on the coordinate axes are 6,-3,2.

- Watch Video Solution

8. Show that the four points
$(0,-1,0),(2,1,-1),(1,1,1)$ and $(3,3,0)$ are coplanar. Also, find equation of plane through them.

- Watch Video Solution

9. findthe equationof the plane passing through the point (α, β, γ) and perpendicular to the planes $a_{1} x+b_{1} y+c_{1} z+d_{1}=0$ and $a_{2} x+b_{2} y+c_{2} z+d_{2}=0$

D Watch Video Solution

10. Find the equation of the plane passing through the line of intersection of the planes $4 x-5 y-4 z=1$ and $2 x+y+2 z=8$ and the point $(2,1,3)$.

- Watch Video Solution

11. If the plane $a x+b y=0$ is rotated about its line of intersection with the plane $z=0$ through an angle α then prove that the equation of the plane in its new position is $a x+b y \pm\left(\sqrt{a^{2}+b^{2}} \tan \alpha\right) z=0$.
12. Find the reflection of the plane $a x+b y+c z+d=0$ In the plane $a^{\prime} x+b^{\prime} y+c^{\prime} z+d^{\prime}=0$.

- Watch Video Solution

13. Find the distance between the parallel planes
$2 x-y+3-4=0$ and $6 x-3 y+13=0$.

- Watch Video Solution

14. Find the plane which bisects the obtuse angle between the planes $4 x-3 y+12 z+13=0$ and $x+2 y+2 z=9$

- Watch Video Solution

15. Find the equation of the planes bisecting the angles between planes
$2 x+y+2 z=9$ and $3 x-4 y+12 z+13=0$

- Watch Video Solution

16. Find the locus of a point, the sum of squares of whose distance from the planes $x-z=0, x-2 y+z=0 a n d x+y+z=0 i s 36$.

- Watch Video Solution

17. If P is any point on the plane $l x+m y+n z=p a n d Q$ is a point on the line $O P$ such that $O P . O Q=p^{2}$, then find the locus of the point Q.

- Watch Video Solution

18. A variable plane passes through a fixed point (α, β, γ) and meets the axes at A, B, and C. show that the locus of the point of intersection of
the planes through $A, B a n d C$ parallel to the coordinate planes is $\alpha x^{-1}+\beta y^{-1}+\gamma z^{-1}=1$.

- Watch Video Solution

19. A variable plane at constant distance p form the origin meets the coordinate axes at P,Q, and R. Find the locus of the point of intersection of planes drawn through P, Q, r and parallel to the coordinate planes.

Watch Video Solution

20. A variable plane which remains at q constant distance $3 p$ from the origin cut the coordinate axes at A, B, C. Show that the locus o the centroid of triangle $A B C$ is $x^{-2}+y^{-2}+z^{-2}=p^{-2}$.

- Watch Video Solution

21. A point P moves on a plane $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$. A plane through P and perpendicular to $O P$ meets the coordinate axes at $A, B a n d C$. If the planes through $A, B a n d C$ parallel to the planes $x=0, y=0 a n d z=0$, respectively, intersect at Q, find the locus of Q.

- Watch Video Solution

22. about to only mathematics

- Watch Video Solution

23. Let $A_{x y}, A_{y z}, A_{x z}$ be the area of the projection of a plane area A on the $x y, y z, z x$ plane respectively. Then $A^{2}=$

- Watch Video Solution

24. Through a point $P(h, k, l)$ a plane is drawn at righat angle to $O P$ to meet the coordinate axes in A, B and C. If $O P=p$ show that the area of $\triangle A B C$ is $\frac{p^{5}}{2 h k l}$

- Watch Video Solution

25. Find the distance of the point $(1,0,-3)$ from the plane $x-y-z=9$ measured parallel to the line $\frac{x-2}{2}=\frac{y+2}{3}=\frac{z-6}{-6}$.

- Watch Video Solution

26. Find he equation of the plane passing through $(1,2,0)$ which contains the line $\frac{x+3}{3}=\frac{y-1}{4}=\frac{z-2}{-2}$

- Watch Video Solution

27. Find the equation of the plane through the line $\frac{x-x_{1}}{l_{1}}=\frac{y-y_{1}}{m_{1}}=\frac{z-z_{1}}{n_{1}} \quad$ and parallel to the line
$\frac{x-\alpha}{l_{2}}=\frac{y-\beta}{m_{2}}=\frac{z-\gamma}{n_{2}}$

- Watch Video Solution

28. Find the equation of the projection of the line $\frac{x-1}{2}=\frac{y+1}{-1}=\frac{z-3}{4}$ on the plane $x+2 y+z=9$.

- Watch Video Solution

29. Find the the image of the point (α, β, γ) with respect to the plane $2 x+y+z=6$.

- Watch Video Solution

30.

$\frac{x+3}{-4}=\frac{y-4}{1}=\frac{z+1}{7}$ and $\frac{x+1}{-3}=\frac{y-1}{2}=\frac{z+10}{8} \quad$ intersect?
If so find the point of intersection.

D Watch Video Solution

31.

Show
that
the
lines
$\frac{x-3}{2}=\left(y=\frac{10}{-3}=\frac{z+2}{1}\right.$ and $\frac{x 7}{-3}=\frac{y}{1}=\frac{z+7}{2}$ are coplanar.
Also find the equation of the plane containing them.

- Watch Video Solution

32.

> Are
the
lines
$3 x-2 y+z+5=0=2 x+3 y+4 z-4$ and $\frac{x+4}{3}=\frac{y+6}{5}=\frac{z-1}{-2}$ coplanar. If yes find their point of intersection and equation of the plane which they lie.
33. Find the equation of a line which passes through the point $(1,1,1)$ and intersects the lines
$\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x+2}{1}=\frac{y-3}{2}=\frac{z+1}{4}$.

- Watch Video Solution

34. Find the equation of the line which passes thorugh the point $P(\alpha, \beta, \gamma)$ and is parallel to the line $a_{1} x+b_{1} y+c_{1} z+d_{1}=0, a_{2} x+b_{2} y+c_{2} z+d_{2}=0$

- Watch Video Solution

35. Equation of line of projection of the line $3 x-y+2 z-1=0=x+2 y-z-2$ on the plane $3 x+2 y+z=0$ is:
36. Find the equation of the plane which passes through the line of intersection of the planes $a_{1} x+b_{1} y+c_{1} z+d_{1}=0$ and $a_{2} x+b_{2} y+c_{2} z+d_{2}=0$ and which is parallel to the line $\frac{x-\alpha}{l}=\frac{y-\beta}{m}=\frac{z-\gamma}{n}$

- Watch Video Solution

37.

$x-c y-b z=0, c x-y+a z=0$ and $b x+a y-z=0$ pass through a line, then the value of $a^{2}+b^{2}+c^{2}+2 a b c$ is

- Watch Video Solution

38. Find the length of the shortest distance between the lines $\frac{x-1}{2}=\frac{y-4}{3}=\frac{z+1}{-3}$ and $\frac{x-4}{1}=\frac{y-3}{3}=\frac{z-2}{2}$

- Watch Video Solution

39. Prove that the shortest distance between any two opposite edges of a tetrahedron formed by the planes $y+z=0, x+z=0, x+y=0, x+y+z=\sqrt{3}$ ais $\sqrt{2} a$.

- Watch Video Solution

40. Find the equation of the sphere touching the four planes $x=0, y=0, z=0$ and $x+y+z=1$ and lying in the octant bounded by positive coordinate planes.

- Watch Video Solution

41. The plane $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$ meets the coordinate axes at A, B and C respectively. Find the equation of the sphere $O A B C$.

- Watch Video Solution

42. Find the equation of a sphere which passes through $(1,0,0)(0,1,0) \operatorname{and}(0,0,1)$, and has radius as small as possible.

Watch Video Solution

43. Find the equation of the plane passing through the points $(2,1,0),(5,0,1)$ and $(4,1,1)$.

- Watch Video Solution

44. If P is the point $(2,1,6)$ find the point Q such that $P Q$ is perpendicular to the plane $x+y-2 z=3$ and the mid point of PQ lies on it.

- Watch Video Solution

45. A parallelepiped S has base points A, B, C and D and upper face points $A^{\prime}, B^{\prime}, C^{\prime}$ and D^{\prime}. The parallelepiped is compressed by upper face
$A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ to form a new parallelepiped T having upper face points $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$ and $D^{\prime \prime}$. The volume of parallelepiped T is 90 percent of the volume of parallelepiped S. Prove that the locus of $A^{\prime \prime}$ is a plane.

- Watch Video Solution

46. A plane is parallel to two lines whose direction ratios are ($1,0,-1$) and $(-1,1,0)$ and it contains the point (1,1,1).If it cuts coordinate axes at A, B, C then find the volume of the tetrahedron OABC.

- Watch Video Solution

47. Two planes P_{1} and P_{2} pass through origin. Two lines L_{1} and L_{2} also passingthrough origin are such that L_{1} lies on P_{1} but not on P_{2}, L_{2} lies on P_{2} but not on $P_{1} A, B, C$ are there points other than origin, then prove that the permutation $\left[A^{\prime}, B^{\prime}, C^{\prime}\right]$ of $[A, B, C]$ exists. Such that: (a) A lies on L1, B lies on P1 not on L1, C does not lie on P1. (b) A lies on L2, B lies on P2 not on L2, C' does not lies on P2.
48. Find the equation of the plane containing the line $2 x+y+z-1=0, x+2 y-z=4$ and at a distance of $\frac{1}{\sqrt{6}}$ from the point (2,1,-1).

