©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - KC SINHA ENGLISH

BINOMIAL THEOREM - FOR COMPETITION

Solved Examples

1. Find the coefficient of $x^{-1} \in\left(1+3 x^{2}+x^{4}\right)\left(1+\frac{1}{x}\right)^{8}$

0
 Watch Video Solution

2. about to only mathematics
3. If the greatest term in the expansion of $(1+x)^{2 n}$ has the greatest coefficient if and only if $x \in\left(\frac{10}{11}, \frac{11}{10}\right)$ and the fourth term in the expansion of $\left(\lambda x+\frac{1}{x}\right)^{m}$ is $\frac{n}{4}$, the value of $m \lambda$ is.

- Watch Video Solution

4. If $p+q=1$, then show that $\sum_{r=0}^{n} r^{2}{ }^{\wedge} n C_{r} p^{r} q^{n-r}=n p q+n^{2} p^{2}$.

- Watch Video Solution

5. If $(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}$
$+C_{3} x^{3}+\ldots+C_{n} x^{n}$, prove that
$C_{1}-2 C_{2}+3 C_{3}-\ldots+(-1)^{n-1} n C_{n}=0$.

- Watch Video Solution

6. Find the sum $2 C_{0}+\frac{2^{3}}{2} C_{1}+\frac{2^{3}}{3} C_{2}+\frac{2^{4}}{4} C_{3}++\frac{2^{11}}{11} C_{10}$.

- Watch Video Solution

7. If $(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}$
$+C_{3} x^{3}+\ldots+C_{n} x^{n}$, prove that
$C_{1}-2 C_{2}+3 C_{3}-\ldots+(-1)^{n-1} n C_{n}=0$.

- Watch Video Solution

8. about to only mathematics

- Watch Video Solution

9. Find the greatest term in the expansion oif $(7-5 x)^{11}$, wherex $=\frac{2}{3}$.

- Watch Video Solution

10. Let $R=(5 \sqrt{5}+11)^{2 n+1}$ and $f=R-[R]$ where [] denotes the greatest integer function, prove that $R f=4^{2 n+1}$

- Watch Video Solution

11. The coefficient of $x^{2} y^{4} z^{2}$ in the expansion of $(2 x-3 y+4 z)^{9}$ is

- Watch Video Solution

12. Show that the roots of the equation $a x^{2}+2 b x+c=0$ are real and unequal whre a,b,c are the three consecutive coefficients in any binomial expansion with positive integral index.

- Watch Video Solution

13. Find the coefficient of $x^{9} i s\left(1+3 x+3 x^{2}+x^{3}\right)^{15}$
14. Find the the term of x in $(1+x)^{m}\left(1+\frac{1}{x}\right)^{n}$

- Watch Video Solution

15. If the sum of the binomial coefficients in the expansion of $\left(x+\frac{1}{x}\right)^{n}$ is 64 , then the term independent of x is equal to (A) 10 (B) 20 (C) 30 (D) 40

- Watch Video Solution

16. The sum of the coefficients in the expansion of $\left(2+5 x^{2}-7 x^{3}\right)^{2000}=$ (A) 0 (B) 1 (C) 2 (D) none of these

- Watch Video Solution

17. $(115)^{96}-(96)^{115}$ is divisible by (A) 17 (B) 19 (C) 21 (D) 23

- Watch Video Solution

18. If $\{x\}$ denotes the fractional part of x, then $\left\{\frac{3^{2 n}}{8}\right\}, n \in N$, is

- Watch Video Solution

19. If a is the remainder when 5^{40} is divided by 11 and b is the remainder when 2^{2003} is divided by 17 then the value of $b-a$ is (A) 1 (B) 8 (C) 7 (D) 6

- Watch Video Solution

20.

The
sum
of
the
series
$\frac{1}{1!(n-1)!}+\frac{1}{3!(n-3)!}+\frac{1}{5!(n-5)!}+\ldots .+\frac{1}{(n-1)!1!}$ is $=(\mathrm{A})$
$\frac{1}{n!2^{n}}$ (B) $\frac{2^{n}}{n}$! (C) $\frac{2^{n-1}}{n}$! (D) $\frac{1}{n!2^{n-1}}$

- Watch Video Solution

21. the digit at the units place of the number $(32)^{32}=(A) 0$ (B) 2 (C) 4 (D) 6

