びdoubtnut

MATHS

BOOKS - KC SINHA ENGLISH

APPLICATIONS OF INTEGRALS - FOR COMPETITION

Solved Examples

1. Find the area of the region bounded by the x-axis and the curves defined by $\quad y=\tan x\left(\right.$ where $\left.-\frac{\pi}{2} \leq x \leq \frac{\pi}{3}\right) \quad$ and
$y=\cot x\left(\right.$ where $\left.\frac{\pi}{6} \leq x \leq \frac{3 x}{2}\right)$.

- Watch Video Solution

2. Find the area bounded by the curves
$x^{2}+y^{2}=4, x^{2}=\sqrt{2} y, a n d x=y$.
3. Find the area bounded by the curves $x^{2}+y^{2}=25,4 y=\left|4-x^{2}\right|$, and $x=0$ above the x -axis.

- Watch Video Solution

4. Find the area of the region bounded by the curve $C: y=\tan x$,tangent drawn to C at $x=p i / 4$, and the x-axis.

- Watch Video Solution

5. The area bounded by the curve $y=x(x-1)^{2}$, the y -axis and the line $y=2$ is

- Watch Video Solution

6. The area between the curve $y=2 x^{4}-x^{2}$, the axis, and the ordinates of the two minima of the curve is $11 / 60$ sq. units (b) $7 / 120$ sq. units $1 / 30$ sq. units (d) 7/90 sq. units

- Watch Video Solution

7. Compute the area of the region bounded by the curves $y=e x \log _{e} x$ and $y=\frac{\log x}{e x}$.

- Watch Video Solution

8. The line $y=m x$ bisects the area enclosed by the curve $y=1+4 x-x^{2}$ and the lines $x=0, x=\frac{3}{2}$ and $y=0$. Then the value of m is

- Watch Video Solution

9. Let $f(x)=\operatorname{Ma\xi } \mu m\left\{x^{2},(1-x)^{2}, 2 x(1-x)\right\}$, where $0 \leq x \leq 1$. Determine the area of the region bounded by the curves $y=f(x), x-a \xi s, x=0$, and $x=1$.

- Watch Video Solution

10. A curve $y=f(x)$ passes through the origin. Through any point (x, y) on the curve, lines are drawn parallel to the coordinate axes. If the curve divides the area formed by these lines and coordinates axes in the ratio $m: n$, find the curve.

- Watch Video Solution

11. Let C_{1} and C_{2} be the graphs of the functions $y=x^{2}$ and $y=2 x$, respectively, where $0 \leq x \leq 1$. Let C_{3} be the graph of a function $\mathrm{y}=\mathrm{f}(\mathrm{x})$, where $0 \leq x \leq 1, f(0)=0$. For a point P on C_{1}, let the lines through P, parallel to the axes, meet C_{2} and C_{3} at Q and R , respectively (see figure). If for every position of $P\left(o n C_{1}\right)$, the areas of the shaded
regions OPQ and ORP are equal, determine the function $f(x)$.
(0, 1)

- Watch Video Solution

12. Find the ratio of the areas in which the curve $y=\left[\frac{x^{3}}{100}+\frac{x}{35}\right]$ divides the circle $x^{2}+Y^{2}-4 x+2 y+1=0$. (where, [.] denotes the greated integer function).

- Watch Video Solution

13. Find the area of the region formed by $x^{2}+y^{2}-6 x-4 y+12 \leq 0, y \leq x$ and $2 x \leq 5$.

Watch Video Solution

14. Find all the possible values of $b>0$, so that the area of the bounded region enclosed between the parabolas $y=x-b x^{2} a n d y=\frac{x^{2}}{b}$ is maximum.

- Watch Video Solution

15. Consider a square with vertices at $(1,1),(-1,1),(-1,-1)$ and $(1,-1)$. Let S be the region consisting of all points inside the square which are nearer to the origin than to any edge. Sketch the region S and find its area.

- Watch Video Solution

16. Let A_{n} be the area bounded by the curve $y=(\tan x)^{n}$ and the lines $x=0, y=0$, and $x=\frac{\pi}{4}$. Prove that for $n>2, A_{n}+A_{n-2}=\frac{1}{n-1}$ and deduce $1 /(2 n+2)$

- Watch Video Solution

17. Let $f(x)$ be continuous function given by $f(x)=\{2 x,|x| \leq 1$ and $\left.x^{2}+a x+b,|x|>1\right\}$.

Find the area of the region in the third quadrant bounded by the curves $x=-2 y^{2}$ and $y=f(x)$ lying on the left of the line $8 x+1=0$.

- Watch Video Solution

18. Sketch the region included between the curves $x^{2}+y^{2}=a^{2}$ and $\sqrt{|x|}+\sqrt{|y|}=\sqrt{a}(a .0)$ and find its area.