- Watch Video Solution

49. If the line $\frac{x-4}{1}=\frac{y-2}{1}=\frac{z-k}{2}$ lies exactly on the plane $2 x-4 y+z=7$, the value of k is

- Watch Video Solution

50. Two systems of rectangular axes have the same origin. If a plane cuts them at distance $a, b, c a n d d, b^{\prime}, c^{\prime}$ from the origin, then a.
$\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}+\frac{1}{a^{\prime 2}}+\frac{1}{b^{\prime 2}}+\frac{1}{c^{\prime 2}}=0$
$\frac{1}{a^{2}}-\frac{1}{b^{2}}-\frac{1}{c^{2}}+\frac{1}{a^{\prime 2}}-\frac{1}{b^{\prime 2}}-\frac{1}{c^{\prime 2}}=0$
b.
C.
$\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}-\frac{1}{a^{\prime 2}}-\frac{1}{b^{\prime 2}}-\frac{1}{c^{\prime 2}}=0$
$\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}+\frac{1}{a^{\prime 2}}+\frac{1}{b^{\prime 2}}+\frac{1}{c^{\prime 2}}=0$

- Watch Video Solution

51. The shortest distance from the plane $12 x+y+3 z=327$ to the sphere $x^{2}+y^{2}+z^{2}+4 x-2 y-6 z=155$ is

- Watch Video Solution

52. If the lines $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4}$ and $\frac{x-3}{1}=\frac{y-k}{2}=\frac{z}{1}$ intersect, then the value of k is

- Watch Video Solution

53. A line with direction cosines proportional to $2,1,2$ meet each of the lines $x=y+a=z$ and $x+a=2 y=2 z$. The coordinastes of each of the points of intersection are given by
(A) $(3 a, 2 a, 3 a),(a, a, 2 a)$
(B) $(3 a, 2 a, 3 a),(a, a, a)$
(C) $(3 a, 3 a, 3 a),(a, a, a)$
(D) $(2 a, 3 a, 3 a),(2 a, a, a)$

D Watch Video Solution

54. about to only mathematics

D Watch Video Solution

55. Let the line $\frac{x-2}{3}=\frac{y-1}{-5}=\frac{z+2}{2}$ lies in the plane $x+3 y-\alpha z+\beta=0$. Then, (α, β) equals

Watch Video Solution

56. A line with positive direction cosines passes through the point $P(2,-1$,
2) and makes equal angles with the coordinate axes. The line meets the
plane $2 x+y+z=9$ at point Q. The length of the line segment $P Q$ equals

- Watch Video Solution

57. The value of k for which the planes $k x+4 y+z=0,4 x+k y+2 z=0 n d 2 x+2 y+z=0$ intersect in a straighat line is

- Watch Video Solution

58. Consider the planes $\vec{r} \cdot \vec{n}_{1}=d_{1}$ and $\vec{r} \cdot \vec{n}_{2}=d_{2}$ then (A) they are perpendiculat if $\vec{n}_{1} \cdot \vec{n}_{2}=0$ (B) intersect in a line parallel to $\vec{n}_{1} \times \vec{n}_{2}$ if \vec{n}_{1} is not parallel to \vec{n}_{2} (C) angle between them is $\cos ^{-1}\left(\frac{\vec{n}_{1} \cdot n_{2} .}{\left|\vec{n}_{1}\right|\left|\vec{n}_{2}\right|}\right)$ (D) none of these

- Watch Video Solution

59. Consider three planes $P_{1}: x-y+z=1, P_{2}: x+y-z=-1$ and $P_{3}: x-3 y+3 z=2$. Let L_{1}, L_{2}, L_{3} be the lines of intersection of the planes P_{2} and P_{3}, P_{3} and P_{1}, P_{1} and P_{2} respectively.

Statement I Atleast two of the lines L_{1}, L_{2} and L_{3} are non-parallel.
Statement II The three planes do not have a common point.

- Watch Video Solution

60. A paragraph has been given. Based upon this paragraph, 3 multiple choice question have to be answered. Each question has 4 choices a,b,c and d out of which ONLYONE is correct. Consider the $L_{1}: \frac{x+1}{3}=\frac{y+2}{1}=\frac{z+1}{2}$ and $L_{2}: \frac{x-2}{1}=\frac{y+2}{2}=\frac{z-3}{3}$ The unit vector perpendicular to both L_{1} and L_{2} is (A) $\frac{-\hat{i}+7 \hat{k}+7 \hat{k}}{\sqrt{99}}$
$\underline{-\hat{i}-7 \hat{k}+5 \hat{k}}$ $5 \sqrt{3}$
(C) $\frac{-\hat{i}+7 \hat{k}+7 \hat{k}}{5 \sqrt{3}}$
(D) $\frac{7 \hat{i}-7 \hat{k}-7 k}{\sqrt{99}}$

- Watch Video Solution

$$
61 .
$$

$L_{1}: \frac{x+1}{3}=\frac{y+2}{1}=\frac{z+1}{2}$ and $L_{2}: \frac{x-2}{1}=\frac{y+2}{2}=\frac{z-3}{3}$ The shortest distance betwen L_{1} and L_{2} is
(A) O (B) $\frac{17}{\sqrt{3}}$
(C) $\frac{41}{5(3)}$
(D) $\frac{17}{\sqrt{75}}$

(Watch Video Solution

62. Read the following passage and answer the questions. Consider the lines
$L_{1}: \frac{x+1}{3}=\frac{y+2}{1}=\frac{z+1}{2}$
$L_{2}: \frac{x-2}{1}=\frac{y+2}{2}=\frac{z-3}{3}$
Q . The distance of the point $(1,1,1)$ from the plane passing through the point ($-1,-2,-1$) and whose normal is perpendicular to both the lines L_{1} and L_{2}, is

- Watch Video Solution

Exercise

1. Show that the plane $a x+b y+c z+d=0$ divides the line joining $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ in the ratio of $\left(-\frac{a x_{1}+a y_{1}+c z_{1}+d}{a x_{2}+b y_{2}+c z_{2}+d}\right)$

- Watch Video Solution

2. If the centroid of a triangle with vertices $(\alpha, 1,3),(-2, \beta,-5)$ and $(4,7, \gamma)$ is the origin then $\alpha \beta \gamma$ is equal to

- Watch Video Solution

3. Show that $\left(-\frac{1}{2}, 2,0\right)$ is the circumacentre of the triangle whose vertices are $A(1,1,0), B(1,2,1)$ and $C(-2,2,-1)$ and hence find its orthocentre.

- Watch Video Solution

4. $A(3,2,0), B(5,3,2) C(-9,6,-3)$ are three points forming a triangle. $A D$, the bisector of angle $B A C$ meets $B C$ in D. Find the coordinates of the point D.

- Watch Video Solution

5. Find the coordinate of the foot of the perpendicular from $P(2,1,3)$ on the line joinint the points $A(1,2,4)$ and $B(3,4,5)$

- Watch Video Solution

6. If O be the origin and OP makes an angle of 45° and 60° with the positive direction of x and y axes respectively and $O P=12$ units, find the coordinates of P .

- Watch Video Solution

7. Find the angles of $\triangle A B C$ whose vetices are $A(-1,3,2), B(2,3,5)$ and $C(3,5,-2)$.

- Watch Video Solution

8. Find the projection of the line segment joining ($2,-1,3$) and $(4,2,5)$ ' on a line whidh makes equal to angle with coordinate axes.

- Watch Video Solution

9. The projection of a directed line segment on the coordinate axes are
$12,4,3$. Find its length and direction cosines.

- Watch Video Solution

10. Find the direction cosines of as perpendicular from origin to the plane
$\vec{r} \cdot(2 \hat{i}-2 \hat{j}+\hat{j})+2=0$
11. Find the Cartesian equation of the plane $\vec{r} \cdot(2 \hat{i}-3 \hat{j}+5 \hat{k})=1$.

- Watch Video Solution

12. Find the vector equation of the plane $\vec{r}=(1+s-t) \hat{i}+(2-s) \hat{j}+(3-2 s+2 t) \hat{k}$ in non-parametric form.

- Watch Video Solution

$$
\begin{aligned}
& \text { 13. } \begin{array}{c}
\text { Find } \\
\vec{r} \\
\vec{r} \cdot(\vec{i}+\vec{j})=1 \text { and } \vec{r} \cdot(\vec{i}+\vec{k})=3 \text { angle }
\end{array}
\end{aligned}
$$

- Watch Video Solution

14.

$12 x-15 y+16 z-28=0,6 x+6 y-7 z-8=0$
$2 x+35 y-39 z+12=0$ have a common line of intersection.

- Watch Video Solution

15. Find the angle between the planes $x-y+2 z=9$ and $2 x+y+z=7$.

- Watch Video Solution

16. Show that the origin lies in the interior of the acute angle between planes $x+2 y+2 z=9$ and $4 x-3 y+12 z+13=0$. Find the equation of bisector of the acute angle.

- Watch Video Solution

17. The plane $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$ meets the co-ordinate axes in the point A, B, C respectively. Find the area $\triangle A B C$.

- Watch Video Solution

18. A $(1,0,4), B(0,-11,3), C(2,-3,1)$ are three points and D is the foot of perpendicular form A on $B C$. Find the coordinates of D.

- Watch Video Solution

19. about to only mathematics

- Watch Video Solution

20. A line with cosines proportional to $2,7-5$ drawn to intersect the lines $\frac{x-5}{3}=\frac{y-7}{-1}=\frac{z+2}{1} ; \frac{x+3}{-3}=\frac{y-3}{2}=\frac{z-6}{4}$.Find the co-
ordinates of the points of intersection and the length intercepted on it.

