©゙doubtnut

MATHS

BOOKS - KC SINHA ENGLISH

ALGEBRA - PREVIOUS YEAR QUESTIONS - FOR COMPETITION

Exercise

1. Let p and q be real numbers such that $p \neq 0, p^{3} \neq q$, and $p^{3} \neq-q$. If α and β are nonzero complex numbers satisfying $\alpha+\beta=-p$ and $\alpha^{3}+\beta^{3}=q$, then a quadratic equation having α / β and β / α as its roots is A.

$$
\begin{equation*}
\left(p^{3}+q\right) x^{2}-\left(p^{3}+2 q\right) x+\left(p^{3}+q\right)=0 \tag{B.}
\end{equation*}
$$

$$
\left(p^{3}+q\right) x^{2}-\left(p^{3}-2 q\right) x+\left(p^{3}+q\right)=0
$$

$$
\left(p^{3}+q\right) x^{2}-\left(5 p^{3}-2 q\right) x+\left(p^{3}-q\right)=0
$$

D.
$\left(p^{3}+q\right) x^{2}-\left(5 p^{3}+2 q\right) x+\left(p^{3}+q\right)=0$
C.

- Watch Video Solution

2. The number of 3×3 matrices A whose entries are either 0 or 1 and for which the system $A\left|\begin{array}{l}x \\ y \\ z\end{array}\right|=\left|\begin{array}{l}1 \\ 0 \\ 0\end{array}\right|$ has exactly two distinct solution is a. 0 b. $2^{9}-1$ c. 168 d. 2

- Watch Video Solution

3. about to only mathematics

- Watch Video Solution

4. Let $S_{k}, k=1,2, \ldots .100$ denote the sum of the infinite geometric series whose first term is $\frac{k-1}{K!}$ and the common ration is $\frac{1}{k}$ then the value of $\frac{(100)^{2}}{100!}+\sum_{k=1}^{100}\left|\left(k^{\wedge} 2-3 k+1\right) S_{-} k\right|$ is
5. Let $S=\{1,, 2,34\}$. The total number of unordered pairs of disjoint subsets of S is equal a. 25 b .34 c .42 d .41

Watch Video Solution

6. For $r=0,1, \ldots \ldots, 10$, let A_{r}, B_{r}, and C_{r} denote, respectively, the coefficient of x^{r} in the expansion of $(1+x)^{10},(1+x)^{20}$ and $(1+x)^{30}$.
Then $\sum_{r=1}^{10} A_{r}\left(B_{10} B_{r}-C_{10} A_{r}\right)$ is equal to

- Watch Video Solution

7. Let $\left(a_{1}, a_{2}, a_{3} \ldots, a_{11}\right)$ be real numbers satsfying
$a_{1}=15,27-2 a_{2}>0$ and $a_{k}=2 a_{k-1}-a_{k-2}$ for $k=3,4 \ldots, 11$,
If
$\frac{a_{1}^{2}+a_{2}^{2}+\ldots \ldots+a_{11}^{2}}{11}=90$ then the value of $\frac{a_{1}+a_{2}+\ldots \ldots+a_{1}}{11}$
is equal to \qquad .
8. Let P be an odd prime number and T_{p} be the following set of 2×2 matrices:
$T_{P}=\left\{A=\left[\begin{array}{ll}a & b \\ c & a\end{array}\right]: a, b, c \in\{0,1, \ldots, p-1\}\right\}$
The number of A in T_{P} such that $\operatorname{det}(\mathrm{A})$ is not divisible by p is

- Watch Video Solution

9. Let P be an odd prime number and T_{p} be the following set of 2×2 matrices :
$T_{P}=\left\{A=\left[\begin{array}{ll}a & b \\ c & a\end{array}\right]: a, b, c \in\{0,1, \ldots, p-1\}\right\}$
The number of A in T_{P} such that $\operatorname{det}(\mathrm{A})$ is not divisible by p is