- Watch Video Solution

19. The area of the region bounded by the parabola $(y-2)^{2}=x-1$, the tangent to the parabola at the point $(2,3)$ and the X-axis is

- Watch Video Solution

20. Find the area of the region given by $x+y \leq 6, x^{2}+y^{2} \leq 6 y$ and $y^{2} \leq 8 x$.

- Watch Video Solution

21. Let $b \neq 0$ and for $j=0,1,2, \ldots, n$. Let S_{j} be the area of the region bounded by Y_axis and the curve $x \cdot e^{a y}=\sin b y, \frac{j \pi}{b} \leq y \leq \frac{(j+1) \pi}{b}$. Show that $S_{0}, S_{1}, S_{2}, \ldots S_{n}$ are in geometric progression. Also, find their sum for $a=-1$ and $b=\pi$.

- Watch Video Solution

22. Find the area bounded by the curve $x^{2}=y, x^{2}=-y a n d y^{2}=4 x-3$

- Watch Video Solution

23. If [4a2 4a 14b2 4b 14 c 24 c 1$][\mathrm{f}-1 \mathrm{f} 1 \mathrm{f} 2]=[3 \mathrm{a} 2+3 \mathrm{a} 3 \mathrm{~b} 2+3 \mathrm{~b} 3 \mathrm{c} 2+3 \mathrm{c}] \mathrm{fx}$ is a quadratic function and its maximum value occurs at a point V . A is a point of intersection of $y=f x$ with x-axis and point.B is such that chord $A B$ subtends a right angled at V. Find the area enclosed by $f x$ and chord AB.

- Watch Video Solution

24. Find the area of the region bounded by the curves $y=x^{2}, y=\left|2-x^{2}\right|$, and $y=2$, which lies to the right of the line $\mathrm{x}=1$.

- Watch Video Solution

25. The area bounded by the parabolas $y=(x+1)^{2}$ and $y=(x-1)^{2}$ and $y=(x-1)^{2}$ and the line $y=\frac{1}{4}$ is 4 sq. units (b) $1 / 6$ sq. units $4 / 3$ sq. units (d) $1 / 3$ sq. units

- Watch Video Solution

26. The area of the region between the curves $y=\sqrt{\frac{1+\sin x}{\cos x}}$ and $y=\sqrt{\frac{1-\sin x}{\cos x}}$ and bounded by the lines $x=0$ and $x=\frac{\pi}{4}$ is

- Watch Video Solution

27. Consider the function $f(x)=\left\{\begin{array}{ll}x-[x]-\frac{1}{2} & x \notin \\ 0 & x \in I\end{array}\right.$ where [.] denotes the fractional integral function and I is the set of integers. Then find $g(x)$ max $\cdot\left[x^{2}, f(x),|x|\right\},-2 \leq x \leq 2$.

- Watch Video Solution

28. Consider the function $f(x)=\left\{\begin{array}{ll}x-[x]-\frac{1}{2} & x \notin \\ 0 & x \in I\end{array}\right.$ where [.] denotes the fractional integral function and I is the set of integers. Then find $g(x)$ max $\cdot\left[x^{2}, f(x),|x|\right\},-2 \leq x \leq 2$.

- Watch Video Solution

Exercise

1. Show that the area between the curve $y=c e^{2 x}$, the x-axis and any two ordinates is proportional to the difference between the ordinates, c being constant.

- Watch Video Solution

2. Find the area of the region boounded by the curve $y=2 x-x^{2}$ and the X-axis.
3. Find the area bounded by the curve $y=x^{3}-3 x^{2}+2 x$ and the x-axis.

- Watch Video Solution

4. Find the area included between the parabola $y=\frac{x^{2}}{4 a}$ and the curve $y=\frac{8 a^{3}}{x^{2}+4 a^{2}}$.

- Watch Video Solution

5. Prove that the curves $y^{2}=4 x$ and $x^{2}=4 y$ divide the area of square bounded by $x=0, x=4, y=4$ and $y=0$ into three equal parts.

- Watch Video Solution

6. Find the area bounded by the x -axis, part of the curve $y=\left(1-\frac{8}{x^{2}}\right)$, and the ordinates at $x=2 a n d x=4$. If the ordinate at $x=a$ divides
the area into two equal parts, then find a.

- Watch Video Solution

7. The area included between the parabolas $y^{2}=4 x$ and $x^{2}=4 y$ is (in square units) a. $4 / 3$ b. $1 / 3$ c. 16/3 d. $8 / 3$

- Watch Video Solution

8. Find the area bounded by the curve $y=2 x-x^{2}$, and the line $y=x$

- Watch Video Solution

9. The smaller area included between $y=\sqrt{4-x^{2}}, y=x \sqrt{3}$ and the x axis is

- Watch Video Solution

10. For any real t ,
$x=2+\frac{e^{t}+e^{-1}}{2}, y=2+\frac{e^{t}-e^{-t}}{2}$ is a point on the hyperbola $x^{2}-y^{2}-4 x+4 y-1=0$. Find the area bounded by the hyperbola and the lines joining the center to the points corresponding to t_{1} and $-t_{1}$.