- Watch Video Solution

21. Find the image of the point $(2,-3,4)$ with respect to the plane $4 x+2 y-4 z+3=0$

- Watch Video Solution

22. Projection of line $\frac{x+1}{2}+\frac{y+1}{-1}=\frac{z+3}{4}$ on the plane $x+2 y+z=6$; has equation $x+2 y+z-6=0=9 x-2 y-5 z-8$
b. $x+2 y+z+6=0,9 x-2 y+5 z=4$
c. $\frac{x-1}{4}=\frac{y-3}{-7}=\frac{z+1}{10}$
d. $\frac{x+3}{4}=\frac{y-2}{7}=\frac{z-7}{-10}$

- Watch Video Solution

23. Prove that the straight lines
$\frac{x}{\alpha}=\frac{y}{\beta}=\frac{z}{\gamma}, \frac{x}{l}=\frac{y}{m}=\frac{z}{n}$ and $\frac{x}{a \alpha}=\frac{y}{b \beta}=\frac{z}{c \gamma}$ will be co planar if
$\frac{l}{\alpha}(b-c)+\frac{m}{\beta}(c-a)+\frac{n}{\gamma}(a-b)=0$

- Watch Video Solution

24. Find the equation of the line through point $(1,2,3)$ and parallel to plane $x-y+2 z=5,3 x+y+z=6$

- Watch Video Solution

25. The shortest distance between the straighat lines through the point $A_{1}=(6,2,2)$ and $A_{2}=(-4,0,-1)$ in the directions $1,-2,2$ and $3,-2,-2$ is
(A) 6 (B) 8 (C) 12 (D) 9

Watch Video Solution

26. Find | the points on the |
| :---: | lines

$\frac{x-6}{3}=\frac{y-7}{-1}=\frac{z-4}{1}$ and $\frac{x}{-3}=\frac{y-9}{2}=\frac{z-2}{4}$. Which are
nearest to each other.

- Watch Video Solution

27. Find the coordinates of the points where the shortest distance between the lines
$\frac{x-12}{-9}=\frac{y-1}{4}=\frac{z-5}{2}$ and $\frac{x-23}{6}=\frac{y-19}{4}=\frac{z-25}{-3}$ meets them.

(Watch Video Solution

28. A variable plane moves in such a way that the sum of the reciprocals of its intercepts on the three coordinate axes is constant. Show that the plane passes through a fixed point.

(Watch Video Solution

29. The equations of motion of a rocket are $x=2 t, y=-4 t$ and $z=4 t$, where time t is given in seconds, and the coordinates of a moving point in kilometres. What is the path of the rocket ? At what distance will be the rocket from the starting point $O(0,0,0)$ in 10 s ?

- Watch Video Solution

30. If the system of equations $x=c y+b z y=a z+c x z=b z+a y$ has a non-trivial solution, show that $a^{2}+b^{2}+c^{2}+2 a b c=1$

- Watch Video Solution

31. Let PQ be the perpendicular form $P(1,2,3)$ to $x y$-plane. If OP makes an angle theta with the positive direction of z -axis and OQ makes an angle ϕ with the positive direction of x-axis where O is the origin show that $\tan \theta=\frac{\sqrt{5}}{3}$ and $\tan \phi=2$.
32. about to only mathematics

- Watch Video Solution

33. The graph of the equation $x^{2}+y^{2}=0$ in the three dimensional space is

- Watch Video Solution

34. If a point moves so that the sum of the squars of its distances from the six faces of a cube having length of each edge 2 units is 104 units then the distance of the point from point $(1,1,1)$ is (A) a variable (B) a constant equal to 7 units (C) a constant equal to 4 uinits (D) a constant equal to 49 units

- Watch Video Solution

$O(0,0,0), A(2.0,0), B(1, \sqrt{3}, 0)$ and $C\left(1, \frac{1}{\sqrt{3}}, \frac{2 \sqrt{2}}{\sqrt{3}}\right) \quad$ are the vertices of a regular tetrahedron.,

- Watch Video Solution

36. Show that the angle between two diagonals of a cube is $\cos ^{-1} \sqrt{\frac{1}{3}}$.

- Watch Video Solution

37. The equation $\vec{r}=\lambda \hat{i}+\mu \hat{j}$ represents the plane
(A) $x=0$ (B) $z=0$ (C) $y=0$ (D) none of these

- Watch Video Solution

38. The vector \vec{c}, directed along the internal bisector of the angle between the
$\vec{a}=7 \hat{i}-4 \hat{j}-4 \hat{k}$ and $\vec{b}=-2 \hat{i}-\hat{j}+2 \hat{k}$ with $|\vec{c}|=5 \sqrt{6}$, is

- Watch Video Solution

39. The equation of the plane containing the line
$2 x+z-4=0 n d 2 y+z=0$ and passing through the point $(2,1,-1) i s(A)$
$\mathrm{x}+\mathrm{y}-\mathrm{z}=4(B) \mathrm{x}-\mathrm{y}-\mathrm{z}=2(C) \mathrm{x}+\mathrm{y}+\mathrm{z}+2=0(D) \mathrm{x}+\mathrm{y}+\mathrm{z}=2$

- Watch Video Solution

40. The locus represented by $x y+y z=0$ is a pair of

- Watch Video Solution

41. The acute angle between the planes $5 x-4 y+7 z=13$ and the y-axis is given by
(A) $\sin ^{-1}\left(\frac{5}{\sqrt{90}}\right)$
(B) $\sin ^{-1}\left(\frac{-4}{\sqrt{90}}\right)$
(C) $\sin ^{-1}\left(\frac{7}{\sqrt{90}}\right)$
(D) $\sin ^{-1}\left(\frac{4}{\sqrt{90}}\right)$

Watch Video Solution

42. The points $A(1,1,0), B(0,1,1), C(1,0,1)$ and $D\left(\frac{2}{3}, \frac{2}{3}, \frac{2}{3}\right)$ are
(A) coplanar (B) non coplanar (C) vertices of a paralleloram (D) none of these

- Watch Video Solution

43. The equation of the parallel plane lying midway between the parallel planes $2 x-3 y+6 z-7=0$ and $2 x-3 y+6 z+7=0$ is
(A) $2 x-3 y+6 z+1=0$
(B) $2 x-3 y+6 z-1=0$
(C) $2 x-3 y+6 z=0$
(D) none of these

- Watch Video Solution

44. The equation of the righat bisector plane of the segment joining
$(2,3,4)$ and $(6,7,8)$ is (A) $x+y+z+15=0$ (B) $x+y+z-15=0$ (C)
$x-y+z-15=0$ (D) none of these

- Watch Video Solution

45. The angle between the plane $3 x+4 y=0$ and z-axis is (A) 0^{0} (B) 30^{0} (C) 60° (D) 90^{0}

- Watch Video Solution

46.

If
the
points
$(-0,-1,-2),(-3,-4,-5),(-6,-7,-8)$ and (x, x, x)
are non coplanar then x is (A) -2 (B) 0 (C) 3 (D) any real number

- Watch Video Solution

47. The equation of the plane through the point $(1,2,-3)$ which is parallel to the plane $3 x-5 y+2 z=11$ is given by (A) $3 x-5 y+2 z-13=0$
(B) $5 x-3 y+2 z+13=0$
(C) $3 x-2 y+5 z+13=0$
$3 x-5 y+2 z+13=0$

- Watch Video Solution

48. The equation of any plane parallel to x-axis
$a y+c z+b=0, a^{2}+b^{2}+c^{2}=0$
(B) $\quad x=a$
$a y+c z-b x=0, a^{2}+c \neq 0(\mathrm{D})$ none of these

- Watch Video Solution

49. The direction ratios of a normal to the plane through $(1,0,0) \operatorname{and}(0,1,0)$, which makes and angle of $\frac{\pi}{4}$ with the plane $x+y=3$, are a. $\langle 1, \sqrt{2}$, b. $\langle 1,1, \sqrt{2}\rangle$ c. $\langle 1,1,2\rangle$ d. '<>’

- Watch Video Solution

50. The equation of the plane through the point of intersection of plane $x+2 y+3 z=4$ and $2 x+y-z-5$ and perpendicular to the plane $5 x+3 y+6 z+8=0$ is
(A) $7 x-2 y+3 z+81=0$
(B) $23 x+14 y-9 z+48=0$
$51 x+15 y+50 z+173=0(\mathrm{D})$ none of these

- Watch Video Solution

51. The distance of the point $(2,1,-1)$ from the plane $x-2 y+4 z=9$ is
52. Verify the following: $(5,-1,1),(7,-4,7),(1,-6,10)$ and $(-1,-3,4)$ are the vertices of a rhombus.