- Watch Video Solution

22. In the expansion of $\left(x^{2}+2 x+2\right)^{n}, n \in N$
(A) coefficient of $x=n .2^{n}$
(B) coefficient of $x^{2}=n^{2} 2^{n-1}$
(C) coefficient of $x^{3}=n^{2} 2^{n-2}$
(D) none of these

- Watch Video Solution

23. If $\left(1+2 x+3 x^{2}\right)^{10}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots \ldots .+a_{20} x^{20}$ then (A) $a_{1}=20$ (B) $a_{2}=210$ (C) $a_{3}=1500$ (D) $a_{20}=2^{3.3 \wedge} 7$

- Watch Video Solution

24. Which of the following holds true?
(A) $101^{50}-100^{50}>99^{50}$
(B) $101^{50}-99^{50}<100^{50}$
(C) $(1000)^{1000}>(1000)^{999}$
(D) $(10001)^{999}<(1000)^{1000 .}$

- Watch Video Solution

25. Given that $\left(1+x+x^{2}\right)^{n}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots .+a_{2 n} x^{2 n}$ find
i) $a_{0}+a_{1}+a_{2} \ldots+a_{2 n}$
ii) $\quad a_{0}-a_{1}+a_{2}-a_{3} \ldots+a_{2 n}$
$\left(a_{0}\right)^{2}-\left(a_{1}\right)^{2} \ldots+\left(a_{2 n}\right)^{2}$

- Watch Video Solution

26. If n is a positive integer such that $(1+x)^{n}={ }^{n} C_{0}+{ }^{n} C_{1}+{ }^{n} C_{2} x^{2}+\ldots \ldots .+{ }^{n} C_{n} x^{n}, \quad$ for $\quad \varepsilon R$. Also $.{ }^{n} C_{r}=C_{r}$ On the basis of the above information answer the following questions The value of the series $\sum_{r=1}^{n} r^{2} \cdot C_{r}=$
(A) 1
(B) $(-1)^{\frac{n}{2}} \cdot \frac{n!}{\left(\frac{n}{2!}\right)^{2}}$
(C) $(n-1) \cdot{ }^{2 n} C_{n}+2(2 n)$
(D) $n(n+1) 2^{n-2}$

- Watch Video Solution

27. If n is a positive integer such that $(1+x)^{n}={ }^{n} C_{0}+{ }^{n} C_{1}+{ }^{n} C_{2} x^{2}+\ldots \ldots . .+{ }^{n} C_{n} x^{n}$, for εR. Also ${ }^{.}{ }^{n} C_{r}=C_{r}$ On the basis of the above information answer the following questions The value of the expression
$a-(a-1) C_{1}+(a-2) C_{2}-(a-3) C_{3}+\ldots \ldots+(1)^{n}(a-n) C_{n}=$
(A) 0
(B) $a^{n} \cdot(-1)^{n} \cdot{ }^{2 n} C_{n}$
(C) $[2 a-n(n+1)] \cdot{ }^{2 n} C_{n}$
(D) none of these
28. If n is a positive integer such that $(1+x)^{n}={ }^{n} C_{0}+{ }^{n} C_{1}+{ }^{n} C_{2} x^{2}+\ldots \ldots .+{ }^{n} C_{n} x^{n}$, for εR. Also . ${ }^{n} C_{r}=C_{r}$ On the basis of the above information answer the following questions the value
$\cdot{ }^{m} C_{r} \cdot{ }^{n} C_{0}+{ }^{m} C_{r-1} \cdot{ }^{n} C_{1}+{ }^{m} C_{r-2} \cdot{ }^{n} C_{2}+\ldots+{ }^{m} C_{1} \cdot{ }^{n} C_{r-1}+{ }^{n} C_{0}^{n} C_{r}$ where $\mathrm{m}, \mathrm{n}, \mathrm{r}$ are positive interges and $r<m, r<n=$
(A) . ${ }^{m n} C_{r}$
(B) $\cdot{ }^{m+n} C_{r}$
(C) 0
(D) 1

- Watch Video Solution

29. If in a positive integer such that If a number $a=p+f$ whre p is an integer and $0<f<1$. Here p is called the integral part of a and f its fractional part. Let $n \in N$ and $(\sqrt{3}+1)^{2 n}=p+f$, where p is the integral part and $0<f<1$. On the basis of bove informationi answer teh following question:

The integral part p of $(\sqrt{3}+1)^{2 n}$ is
(A) an even number for al n epsilon N
(B) an odd number for all nepsilon N
(C) anodd or even number according as n is odd or even
(D) an even or odd nuber according as n is odd or even

