© ${ }^{\text {T doubtnut }}$ India's Number 1 Education App

MATHS

BOOKS - KC SINHA ENGLISH

ALGEBRA - JEE MAINS AND ADVANCED QUESTIONS - FOR COMPETITION

Exercise

1. If ω is an imaginary cube root of unity, then $\left(1+\omega-\omega^{2}\right)^{7}$ is equal to $128 \omega(\mathrm{~b})-128 \omega 128 \omega^{2}$ (d) $-128 \omega^{2}$

- Watch Video Solution

2. Let z_{1} and z_{2} be theroots of the equation $z^{2}+a z+b=0 \mathrm{z}$ being compex. Further, assume that the origin z_{1} and z_{2} form an equilatrasl

triangle then

- Watch Video Solution

3. Let Z and w be two complex number such that $|z w|=1$ and $\arg (z)-\arg (w)=\pi / 2$ then

- Watch Video Solution

4. If $\left(\frac{1+i}{1-i}\right)^{x}=1$, then
$n \in N$.

- Watch Video Solution

5. about to only mathematics

- Watch Video Solution

6. If $z=x-i y$ and $z^{\prime \frac{1}{3}}=p+i q$, then $\frac{1}{p^{2}+q^{2}}\left(\frac{x}{p}+\frac{y}{q}\right)$ is equal to

- Watch Video Solution

7. If $\left|z^{2}-1\right|=|z|^{2}+1$, then z lies on (a) The Real axis (b)The imaginary axis (c)A circle (d)An ellipse

- Watch Video Solution

8. If the cube roots of unity are $1, \omega, \omega^{2}$, then the roots of the equation $(x-1)^{3}+8=0$ are a. $-1,1+2 \omega, 1+2 \omega^{2}$ b. $-1,1-2 \omega, 1-2 \omega^{2}$ c.
$-1,-1,-1 \mathrm{~d}$. none of these

- Watch Video Solution

9. If z_{1} and z_{2} are two nonzero complex numbers such that $=$ $\left|z_{1}+z_{2}\right|=\left|z_{1}\right|+\left|z_{2}\right|$, then $\arg z_{1}-\arg z_{2}$ is equal to $-\pi$ b. $\frac{\pi}{2}$ c. 0 d .
$\frac{\pi}{2}$ e. π

- Watch Video Solution

10. If $w=z /[z-(1 / 3) i] a n d|w|=1$, then find the locus of z.

- Watch Video Solution

11. If $S=\sum_{k=1}^{10}\left(\sin \frac{2 \pi k}{11}-i \cos \frac{2 \pi k}{11}\right)$ then

- Watch Video Solution

12. If $z^{2}+z+1=0$, where z is a complex number, the value of $\left(z+\frac{1}{z}\right)^{2}+\left(z^{2}+\frac{1}{z^{2}}\right)^{2}+\left(z^{3}+\frac{1}{z^{3}}\right)^{2}+\ldots+\left(z^{6}+\frac{1}{z^{6}}\right)^{2}$ is

- Watch Video Solution

13. If $|z+4| \leq 3$, then the maximum value of $|z+1|$ is (1) 4 (B) 10 (3) 6 (4) 0

- Watch Video Solution

14. If the conjugate of a complex numbers is $\frac{1}{i-1}$, where $i=\sqrt{-1}$. Then, the complex number is

- Watch Video Solution

15. If the roots of the equation $b x^{2}+c x+a=0$ be imaginary, then for all real values of x , the expression $3 b^{2} x^{2}+6 b c x+2 c^{2}$ is (1) greater than 4 ab (2) less than 4 ab (3) greater than $4 a b$ (4) less than $4 a b$

- Watch Video Solution

16. If $\left|z-\frac{4}{z}\right|=2$, then the maximum value of $|Z|$ is equal to (1) $\sqrt{3}+1$ (2) $\sqrt{5}+1$ (3) $2(4) 2+\sqrt{2}$

- Watch Video Solution

17. If α and β are the roots of the equation $x^{2}-x+1=0$, then $\alpha^{2009}+\beta^{2009}=(1) 4(2) 3(3) 2(4) 1$

- Watch Video Solution

18. The number of complex numbersd z, such that $|z-1|=|z+1|=|z-i|$, where $i=\sqrt{-1}$ equals to

- Watch Video Solution

19. Let α, β be real and z be a complex number. If $z^{2}+\alpha z+\beta=0$ has two distinct roots on the line $\operatorname{Re} z=1$, then it is necessary that : (1)
$b \in(0,1)(2) b \in(-1,0)(3)|b|=1(4) b \in(1, \infty)$

- Watch Video Solution

20. If $\omega(\neq 1)$ is a cube root of unity, and $(1+\omega)^{7}=A+B \omega$. Then (A, B) equals

Watch Video Solution

21. If $z \neq 1$ and $\frac{z^{2}}{z-1}$ is real, then the point represented by the complex number z lies (1) either on the real axis or on a circle passing through the origin (2) on a circle with centre at the origin (3) either on the real axis or on a circle not passing through the origin (4) on the imaginary axis

- Watch Video Solution

22. If z is complex number of unit modulus and argument θ then arg $\left(\frac{1+z}{1+\bar{z}}\right)$ equals

- Watch Video Solution

23. If z is a complex number such that $|z| \geq 2$, then the minimum value of $\left|z+\frac{1}{2}\right|$ (1) is equal to $\frac{5}{2}$ (2) lies in the interval (1,2) (3) is strictly greater than $\frac{5}{2}(4)$ is strictly greater than $\frac{3}{2}$ but less than $\frac{5}{2}$

- Watch Video Solution

24. A complex number z is said to be unimodular if $|z|=1$. Suppose z_{1} and z_{2} are complex numbers such that $\frac{z_{1}-2 z_{2}}{2-z_{1} z_{2}^{-}}$is unimodular and z_{2} is not unimodular. Then the point z_{1} lies on a

- Watch Video Solution

25. A value of θ for which $\frac{2+3 i \sin \theta}{1-2 i \sin \theta}$ purely imaginary, is

- Watch Video Solution

26. Let ω be a complex number such that $2 \omega+1=z$ where $z=\sqrt{-3}$

If $\left|\begin{array}{lll}1 & 1 & 1 \\ 1 & -\omega^{2}-1 & \omega^{2} \\ 1 & \omega^{2} & \omega^{7}\end{array}\right|=3 k$ then k is equal to

(Watch Video Solution

27. If ω is a non-real complex cube root of unity and $\left(5+3 \omega^{2}-5 \omega\right)^{4 n+3}+\left(5 \omega+3-5 \omega^{2}\right)^{4 n+3}+\left(5 \omega^{2}+3 \omega-5\right)^{4 n+3}=0$, then possible value of n is

- Watch Video Solution

28. Let $z=\frac{-1+\sqrt{3} i}{2}$, where $i=\sqrt{-1}$, and $r, s \in\{1,2,3\}$. Let $P=\left[\begin{array}{cc}(-z)^{r} & z^{2 s} \\ z^{2 s} & z^{r}\end{array}\right]$ and I be the identity matrix of order 2. Then the total number of ordered pairs (r, s) for which $P^{2}=-I$ is \qquad .