Watch Video Solution

53. The angle θ the line $\vec{r}=\vec{r}+\lambda \vec{b}$ and the plane $\vec{r} \cdot \widehat{n}=d$ is given
by (A) $\sin ^{-1}\left(\frac{\vec{b} \cdot \widehat{n}}{|\vec{n}||\vec{b}|}\right)$ (B) $\cos ^{-1}\left(\frac{\vec{b} \cdot \hat{n}}{|\vec{b}|}\right)$ (C) $\sin ^{-1}\left(\frac{\vec{a} \cdot \hat{n}}{|\vec{a}|}\right)$
$\cos ^{-1}\left(\frac{\vec{a} \cdot \widehat{n}}{|\vec{a}|}\right)$

- Watch Video Solution

54. A straighat line $\vec{r}=\vec{a}+\lambda \vec{b}$ meets the plane $\vec{r} \cdot \vec{n}=p$ in the point whose position vector is (A) $\quad \vec{a}+\left(\frac{\vec{a} \cdot \widehat{n}}{\vec{b} \cdot \hat{n}}\right) \vec{b}$
$\vec{a}+\left(\frac{p-\vec{a} \cdot \hat{n}}{\vec{b} \cdot \hat{n}}\right) \vec{b}$ (C) $\vec{a}-\left(\frac{\vec{a} \cdot \hat{n}}{\vec{b} \cdot \hat{n}}\right) \vec{b}$ (D) none of these
55. The equation of the line through $(1,1,1)$ and perpendicular to the plane $2 x+3 y-z=5$ is
(A) $\frac{x-1}{2}=\frac{y-1}{3}=z-1$
(B) $\frac{x-1}{2}=\frac{y-1}{3}=\frac{z-1}{-1}$
(C) $\frac{x-1}{2}=\frac{y-1}{3}=\frac{z-1}{5}$
(D) $\frac{x-1}{2}=\frac{y-1}{-3}=z-1$

- Watch Video Solution

56. Given the line $L: \frac{x-1}{3}=\frac{y+1}{2}=\frac{z+3}{1}$ and the plane $\pi: x-2 y+z=0$, of the following assertions, the only one that is always true is ,

- Watch Video Solution

57. The reflection of the point $(2,-1,3)$ in the plane $3 x-2 y-z=9$ is
(A) $\left(\frac{28}{7}, \frac{15}{7}, \frac{17}{7}\right)$
(B) $\left(\frac{26}{7},-\frac{15}{7}, \frac{17}{7}\right)$
(C) $\left(\frac{15}{7}, \frac{26}{,}-\frac{17}{7}\right)$
$\left(\frac{26}{7}, \frac{17}{7},-\frac{15}{70}\right)$

- Watch Video Solution

58. The coordinates of the foot of perpendicular form the point $A(1,1,1)$ on the lline joining ponts $B(1,4,6)$ and $C(5,4,4)$ are
(A) $(3,4,5)$
(B) $(4,5,3)$
(C) $(3,-4,5)$
(D) $(-3,-4,5)$

- Watch Video Solution

59. The equation of the plane thorugh the point $(-1,2,0)$ and parallel to the lines $\frac{x}{3}=\frac{y+1}{0}=\frac{z-2}{-1}$ and $\frac{x-1}{1}=\frac{2 y+1}{2}=\frac{z+1}{-1}$ is
(A) $2 x+3 y+6 z-4=0$
(B) $\quad x-2 y+3 z+5=0$
$x+y-3 z+1=0$ (D) $x+y+3 z-1=0$

- Watch Video Solution

60. Find the shortest distance between the following pairs of lines whose

Cartesian

> equation are:
$\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x-2}{3}=\frac{y-3}{4}=\frac{z-5}{5}$

- Watch Video Solution

61. The plane $x-2 y+z-6=0$ and the line $x / 1=y / 2=z / 3$ are related as the line (A) meets the plane obliquely (B) lies in the plane (C) meets at righat angle to the plane (D) parallel to the plane

- Watch Video Solution

62. If $\vec{r} \cdot(2 \hat{i}+3 \hat{j}-2 \hat{k})+\frac{3}{2}=0$ is the equation of a plane and $\hat{i}-2 \hat{j}+3 \hat{k}$ is a point then a point equidistasnt from the plane on the opposite side is
(A) $\hat{i}+2 \hat{j}+3 \hat{k}$ (B) $3 \hat{i}+\hat{j}+\hat{k}$ (C) $3 \hat{i}+2 \hat{j}+3 \hat{k}$ (D) $3(\hat{i}+\hat{j}+\hat{k})$

- Watch Video Solution

63. Find the line of intersection of the planes
$\vec{r} \cdot(3 \hat{i}-\hat{j}+\hat{k})=1$ and $\vec{r} \cdot(\hat{i}+4 \hat{j}-2 \hat{k})=2$

- Watch Video Solution

64. For the line $\frac{x-1}{1}=\frac{y-2}{2}=\frac{z-3}{3}$, which one of the following is incorrect?

- Watch Video Solution

65.

$l_{1}: \frac{x-5}{3}=\frac{y-7}{-16}=\frac{z-3}{7}$ and $l_{2}: \frac{x-9}{3}=\frac{y-13}{8}=\frac{z-15}{-5}$ the
(A) l_{1} and l_{2} intersect (B) l_{1} and l_{2} are skew (C) distance between l_{1} and l_{2} is 14 (D) none of these

- Watch Video Solution

66. If $\vec{r}=\hat{i}+\hat{j}+\lambda(2 \hat{i}+\hat{j}+4 \hat{k})$ and $\vec{r}(\hat{i}+2 \hat{j}-\hat{k})=3$ are the equations of a line and a plane respectively then which of the following is true ?

- Watch Video Solution

67. The distance of the point $(1,2,3)$ form the coordinate axes are A, B and C respectively. $A^{2}=B^{2}+C^{2}, B^{2}=2 C^{2}, 2 A^{2} C^{2}=13 B^{2}$ which of these hold (s) true?
(A) 1 only (B) 1 and 3 (C) 1 and 2 (D) 2 and 3
68. The direction ratio of the line $O P$ are equal and the length $O P=\sqrt{3}$. Then the coordinates of the point P are
(A) $(-1,-1,-1)$
(B) $(\sqrt{3}, \sqrt{3}, \sqrt{3})$
(C) $(\sqrt{2}, \sqrt{2}, \sqrt{2})$
(D) $(2,2,2)$

D Watch Video Solution

69. A unit vector \widehat{a} makes an angle $\frac{\pi}{4}$ with z-axis, if $\widehat{a}+\hat{i}+\hat{j}$ is a unit vector then \widehat{a} is equal to
(A) $\hat{i}+\hat{j}+\frac{\hat{k}}{2}$
(B) $\frac{\hat{i}}{2}+\frac{\hat{j}}{2}-\frac{\hat{k}}{\sqrt{2}}$
(C) $-\frac{\hat{i}}{2}-\hat{/} 2+\frac{\hat{k}}{\sqrt{2}}$
$\frac{\hat{i}}{2}-\frac{\hat{j}}{2}-\frac{\hat{k}}{\sqrt{2}}$

(Watch Video Solution

70. If the direction ratio of two lines are given by $3 l m-4 \ln +m n=0$ and $l+2 m+3 n=0$, then the angle between the lines, is

- Watch Video Solution

71. If α, β and γ are the angles which a directed line makes with the positive directions of the co-ordinates axes, then find the value of $\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma$.

- Watch Video Solution

72. The condition of the lines $x=a z+b, y=c z+d$ and $x=a_{1} z+b_{1}, y=c_{1} z+d_{1}$ to be perpendicular is
(A) $a c_{1}+a_{1} c+1=0$
(B) $a a_{1}+c c_{1}+1=0$
(C) $a c_{1}+b b^{\prime}+c c^{\prime}=0$
(D) $a a_{1}+c c_{1}-1=0$

- Watch Video Solution

$x=a y+b, z=c y+d$ and $x=a^{\prime} y+b^{\prime}, z=c^{\prime} y+d^{\prime} \quad$ are pendicular to each other if

- Watch Video Solution

74. The lines $\frac{x-2}{1}=\frac{y-3}{1}=\frac{z-4}{-k}$ and $\frac{x-1}{k}=\frac{y-4}{2}=\frac{z-5}{1}$ are coplanar, if

- Watch Video Solution

75. The diection cosines of two lines are proportional to $(2,3,-6)$ and $(3,-4,5)$, then the acute angle between them is (A) $\cos ^{-1}\left\{\frac{49}{36}\right\}$ (B) $\cos ^{-1}\left\{\frac{18 \sqrt{2}}{35}\right\}$ (C) 96^{0} (D) $\cos ^{-1}\left(\frac{18}{35}\right)$

- Watch Video Solution

76. The equation to the striaghat line passing through the points (4,-5,-2) and $(-1,5,3) \quad$ is
(A) $\frac{x-4}{1}=\frac{y+5}{-2}=\frac{z+2}{-1}$
$\frac{x+1}{1}=\frac{y-5}{2}=\frac{z-3}{-1}$ (C) $\frac{x}{-1}=\frac{y}{5}=\frac{z}{3}$ (D) $\frac{x}{4}=\frac{y}{-5}=\frac{z}{-2}$

- Watch Video Solution

77. The distance between the parallel planes $4 x-2 y+4 z+9=0$ and $8 x-4 y+8 z+21=0$ is (A) $\frac{1}{4}$ (B) $\frac{1}{2}$ (C) $\frac{3}{2}$ (D) $\frac{7}{4}$

- Watch Video Solution

78. The locus of point such that the sum of the squares of its distances from the planes $x+y+z=0, x-z=0$ and $x-2 y+z=0$ is 9 is
(A) $x^{2}+y^{2}+z^{2}=3$
(B) $x^{2}+y^{2}+z^{2}=6$
(C) $x^{2}+y^{2}+z^{2}=9$
$x^{2}+y^{2}+z^{2}=12$
79. Which of the folloiwng conditions such that the line $\frac{x-p}{l}=\frac{y-q}{m}=\frac{z-r}{n}$ lies on the plane $A x+B y+C z+D=0$ is/are correct?
80. $l p+m q+n r+D=0$
81. $A p+B q+C r+D=0$
82. $A l+B m+C n=0$

Select the correct answer using the codes given
(A) 1 only
(B) 1 and 2
(C) 1 and 3
(D) 2 and 3

Watch Video Solution

80. If $\vec{a}, \vec{b}, \vec{c}$ are three non coplanar vectors then the vector equation $\vec{r}=(1-p-q) \vec{a}+p \vec{b}+q \vec{c}$ are represents a: (A) straighat line (B) plane (C) plane passing through the origin (D) sphere
81. A plane pi makes intercepts 3 and 4 respectively on z-axis and x-axis. If pi is parallel to y -axis, then its equation is (A) $3 x-4 z=12$
$3 x+4 z=12$ (C) $3 y+4 z=12$ (D) $3 z+4 y=12$