- Watch Video Solution

30. If in a positive integer such that If a number $a=p+f$ whre p is an integer and $0<f<1$. Here p is called the integral part of a and f its fractional part. Let $n \in N$ and $(\sqrt{3}+1)^{2 n}=p+f$, where p is the integral part and $0<f<1$. On the basis of bove informationi answer teh following question:
$f^{2}+(p-1) f+4^{n}=$
(A) p
(B) $-p$
(C) $2 p$
(D) $-2 p$

- Watch Video Solution

31. If ((x)) represents the least integer greater then x, prove that $\left(\left(\left\{(\sqrt{3}+1)^{2 n}\right\}\right)\right), n \in N$ is divisible by 2^{n+1}

- Watch Video Solution

32. In the expansion of $\left[2-2 x+x^{2}\right]^{9}$ (A) Number of distinct terms is 10
(C) Sum of coefficients is 1 (B) Number of distinct terms is 55 (D) Coefficient of x^{4} is 97

- Watch Video Solution

33. The number of terms free from radical sign in the expansion of $\left(1+3^{\frac{1}{3}}+7^{\frac{1}{7}}\right)^{10}$ is

- Watch Video Solution

34. IF $(1+x)^{p}=3+\frac{8}{3}+\frac{80}{3^{3}}+\frac{240}{3^{4}}+\ldots \ldots . . \infty$, then $(1+x)^{p}=$

Exercise

1. Find the value of $\frac{1}{81^{n}}-\frac{10}{81^{n}} C_{1}+\frac{10^{2}}{81^{n}} C_{2}-\frac{10^{3}}{81^{n}} C_{3}++\frac{10^{2 n}}{81^{n}}$.

Watch Video Solution

2. With the notation $C_{r}={ }^{n} C_{2}=\frac{n!}{r!(n-r)!}$ when n is positive inteer let
$S_{n}=C_{n}-\left(\frac{2}{3}\right) C_{n-1}+\left(\frac{2}{3}\right)^{2} C_{n-2} \pm \ldots \ldots .+(-1)^{n}\left(\frac{2}{3}\right)^{n} \cdot C_{0}$

- Watch Video Solution

3. If $k a n d n$ are positive integers and $s_{k}=1^{k}+2^{k}+3^{k}++n^{k}$, then prove that $\sum_{r=1}^{m} \wedge(m+1) C_{r} s_{r}=(n+1)^{m+1}-(n+1)$.
4. Let $\left(1+x^{2}\right)^{2}(1+x)^{n}=\sum_{k=0}^{n+4} a_{k} x^{k}$. If a_{1}, a_{2} and a_{3} are in arithmetic progression, then the possible value/values of n is/are a. 5 b .4 c .3 d .2

- Watch Video Solution

5. Findthe coefficient of $x^{2} \in\left(x+\frac{1}{x}\right)^{10} \cdot\left(1-x+2 x^{2}\right)$

Watch Video Solution

6. Findthe coefficient of x^{4} in te expansion of $\left(1+x-2 x^{2}\right)^{6}$

- Watch Video Solution

7. If $\left(1-x^{3}\right)^{n}=\sum_{r=0}^{n} a_{r} x^{r}(1-x)^{3 n-2 r}$, then the value of a_{r}, where $n \in N$ is
8. Find the consecutive terms in the binomial expansion oif $(3+2 x)^{7}$ whose coefficients are equal

- Watch Video Solution

9. If $a_{0}, a_{1}, a_{2}, \ldots \ldots . a_{n}$ be the successive coefficients in the expnsion of

$$
\begin{aligned}
& (1+x)^{n} \text { show } \\
& \left(a_{0}-a_{2}+a_{4} \ldots \ldots \ldots\right)^{2}+\left(a_{1}-a_{3}+a_{5} \ldots \ldots \ldots\right)^{2}=a_{0}+a_{1}+a_{2}+\ldots \ldots
\end{aligned}
$$

- Watch Video Solution

10. If n is positive integer show that $9^{n}+7$ is divisible 8

- Watch Video Solution

11. If n is a positive integer, then show tha $3^{2 n+1}+2^{n+2}$ is divisible by 7 .

- Watch Video Solution

12. If $\frac{n C_{0}}{2^{n}}+2 . \frac{n C_{1}}{2^{n}}+3 . \frac{n C_{2}}{2^{n}}+\ldots .(n+1) \frac{n C_{n}}{2^{n}}=16$ then the value of ' n ' is