- Watch Video Solution

11. The area included between the parabolas $y^{2}=4 x$ and $x^{2}=4 y$ is (in square units) a. $4 / 3$ b. $1 / 3 \mathrm{c} .16 / 3 \mathrm{~d} .8 / 3$

- Watch Video Solution

12. Find the area of the region bounded by the curve $y^{2}=4 x$ and the line $x=3$.

- Watch Video Solution

13. about to only mathematics

- Watch Video Solution

14. Find the area of the region included between $y^{2}=9 x$ and $y=x$.

- Watch Video Solution

15. Find the area bounded by $(x-y)(x+y)=1$ and $x^{2}+y^{2}=4, x>0, y>0$.

- Watch Video Solution

16. Compute the area of the figure bounded by the straight lines $x=0, x=2$ and the curves $y=2^{x}, y=2 x-x^{2}$.

- Watch Video Solution

17. Find the area of the figure bounded by the parabolas $x=-2 y^{2}, x=1-3 y^{2}$.

- Watch Video Solution

18. Compute the area of the region in the first quadrant bounded by the curves $y^{2}=4 x$ and $(x-4)^{2}+y^{2}=16$

- Watch Video Solution

19. The area of the loop between the curve $y=a \sin x$ and x-axis is (A) a
(B) $2 a$ (C) $3 a$ (D) none of these

- Watch Video Solution

20. Find the area of the figure bounded by parabola $y=-x^{2}-2 x+3$, the tangent to it at the point $(2-5)$ and the y-axis.
21. Find the area of the region lying in the first quadrant and included between the curves
$x^{2}+y^{2}=3 a^{2} . x^{2}=2 a y$ and $y^{2}=2 a x . a>0$

- Watch Video Solution

22. about to only mathematics

- Watch Video Solution

23. Find the area of the region enclosed by the curves $y=x \log x$ and $y=2 x-2 x^{2}$.

- Watch Video Solution

24. The area enclosed by the circle $x^{2}+(y+2)^{2}=16$ is divided into two parts by the x-axis. Find by integration, the area of the smaller part.

- Watch Video Solution

25. Find the area bounded by the curves $x=y^{2}$ and $x=3-2 y^{2}$.

- Watch Video Solution

26. Find the area bounded by the curve $2 x^{2}-y=0$ and the lines $x=3, y=1$ and the x-axis all in first quadrant.

- Watch Video Solution

27. Sketch the region bounded by the curve, $y=\frac{1}{2}\left(2-3 x-2 x^{2}\right)$, below the line $y=x+1$, and above the x -axis, also find its area.
28. Using integration find the area of the region bounded by the curves $y=\sqrt{4-x^{2}}, x^{2}+y^{2}-4 x=0$ and the x -axis.

- Watch Video Solution

29. If the area bounded by the curve $y=f(x), x$-axis and the ordinates $x=1$ and $x=b$ is $(b-1) \sin (3 b+4)$, then find $f(x)$.

- Watch Video Solution

30. Find the area bounded by the curve $20 y=7-10 x^{2}+20 x^{3}-10 x^{4}$, the axis of x and the two ordinates, corresponding to the points of maxima of this function.

- Watch Video Solution

31. The area bounded between $y^{2}=x$ and $y=|x|$ is

- Watch Video Solution

32. Find the area of the region bounded by the curves $2 y^{2}=x, 3 y^{2}=x+1, y=0$.

- Watch Video Solution

33. Find the area of the region which contains all points satisfying condition $|x-2 y|+x+2 y \mid \leq 8$ and $x y \geq 2$.

- Watch Video Solution

34. Sketch the region bounded by the curves $y=x^{2}$ and $y=\frac{2}{1+x^{2}}$. Find the area.
35. Calculate the area bounded by the curve $y=x(3-x)^{2}$ the x -axis and the ordinates of the maximum and minimum points of the curve.

- Watch Video Solution

36. In what ratio does the x-axis divide the area of the region bounded by the parabolas $y=4 x-x^{2}$ and $y=x^{2}-x$?

- Watch Video Solution

37. Find the ratio in which the area bounded by the curves $y^{2}=12 x a n d x^{2}=12 y$ is divided by the line $x=3$.

- Watch Video Solution

38. Find the area enclosed by the curves $3 x^{2}+5 y=32 a n d y=|x-2|$.
39. Find the area bounded by the curve $|y|+\frac{1}{2} \leq e^{-|x|}$.