- Watch Video Solution

82. The equation of the plane passng throuogh (1,1,1) and ($1,-1,-1$) and perpendicular to $2 x-y+z+5=0$ is (A) $2 x+5 y+z-8=0$
$x+y-z-1=0$ (C) $2 x+5 y+z+4=0$ (D) $x-y+z-1=0$

- Watch Video Solution

83. The angle between the plane $2 x-y+z=6 n$ and $x+y+2 z=3$ is (A) $\frac{\pi}{3}$ (B) $\frac{\cos ^{-1} 1}{6}$ (C) $\frac{\pi}{4}$ (D) $\frac{\pi}{6}$

- Watch Video Solution

84. $\frac{\alpha}{2}, \frac{\beta}{2}, \frac{\gamma}{2}$ are the angle which a line makes with positive $\mathrm{x}, \mathrm{y}, \mathrm{z}$ axes respectively. What is the value of $\cos \alpha+\cos \beta+\cos \gamma ?(\mathrm{~A}) 1$ (B) -1 (C) 2 (D) 3

- Watch Video Solution

85. $A B C$ is a triangle and $A D$ is the median. If the coordinates of A are $(4,7,-8)$ and the coordinates of centroid of triangle $A B C$ are $(1,1,1)$ what are the coordinates of D ? (A) $\left(\frac{-1}{2}, 2,11\right)$ (B) $\left(\frac{-1}{2},-2, \frac{11}{2}\right)$
$(-1,2,11)(D)(-5,-11,19)^{\text { }}$

- Watch Video Solution

86. If the points $(5,-1,1),(-1,-3,4)$ and $(1,-6,10)$ are three vertices of a rhombus taken in order then which one of the following ils the fourth vertex? (A) $(7,-4,11)$ (B) $\left(3, \frac{-7}{2}, \frac{11}{2}\right)$ (C) $(7,-4,7)$ $(7,4,11)$
87. which of the following points is on the line of intersection of planes
$x=3 z-4, y=2 z-3$?
(A) $(4,3,0)$
(B) $(-3,-4,0)$
(C) $(3,2,1)$
$(-4,-3,0)$

- Watch Video Solution

88. The point of intersection of the lines $\frac{x-5}{3}=\frac{y-7}{-1}=\frac{z+2}{1}$ and $=\frac{x+3}{-36}=\frac{y-3}{2}=\frac{z-6}{4} \quad$ is \quad a.
$\left(21, \frac{5}{3}, \frac{10}{3}\right)$ b. $(2,10,4)$ c. $(-3,3,6)$ d. $(5,7,-2)$

- Watch Video Solution

89. The equation of the line intersection of the planes $4 x+4 y-5 z=12$ and $8 x+12 y-13 z=32$ can be written as: (A)
$\frac{x}{2}=\frac{y-1}{3}=\frac{z-2}{4}$
(B) $\frac{x}{2}=\frac{y}{3}=\frac{z-2}{4}$
(C) $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z}{4}$
(D) $\frac{x-1}{2}=\frac{y-2}{-3}=\frac{z}{4}$
90. If line makes angle $\alpha, \beta, \gamma, \delta$ with four diagonals of a cube, then the value of $\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma+\sin ^{2} \delta$ is (A) $\frac{4}{3}$ (B) 1 (C) $\frac{8}{3}$ (D) $\frac{7}{3}$

- Watch Video Solution

91. The equation of the plane which makes with coordinate axes, a triangle with its centroid (α, β, γ) is

- Watch Video Solution

92. The angle between two planes
$x+2 y+2 z=3$ and $-5 x+3 y+4 z=9$ is (A) $\frac{\cos ^{-1}(3 \sqrt{2})}{10}$
$\frac{\cos ^{-1}(19 \sqrt{2})}{30}$ (C) $\frac{\cos ^{-1}(9 \sqrt{2})}{20}$ (D) $\frac{\cos ^{-1}(3 \sqrt{2})}{5}$

- Watch Video Solution

93. A line makes the same angle θ with X -axis and Z -axis. If the angle β, which it makes with Y-axis, is such that $\sin ^{2}(\beta)=3 \sin ^{2} \theta$, then the value of $\cos ^{2} \theta$ is

- Watch Video Solution

94. Distance between two parallel planes
$2 x+y+2 z=8$ and $4 x+2 y+4 z+5=0$ is

- Watch Video Solution

95.

If
the
straight
lines
$x=-1+s, y=3-\lambda s, z=1+\lambda s$ and $x=\frac{t}{2}, y=1+t, z=2-t$
, with parameters s and t , respectively, are coplanar, then find λ.

- Watch Video Solution

96. The intersection of the spheres $x^{2}+y^{2}+z^{2}+7 x-2 y-z=13 a n d x^{2}+y^{2}+z^{2}-3 x+3 y+4 z=8$ is the same as the intersection of one of the spheres and the plane a. $x-y-z=1$ b. $x-2 y-z=1$ c. $x-y-2 z=1$ d. $2 x-y-z=1$

- Watch Video Solution

97. If $\angle \theta$ between the line $\frac{x+1}{1}=\frac{y-1}{2}=\frac{z-2}{2}$ and the plane $2 x-y+\sqrt{\lambda} z+4=0$ is such that $\sin \theta=\frac{1}{3}$, the value of λ is

- Watch Video Solution

98. The angle between the lines $2 x=3 y=-z$ and $6 x=-y=-4 z$ is

- Watch Video Solution

99. If the plane $2 a x-3 a y+4 a z+6=0$ passes through the mid point of the line joining the centre of the spheres $x^{2}+y^{2}+z^{2}+6 x-8 y-2 z=13$ and $x^{2}+y^{2}+z^{2}-10 x+4 y-2 z=$, then α equals

- Watch Video Solution

100. The plane $x+2 y-z=4$ cuts the sphere $x^{2}+y^{2}+z^{2}-x+z-2=0$ in a circle of radius

- Watch Video Solution

101. Let $\vec{a}=3 \hat{i}+\hat{j}+2 \hat{k}$ and $\vec{b}=\hat{i}-2 \hat{j}-4 \hat{k}$ be the positon vectors of the points A and B respectively. If \vec{r} is the position vector of any point $P(x, y, z)$ on the plane passing through the point A and perpendiculr to the line $A B$, then consider the following statements: The locus of $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$ is given by 1. $(\vec{r} \cdot \vec{a}) \cdot(\vec{b}-\vec{a})=0 \quad 2$.
$(\vec{r}-\vec{a}) \cdot(\vec{a}-\vec{b})=0 \quad 3 \cdot 2 x+3 y+6 z-21=0$ Which of the statements given above are correct? (A) 1,2,and 3 (B) 1 and 2 (C) 1 and 3 (D) 2 and 3

- Watch Video Solution

102. If a plane cuts intercepts of lengths 8,4 and 4 units on the coordinate axes respectively, then the length of perpendicular from origin to the plane is

- Watch Video Solution

103. Find the equation the equation of sphere cocentric with sphere $2 x^{2}+2 y^{2}+2 z^{2}-6 x+2 y-4 z=1$ and double its radius.

- Watch Video Solution

104. If a plane meets the equations axes at $A, B a n d C$ such that the centroid of the triangle is $(1,2,4)$, then find the equation of the plane.

- Watch Video Solution

105. The position vector of the point where the line $\vec{r}=\hat{i}-\hat{j}+\hat{k}+t(\hat{i}+\hat{j}-\hat{k})$ meets the plane $\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=5$, is
(A) $5 \hat{i}+\hat{j}-\hat{k}$
(B) $5 \hat{i}+3 \hat{j}-3 \hat{k}$
(C) $5 \hat{i}+\hat{j}+\hat{k}$
(D) $4 \hat{i}+2 \hat{j}-2 \hat{k}$

- Watch Video Solution

106. If $(2,3,5)$ is one end of a diameter of the sphere $x^{2}+y^{2}+z^{2}-6 x-12 y-2 z+20=0$, then the coordinates of the
other end of the diameter are (1) $(4,9,-3)(2)(4,-3,3)(3)(4,3,5)$
(4) $(4,3,-3)$

- Watch Video Solution

107. The line segment joining the points A, B makes projection $1,4,3 o n x, y, z$ axes respectively then the direction cosiners of $A B$ are (A)
$1,4,3$ (B) $\frac{1}{\sqrt{26}}, \frac{4}{\sqrt{26}}, \frac{3}{\sqrt{26}}$
(C) $\frac{-1}{\sqrt{26, \frac{4}{\sqrt{26}}, \frac{3}{\sqrt{26}}}}$
(D) $\frac{1}{\sqrt{26}}, \frac{-4}{\sqrt{26}}, \frac{3}{\sqrt{26}}$

- Watch Video Solution

108. The length of projection of the line segment joinint $(3,-1,0)$ and $(-3,5, \sqrt{2})$ on a line with direction cosiens $\frac{1}{2}, \frac{1}{2}, \frac{1}{\sqrt{2}}$ is (A) 1 (B) 2 (C) 3 (D) 4

- Watch Video Solution

109. The line perpendicular to the plane $2 x-y+5 z=4$ passing through the point $(-1,0,1)$ is
(A) $\frac{x+1}{2}=-y=\frac{z-1}{-5}$
(B) $\frac{x+1}{-2}=y=\frac{z-1}{-5}$
(C) $\frac{x+1}{2}=-y=\frac{z-1}{5}$
(D) $\frac{x+1}{2}=y=\frac{z-1}{-5}$