- Watch Video Solution

10. Let P be an odd prime number and T_{p} be the following set of 2×2 matrices :
$T_{P}=\left\{A=\left[\begin{array}{ll}a & b \\ c & a\end{array}\right]: a, b, c \in\{0,1, \ldots, p-1\}\right\}$
The number of A in T_{P} such that $\operatorname{det}(\mathrm{A})$ is not divisible by p is

- Watch Video Solution

11. The number of 3×3 non-singular matrices, with four entries as 1 and all other entries as 0 , is:- (1) 5 (2) 6 (3) at least 7 (4) less than 4

- Watch Video Solution

12. Let a be a 2×2 matrix with non-zero entries and let $A^{2}=I$, where I is a 2×2 identity matrix. Define $\operatorname{Tr}(A)=$ sum of diagonal elements of A and $|A|=$ determinant of matrix A.

Statement 1: $\operatorname{Tr}(A)=0$
Statement 2 : $|A|=1$

- Watch Video Solution

13. A person is to count 4500 currency notes. Let a_{n} denote the number of notes he counts is the $n^{\text {th }}$ minute .If $a_{1}=a_{2}=\ldots . . .=a_{10}=150$ and $a_{10}, a_{11} \ldots$, are in A.P with common difference -2 , then the time to count all notes

- Watch Video Solution

14. There are two urns. Urn A has 3 distinct red balls and urn B has 9 distinct blue balls. From each urn, two balls are taken out at random and then transferred to the other. The number of ways in which this can be done. Is

- Watch Video Solution

15. consider the system of linear equations

$$
x_{1}+2 x_{2}+x_{3}=3
$$

$2 x_{1}+3 x_{2}+x_{3}=3$,
$3 x_{1}+5 x_{2}+2 x_{3}=1$
the system has

- Watch Video Solution

16. The number of complex numbersd z, such that $|z-1|=|z+1|=|z-i|$, where $i=\sqrt{-1}$ equals to

- Watch Video Solution

17. A polynomial of degree 2 which takes values y_{0}, y_{1}, y_{2} at points x_{0}, x_{1}, x_{2} respectively , is given by $p(x)=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)} y_{0}+\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)} y_{1}+\frac{\left(x-x_{0}\right)(x-x}{\left(x_{2}-x_{0}\right)\left(x_{2}-\right.}$
A polynomial of degree 2 which takes values y_{0}, y_{0}, y_{1} at points $x_{0}, x_{0+t}, x_{1} t \neq 0$ is given by

- Watch Video Solution

18. Let α and β be the roots of the equation $x^{2}-6 x-2=0$. If $a_{n}=\alpha^{n}-\beta^{n}$. For $n \geq 1$, then the value of $\frac{a_{10}-2 a_{8}}{2 a_{9}}$ is :

- Watch Video Solution

19. Let M and N be two 3×3 nonsingular skew-symmetric matrices such that $M n=N M$. If P^{T} denotes the transpose of P , then $M^{2} N^{2}\left(M^{T} N\right)^{-1}\left(M N^{-1}\right)^{T}$ is equal to

- Watch Video Solution

20. Let $\omega \neq 1$ be cube root of unity and S be the set of all non-singular matrices of the form $\left[1 a b \omega 1 c \omega^{2} \omega 1\right]$, where each of $a, b, a n d c$ is either ω or ω^{2}. Then the number of distinct matrices in the set S is a. 2 b. 6 c. 4 d. 8

- Watch Video Solution

21. Let a, b, and c be three real numbers satifying $\left[\begin{array}{lll}a & b & c\end{array}\right]$
$\left[\begin{array}{lll}1 & 9 & 7 \\ 8 & 2 & 7 \\ 7 & 3 & 7\end{array}\right]=\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$
If the point $P(a, b, c)$ with reference to (E) lies on the plane $2 x+y+z=1$, then the value of $7 a+b+c$ is

- Watch Video Solution

22. Let a, b, and c be three real numbers satifying $\left[\begin{array}{lll}a & b & c\end{array}\right]$
$\left[\begin{array}{lll}1 & 9 & 7 \\ 8 & 2 & 7 \\ 7 & 3 & 7\end{array}\right]=\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$