- Watch Video Solution

40. Find the value of t for which the area bounded by the lines $y=0, x=0, x=1$ and the curve $y=t^{2} x^{2}+t x+1$ is minimum.

- Watch Video Solution

41. Find the area bounded by the curves $y=\log x$ and $y=(\log x)^{2}$.

- Watch Video Solution

42. Area bounded by the curves $y=x$ and $y=x^{3}$ is (A) $\frac{1}{2}$ (B) 1 (C) $\frac{3}{2}$ (D)
43. Area bounded by the curves $y=x^{2}-1$ and $x+y=3$ is:

- Watch Video Solution

44. Area of the region bounded by the curve $y=2^{x}, y=2 x-x^{2}, x=0$ and $x=2$ is given by

- Watch Video Solution

45. Area bounded by the curves $y=x^{2}-1$ and $x+y=3$ is:

- Watch Video Solution

46. Find the area of the region bounded by the curves $y=x^{2}+2, y=x, x=0, a n d x=3$.
47. $A O B$ is the positive quadrant of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ in which $O A=a, O B=b$. Then find the area between the $\operatorname{arc} A B$ and the chord $A B$ of the ellipse.

- Watch Video Solution

48. The area bounded by the curve $y=x^{4}-2 x^{3}+x^{2}+3$, the x-axis and the two ordinates corresponding to the points of minimum of this function is (A) $\frac{11}{15}$ (B) $\frac{91}{30}$ (C) $\frac{91}{60}$ (D) none of these

- Watch Video Solution

49. Find the area of the figure bounded by the parabolas $x=-2 y^{2}, x=1-3 y^{2}$.

- Watch Video Solution

50. Find the area of region bounded by $y=-1, y=2, x=y^{3} a n d x=0$.

- Watch Video Solution

51. Find the area of the region bounded by the curve $\mathrm{C}: \mathrm{y}=\tan \mathrm{x}$, tangent drawn to C at $x=p i / 4$, and the x-axis.

- Watch Video Solution

52. Area of the region bounded by the curve $y=\left\{\begin{array}{ll}x^{2} & x<0 \\ x & x \geq 0\end{array}\right.$ and the line $y=4$ is (A) $\frac{10}{3}$ (B) $\frac{20}{3}$ (C) $\frac{50}{3}$ (D) none of these

- Watch Video Solution

53. The area inside the parabola $5 x^{2}-y=0$ but outside the parabola $2 x^{2}-y+9=0 \quad$ is $\quad 12 \sqrt{3}$ squinits $\quad 6 \sqrt{3}$ squnits $\quad 8 \sqrt{3}$ squinits
$4 \sqrt{3}$ squinits

- Watch Video Solution

54. Using integration, find the area of the region bounded by the line $x-y+2=0$, the curve $x=\sqrt{y}$ and y - axis

- Watch Video Solution

55. The area cut off from a parabola by any double ordinate is k time the corresponding rectangle contained by the double ordinate and its distance from the vertex. Find the value of k ?

- Watch Video Solution

56. If the line joining the points $(0,3)$ and $(5,-2)$ is a tangent to the curve $y=\frac{C}{x+1}$, then the value of C is (a) 1 (b) -2 (c) 4 (d) none of these
57. Area lying between the curves $y=\tan x, y=\cot x$ and x-axis, $x \in\left[0, \frac{\pi}{2}\right]$ is (A) $\frac{1}{2} \log 2$ (B) $\log 2$ (C) $2 \log \left(\frac{1}{\sqrt{2}}\right)$ (D) none of these

- Watch Video Solution

58. The area of the region bounded by the curves $y=|x-1|$ and $y=3-|x|$ is (A) 3 sq. units (B) 4 sq. units (C) 6 sq. units (D) 2 sq. units

- Watch Video Solution

59. Find the area bounded by $y=x e^{|x|}$ and lines $|x|=1, y=0$.

- Watch Video Solution

60. The area bounded by the curve $y=x|x|, x$-axis and the ordinates $x=-1 \& x=1$ is:

Watch Video Solution

61. The area $\left\{(x, y) ; x^{2} \leq y \leq \sqrt{x}\right\}$ is equal to $\frac{1}{3}$ b. $\frac{2}{3}$ c. $\frac{1}{6}$ d. none of these

- Watch Video Solution

62. The area enclosed by the curve $y=x^{5}$, the x -axis and the ordinates
$x=-1, x=1$ is (A) 0 (B) $\frac{1}{6}$ (C) $\frac{1}{3}$ (D) none of these

- Watch Video Solution

63. If the area bounded by the curve $y=f(x), x-a x i s$ and the ordinates $x=1$ and $\mathrm{x}=\mathrm{b}$ is $(\mathrm{b}-1) \sin (3 \mathrm{~b}+4)$, then find $\mathrm{f}(\mathrm{x})$.
64. The area bounded by the curve $y=x^{2}$, the x-axis and the line $x=2^{\frac{1}{3}}$ is divided into two equal areas by the line $x=k$. The value of k is (A)
$2^{-\frac{2}{3}}$
(B) $2^{-\frac{1}{3}}$
(C) 1 (D) $2^{\frac{1}{3}}-1$