- Watch Video Solution

110. The shortest distance between the lines
$\frac{x-2}{3}=\frac{y-3}{4}=\frac{z-6}{5}$ and $\frac{x-5}{1}=\frac{y-2}{1}=\frac{z-1}{2}$ is (A) 3 (B) 2
(C) 1 (D) 0

- Watch Video Solution

111. Angle between the line $\frac{x+1}{1}=\frac{y}{2}=\frac{z-1}{1}$ and a normal to plane $x-y+z=0$ is (A) 0 degrees $(B) 30$ degrees (C) 45 degrees $(D) 90$ degrees

(D) Watch Video Solution

112. Foot of the perpendicular form $(-2,1,4)$ to a plane π is $(3,1,2)$. Then the equation of theplane π is (A) $4 x-2 y=11$ (B) $5 x-2 y=10$ $5 x-2 z=11$ (D) $5 x+2 z=11$

- Watch Video Solution

113. If θ is the angel between the planes $2 x-y+z-1=0$ and $x-2 y+z+2=0$ then $\cos \theta=(A) 2 / 3(B)$ 3/4(C)4/5(D)5/6'

- Watch Video Solution

114. If $(2,3,5)$ is one end of a diameter of the sphere $x^{2}+y^{2}+z^{2}-6 x-12 y-2 z+20=0$, then the coordinates of the other end of the diameter are (1) $(4,9,-3)(2)(4,-3,3)(3)(4,3,5)$
$(4)(4,3,-3)$

(D) Watch Video Solution

115. Let L be the line of intersection of the planes $2 x+3 y+z=1$ and $x+3 y+2 z=2$. If L makes an angles α with the positive x -axis, then cos α equals a. $\frac{1}{\sqrt{3}}$ b. $\frac{1}{2}$ c. 1 d. $\frac{1}{\sqrt{2}}$

- Watch Video Solution

116. The shortest distance form the point $(1,2,-1)$ to the surface of the sphere $(x+1)^{2}+(y+2)^{2}+(z-1)^{2}=6$ (A) $3 \sqrt{6}$ (B) $2 \sqrt{6}$ (C) $\sqrt{6}$ (D) 2

- Watch Video Solution

117. If from a point $P(a, b, c)$ perpendiculars $P A a n d P B$ are drawn to $Y Z a n d Z X$ - planes find the vectors equation of the plane $O A B$.

- Watch Video Solution

118. If $P(x, y, z)$ is a point on the line segment joining $Q(2,2,4)$ and $\mathrm{R}(3,5,6)$ such that the projection of $\overrightarrow{O P}$ on the axes are $\frac{13}{9}, \frac{19}{5}, \frac{26}{5}$ respectively, then P divides $Q R$ in the ratio:

- Watch Video Solution

119. The angle betwene the line $\vec{r}=(1+2 \mu) \hat{i}+(2+\mu) \hat{j}+(2 \mu-1) \hat{k}$ and the plane $3 x-2 y+6 z=0$ where μ is a scalar is (A) $\sin ^{-1}\left(\frac{15}{21}\right)$
(B) $\cos ^{-1}\left(\frac{16}{21}\right)$ (C) $\sin ^{-1}\left(\frac{16}{21}\right)$ (D) $\frac{\pi}{2}$

- Watch Video Solution

120. The equationof the plane passing through the origin and containing the line $\frac{x-1}{5}=\frac{y-2}{4}=\frac{z-3}{5}$ is (A) $x+5 y-3 z=0$

$$
\begin{equation*}
x-5 y+3 z=0 \text { (C) } x-5 y-3 z=0 \text { (D) } 3 x-10 y+5 z=0 \tag{B}
\end{equation*}
$$

- Watch Video Solution

121. The line passing through the points $(5,1, a)$ and $(3, b, 1)$ crosses the yzplane at the point $\left(0, \frac{17}{2}, \frac{-13}{2}\right)$.Then (1) $a=2, b=8$ $a=4, b=6$ (3) $a=6, b=4$ (4) $a=8, b=2$

- Watch Video Solution

122. If the straight lines $\frac{x-1}{k}=\frac{y-2}{2}=\frac{z-3}{3} \quad$ and $\frac{x-2}{3}=\frac{y-3}{k}=\frac{z-1}{2}$ intersect at a point, then the integer k is equal to (1) -5 (2) 5 (3) 2 (4) -2

Watch Video Solution

123. The shortest distance between the straighat lines through the point $A_{1}=(6,2,2)$ and $A_{2}=(-4,0,-1)$ in the directions $1,-2,2$ and $3,-2,-2$ is
(A) 6 (B) 8 (C) 12 (D) 9

- Watch Video Solution

124. The centre and radius of the spehere $x^{2}+y^{2}+z^{2}=3 x-4 z+1=0$ are (A) $\left(-\frac{3}{2}, 0,-2\right), \frac{\sqrt{21}}{2}$
$\left(-\frac{3}{2}, 0,2\right), \frac{\sqrt{21}}{2}$ (C) $\left(-\frac{3}{2}, 0,-2\right), \frac{\sqrt{21}}{2}$ (D) $\left(-\frac{3}{2}, 2,0\right), \frac{21}{2}$

(Watch Video Solution

125. The plane through the point $(-1,-1,-1)$ nd containing the line of intersection of the planes $\vec{r} \cdot(\hat{i}+3 \hat{j}-\hat{k})=0, \vec{r} \cdot(\hat{j}+2 \hat{k})=0$ is
(A) $\vec{r} \cdot(\hat{i}+2 \hat{j}-3 \hat{k})=0$
(B) $\vec{r} \cdot(\hat{i}+4 \hat{j}+\hat{k})=0$
(C) $\vec{r} \cdot(\hat{i}+5 \hat{j}-5 \hat{k})=0$
(D) $\vec{r} \cdot(\hat{i}+\hat{j}-3 \hat{k})=0$

- Watch Video Solution

126. If projections of as line on x, y and z axes are 6,2 and 3 respectively, then directions cosines of the lines are (A) $\left(\frac{6}{2}, \frac{2}{7}, \frac{3}{7}\right)$ (B) $\left(\frac{3}{5}, \frac{5}{7}, \frac{6}{7}\right)$
(C) $\left(\frac{1}{7}, \frac{2}{7}, \frac{3}{7}\right)$ (D) none of these

- Watch Video Solution

127. Distance between two parallel
$2 x+y+2 z=8$ and $4 x+2 y+4 z+5=0$ is

- Watch Video Solution

128. The coordinates of the point of intersection of the lines $\frac{x-1}{1}=\frac{y+2}{3}=\frac{z-2}{-2}$ with the plane $3 x+4 y+5 z-25=0$ is (A)
$(5,6,-10)$
(B) $(5,10,-6)$
(C) $(-6,5,10)$
(D) $(-6,10,5)$

- Watch Video Solution

129. Let PM be the perpendicular from the point $P(1,2,3)$ to XY -plane. If OP makes an angle θ with the positive direction of the Z-axies and OM
makes an angle Φ with the positive direction of X-axis, where O is the origin, and θ and Φ are acute angles, then

- Watch Video Solution

130. The vlaue (s) of λ, for the triangle with vertices $(6,10,10),(1,0,-5)$ and $(6,-10, \lambda)$ will be a right angled triangle is(are) :

Watch Video Solution

131. Find the equations of the two lines through the origin which intersect the line $\frac{x-3}{2}=\frac{y-3}{1}=\frac{z}{1}$ at angle of $\frac{\pi}{3}$ each.

Watch Video Solution

132. The $O A B C$ is a tetrahedron such that
$O A^{2}+B C^{2}=O B^{2}+C A^{2}=O C^{2}+A B^{2}$,then

\bullet Watch Video Solution

133. The direction ratios of the bisector of the angle between the lines whose direction cosines are l_{1}, m_{1}, n_{1} and l_{2}, m_{2}, n_{2} are
(A) $l_{1}+l_{2}, m_{1}+m_{2}+n_{1}+n_{2}$
(B) $l_{1}-l_{2}, m_{1}-m_{2}-n_{1}-n_{2}$
(C) $l_{1} m_{2}-l_{2} m_{1}, m_{1} n_{2}-m_{2} n_{1}, n_{1} l_{2}-n_{2} l_{1}$
(D) $l_{1} m_{2}+l_{2} m_{1}, m_{1} n_{2}+m_{2} n_{1}, n_{1} l_{2}+n_{2} l_{1}$

- Watch Video Solution

134. If straight lin emakes and angle of 60° with each of the x and y-axes the angle which it makes with the z-axis is (A) $\frac{\pi}{4}$ (B) $\frac{\pi}{3}$ (C) $\frac{3 \pi}{4}$ (D) $\frac{\pi}{2}$

- Watch Video Solution

135. The plane $x-2 y+7 z+21=0$ (A) contains the line $\frac{x+1}{-3}=\frac{y-3}{2}=\frac{z+2}{1}$
(B) contains the point $(0,7,-1)$ (C) is
perpendicular to the line $\frac{x}{1}=\frac{y}{-2}=\frac{z}{7}$
(D) is parallel to the plane $x-2 y+7 z=0$

- Watch Video Solution

136. If d_{1}, d_{2}, d_{3} denote the distances of the plane $2 x-3 y+4 z+2=0$ from the planes $2 x-3 y+4 z+6=0,4 x-6 y+8 z+3=0$ and $2 x-3 y+4 z-6=0$ respectively, then
A. $d_{1}+8 d_{2}-d_{3}=0$
B. $d_{3}=16 d_{2}$
C. $8 d_{2}=d_{1}$
D. $d_{1}+2 d_{2}+3 d_{3}=\sqrt{29}$