Let ω be a solution of $x^{3}-1=0$ with $\operatorname{Im}(\omega)>0$. If $a=2$ with b and c satisfying (E), then the value of $\frac{3}{\omega^{a}}+\frac{1}{\omega^{b}}+\frac{3}{\omega^{c}}$ is equal to

- Watch Video Solution

23. Let a, b, and c be three real numbers satifying $\left[\begin{array}{lll}a & b & c\end{array}\right]$
$\left[\begin{array}{lll}1 & 9 & 7 \\ 8 & 2 & 7 \\ 7 & 3 & 7\end{array}\right]=\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$

Let $b=6$, with a and c satisfying (E). If α and β are the roots of the quadratic equation $a x^{2}+b x+c=0$, then $\sum_{n=0}^{\infty}\left(\frac{1}{\alpha}+\frac{1}{\beta}\right)^{n}$ is

- Watch Video Solution

24. Let $a_{1}, a_{2}, a_{3},, a_{100}$ be an arithmetic progression with $a_{1}=3$ ands $_{p}=\sum_{i=1}^{p} a_{i}, 1 \leq p \leq 100$. For any integer n with $1 \leq n \leq 20$, let $m=5 n$. If $\frac{S_{m}}{S_{n}}$ does not depend on n, then a_{2} is \qquad .

- Watch Video Solution

25. about to only mathematics

- Watch Video Solution

26. The minimum value of the sum of real number
$a^{-5}, a^{-4}, 3 a^{-3}, 1, a^{8}$, anda ${ }^{10}$ witha >0 is

- Watch Video Solution

27. about to only mathematics

- Watch Video Solution

28. The number of distinct real roots of
$x^{4}-4 x^{3}+12 x 62+x-1=0 i s$

- Watch Video Solution

29. Let M be a 3×3 matrix satisfying $M\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]=\left[\begin{array}{c}-1 \\ 2 \\ 3\end{array}\right]$,
$M\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]=\left[\begin{array}{c}1 \\ 1 \\ -1\end{array}\right]$ and $M\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{c}0 \\ 0 \\ 12\end{array}\right]$

- Watch Video Solution

30. Find the coefficient of x^{7} in the expansion of $\left(1-x-x^{2}+x^{3}\right)^{6}$.

- Watch Video Solution

31. Let α, β be real and z be a complex number. If $z^{2}+\alpha z+\beta=0$ has two distinct roots on the line Re $z=1$, then it is necessary that : (1)
$b \in(0,1)(2) b \in(-1,0)(3)|b|=1(4) b \in(1, \infty)$

- Watch Video Solution

32.38. Assertion (A): The area of a rectangle is 630 sq.cm and its breadth is 15 cm then its lengthis 55 cm

Reason (R) : The area of a rectangle is given by $A=$ length x breadtha)
(A) Both A and R are true and R is correct explanation of A
(B) Both A and R are true and R is not correct explanation of A
(C) A is false and R is true.
33. A man saves Rs. 200 in each of the first three months of his service. In each of the subsequent months his saving increases by Rs. 40 more than the saving of immediately previous month. His total saving from the start of service will be Rs. 11040 after how many months

- Watch Video Solution

34. If $\omega(\neq 1)$ is a cube root of unity, and $(1+\omega)^{7}=A+B \omega$. Then (A ,
B) equals

- Watch Video Solution

35. The number of values of k for which the linear equations
$4 x+k y+2 z=0$
$k x+4 y+z=0$
$2 x+2 y+z=0$
possess a non-zero solution is
36. Statement-1 : The number of ways of distributing 10 identical balls in 4 distinct boxes such that no box is empty is ${ }^{\wedge} 9 C_{3}$. Statement-2 : The number of ways of choosing any 3 places from 9 different places is ${ }^{\wedge} 9 C_{3}$
. Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1. Statement-1 is true, Statement-2 is true;

Statement-2 is not a correct explanation for Statement-1. Statement-1 is true, Statement-2 is false. Statement-1 is false, Statement-2 is true.