- Watch Video Solution

29. Let $\mathrm{a}, \mathrm{b}, \mathrm{x}$ and y be real numbers such that $\mathrm{a}-\mathrm{b}=1$ and $y \neq 0$. If the complex number $z=x+i y$ satisfies $\operatorname{Im}\left(\frac{a z+b}{z+1}\right)=y$ then which of the following is (are) possible value (s) of x ?

- Watch Video Solution

30. If $\alpha \neq \beta$ but $\alpha^{2}=5 \alpha-3$ and $\beta^{2}=5 \beta-3$ then the equation having α / β and β / α as its roots is:

- Watch Video Solution

31. The number of real roots of $3^{2} x^{2}-7 x+7=9$ is (A) 0 (B) 2 (C) 1 (D) 4

- Watch Video Solution

32. If the sum of the roots of the quadratic equaion $a x^{2}+b x+c=0$ is equal to the sum of the squares of their reciprocals then prove that

$\frac{a}{c}, \frac{b}{a}$ and $\frac{c}{b}$ are in HP

- Watch Video Solution

33. If the difference between the corresponding roots of $x^{2}+a x+b=0$ and $x^{2}+b x+a=0$ is same and $a \neq b$, then

- Watch Video Solution

34. If $2 a+3 b+6 c=0$, then prove that at least one root of the equation $a x^{2}+b x+c=0$ lies in the interval $(0,1)$.

- Watch Video Solution

35. Product of real roots of the equation $t^{2} x^{2}+|x|+9=0$ a. is always
+ve b . is always-ve c. does not exist d. none of these
36. Number of real solutions of the equation $x^{2}+3|x|+2=0$ is:

(Watch Video Solution

37. Find the value of a for which one root of the quadratic equation $\left(a^{2}-5 a+3\right) x^{2}+(3 a-1) x+2=0$ is twice as large as the other.

- Watch Video Solution

38. If $(1-p)$ is a root of quadratic equation $x^{2}+p x+(1-p)=0$, then find its roots.

- Watch Video Solution

39. The one root of the equation $x^{2}+p x+12=0 i s 4$, while the equation $x^{2}+p x+q=0$ has equal roots, the value of q is $49 / 4$ (b) $4 / 49$ (c) 4 (d) none of these
40. Let two humbers have arithmatic mean 9 and geometric mean 4. Then these numbers are roots of the equation :

- Watch Video Solution

41. If $2 a+3 b+6 c=0$, then prove that at least one root of the equation $a x^{2}+b x+c=0$ lies in the interval $(0,1)$.

- Watch Video Solution

42. In a triangle $P Q R, \angle R=\frac{\pi}{2}$.If $\tan \left(\frac{P}{2}\right) \& \tan \left(\frac{Q}{2}\right)$, are the roots of the equation $a x^{2}+b x+c=(a \neq 0)$ then

- Watch Video Solution

43. If the roots of $x^{2}-b x+c=0$ are two consecutive integers, then $b^{2}-4 c$ is (a) 0 (b) 1 (c) 2 (d) none of these

- Watch Video Solution

44. If both the roots of the quadratic equation $x^{2}-2 k x+k^{2}+k-5=0$ are less than 5 , then k lies in the interval.

- Watch Video Solution

45. Find the value of a for which the sum of the squares of the roots of the equation $x^{2}-(a-2)-x-a-1=0$ assumes the least value.

- Watch Video Solution

46. All the values of m for which both roots of the equation $x^{2}-2 m x+m^{2}-1=0$ are greater than -2 but less then 4 lie in the

- Watch Video Solution

47. If the roots of the equation $x^{2}+p x-q=0$ are $\tan 30^{\circ}$ and $\tan 15^{\circ}$ then the value of $2-q-p$ is

- Watch Video Solution

48. If the difference between the roots of the equation $x^{2}+a x+1=0$ is less than $\sqrt{5}$, then the set of possible values of a is (1) $(-3,3)$ (2) $(-3, \infty)(3)(3, \infty)(4)(-\infty,-3)$

- Watch Video Solution

49. The quadratic equations $x^{2} 6 x+a=0 a n d x^{2} c x+6=0$ have one root in common. The other roots of the first and second equations are integers in the ratio $4: 3$. Then the common root is (1) 1 (2) 4 (3) 3 (4) 2
50. Let for $a \neq a_{1} \neq 0 f(x)=a x^{2}+b x+c, g(x)=a_{1} x^{2}+b_{1} x+c_{1}$ and $p(x)=f(x)-g(x)$. If $p(x)=0$ only for $x=(-1)$ and $p(-2)=2$, the value of $p(2)$ is

- Watch Video Solution

51. Sachin and Rahul attempted to solve a quadratic equation. Sachin made a mistake in writing down the constant term and ended up in roots $(4,3)$. Rahul made a mistake in writing down coefficient of x to get roots $(3,2)$. The correct roots of equation are:

- Watch Video Solution

52. The real number k for which the equation $2 x^{3}+3 x+k=0$ has two distinct real roots in $[0,1]$
53. If the equations $x^{2}+2 x+3=0$ and $a x^{2}+b x+c=0, a, b, c \in R$, have a common root, then $a: b: c$ is (1) $3: 2: 1$ (2) $1: 3: 2$ (3) $3: 1: 2$ (4) 1 : 2:3

- Watch Video Solution

54. Let α and β be the roots of equation $p x^{2}+q x+r=0$, $p \neq 0$. If p, q, r are in A.P . And $\frac{1}{\alpha}+\frac{1}{\beta}=4$, then the value of $|\alpha-\beta|$ is

- Watch Video Solution

55. Let α and β be the roots of $x^{2}-6 x-2=0$, with $\alpha>\beta$. If $\alpha_{n}=a^{n}-\beta^{n}$ for $a \neq 1$, then the values of $\frac{a_{10}-2 a_{8}}{2 a_{9}}$ is