- Watch Video Solution

65. The area bounded by the curve $y^{2}=9 x$ and the lines $x=1, x=4$ and $y=0$, in the first quadrant, is

- Watch Video Solution

66. The area of the region bouonded by the curve $y=x-x^{2}$ between $x=0$ and $x=1$ is (A) $\frac{1}{6}$ (B) $\frac{1}{3}$ (C) $\frac{1}{2}$ (D) $\frac{5}{6}$

- Watch Video Solution

67. The area of the loop between the curve $y=a \sin x$ and x-axis is (A) a (B) $2 a$ (C) $3 a$ (D) none of these

- Watch Video Solution

68. Area of the region bounded by the curve $y^{2}=4 x, y$-axis and the line $y=3$ is (A) 2 sq. units (B) $\frac{9}{4}$ sq. units (C) $6 \sqrt{3}$ sq. units (D) none of these

- Watch Video Solution

69. Area of the region bounded by the curve $y=\left\{\begin{array}{ll}x^{2} & x<0 \\ x & x \geq 0\end{array}\right.$ and the line $y=4$ is (A) $\frac{10}{3}$ (B) $\frac{20}{3}$ (C) $\frac{50}{3}$ (D) none of these

- Watch Video Solution

70. Area lying in the first quadrant and bounded by the circle $x^{2}+y^{2}=4$ and the lines $x=0$ and $x=2$ is:
71. Area lying between the curves $y^{2}=4 x$ and $y=2 x$ is:

- Watch Video Solution

72. The area bounded by the curves $y=-\sqrt{-x}$ and $x=-\sqrt{-y}$ where $x, y \leq 0$

- Watch Video Solution

73. Area bounded by the curve $x y^{2}=a^{2}(a-x)$ and the y -axis is $\frac{\pi a^{2}}{2}$ squinits (b) πa^{2} squinits $3 \pi a^{2}$ squinits (d) None of these

- Watch Video Solution

74. Find the area bounded by the curves $y=2 x-x^{2}$ and the straight line $y=-x$.
75. Find the area between the curve $y=x \sin x$ and x -axis from $x=0$ to $x=2 \pi$.

Watch Video Solution
76. The area bounded by the x-axis and the curve $y=4 x-y^{2}-3$ id

- Watch Video Solution

77. The area of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is

- Watch Video Solution

78. The area of the region bounded by the curve $y=|x-1|$ and $y=1$ is:
79. about to only mathematics

- Watch Video Solution

80. Area bounded by the parabola $y^{2}=x$ and the line $2 y=x$ is:

- Watch Video Solution

81. The area enclosed by the curve $y^{2}+x^{4}=x^{2}$ is

- Watch Video Solution

82. Area bounded by the curves $y=x^{2}-1$ and $x+y=3$ is:

- Watch Video Solution

83. Area bounded by the parabola $y^{2}=x$ and the line $2 y=x$ is:

- Watch Video Solution

84. Area of the curve $x^{2}+y^{2}=2 a x$ is (A) πa^{2}
(B) $2 \pi a^{2}$
(C) $4 \pi a^{2}$
(D) $\frac{\pi a^{2}}{2}$

- Watch Video Solution

85. Smaller area enclosed by the circle $x^{2}+y^{2}=4$ and the line $x+y=2$ is:

- Watch Video Solution

86. Find the area bounded by the parabola $y=x^{2}+1$ and the straight line $x+y=3$.
87. The area of the region is 1st quadrant bounded by the y-axis, $y=\frac{x}{4}, y=1+\sqrt{x}$, and $y=\frac{2}{\sqrt{x}}$ is

- Watch Video Solution

88. Draw the graph of $y=\cos x$ and $y=\cos 2 x$, on the same axis.

- Watch Video Solution

89. Area between the x-axis and the curve $y=\cos x$, when $0 \leq x \leq 2 \pi$ is:

- Watch Video Solution

90. Prove that the area common to the two parabolas $y=2 x^{2}$ and $y=x^{2}+4 i s \frac{32}{3}$ sq. units.
91. The areas bounded by the curve $y=(\log)_{e} x$ and x-axis and the straight line $x=e$ is a. e sq. units b. 1 sq. units c. $1-\frac{1}{e}$ sq. units d. $1+\frac{1}{e}$ sq. units

- Watch Video Solution

92. Find the area bounded by the curve $y=2 x-x^{2}$, and the line $y=x$

- Watch Video Solution

93. The area bounded by the x-axis, the curve $y=f(x)$, and the lines $x=1, x=b$ is equal to $\sqrt{b^{2}+1}-\sqrt{2}$ for all $b>1$, then $f(x)$ is