- Watch Video Solution

13. If $a_{1}, a_{2}, a_{3}, \ldots a_{n+1}$ are in arithmetic progression, then

$$
\begin{align*}
& \sum_{k=0}^{n} \cdot{ }^{n} C_{k \cdot a_{k+1}} \text { is equal to (a) } 2^{n}\left(a_{1}+a_{n+1}\right) \quad \text { (b) } 2^{n-1}\left(a_{1}+a_{n+1}\right) \tag{c}\\
& 2^{n+1}\left(a_{1}+a_{n+1}\right)(\mathrm{d})\left(a_{1}+a_{n+1}\right)
\end{align*}
$$

- Watch Video Solution

14. If $(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\ldots \ldots \ldots+C_{n} x^{n}$, show that 3. $C_{0}+3^{2} \cdot \frac{C_{1}}{2}+3^{3} \cdot \frac{C_{2}}{2}+.+3^{n+1} \cdot \frac{C_{n}}{n+1}=\frac{4^{n+1}-1}{n+1}$

- Watch Video Solution

15. Deduce that: $\sum_{r=0}^{n} \cdot{ }^{n} C_{r}(-1)^{r} \frac{1}{(r+1)(r+2)}=\frac{1}{n+2}$

- Watch Video Solution

16. If P_{4} denote the produt of the binomial coefficients
in the expansion of $(1+x)^{n}$, then $\frac{P_{n+1}}{P_{n}}$ equals

- Watch Video Solution

17. If n is a positive integer, prove that
$\sum_{r=1}^{n} r^{3}\left(\frac{{ }^{n} C_{r}}{{ }^{n} C_{r-1}}\right)^{2}=\frac{(n)(n+1)^{2}(n+2)}{12}$

- Watch Video Solution

18. Find the coefficients of x^{4} in the expansion of $\left(1+2 x+x^{2}\right)^{3}$
19. Find the number of terms in the expansion of $(a+b+c+d+e)^{100}$

- Watch Video Solution

20. If in the expansion of $\left(2 a-\frac{a^{2}}{4}\right)^{9}$ the sum of middle tem sis S , then the following is (are) thrue (A) $S=\left(\frac{63}{32}\right) a^{14}(a+8)$
$S=\left(\frac{63}{32}\right) a^{14}(a-8)$
(C) $\quad S=\left(\frac{63}{32}\right) a^{13}(a-8)$
$S=\left(\frac{63}{32}\right) a^{13}(8-a)$

(Watch Video Solution

21. In the expansion of $(1+x)^{50}$ the sum of the coefficients of odd power of x is (A) 0 (B) 2^{50} (C) 2^{49} (D) 2^{51}

- Watch Video Solution

22. If the coefficients of x^{2} and x^{3} in the expansion o $(3+a x)^{9}$ are the same, then the value of a is $-\frac{7}{9}$ b. $-\frac{9}{7}$ c. $\frac{7}{9}$ d. $\frac{9}{7}$

- Watch Video Solution

23. if the rth term in the expansion of $\left(\frac{x}{3}-\frac{2}{x^{2}}\right)^{10}$ contains x^{4} then r is equal to

- Watch Video Solution

24. I the expansin of $\left(x^{2}+\frac{2}{x}\right)^{n}$ for positive integer n has 13th term independent of x, then the sum of divisors of n is (A) 36 (B) 38 (C) 39 (D)
25. The expansion $\left\{x+\left(x^{3}-1\right)^{1 / 2}\right\}^{5}+\left\{x-\left(x^{3}-1\right)^{1 / 2}\right\}^{5}$ is a polynomial of degree

- Watch Video Solution

26. The coefficient of x^{4} in the expansion of $\left(1+x+x^{2}+x^{3}\right)^{n}$

- Watch Video Solution

27. If $\left(1-x+x^{2}\right)^{n}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots \ldots \ldots+a_{2 n} x^{2 n}$, find the value of $a_{0}+a_{2}+a_{4}+\ldots \ldots .+a_{2 n}$.