- Watch Video Solution

56. The sum of all real values of x satisfying the equation
$\left(x^{2}-5 x+5\right)^{x^{2+4 x-60}}=1$ is

- Watch Video Solution

57. Let $a \in R$ and let $f: R^{\rightarrow}$ be given by $f(x)=x^{5}-5 x+a$, then (a) $f(x)$ has three real roots if $a>4$ (b) $f(x)$ has only one real roots if $a>4$ (c) $f(x)$ has three real roots if $a<-4$ (d) $f(x)$ has three real roots if ${ }^{\text {' }} 4$

- Watch Video Solution

58. The quadratic equation $p(x)=0$ with real coefficients has purely imaginary roots. Then the equation $p(p(x))=0$ has only purely imaginary roots at real roots two real and purely imaginary roots neither real nor purely imaginary roots

- Watch Video Solution

59. Let S be the set of all non-zero real numbers such that the quadratic equation $\alpha x^{2}-x+\alpha=0$ has two distinct real roots $x_{1} a n d x_{2}$ satisfying the inequality $\left|x_{1}-x_{2}\right|<1$. Which of the following intervals is (are) a subset (s) of $S ?\left(\frac{1}{2}, \frac{1}{\sqrt{5}}\right)$ b. $\left(\frac{1}{\sqrt{5}}, 0\right)$ c. $\left(0, \frac{1}{\sqrt{5}}\right) \mathrm{d}$. $\left(\frac{1}{\sqrt{5}}, \frac{1}{2}\right)$

(Watch Video Solution

60. Let $-\frac{\pi}{6}<\theta<-\frac{\pi}{12}$. Suppose α_{1} and β_{1}, are the roots of the equation $x^{2}-2 x \sec \theta+1=0$ and α_{2} and β_{2} are the roots of the equation $x^{2}+2 x \tan \theta-1=0$. If $\alpha_{1}>\beta_{1}$ and $\alpha_{2}>\beta_{2}$, then $\alpha_{1}+\beta_{2}$ equals:

D Watch Video Solution

61. The least value of $\alpha \in R$ for which $4 a x^{2}+\frac{1}{x} \geq 1$, for all $x>0$, is
62. Let p, q be integers and let α, β be the roots of the equation, $x^{2}-x-1=0$ where $\alpha \neq \beta$ For $\mathrm{n}=0,1,2, \ldots$, , let $a_{n}=p \alpha^{n}+q \beta^{n}$. Fact : If a and b are rational number and $a+b \sqrt{5}=0$, then $a=0=b$.

If $a_{4}=28$, then $P+2 p=$

- Watch Video Solution

63. Let $S(k)=1+3+5+\ldots .+(2 k-1)=3+k^{2}$. Which of the following is true?

- Watch Video Solution

64. Statement-1: For every natural number
$n \geq 2, \frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\ldots . \frac{1}{\sqrt{n}}>\sqrt{n}$

Statement-2: For every natural number $n \geq 2, \sqrt{n(n+1)<n+1}$
65. Statement -1 For each natural number $n,(n+1)^{7}-n^{7}-1$ is divisible by 7 .

Statement -2 For each natural number $n, n^{7}-n$ is divisible by 7 .

- Watch Video Solution

66. If $A=\left[\begin{array}{ll}a & b \\ b & a\end{array}\right]$ and $A^{2}=\left[\begin{array}{ll}\alpha & \beta \\ \beta & \alpha\end{array}\right]$ then

- Watch Video Solution

67. Let $A=\left[\begin{array}{ccc}0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0\end{array}\right]$ Then only correct statement about the matrix A is (A) A is a zero matrix (B) $A^{2}=1$ (C) A^{-1} does not exist (D) $A=(-1) \mathrm{I}$ where I is a unit matrix

- Watch Video Solution

68. Let $A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1\end{array}\right]$ and $10 B=\left[\begin{array}{ccc}4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3\end{array}\right]$.

If B is the inverse of A , then find the value α.

- Watch Video Solution

69. If $A^{2}-A+I=0$, then the inverse of A is

- Watch Video Solution

70. If $A=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$ and $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, which one of the
following holds for all $n \geq 1$, (by the principal of
mathematical induction)

- Watch Video Solution

71. If A and $B f$ are square matrices of size $n \times n$ such that $A^{2}-B^{2}=(A-B)(A+B)$ which of the following will be always true?

- Watch Video Solution

72. Let $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$ and $B=\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right), a, b \in N$ Then,
(a) there exist exactly one B such that $A B=B A$
(b) there exist exactly infinitely many B 's such that $\mathrm{AB}=\mathrm{BA}$
(c) there cannot exist any B such that $A B=B A$
(d) there exist more than one but finite number of B's such that $A B=B A$

- Watch Video Solution

73. Let $A=\left[\begin{array}{ccc}5 & 5 \alpha & \alpha \\ 0 & \alpha & 5 \alpha \\ 0 & 0 & 5\end{array}\right] . I f\left|A^{2}\right|=25$, then α equals to:
74. Let A be a square matrix all of whose entries are integers. Then which one of the following is true? (1) If $\operatorname{det} A= \pm 1, \operatorname{then} A^{1}$ exists but all its entries are not necessarily integers (2) If $\operatorname{det} A \neq \pm 1$, then A^{1} exists and all its entries are non-integers (3) If $\operatorname{det} A= \pm 1, \operatorname{then} A^{1}$ exists and all its entries are integers (4) If $\operatorname{det} A= \pm 1$, then A^{1} need not exist

- Watch Video Solution

75. Assertion: If $A \neq I$ and $A \neq-I$, then $\operatorname{det} A=-1$, Reason: If $A \neq I$ and $A \neq-I$, then $\operatorname{tr}(A) \neq 0$ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) both A and R is false.

- Watch Video Solution

76. Assertion: $\operatorname{adj}(\operatorname{adj} A)=(\operatorname{det} A)^{n-2} A$ Reason: $|\operatorname{adj} A|=|A|^{n-1}$

Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false.
(D) A is false but R is true.

- Watch Video Solution

77. consider the system of linear equations
$x_{1}+2 x_{2}+x_{3}=3$
$2 x_{1}+3 x_{2}+x_{3}=3$,
$3 x_{1}+5 x_{2}+2 x_{3}=1$
the system has

- Watch Video Solution

78. Assertion: $\operatorname{Tr}(A)=0$ Reason: $|A|=1$ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te
correct explanation of $A(C) A$ is true but R is false. (D) both A and R is false.