- Watch Video Solution

94. Area bounded by the curves $y=x^{2}-1$ and $x+y=3$ is:
95. about to only mathematics

Watch Video Solution

96. Find the area bounded by the curves $y=2 x-x^{2}$ and the straight line $y=-x$.

- Watch Video Solution

97. The area between $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the straight line $\frac{x}{a}+\frac{y}{b}=1$ is
(A) $\frac{1}{2} \pi a b$
(B) $\frac{1}{2} a b$
(C) $\frac{\pi a b}{4}-\frac{a b}{2}$
(D) $\frac{1}{4} a b$
98. Consider curves $y=\frac{1}{x^{2}}, y=\frac{1}{4(x-1)}$. Let α be the value of $a(a>2)$ for which area bounded by curves between $x=2$ and $x=a$ is $1 / a$ is $e^{2}+1$ and β be the of $b \in(1,2)$, for which the area bounded by curves between $\mathrm{x}=\mathrm{b}$ and $x=2$ is $1-\frac{1}{b}$, then

- Watch Video Solution

99. p

- Watch Video Solution

100. The area bounded by the curves $y=\ln x, y=\ln |x|, y=|\ln x|$ and $y=|\ln | x| |$, for $x \in(-1,1)$ is

- Watch Video Solution

101. Area bounded by the curve $y=x^{3}$, the x-axis and the ordinates $x=-2$ and $x=1$ is:

Watch Video Solution

102. The area of the region bounded by the curves $y=|x-1|$ and $y=3-|x|$ is (A) 6 sq. units (B) 2 sq. units (C) 3 sq. units (D) 4 sq. units

- Watch Video Solution

103. The area bounded by the curves $y=\ln x, y=\ln |x|, y=|\ln x|$ and $y=|\ln | x| |$, for $x \in(-1,1)$ is

- Watch Video Solution

104. Area bounded by the curves $y=x^{2}-1$ and $x+y=3$ is:
105. The area of the region bounded by the curves $y=|x-2|, x=1, x=3$ and the x -axis is

- Watch Video Solution

106. Find the area enclosed between the curve $y=x^{2}$, the axis and the ordinates $\mathrm{x}=1$ and $\mathrm{x}=2$.

- Watch Video Solution

107. The parabolas $y^{2}=4 x a n d x^{2}=4 y$ divide the square region bounded by the lines $x=4, y=4$ and the coordinate axes. If S_{1}, S_{2}, S_{3} are the areas of these parts numbered from top to bottom, respectively, then

$$
\begin{equation*}
S_{1}: S_{2} \equiv 1: 1 \tag{d}
\end{equation*}
$$

(b) $\quad S_{2}: S_{3} \equiv 1: 2 \quad S_{1}: S_{3} \equiv 1: 1$
$S_{1}:\left(S_{1}+S_{2}\right)=1: 2$

- Watch Video Solution

108. Let $f(x)$ be a non-negative continuous function such that the area bounded by the curve $y=f(x)$, the x -axis, and the ordinates $x=\frac{\pi}{4} a n d x=\beta>\frac{\pi}{4} i s \beta \sin \beta+\frac{\pi}{4} \cos \beta+\sqrt{2} \beta$. Then $\quad f\left(\frac{\pi}{2}\right)$ is $\left(\frac{\pi}{2}-\sqrt{2}-1\right)$ (b) $\left(\frac{\pi}{4}+\sqrt{2}-1\right)-\frac{\pi}{2}$ (c) $\left(1-\frac{\pi}{4}+\sqrt{2}\right)$

- Watch Video Solution

109. The area enclosed between the curves $y^{2}=x a n d y=|x|$ is (1) $2 / 3$
(2) $1(3) 1 / 6(4) 1 / 3$

- Watch Video Solution

110. The area of the plane region bounded by the curves $x+2 y^{2}=0$ and $x+3 y^{2}=1$ is equal to (1) $\frac{5}{3}$ (2) $\frac{1}{3}$ (3) $\frac{2}{3}$ (4) $\frac{4}{3}$

- Watch Video Solution

111. The area bounded by the curves $y=\sqrt{x}, 2 y+3=x$, and x-axis in the 1st quadrant is 18 sq. units (b) $\frac{27}{4}$ squnits $\frac{4}{3}$ squnits (d) 9 sq. units