- Watch Video Solution

37. If P is a 3×3 matrix such that $P^{T}=2 P+I$, where P^{T} is
the transpose of P and I is the 3×3 identity matrix, then there exists a column matrix $X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \neq\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ such that

- Watch Video Solution

38. Let $a_{1}, a_{2}, a_{3}, \ldots$ be in harmonic progression with $a_{1}=5$ and $a_{20}=25$. The least positive integer n for which $a_{n}<022 \mathrm{~b}$. 23 c. 24 d. 25

- Watch Video Solution

39. If the adjoint of a 3×3 matrix P is $\left[\begin{array}{lll}1 & 4 & 4 \\ 2 & 1 & 7 \\ 1 & 1 & 3\end{array}\right]$, then the possible value (s) of the determinant of P is (are)

- Watch Video Solution

40. Let z be a complex number such that the imaginary part of z is nonzero and $a=z^{2}+z+z+1$ is real. Then a cannot take the value.

- Watch Video Solution

41. The total number of ways in which 5 balls of different colours can be distributed among 3 persons, so that each person gets atleast one ball is

Watch Video Solution

42. The value of
$6+\log _{3 / 2}\left(\frac{1}{3 \sqrt{2}} \sqrt{4-\frac{1}{3 \sqrt{2}} \sqrt{4-\frac{1}{3 \sqrt{2}} \sqrt{4-\frac{1}{3 \sqrt{2}} \cdots}}}\right)$ is \qquad

(Watch Video Solution

43. Let a_{n} denotes the number of all n-digits positive integer formed by the digits 0,1 or both such that no consecutive diigits in them are 0 . let b_{n} be the number of such n-digit integers ending with digit 1 and c_{n} be the number of such n digits integers ending with digit 0 .
Q. The value of b_{6}, is
44. Let a_{n} denotes the number of all n -digits positive integer formed by the digits 0,1 or both such that no consecutive diigits in them are 0 . let b_{n} be the number of such n-digit integers ending with digit 1 and c_{n} be the number of such n digits integers ending with digit 0 .
Q. The value of b_{6}, is

- Watch Video Solution

45. The equation $e^{\sin x}-e^{-\sin x}-4=0$ has

- Watch Video Solution

46. Statement 1 :

The sum of the series $1+(1+2+4)+(4+6+9)+(9+12+16)+\ldots+(361+380+400)$ is 8000

Statement 1:

$\sum_{k=1}^{n}\left(k^{3}-(k-1)^{3}\right)=n^{3}$, for any natural number n.
47. Let $A=\left(\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1\end{array}\right)$. If u_{1} and u_{2} are column matrices such that
$A u_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ and $A u_{2}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$, then $u_{1}+u_{2}$ is equal to :

- Watch Video Solution

48. If n is a positive integer, then $(\sqrt{3}+1)^{2 n}-(\sqrt{3}-1)^{2 n}$ is (1) an irrational number (2) an odd positive integer (3) an even positive integer
(4) a rational number other than positive integers

- Watch Video Solution

49. If 100 times the $100^{\text {th }}$ term of an AP with non zero common difference equals the 50 times its $50^{t h}$ term, then the $150^{t h}$ term of this AP is (1) 150 (2) 150 times its $50^{\text {th }}$ term (3) 150 (4) zero
50. Out of 10 white, 9 black, and 7 red balls, find the number of ways in which selection of one or more balls can be made (balls of the same color are identical).

- Watch Video Solution

51. If $z \neq 1$ and $\frac{z^{2}}{z-1}$ is real, then the point represented by the complex number z lies (1) either on the real axis or on a circle passing through the origin (2) on a circle with centre at the origin (3) either on the real axis or on a circle not passing through the origin (4) on the imaginary axis

- Watch Video Solution

52. Let P and Q be 3×3 matrices $P \neq Q$. If $P^{3}=Q^{3}$ and $P^{2} Q=Q^{2} P$, then determinant of $\left(P^{2}+Q^{2}\right)$ is equal to :