- Watch Video Solution

79. The number of 3×3 non-singular matrices, with four entries as 1 and all other entries as 0 , is:- (1) $5(2) 6$ (3) at least 7 (4) less than 4

- Watch Video Solution

80. Let A and B two symmetric matrices of order 3 .

Statement $1: A(B A)$ and $(A B) A$ are symmetric matrices.
Statement $2: A B$ is symmetric matrix if matrix multiplication of A with B is commutative.

- Watch Video Solution

81. Assertion: Determinant of a skew symmetric matrix of order 3 is zero.
Reason:
For
any matix
A,
$\operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$ and $\operatorname{det}(-S)=-\operatorname{det}(S)$ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true and R is not the correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

82. If $\omega=1$ is the complex cube root of unity and matrix $H=\left|\begin{array}{cc}\omega & 0 \\ 0 & \omega\end{array}\right|$, then H^{70} is equal to:

- Watch Video Solution

83. Let $A=\left(\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1\end{array}\right)$. If u_{1} and u_{2} are column matrices such that
$A u_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ and $A u_{2}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$, then $u_{1}+u_{2}$ is equal to :
84. IF $P=\left[\begin{array}{ccc}1 & \alpha & 3 \\ 1 & 3 & 3 \\ 2 & 4 & 4\end{array}\right]$ is the adjoint of 3×3 matrix A and $|A|=4$, then α is equal to :

- Watch Video Solution

85. If A is a 3×3 non-singular matrix such that $A A^{\prime}=A^{\prime} A$ and $B=A^{-1} A^{\prime}$ then $B B^{\prime}$ equals to

- Watch Video Solution

86. If $A=\left[\begin{array}{ccc}1 & 2 & 2 \\ 2 & 1 & -2 \\ a & 2 & b\end{array}\right]$ is a matrix satisying the equation $A A^{T}=9 I$, where I is 3×3 identity matrix, then the ordered pair (a, b) is equal to

- Watch Video Solution

87. If $A=\left[\begin{array}{cc}5 a & -b \\ 3 & 2\end{array}\right]$ and A adj $A=A A^{T}$, then $5 a+b$ is equal to

- Watch Video Solution

88. Let M be a 2×2 symmetric matrix with integer entries. Then M is invertible if The first column of M is the transpose of the second row of M The second row of M is the transpose of the first column of $M M$ is a diagonal matrix with non-zero entries in the main diagonal The product of entries in the main diagonal of M is not the square of an integer

- Watch Video Solution

89. Let M and N be two 3×3 matrices such that $M N=N M$. Further, if $M \neq N^{2}$ and $M^{2}=N^{4}$, then

- Watch Video Solution

90. Let X and Y be two arbitrary, 3×3, non-zero, skew-symmetric matrices and Z be an arbitrary 3×3, non-zero, symmetric matrix. Then which of the following matrices is (are) skew symmetric?

- Watch Video Solution

91. Let $P=\left[\begin{array}{lll}1 & 0 & 0 \\ 3 & 1 & 0 \\ 9 & 3 & 1\end{array}\right]$ and $Q=\left[q_{i j}\right]$ be two 3×3 matrices such that
$Q-P^{5}=I_{3}$. Then $\frac{q_{21}+q_{31}}{q_{32}}$ is equal to

- Watch Video Solution

92. Let $p=\left[\begin{array}{ccc}3 & -1 & -2 \\ 2 & 0 & \alpha \\ 3 & -5 & 0\end{array}\right]$, where $\alpha \in \mathbb{R}$. Suppose $Q=\left[q_{i j}\right]$ is a matrix such that $P Q=k I$, where $k \in \mathbb{R}, k \neq 0$ and I is the identity matrix of order 3. If $q_{23}=-\frac{k}{8}$ and $\operatorname{det}(Q)=\frac{k^{2}}{2}$, then

- Watch Video Solution

93. How many 3×3 matrices M with entries from $\{0,1,2\}$ are there, for which the sum of the diagonal entries of $M^{T} M$ is 5 ?

- Watch Video Solution

94. For a real number α, if the system $\left[\begin{array}{ccc}1 & \alpha & \alpha^{2} \\ \alpha & 1 & \alpha \\ \alpha^{2} & \alpha & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]$ of linear equations, the infinitely many solutions, then $1+\alpha+\alpha^{2}=$

- Watch Video Solution

95. about to only mathematics

- Watch Video Solution

96. If $\left|\begin{array}{ccc}6 i & -3 i & 1 \\ 4 & 3 i & -1 \\ 20 & 3 & i\end{array}\right|=x+i y$, then a. $x=3, y=1$ b. $x=1, y=3 \mathrm{c}$.
$x=0, y=3$ d. $x=0, y=0$

- Watch Video Solution

97. If $\omega(\neq 1)$ is a cube root of unity, then value of the determinant $\left|11+i+\omega^{2} \omega^{2} 1-i-1 \omega^{2}-1-i-i+\omega-1-1\right|$ is 0 b. 1 c. i d. ω

- Watch Video Solution

98. If the system of linear equations
$x+2 a y+a z=0$
$x+3 b y+b z=0$
$x+4 c y+c z=0$
has a non zero solutions, then a, b, c are in

- Watch Video Solution

99. If ω is a non-real cube root of unity and n is not a multiple of 3 , then

$$
=\left|1 \omega^{n} \omega^{2 n} \omega^{2 n} 1 \omega^{n} \omega^{n} \omega^{2 n} 1\right| \text { is equal to (a) } 0 \text { (b) } \omega \text { (c) } \omega^{2} \text { (d) } 1
$$

100. if $a_{1}, a_{2}, \ldots \ldots a_{n}, \ldots \ldots$... form a G.P. and $a_{1}>0$, for all $I \geq 1$ $\left|\log a_{n}, \quad \log a_{n}+\log a_{n+2}, \quad \log a_{n+2}\right|$ $\log a_{n+3}, \quad \log a_{n+3}+\log a_{n+5}, \quad \log a_{n+5}$ $\left|\log a_{n+6}, \quad \log _{n+6}+\log a_{n+8}, \quad \log a_{n+8}\right|$

- Watch Video Solution

101. If $a^{2}+b^{2}+c^{2}=-2 a n d f(x)=$ $\mid 1+a^{2} x\left(1+b^{2}\right) x\left(1+c^{2}\right) x\left(1+a^{2}\right) x 1+b^{2} x\left(1+c^{2}\right) x\left(1+a^{2}\right) x\left(1+b^{2}\right) x$
, then $f(x)$ is a polynomial of degree 0 b .1 c .2 d .3