Answer: null

- Watch Video Solution

137. $A(0,5,6), B(1,4,7), C(2,3,7)$ and $D(3,4,6)$ are four points in space. The point nearest to the origin $O(0,0,0)$ is (A) A (B) B (C) C (D) D

Watch Video Solution

138. If $P(2,3,1)$ is a point $L \equiv x-y-z-2=0$ is a plane then
(A) origin and P lie on the same side of the plane
(B) distance of P from the plane is $\frac{4}{\sqrt{3}}$
(C) foot of perpendicular from point P to plane is $\left(\frac{10}{3}, \frac{5}{3},-\frac{1}{3}\right)$
(D) image of point P i the planee is $\left(\frac{10}{3}, \frac{5}{3},-\frac{1}{3}\right)$

- Watch Video Solution

139. $P(1,1,1)$ and $Q(\lambda, \lambda, \lambda)$ are two points in space such that $P Q=\sqrt{27}$ the value of λ can be (A) -2 (B) -4 (C) 4 (D) 2

- Watch Video Solution

$\frac{x-1}{3}=\frac{y-1}{-1}=\frac{z+1}{0}$ and $\frac{x-4}{2}=\frac{y+0}{0}=\frac{z+1}{3}$ (А) intersect at (4,0,-1) (B) intersect at (1,1,-1) (C) do not intersect (D) intersect

- Watch Video Solution

141. If α, β, γ are the angles which a line makes with the coordinate axes ,then (A) $\sin ^{2} \alpha=\cos ^{2} \beta+\cos ^{2} \gamma$
(B) $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=2$ $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1$ (D) $\sin ^{2} \alpha+\sin ^{2} \beta=1+\cos ^{2} \gamma$

- Watch Video Solution

142. The equation of a line $4 x-4 y-z+11=0=x+2 y-z-1$ can be put as $\quad(a) \frac{x}{2}=\frac{y-2}{1}=\frac{z-3}{4} \quad$ (b) $\quad \frac{x-2}{2}=\frac{y-2}{1}=\frac{z}{4}$ (c) $\frac{x-2}{2}=\frac{y}{1}=\frac{z-3}{4}$ (d) None of these

- Watch Video Solution

143. A point Q at a distance 3 from the point $P(1,1,1)$ lying on the line joining the points
$A(0,-1,3)$ and P has the coordinates

- Watch Video Solution

144. If $A=(2,-3,7), B=(-1,4,-5)$ and P is a point on the line AB such that $A P: B P=3: 2$ then P has the coordinates

- Watch Video Solution

145. If the direction ratios of a line are $1+\lambda, 1-\lambda, 2$, and it makes an angle of 60° with the y-axis then λ is

- Watch Video Solution

146. A point on the line $\frac{x-1}{1}=\frac{y-2}{2}=\frac{z+1}{3}$ at a distance $\sqrt{6}$ from the origin is (A) $\left(\frac{-5}{7}, \frac{-10}{7}, \frac{13}{7}\right)$ (B) $\left(\frac{5}{7}, \frac{10}{7}, \frac{-13}{7}\right)$ (C) $(1,2,-1)$ (D) $(-1,-2,1)$

- Watch Video Solution

147. A plane through the line $\frac{x-1}{1}=\frac{y+1}{-2}=\frac{z}{1}$ has the equation (A) $x+y+z=0$
(B) $3 x+2 y-z=1$
(C) $4 x+y-2 z=3$
$3 x+2 y+z=0$

- Watch Video Solution

148. The equation of a plane is $2 x-y-3 z=5$ and $A(1,1,1), B(2,1,-3), C(1,-2,-2)$ and $D(-3,1,2)$ are four points, which of the following line segment are interesect by the plane?

- Watch Video Solution

149. Assertion: The equation $3 y+4 z=0$ in three dimensional space represents a plane containing x-axis., Reason: An equation of the form $a x+b y+c z+d=0$ always represents a plane. (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not the correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

150. Assertion: $x+y+z-15=0$ is the equation of a plane which passes through the midpoint of the line segment joining the points $(2,3,4)$ and $(6,7,8)$. Reason: The mid point $(4,5,6)$ satisfies the equation of the plane. (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not the correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

151. Assertion: Line L is perpendicular to the plane $2 x-3 y+6 z=7$, Reason: Direction cosines of L are $\frac{2}{7}, \frac{-3}{7}, \frac{6}{7}$. (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not the correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

152. Assertion: equation of the straight line passing through the point $(2,3,-5)$ and equally inclined to the axes is $x-2=y-3=z+5$, Reason: Direction ratios of the line which is equally inclined to the axes are $\langle 1,1,1\rangle$ (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not the correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

153. Assertion: The lines $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ and $\frac{x-1}{-2}=\frac{y-2}{-4}=\frac{z-3}{-6}$ are parallel., Reason: two lines having direction ratios l_{1}, m_{1}, n_{1} and l_{2}, m_{2}, n_{2} are parallel if $\frac{l_{1}}{l_{2}}=\frac{m_{1}}{m_{2}}=\frac{n_{1}}{n_{2}}$. (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not the correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

154. Assertion : The line I is parallel to the plane P. Reason: The normal of the plane P is perpendicular to the line I. (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not the correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

155. Assertion: Let the points A, B, C be on x, y, z axes respectively such that the plane $a x+b y+c z=1$ passes through the point A, B, C, Reason: centroid of the triangle $A B C$ is $\left(\frac{1}{3 a}, \frac{1}{3 b}, \frac{1}{3 c}\right)$ (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

156. Assertion: The distance between two parallel planes $a x+b y+c z+d=0$ and $a x+b y+c z+d^{\prime}=0$ is $\frac{\left|d-d^{\prime}\right|}{\sqrt{a^{2}+b^{2}+c^{2}}}$, Reason: The normal of two parallel planes are perpendicular to each other. (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

$$
\frac{x-1}{-3}=\frac{y-2}{2 k}=\frac{z-3}{2} \text { and } \frac{x-1}{3 k}=\frac{y-1}{1}=\frac{z-6}{-5}
$$

perpendicular to each other, then $k=\frac{10}{7}$, Reason: Two lines having diection ratios l_{1}, m_{1}, n_{1} and l_{2}, m_{2}, n_{2} are perpendiculr to each other if and only if $l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}=0$ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not the correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

158. Assertion: The straighat line $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ is parallel to the plane $x-2 y+z-6=0$ Reason: The normal of the plane is perpendicular to the line. (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

159. Assertion:The equation of a straighat line through the point (a, b, c) and parallel to x-axis is $\frac{x-a}{1}=\frac{y-b}{0}=\frac{z-c}{0}$, Reason: The direction ratio parallel to the y-axis are , $\langle 0,1,0\rangle$ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

160. Assertion: The equation of the plane thorugh the orign and parallel to the plane $3 x-4 y+5 z-6=0 i s 3 x-4 y=5 z=0$ Reason: The normals of two parallel planes are always parallel. (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not the correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

161. Assertion:The centre of the sphere which passes through the point $(a, 0,0),(0, b, 0),(0,0, c)$ and $(0,0,0) s i\left(\frac{a}{2}, 0,0\right)$ Reason: Points on a sphere are equidistant from its centre. (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

162. Assertion: The shortest distance between the skew lines $\vec{r}=\vec{a}+\alpha \vec{b}$ and $\vec{r}=\vec{c}+\beta \vec{d} i s \frac{|[\vec{a}-\vec{c} \vec{b} \vec{d}]|}{|\vec{b} \times \vec{d}|}$, Reason: Two lines are skew lines if they are not coplanar. (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

163. Assertion: ABCD is a rhombus. Reason: $\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA}$ and $A C \neq B D$.
(A) Both A and R are true and R is the correct explanation of A
(B) Both A and R are true R is not the correct explanation of A
(C) A is true but R is false.
(D) A is false but R is true.

(Watch Video Solution

164. Assertion: The direction ratios of the line joining orign and point (x, y, z) are $\mathrm{x}, \mathrm{y}, \mathrm{z}$., Reason: If O be the origin and $P(x, y, z)$ is a point in space and OP $=r$ then direction cosines of OP are $\frac{x}{r}, \frac{y}{r}, \frac{z}{r}$. (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

165. Assertion: The equation of the plane through the intesection of the planes $x+y+z=6$ and $2 x+3 y+4 z+5=0$ and the point $(4,4,4)$ is $29 x+23 y+17 z=276$.

Reason: Equation of the plane through the line of intersection of the planes $P_{1}=0$ and $P_{2}=0$ is $P_{1}+\lambda P_{2}=0, \lambda \neq 0$.
(A) Both A and R are true and R is the correct explanation of A
(B) Both A and R are true R is not te correct explanation of A
(C) A is true but R is false.
(D) A is false but R is true.

- Watch Video Solution

166. Assertion: The equation $2 x^{2}-6 y^{2}+4 z^{2}+18 y z+2 z+x y=0$ represents a pair of perpendicular planes, Reason: A pair of planes represented by $a x^{2}+b y^{2}+c z^{3}+2 f y z+2 g z x+2 h x y=0 \quad$ are perpendicular if $a+b+c=0$ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

167. Assertion: The points $(2,1,5)$ and $(3,4,5)$ lie on opposite side of the plane $2 x+2 y-2 z-1=0$, Reason: Values of $2 x+2 y-2 z-1$ for points (2,1,5) and (3,4,3) have opposite signs. (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

168. Assertion: If coordinates of the centroid and circumcentre oif a triangle are known, coordinates of its orthocentre can be found., Reason:

Centroid, orthocentre and circumcentre of a triangle are collinear. (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false.
(D) A is false but R is true.
169. Assertion: The shortest distance between the skew lines $\frac{x+3}{-4}=\frac{y-6}{3}=\frac{z}{2}$ and $\frac{x+2}{-4}=\frac{y}{1}=\frac{z-7}{1}$ is 9., Reason: Two lines are skew lines if there exists no plane passing through them. (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false.
(D) A is false but R is true.