- Watch Video Solution

112. The area enclosed between the curves $y=k x^{2}$ and $x=k y^{2}$, $(k>0)$ is 1 sq. units. Then k is

- Watch Video Solution

113. Evaluate: $\int \frac{e^{x}+1}{e^{x}+x} d x$

- Watch Video Solution

114. The function f is such that : $f(x y)=f(x)+f(y), x, y>0$ and $f^{\prime}(1)=2$ and A the area bounded by the curves $y=f(x), x=2$ and
the $\quad \mathrm{x}$-axis, then (A) $f(x)=2 \log _{e} x \quad$ (B) $f(x)=2 \log _{e} x$
$A=2\left(2 \log _{e} 2-1\right)$ (D) $A=4 \log \left(\frac{2}{\sqrt{e}}\right)$

- Watch Video Solution

115. For which of the following values of m is the area of the regions bounded by the curve $y=x-x^{2}$ and the line $y=m x$ equal $\frac{9}{2} ?-4$ (b) -2 (c) 2 (d) 4

- Watch Video Solution

116. Area bounded by the curves $y^{2}=4 x$ and $y=2 x$ is equal to (A) $\int_{0}^{1}(2 \sqrt{x}-2 x) d x$ (B) $\frac{1}{3}$ (C) $\frac{2}{3}$ (D) $\int_{0}^{2}\left(\frac{y}{2}-\frac{y^{2}}{4}\right) d y$

- Watch Video Solution

117. The area of the region bounded by the curve $y=e^{x}$ and lines $x=0$ and $y=e$ is $e-1$ (b) $\int_{1}^{e} 1 n(e+1-y) d y e-\int_{0}^{1} e^{x} d x$ $\int_{1}^{e} 1 n y d y$

- Watch Video Solution

118. Statement-1: The area bounded by the curve $y=x \sin x, \mathrm{x}$-axis and ordinates $x=0$ and $x=2 \pi$ is 4π.Statement- 2 : The area bounded by the curve $y=f(x)$, x-axis and two ordinates $x=a$ and $x=b$ is $\int_{a}^{b}|y| d x$.
(A) Both 1 and 2 are true and 2 is the correct explanation of 1 (B) Both 1 and 2 are true and 2 is not correct explanation of 1 (C) 1 is true but 2 is false (D) 1 is false but 2 is true

- Watch Video Solution

119. Statement-1: The area bounded by the curve $y=2 x^{2}$ and $y=x^{2}+4$ is $\frac{32}{3}$ sq. units.Statement-2: The area bounded by the curves
$x=f(y), x=g(y) \quad$ and \quad two \quad abscissae $\quad y=c \quad$ and $\quad y=d \quad$ is $\int_{c}^{d}|f(y)-g(y)| d y$.
(A) Both 1 and 2 are true and 2 is the correct explanation of 1 (B) Both 1 and 2 are true and 2 is not correct explanation of 1 (C) 1 is true but 2 is false (D) 1 is false but 2 is true

- Watch Video Solution

120. Statement-1: The area bounded by the curves $y=x^{2}$ and $y=\frac{2}{1+x^{2}}$ is $2 \pi-\frac{2}{3}$ Statement- 2 : The area bounded by the curves $y=f(x), y=g(x) \quad$ and two ordinates $\quad x=a \quad$ and $\quad x=b \quad$ is $\int_{a}^{b}[f(x)-g(x)] d x$, if $f(x)>g(x)$.
(A) Both 1 and 2 are true and 2 is the correct explanation of 1 (B) Both 1 and 2 are true and 2 is not correct explanation of 1 (C) 1 is true but 2 is false (D) 1 is false but 2 is true

- Watch Video Solution

121. Let the area bounded by the curve $y=f(x), \mathrm{x}$-axis and the ordinates $x=1$ and $x=a$ be $(a-1) \sin (3 a+4)$.

Statement-1: $f(x)=\sin (3 x+4)+3(x-1) \cos (3 x+4)$.

Statement-2:

$$
y=\int_{g(x)}^{h(x)} f(t) d t
$$

$\frac{d y}{d x}=f(h(x)) h^{\prime}(x)-f(g(x)) g^{\prime}(x)$.
(A) Both 1 and 2 are true
(B) Both 1 and 2 are false
(C) 1 is true but 2 is false
(D) 1 is false but 2 is true

- Watch Video Solution

122. Statement-1: The area of the region $R=\left\{(x, y):|x| \leq|y|\right.$ and $\left.x^{2}+y^{2} \leq 1\right\}$ is $\frac{\pi}{4}$ sq. units.Statement-2: Curves $|y|=|x|$ and $x^{2}+y^{2}=1$ symmetric about both x and y -axis. (A) Both 1 and 2 are true and 2 is the correct explanation of 1 (B) Both 1 and 2 are true and 2 is not correct explanation of 1 (C) 1 is true but 2 is false (D) 1 is false but 2 is true

(D) Watch Video Solution

123. Statement-1: The area bounded by the curves $y=\ln |x|, y$-axis and $y=1-|x|$ is 2 sq. units.Statement-2: Both the curves $y=\log |x|$ and $y=1-|x|$ are symmetric about y-axis. (A) Both 1 and 2 are true and 2 is the correct explanation of $1(\mathrm{~B})$ Both 1 and 2 are true and 2 is not correct explanation of 1 (C) 1 is true but 2 is false (D) 1 is false but 2 is true