- Watch Video Solution

102. The system of equations $\alpha x+y+z=\alpha-1, x+\alpha y+z=\alpha-1$ and $x+y+\alpha z=\alpha-1$ has no solution, if α is :

- Watch Video Solution

103. if $a_{1}, a_{2}, \ldots \ldots . a_{n}, \ldots \ldots$.. form a G.P. and $a_{1}>0$, for all $I \geq 1$ $\left|\begin{array}{lll}\log a_{n}, & \log a_{n}+\log a_{n+2}, & \log a_{n+2} \\ \log a_{n+3}, & \log a_{n+3}+\log a_{n+5}, & \log a_{n+5} \\ \log a_{n+6}, & \log n+6 \\ \log _{n+6} \log a_{n+8}, & \log a_{n+8}\end{array}\right|$

- Watch Video Solution

104. If $D=\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1+x & 1 \\ 1 & 1 & 1+y\end{array}\right|$ for $x \neq 0, y \neq 0$ then D is (1) divisible by neither x nor y (2) divisible by both x and y (3) divisible by x but not y (4) divisible by y but not x

- Watch Video Solution

105. If $x=c y+b z, y=a z+c x, z=x+a y$, where. x, y, z are not all zeros, then find the value of $a^{2}+b^{2}+c^{2}+2 a b c$.

- Watch Video Solution

106. Let a, b, c be such that $b(a+c) \neq 0$. If
$\left|\begin{array}{lll}a & a+1 & a-1 \\ -b & b+1 & b-1 \\ c & c-1 & c+1\end{array}\right|+\left|\begin{array}{lll}a+1 & b+1 & c-1 \\ a-1 & b-1 & c+1 \\ (-1)^{n+2} a & (-1)^{n+1} b & (-1)^{n} c\end{array}\right|=0$ then the
value of n is

- Watch Video Solution

107. The number of values of k for which the linear equations
$4 x+k y+2 z=0$
$k x+4 y+z=0$
$2 x+2 y+z=0$
possess a non-zero solution is

- Watch Video Solution

108. If the trivial solution is the only solution of the system of equations x
$-k y+z=0, k x+3 y-k z=0$ and $3 x+y-z=0$. Then , set of all values of k is :
109. Let P and Q be 3×3 matrices $P \neq Q$. If $P^{3}=Q^{3}$ and $P^{2} Q=Q^{2} P$, then determinant of $\left(P^{2}+Q^{2}\right)$ is equal to :

- Watch Video Solution

110. The number of values of k for which the system of equations $(k+1) x+8 y=4 k, k x+(k+3) y=3 k-1$ has no solution is

- Watch Video Solution

111. if $\alpha, \beta, \neq 0$ and $f(n)=\alpha^{n}+\beta^{n}$
and $\left|\begin{array}{lll}3 & 1+f(1) & 1+f(2) \\ 1+f(1) & 1+f(2) & 1+f(3) \\ 1+f(2) & 1+f(3) & 1+f(4)\end{array}\right|$
$=k(1-\alpha)^{2}(1-\beta)^{2}(\alpha-\beta)^{2}$ then k is equal to

- Watch Video Solution

112. The set of all values of λ for which the system of linear equations
$2 x_{1}-2 x_{2}+x_{3}=\lambda x_{1}$
$2 x_{1}-3 x_{2}+2 x_{3}=\lambda x_{2}$
$-x_{1}+2 x_{2}=\lambda x_{3}$
has a non-trivial solution,

- Watch Video Solution

113. The system of linear equations
$x+\lambda y-z=0$
$\lambda x-y-z=0$
$x+y-\lambda z=0$
has a non-trivial solution for

- Watch Video Solution

114. If S is the set of distinct values of ' b ' for which the following system of linear equations
$x+y+z=1$
$x+a y+z=1$
$a x+b y+z=0$
has no solution then S is

- Watch Video Solution

115. The total number of distinct $x \in R$ for which
$\left|\begin{array}{lll}x & x^{2} & 1+x^{3} \\ 2 x & 4 x^{2} & 1+8 x^{3} \\ 3 x & 9 x^{2} & 1+27 x^{3}\end{array}\right|=10 \quad$ is

- Watch Video Solution

116. Let T_{n} denote the number of triangles, which can be formed using the vertices of a regular polygon of n sides. It $T_{n+1}-T-n=21$, the \cap equals a. 5 b. 7 c. 6 d. 4

- Watch Video Solution

117. A students is to answer 10 out of 13 questions in an examminations such that he must choose at least 4 from the first five questions. Find the numbers of choices available to him.

- Watch Video Solution

118. The number of ways in which 6 men and 5 women can dine at a round table if no two women are to sit together is given by.

- Watch Video Solution

119. For ${ }^{n} C_{r}+2^{n} C_{r-1}+{ }^{n} C_{r-2}=$

- Watch Video Solution

120. How many ways are there to arrange the letters in the word GARDEN with the vowels in alphabetical order?
121. The number of ways of distributing 8 identical balls in 3 distinct boxes so that none of the boxes is empty is

- Watch Video Solution

122. If the letters of the word SACHIN arranged in all possible ways and these words are written out as in dictionary, then the word SACHIN appears at serial number:

- Watch Video Solution

123. Find the value of : ${ }^{50} C_{4}+\sum_{r=1}^{6} \cdot{ }^{56-r} C_{3}$.

- Watch Video Solution

124. At an election, a voter may vote for any number of candidates, not greater than number to be elected. There are 10 condidates and 4 are to be selected. If a voter votes for atleast one candidate, then number of ways in which he can vote, is

- Watch Video Solution

125. The set $S=\{1,2,3,, 12)$ is to be partitioned into three sets A, B, C of equal size. Thus, $A \cup B \cup C=S, A \cap B=B \cap C=A \cap C=\varphi$. The number of ways to partition S is (1) $\frac{12!}{3!(4!)^{3}}$ (2) $\frac{12!}{3!(3!)^{4}}$ (3) $\frac{12!}{(4!)^{3}}$ $12!$
$(4!)^{4}$

- Watch Video Solution

126. In a shop there are five types of ice-creams available. A child buys six ice-creams. Statement -1 : The number of different ways the child can buy the six ice-creams is ${ }^{\wedge} 10 C_{5}$. Statement -2: The number of different ways
the child can buy the six ice-creams is equal to the number of different ways of arranging 6 As and 4 Bs in a row.