(Watch Video Solution

170. Assertion : A^{-1} exists, Reason: $|A|=0$ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

171. A tetahedron is a three dimensional figure bounded by forunon coplanar trianglular plane.So a tetrahedron has four no coplnar points as its vertices. Suppose a tetrahedron has points A, B, C, D as its vertices which have coordinates $\left(x_{1}, y_{1}, z_{1}\right)\left(x_{2}, y_{2}, z s_{2}\right),\left(x_{3}, y_{3}, z_{3}\right)$ and $\left(x_{4}, y_{4}, z_{4}\right)$ respectivley in a rectngular three dimensionl space. Then the coordinates

$$
\begin{array}{lcc}
\text { of tis } & \text { centroid } & \text { are } \\
\frac{x_{1}+x_{2}+x_{3}+x 4}{4}, \frac{y_{1}+y_{2}+y_{3}+4}{4}, \frac{z_{1}+z_{2}+z_{3}+z_{4}}{4} . & \text { the }
\end{array}
$$

circumcentre of the tetrahedron is th centre of a sphere pssing thorugh its vetices. So, this is a point equidistasnt from each ofhate vertices fo the tetrahedron. Let a tetrahedron hve three of its vertices reresented by the points $(0,0,0),(6,-5,-1)$ and $(-4,1,3)$ and its centrod lies at the point $(2,3,5)$. THe coordinate of the fourth vertex of the tetrahedron is

- Watch Video Solution

172. A tetrahedron is a three dimensional figure bounded by four non coplanar triangular plane.So a tetrahedron has four no coplnar points as its vertices. Suppose a tetrahedron has points A, B, C, D as its vertices which
have coordinates $\left(x_{1}, y_{1}, z_{1}\right)\left(x_{2}, y_{2}, z_{2}\right),\left(x_{3}, y_{3}, z_{3}\right)$ and $\left(x_{4}, y_{4}, z_{4}\right)$ respectively in a rectangular three dimensional space. Then the coordinates of its centroid are $\left(\frac{x_{1}+x_{2}+x_{3}+x_{3}+x_{4}}{4}, \frac{y_{1}+y_{2}+y_{3}+y_{3}+y_{4}}{4}, \frac{z_{1}+z_{2}+z_{3}+z_{3}+z}{4}\right.$
. the circumcentre of the tetrahedron is the center of a sphere passing through its vertices. So, this is a point equidistant from each of the vertices of the tetrahedron. Let a tetrahedron have three of its vertices represented by the points ($0,0,0$) , $(6,-5,-1)$ and $(-4,1,3)$ and its centroid lies at the point $(1,2,5)$. The coordinate of the fourth vertex of the tetrahedron is

- Watch Video Solution

173. A tetahedron is a three dimensional figure bounded by forunon coplanar trianglular plane.So a tetrahedron has four no coplnar points as its vertices. Suppose a tetrahedron has points $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ as its vertices which have coordinates $\left(x_{1}, y_{1}, z_{1}\right)\left(x_{2}, y_{2}, z s_{2}\right),\left(x_{3}, y_{3}, z_{3}\right)$ and $\left(x_{4}, y_{4}, z_{4}\right)$ respectivley in a rectngular three dimensionl space. Then the coordinates
$\frac{x_{1}+x_{2}+x_{3}+x 4}{4}, \frac{y_{1}+y_{2}+y_{3}+4}{4}, \frac{z_{1}+z_{2}+z_{3}+z_{4}}{4}$.
circumcentre of the tetrahedron is th centre of a sphere pssing thorugh its vetices. So, this is a point equidistasnt from each ofhate vertices fo the tetrahedron. Let a tetrahedron hve three of its vertices reresented by the points $(0,0,0),(6,5,1)$ and $(-4,1,3)$ and its centrod lies at the point $(2,3,5)$. THe coordinate of the fourth vertex of the tetrahedron is

- Watch Video Solution

174. A tetahedron is a three dimensional figure bounded by forunon coplanar trianglular plane.So a tetrahedron has four no coplnar points as its vertices. Suppose a tetrahedron has points A, B, C, D as its vertices which have coordinates $\left(x_{1}, y_{1}, z_{1}\right)\left(x_{2}, y_{2}, z s_{2}\right),\left(x_{3}, y_{3}, z_{3}\right)$ and $\left(x_{4}, y_{4}, z_{4}\right)$ respectivley in a rectngular three dimensionl space. Then the coordinates

of tis	centroid	are
$\frac{x_{1}+x_{2}+x_{3}+x 4}{4}, \frac{y_{1}+y_{2}+y_{3}+y_{4}}{4}$,	$\frac{z_{1}+z_{2}+z_{3}+z_{4}}{4}$.	the

circumcentre of the tetrahedron is th centre of a sphere pssing thorugh
its vetices. So, this is a point equidistasnt from each ofhate vertices fo the tetrahedron. Let a tetrahedron hve three of its vertices reresented by the
points $(0,0,0),(6,-5,-1)$ and $(-4,1,3)$ and its centrod lies at the point $(1,2,5)$.
THe coordinate of the fourth vertex of the tetrahedron is

- Watch Video Solution

175. Supose directioncoisnes of two lines are given by $u l+v m+w n=0$ and $a l^{2}+b m^{2}+c n^{2}=0$ where $\quad u, v, w, a, b, c \quad$ are arbitrary constnts and $\mathrm{I}, \mathrm{m}, \mathrm{n}$ are directioncosines of the lines. For $u=v=w=1$ directionc isines of both lines satisfy the relation. (A)
$(b+c)\left(\frac{n}{l}\right)^{2}+2 b\left(\frac{n}{l}\right)+(a+b)=0$
$(c+a)\left(\frac{l}{m}\right)^{2}+2 c\left(\frac{l}{m}\right)+(b+c)=0$
$(a+b)\left(\frac{m}{n}\right)^{2}+2 a\left(\frac{m}{n}\right)+(c+a)=0$ (D) all of the above

- Watch Video Solution

176. Supose directioncoisnes of two lines are given by $u l+v m+w n=0$ and $a l^{2}+b m^{2}+c n^{2}=0 \quad$ where $\quad u, v, w, a, b, c \quad$ are arbitrary constnts and I,m,n are directioncosines of the lines. For
$u=v=w=1$ if $\frac{n_{1} n_{2}}{l_{1} l_{2}}=\left(\frac{a+b}{b+c}\right)$ then (A) $\frac{m_{1} m_{2}}{l_{1} l_{2}}=\frac{(b+c)}{(c+a)}$
$\frac{m_{1} m_{2}}{l_{1} l_{2}}=\frac{(c+a)}{(b+c)}$ (C) $\frac{m_{1} m_{2}}{l_{1} l_{2}}=\frac{(a+b)}{(c+a)}$ (D) $\frac{m_{1} m_{2}}{l_{1} l_{2}}=\frac{(c+a)}{(a+b)}$

- Watch Video Solution

177. Supose directioncoisnes of two lines are given by $u l+v m+w n=0$ and $a l^{2}+b m^{2}+c n^{2}=0 \quad$ where $\quad u, v, w, a, b, c \quad$ are arbitrary constnts and I,m,n are directioncosines of the lines. For $u=v=w=1$ if lines are perpendicular then. (A) $a+b+c=0$
$a b+b c+c a=0$ (C) $a b+b c+c a=3 a b c$ (D) $a b+b c+c a=a b c$

- Watch Video Solution

178. The equations of motion of a rocket are $x=2 t, y=-4 t$ and $z=4 t$, where time t is given in seconds, and the coordinates of a moving point in kilometres. What is the path of the rocket ? At what distance will be the rocket from the starting point $O(0,0,0)$ in 10 s ?
179. The position of a mving point in space is $x=2 t, y=4 t, z=4 t$ where t is measured in seconds and coordinates of moving point are in kilometers: The distance of thepoint from the starting point ${ }^{\circ}(0,0,0,0)$ in 15 sec is
(A) 3 km (B) 60 km
(C) 90 km
(D) 120 km

- Watch Video Solution

180. Let two planes $p_{1}: 2 x-y+z=2$ and $p_{2}: x+2 y-z=3$ are given :
equation of the plane through the intersection of p_{1} and p_{2} and the point $(3,2,1)$ is :

- Watch Video Solution

181. Let two planes $p_{1}: 2 x-y+z=2$ and $p_{2}: x+2 y-z=3$ are given :

Equation of the plane which passes through the point $(-1,3,2)$ and is perpendicular to each of the plane is:

- Watch Video Solution

182. The equation of the acute angle bisector of planes $2 x-y+z-2=0$ and $x+2 y-z-3=0$ is $x-3 y+2 z+1=0$ (b) $3 x+3 y-2 z+1=0 x+3 y-2 z+1=0$ (d) $3 x+y=5$

- Watch Video Solution

183. The equation of the acute angle bisector of planes $2 x-y+z-2=0$ and $x+2 y-z-3=0$ is $x-3 y+2 z+1=0$ (b) $3 x+3 y-2 z+1=0 x+3 y-2 z+1=0$ (d) $3 x+y=5$
184. The image of plane $2 x-y+z=2$ in the plane mirror $x+2 y-z=3$ is $x+7 y-4 x+5=0 \quad$ (b) $3 x+4 y-5 z+9=0$ $7 x-y+2 z-9=0$ (d) None of these

- Watch Video Solution