- Watch Video Solution

124. Consider the polynomial $\mathrm{f}(x)=1+2 x+3 x^{2}+4 x^{3}$. Let s be the sum of all distinct real roots of $f(x)$ and let $t=|s|$. The real number s lies in the interval.
(a) $\left(-\frac{1}{4}, 0\right)$
(b) $\left(-11,-\frac{3}{4}\right)$
(c) $\left(-\frac{3}{4},-\frac{1}{2}\right)$
(d) $\left(0, \frac{1}{4}\right)$
125. Consider the polynomial $\mathrm{f}(x)=1+2 x+3 x^{2}+4 x^{3}$. Let s be the sum of all distinct real roots of $f(x)$ and let $t=|s|$.

- Watch Video Solution

126. Consider the polynomial $\mathrm{f}(x)=1+2 x+3 x^{2}+4 x^{3}$. Let s be the sum of all distinct real roots of $f(x)$ and let $t=|s|$.

- Watch Video Solution

127. A normal to the curves $x^{2}+k x-y+2=0$ at the point P whose abscissa is 1 is parallel to the line, $y=x$. Now answer the question.The value of k is equal to (A) -3 (B) 1 (C) 0 (D) 2

- Watch Video Solution

128. A normal to the curves $x^{2}+k x-y+2=0$ at the point P whose abscissa is 1 is parallel to the line, $y=x$. Now answer the question. The value of k is equal to
(A) -3 (B) 1 (C) 0 (D) 2

- Watch Video Solution

129. A normal to the curves $x^{2}+k x-y+2=0$ at the point P whose abscissa is 1 is parallel to the line, $y=x$. Now answer the question. The value of k is equal to
(A) -3 (B) 1 (C) 0 (D) 2

- Watch Video Solution

130. Let $f(x)=\left\{\begin{array}{ll}\frac{x^{3}+2 x^{2}-x-2}{x^{3}-2 x^{2}-x+2} & f \text { or }|x|<1 \\ x^{2}+a x+b & f \text { or }|x| \geq 1\end{array}\right.$ be continuous for all x.

Now answer the question:The values of a and b are given by
(A) $a=-\frac{8}{3}, b=-\frac{4}{3}$
(B) $a=\frac{4}{3}, b=-\frac{8}{3}$
(C) $a=-\frac{4}{3}, b=-\frac{8}{3}$
(D) $a=-\frac{4}{3}, b=\frac{8}{3}$

- Watch Video Solution

131.

 Consider the twocurves
$C_{1}: y=1+\cos x$ and $C_{2}: y=1+\cos (x-\alpha)$ for $\alpha \in\left(0, \frac{\pi}{2}\right)$, where Also the area of the figure bounded by the curves C_{1}, C_{2}, and $x=0$ is same as that of the figure bounded by $C_{2}, y=1$, and $x=\pi$. The value of α is

- Watch Video Solution

132. The area of bounded by $e^{\ln (x+1)} \geq|y|,|x| \leq 1$ is....

- Watch Video Solution

133. Let $f(x)=\min \cdot\left[\tan x, \cot x, \frac{1}{\sqrt{3}}\right], x \in\left[0, \frac{\pi}{2}\right]$. If the area bounded by $y=f(x)$ and x -axis is $\ln \left(\frac{a}{b}\right)+\frac{\pi}{6 \sqrt{3}}$, where a, b are coprimes. Then $a b=$.....

- Watch Video Solution

134. If Δ be the area between the curve $y=x^{2}+x-2$ and line $y=2 x$ for which $\left|x^{2}+x-2\right|+|2 x|=\left|x^{2}+3 x-2\right|$ is satisfied, then 9Δ is equal to.....

- Watch Video Solution

135. If Δ be the area in square units of the region bounded by the parabola $y=-x^{2}-2 x+3$, the line tangent to it at the point $P(2,-5)$ and the y -axis, then 3Δ is equal to...

- Watch Video Solution

136. If the area bounded by the curve $y=\cos ^{-1}(\cos x)$ and $y=|x-\pi|$ is $\frac{\pi^{2}}{n}$, then n is equal to...

- Watch Video Solution

137. Let $f(x)=\min \cdot\left\{\tan x, \cot x, \frac{1}{\sqrt{3}}\right\}, \forall x \in\left[0, \frac{\pi}{2}\right]$. If the area bounded by $y=f(x)$ and x-axis is $\ln \left(\frac{a}{b}\right)+\frac{\pi}{6 \sqrt{3}}$, where a and b are coprime, then $a b$ is equal to...

- Watch Video Solution