- Watch Video Solution

127. How many different words can be formed by Jumbling the letter in the word MISSISSIPPI iin which no two S's are adjancent?

- Watch Video Solution

128. From 6 different novels and 3 different dictionaries, 4 novels annd 1 dictionary are to be selected and arranged in a row on a shelf so that the dictionary is always in the middle. Then, the number of such arrangements is

- Watch Video Solution

129. There are two urns. Urn A has 3 distinct red balls and urn B has 9 distinct blue balls. From each urn, two balls are taken out at random and then transferred to the other. The number of ways in which this can be done. Is

- Watch Video Solution

130. Statement-1 : The number of ways of distributing 10 identical balls in 4 distinct boxes such that no box is empty is ${ }^{\wedge} 9 C_{3}$. Statement-2 : The number of ways of choosing any 3 places from 9 different places is ${ }^{\wedge} 9 C_{3}$
. Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1. Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1. Statement-1 is true, Statement-2 is false. Statement-1 is false, Statement-2 is true.

- Watch Video Solution

131. There are 10 points in a plane, out of these 6 are collinear if N is number of triangles formed by joining these points , then

Watch Video Solution

132. Assuming the balls to be identical except for difference in colours, the number of ways in which one or more balls can be selected from 10 white, 9 green and 7 black balls, is

- Watch Video Solution

133. let T_{n} be the number of all possible triangels formed by joining vertices of an n -sided regular polygon. Iff $T_{n+1}-T_{n}=10$, the value of n is

- Watch Video Solution

134. The number of integers greater than 6000 that can be formed using the digits $3,5,6,7$ and 8 without repetition, is

- Watch Video Solution

135. Let A and B be two sets containing four and two elements, respectively. Then, the number of subjects of the set $A \times B$, each having atleast three elements is

- Watch Video Solution

136. If all the words (with or without meanining having five letters, formed usingg the letters of the word SMAL and arranged as in a dictionary, then the position of the word SMALL is

- Watch Video Solution

137. A man X has 7 friends, 4 of them are ladies and 3 are men. His wife Y also has 7 friends, 3 of them are ladies and 4 are men. Assume X and Y has no common friends. Then the total number of ways in which X and Y together can throw a party inviting 3 ladies annd 3 men, so that 3 friends of each of X and Y are in this party, is

- Watch Video Solution

138. Let ${ }^{n} _1$

- Watch Video Solution

139. Six cards and six envelopes are numbered 1,2,3,4,5,6 and cards are to be placed in envelopes, so that each envelope containns exactly one card and nno card is placed in the envelope bearing the same number and moreover the card numbered 1 is always placed in envelope numbered. then the number of ways it cann be done, is
140. r

- Watch Video Solution

141. A debate club consists of 6 girls and 4 boys. A team of 4 members is to be selected from this club including the selection of a captain (from among these 4 members) for the tem. If the team has to include at most one boy, then the number of ways of selecting the team is

- Watch Video Solution

142. Word of length 10 are formed using the letters A,B,C,D,E,F,G,H,I,J. Let x be the number of such words where no letter is repeated; and let y be the number of such words where exactly one letter is repeated twice and no other letter is repeated. The, $\frac{y}{9 x}=$
143. The coefficient of $x^{5} \in\left(1+2 x+3 x^{2}+\right)^{-3 / 2} i s(|x|<1) 21 \mathrm{~b} .25$ c. 26 d . none of these

- Watch Video Solution

144. If $|x|<1$, then the coefficient of x^{n} in expansion of $\left(1+x+x^{2}+x^{3}+\right)^{2}$ is a. n b. $n-1$ c. $n+2$ d. $n+1$

- Watch Video Solution

145. The numberof integral terms in the expansion of $(\sqrt{3}+\sqrt[8]{5})^{256}$ is (A) 32 (B) 33 (C) 34 (D) 35

- Watch Video Solution

146. If x is positive, the first negative term in the expansion of $(1+x)^{27 / 5} i s(|x|<1) 5$ therm b. 8thterm c. 6thterm d. 7 therm

- Watch Video Solution

147. The coefficient of the middle term in the binomial expansion in powers of x of $(1+\alpha x)^{4}$ and of $(1-\alpha x)^{6}$ is the same if α equals:

- Watch Video Solution

148. The coefficient of x^{n} in the expansion of $(1-x)(1-x)^{n}$ is $n-1 \mathrm{~b}$. $(-1)^{n}(1-n)$ c. $(-1)^{n-1}(n-1)^{2}$ d. $(-1)^{n-1} n$

- Watch Video Solution

149. If the coefficient of $r t h,(r+1)^{t h}$, and $(r+2) t h$ terms in the binamial expansion of $(1+y)^{m}$ are in A.P. then prove that
$m^{2}-m(4 r+1)+4 r^{2}-2=0$.

- Watch Video Solution

150. If the coefficient of $x^{7} \in\left[a x^{2}-\left(\frac{1}{b x^{2}}\right)\right]^{11}$ equal the coefficient of x^{-7} in satisfy the $\left[a x-\left(\frac{1}{b x^{2}}\right)\right]^{11}$, thenaandb satisfy the relation $a+b=1$ b. $a-b=1$ c. $b=1$ d. $\frac{a}{b}=1$

- Watch Video Solution

151. If x is so small that x^{3} and higher powers of x may be neglectd, then $\underline{(1+x)^{3 / 2}-\left(1+\frac{1}{2} x\right)^{3}}$ $(1-x)^{1 / 2}$
may be approximated as
a. $3 x+\frac{3}{8} x^{2}$
b.
$1-\frac{3}{8} x^{2}$ c. $\frac{x}{2}-\frac{3}{\times^{2}}$ d. $-\frac{3}{8} x^{2}$

- Watch Video Solution

152. If the expansion in powers of x of the function $1 /[(1-a x)(1-b x)]$ is $\quad a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+$, then $a_{n} i s \quad$ a. $\frac{b^{n}-a^{n}}{b-a} \quad$ b. $\frac{a^{n}-b^{n}}{b-a}$ c. $\frac{b^{n+1}-a^{n+1}}{b-a}$ d. $\frac{a^{n+1}-b^{n+1}}{b-a}$

- Watch Video Solution

153. For
natural
numbers m, n, \quad if $\quad(1-y)^{m}(1+y)^{n}=1+a_{1} y+a_{2} y^{2}+\ldots, \quad$ and $a_{1}=a_{2}=10, t i$
a. $m<n$ b. $m>n$ c. $m+n=80$ d. $m-n=20$

- Watch Video Solution

154. In the binomial expansion of $(a-b)^{\cap} \geq 5$, the sum of the 5 th and 6th term is zero. Then a / b equals $(n-5) / 6$ b. $(n-4) / 5$ c. $n /(n-4)$ d. $6 /(n-5)$

- Watch Video Solution

^ $20 C_{10} \cdot{ }^{15} C_{0}+{ }^{20} C_{9} \cdot{ }^{15} C_{1}+{ }^{20} C_{8} \cdot{ }^{15} C_{2}+\ldots .+{ }^{20} C_{0} \cdot{ }^{15} C_{10}$

- Watch Video Solution

156. Statement 1: $\sum_{r=0}^{n}(r+1)^{n} c_{r}=(n+2) 2^{n-1}$.

Statement 2: $\sum_{r=0}^{n}(r+1)^{n} c_{r}=(1+x)^{n}+n x(1+x)^{n-1}$.
(1) Statement 1 is false, Statement 2 is true.
(2) Statement 1 is true, Statement 2 is true, Statement 2 is a correct explanation for Statement 1
(3) Statement 1 is true, Statement 2 is true; Statement 2 is not a correct explanation for Statement 1.
(4) Statement 1 is true, Statement 2 is false.

- Watch Video Solution

157. The reamainder left out when $8^{2 n}-(62)^{2 n+1}$ is divided by 9 is
158. Find the coefficient of x^{7} in the expansion of $\left(1-x-x^{2}+x^{3}\right)^{6}$.

- Watch Video Solution

159. If n is a positive integer, then $(\sqrt{3}+1)^{2 n}-(\sqrt{3}-1)^{2 n}$ is (1) an irrational number (2) an odd positive integer (3) an even positive integer
(4) a rational number other than positive integers

- Watch Video Solution

160. The term independent of x in expansion of

$$
\left(\frac{x+1}{x^{\frac{2}{3}}-x^{\frac{1}{3}}+1}-\frac{x-1}{x-x^{\frac{1}{2}}}\right)^{10} \text { is (1) } 120 \text { (2) } 210 \text { (3) } 310 \text { (4) } 4
$$

D Watch Video Solution

161. If the coefficient of x^{3} and x^{4} in the expansion of $\left(1+a x+b x^{2}\right)(1-2 x)^{18}$ in power of x are both zero, then (a, b) is equal to

- Watch Video Solution

162. The sum of coefficient of integral powers of x in the binomial expansion of $(1-2 \sqrt{x})^{50}$ is

- Watch Video Solution

163. If the number of terms in the expansion of $\left(1-\frac{2}{x}+\frac{4}{x^{2}}\right) x \neq 0$, is 28 , then the sum of coefficient of all the terms in this expansion, is

- Watch Video Solution

164. Coefficient of x^{11} in the expansion of $\left(1+x^{2}\right)\left(1+x^{3}\right)^{7}\left(1+x^{4}\right)^{12}$ is 1051 b .1106 c .1113 d .1120

Watch Video Solution

165. The coefficient of x^{9} in the expansion of $(1+x)\left(16 x^{2}\right)\left(1+x^{3}\right)\left(1+x^{100}\right)$ is

- Watch Video Solution

166. Let m be the smallest positive integer such that the coefficient of x^{2} in $\begin{array}{cc}\text { the } & \text { expansion } \\ (1+x)^{2}+(1+x)^{3}+\ldots \ldots+(1+x)^{49}+(1+m x)^{50} & \text { is }\end{array}$
$(3 n+1) .{ }^{51} C_{3}$ for some positive integer n , then the value of n is \qquad .

- Watch Video Solution

167. If $1, \log _{9}\left(3^{1-x}+2\right)$ and $\log _{3}\left(4.3^{x}-1\right)$ are A.P. then x is

- Watch Video Solution

168. The product $2^{\frac{1}{2}} \cdot 4^{\frac{1}{8}} \cdot 8^{\frac{1}{16}} \ldots$ to ∞ equal to

Watch Video Solution

169. The sum of series

$$
\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{3.4}-\frac{1}{4.5}+\ldots . . . \text { is }
$$

- Watch Video Solution

170. Let T_{r} be the rth term of an A.P., for $r=1,2,3$, If for some positive integers m, n, we have $T_{m}=\frac{1}{n} a n d T_{n}=\frac{1}{m}$, then $T_{m n}$ equals $\frac{1}{m n} \mathrm{~b}$. $\frac{1}{m}+\frac{1}{n}$ c. 1 d. 0
171. The sum of series $\frac{1}{2}!+\frac{1}{4}!+16!+\ldots \ldots \ldots$. is (A) $\frac{e^{2}-1}{2}$
$\frac{e^{2}-2}{e}$
(C) $\frac{e^{2}-1}{2 e}$
(D) $)(e-1)^{2} \frac{)}{2 e}$

- Watch Video Solution

172. The sum of the first n terms of the series $1^{2}+2 \times 2^{2}+3^{2}+2 \times 4^{2}+5^{2}+2 \times 6^{2} \ldots . i s \frac{n(n+1)^{2}}{2}$ when n is even. Then find the sum when n is odd.

- Watch Video Solution

173. If $x=\sum_{n=0}^{\infty} a^{n}, y=\sum_{n=0}^{\infty} b^{n}, z=\sum_{n=0}^{\infty} c^{n}$, wherera, b, andc are in A.P. and $|a|<,|b|<1$, and $|c|<1$, then prove that x, yandz are in H.P.

- Watch Video Solution

174. Let $x_{1}, x_{2}, \ldots ., x_{n}$ be n observation such that $\sum\left(x_{i}\right)^{2}=400$ and $\sum x_{i}=40$, then a possible value of n among the following is

- Watch Video Solution

175. The sum of the series $1+\frac{1}{4.2}!\frac{1}{16.4}!+\frac{1}{64.6}!+\ldots \ldots \ldots \rightarrow \infty$ is
(A) $\frac{e+1}{2 \sqrt{e}}$
(B) $\frac{e-1}{\sqrt{e}}$
(C) $\frac{e-1}{2 \sqrt{e}}$
(D) $\frac{e+1}{2} \sqrt{e}$

- Watch Video Solution

176. If a_{1}, a_{2}, a_{3}, be terms of an A.P. and $\frac{a_{1}+a_{2}+\ldots .+a_{p}}{a_{1}+a_{2}+\ldots . .+a_{q}}=\frac{p^{2}}{q^{2}}, p \neq q$, then $\frac{a_{6}}{a_{21}}$ equals to (a).41/11 (b). $7 / 2$ (c). 2/7 (d). $11 / 41$

- Watch Video Solution

177. If $a_{1}, a_{2}, a_{3}, \ldots \ldots \ldots . a_{n}$ are in HP, then the expression $a_{1} a_{2}+a_{2} a_{3}+\ldots \ldots+a_{n-1} a_{n}$ is equal to

- Watch Video Solution

178. If in a geometric progression consisting of positive terms, each term equals the sum of the next two terms, then the common ratio of this progression equals

- Watch Video Solution

179. If p and q are positive real numbers such that $p^{2}+q^{2}=1$, then the maximum value of $(p+q)$ is (1) 2 (2) $1 / 2$ (3) $\frac{1}{\sqrt{2}}$ (4) $\sqrt{2}$

- Watch Video Solution

180. The sum of the series $\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-\ldots$ upto infinity is (1) e^{-2} (2) $e^{-1}(3) e^{-1 / 2}(4) e^{1 / 2}$

- Watch Video Solution

181. The first two terms of a geometric progression add up to 12 . The sum of the third and the fourth terms is 48 . If the terms of the geometric progression are alternately positive and negative, then the first term is (1) $4(2) 12(3) 12(4) 4$

- Watch Video Solution

182. The sum to infinity of the series $1+\frac{2}{3}+\frac{6}{3^{2}}+\frac{14}{3^{4}}+\ldots i s$

- Watch Video Solution

183. A person is to count 4500 currency notes. Let a_{n} denote the number of notes he counts is the $n^{\text {th }}$ minute .If $a_{1}=a_{2}=\ldots=a_{10}=150$ and $a_{10}, a_{11} .$. , are in A.P with common difference -2 , then the time to count all notes

- Watch Video Solution

184. A man saves Rs. 200 in each of the first three months of his service. In each of the subsequent months his saving increases by Rs. 40 more than the saving of immediately previous month. His total saving from the start of service will be Rs. 11040 after how many months

- Watch Video Solution

185. Let a_{n} be the nth term of an AP, if $\sum_{r=1}^{100} a_{2 r}=\alpha$ and $\sum_{r=1}^{100} a_{2 r-1}=\beta$, then the common difference of the AP is
186. Statement 1: The sum of the series $1+(1+2+4)+(4+6+9)+(9+12+16)+\ldots .$.
$+(361+380+400) i s 8000$. Statement 2: $\sum_{k=1}^{n}\left(k^{3}-(k-1)^{3}\right)=n^{3}$ for any natural number n . (1) Statement 1 is false, statement 2 is true (2) Statement 1 is true, statement 2 is true; statement 2 is a correct explanation for statement 1 (3) Statement 1 is true, statement 2 is true; statement 2 is not a correct explanation for statement 1 (4) Statement 1 is true, statement 2 is false

- Watch Video Solution

187. If 100 times the $100^{\text {th }}$ term of an AP with non zero common difference equals the 50 times its $50^{t h}$ term, then the $150^{t h}$ term of this AP is (1) 150
(2) 150 times its $50^{\text {th }}$ term (3) 150 (4) zero

- Watch Video Solution

188. The sum of first 20 terms of the sequence $0.7,0.77,0.777 \ldots$,..., is

- Watch Video Solution

189. Three numbers form an increasing G.P. If the middle number is doubled, then the new numbers are in A.P. The common ratio of the G.P. is $2-\sqrt{3}$ b. $2+\sqrt{3}$ c. $\sqrt{3}-2$ d. $3+\sqrt{2}$

- Watch Video Solution

190. If $(10)^{9}+2(11)^{2}(10)^{7}+\ldots .+10(11)^{9}=k(10)^{9}$

- Watch Video Solution

191. The sum of first 9 terms of the series $\frac{1^{3}}{1}+\frac{1^{3}+2^{3}}{1+3}+\frac{1^{3}+2^{3}+3^{3}}{1+3+5}+\ldots \ldots$. is
192. If m is the A.M of two distict real numbers I and $\mathrm{n}(l, n>1)$ and G_{1}, G_{2} and G_{3} are three geomatric means between I and n , then $\left(G_{1}\right)^{4}+2\left(G_{2}\right)^{4}+\left(G_{3}\right)^{4}$ equals

- Watch Video Solution

193. If the sum of the first ten terms of the series $\left(1 \frac{3}{5}\right)^{2}+\left(2 \frac{2}{5}\right)^{2}+\left(3 \frac{1}{5}\right)^{2}+4^{2}+\left(4 \frac{4}{5}\right)^{2}+\ldots \ldots \ldots$ is $\frac{16}{5} m$, then m equal to

- Watch Video Solution

194. For any three positive real numbers a, b ans c, $9\left(25 a^{2}+b^{2}\right)+25\left(c^{2}-3 a c\right)=15 b(3 a+c)$. Then

- Watch Video Solution

195. Let $a, b, c \in R . \operatorname{Iff}(x)=a x^{2}+b x+c$ is such that $\mathrm{a}+\mathrm{b}+\mathrm{c}=3$ and $f(x+y)=f(x)+f(y)+x y, \forall x, y \in R$, then $\sum_{n=1}^{10} f(n)$ is equal to

- Watch Video Solution

196. If, for a positive integer n, the quadratic equation, $x(x+1)+(x-1)(x+2)++(x+n-1)(x+n)=10 n$ has two consecutive integral solutions, then n is equal to : (1)10 (2) 11 (3) 12 (4) 9

- Watch Video Solution

197. about to only mathematics

- Watch Video Solution

198. about to only mathematics
199. Let $b_{i}>1$ for $i=1,2 \ldots, 101$.Suppose loge b_{1} loge $b_{2} \ldots .$. , loge b_{101} are in arihtmetic progression (A.P) with the common difference $\log _{e}$ 2. Suppose $a_{1}, a_{2}, \ldots, a_{101}$ are in A.P such that $a_{1}=b_{1}$ and a_{51}. Ift $=b_{1}+b_{2}+\ldots .+b_{51}$ and $s=a_{1}+a_{2}+\ldots+a_{51}$ then

- Watch Video Solution

200. The sides of a right angled triangle are in arithmetic progression .If the triangle has aera 24 , then what is the length of its smallest side ?

- Watch Video Solution