- Watch Video Solution

28. If $a_{n}=\sum_{r=0}^{n} \frac{1}{{ }^{n} n C_{r}}$, then $\sum_{r=0}^{n} \frac{r}{{ }^{n} n C_{r}}$ equals $(n-1) a_{n}$ b. $n a_{n}$ c.
$(1 / 2) n a_{n} d$. none of these
29. Find the term independent of x in the expansion of $\left(\sqrt{\frac{x}{3}}+\left(\frac{\sqrt{3}}{2 x^{2}}\right)\right)^{10}$

- Watch Video Solution

30. For integer $n>1$, the digit at unit's place in the number
$\sum_{r=0}^{100} r!+2^{2^{n}}$ ।

- Watch Video Solution

31. If in the expansion of $(1+x)^{m}(1-x)^{n}$, the coefficients of x and x^{2} are 3 and -6 respectively, the value of m and n are

- Watch Video Solution

32. The coefficient of term independent of x in the expansion of
$\left(\sqrt{\frac{x}{3}}+\frac{3}{2 x^{2}}\right)^{10}$ is
(A) $\frac{9}{4}$ (B) $\frac{3}{4}$
(C) $\frac{5}{4}$ (D) $\frac{7}{4}$

- Watch Video Solution

33. Prove that $\frac{C_{1}}{2}+\frac{C_{3}}{3}+\frac{C_{5}}{6}+=\frac{2^{n+1}-1}{n+1}$.

- Watch Video Solution

34. Find
the
coefficient
of
$x^{k} \in 1+(1+x)+(1+x)^{2}++(1+x)^{n}(0 \leq k \leq n)$.

- Watch Video Solution

35. The term independent of x in the expansion of
$\left(1+x+2 x^{2}\right)\left(\frac{3}{2} x^{2}-\frac{1}{3 x}\right)^{9}$ is (A) $\frac{7}{18}$
(B) $\frac{2}{27}$
(C) $\frac{7}{18}+\frac{2}{27}$
(D)
$\left(\frac{7}{18}\right)-\left(\frac{2}{27}\right)$

- Watch Video Solution

36. If the largest interval to which x belongs so that the greatest therm in
$(1+x)^{2 n}$ has the greatest coefficient is $\left(\frac{10}{11}, \frac{11}{10}\right)$ then $n=(A) 9$ (B) 10
(C) 11 (D) none of these

- Watch Video Solution

37. The number of terms in te expansion of
$\left(1+5 x+10 x^{2}+10 x^{3}+x^{5}\right)^{20}$ is (A) 100
(B) 101
(C) 120
(D) none of these

- Watch Video Solution

38. The number of terms in the expansion $\left(x^{2}+\frac{1}{x^{2}}+2\right)^{100}$ is (A) 3200
(B) 102 (C) 201 (D) none of these

- Watch Video Solution

39. The number of terms ins $\left(x^{3}+1+\frac{1}{x^{3}}\right)^{100}$ is (A) 300 (B) 200 (C) 100 (D) 201

(Watch Video Solution

40. The number of terms in the expansion of $\left(x+\frac{1}{x}+1\right)^{n}$ is (A) 2 n (B) $2 n+1$ (C) $2 n-1$ (D) none of these

(Watch Video Solution

41. about to only mathematics
42. The coefficient of $a^{3} b^{6} c$ in the expansionof $(2 a-b+c)^{10}$ is (A) 6720
(B) 840 (C) 10 (D) none of these

- Watch Video Solution

43. Thenumber of distinct terms in the expansion of
$\left(x_{1}+x_{2}+\ldots \ldots .+x_{p}\right)^{n}$ is
(A)..$^{n+p} C_{n}$
(B). ${ }^{n} C_{1}$
(C) $n+1$
(D). ${ }^{n+p-1} C_{p-1}$

- Watch Video Solution

44. If $\{x\}$ denotes the fractional part of ' x ' , then $82\left\{\frac{3^{1001}}{82}\right\}=$
45. The digit at unit's place in $2^{9^{100}}$ is

- Watch Video Solution

46. If $(1+a x)^{n}=1+8 x+24 x^{2}+\ldots$, then $\mathrm{a}=. .$. and $\mathrm{n}=\ldots$.
47. The sum of the coefficients in $\left(1+x-3 x^{2}\right)^{2143}$ is
A. (a) 2^{2143}
B. (b) 0
C. (c) 1
D. (d) -1

Answer: (d)
48. The coefficients fo x^{n} in the expansion of $(1+x)^{2 n}$ and $(1+x)^{2 n-1}$ are in the ratio

- Watch Video Solution

49. If $\frac{1}{1+2 x+x^{2}}=1+a_{1} x+a_{2} x^{2}+\ldots$. then the value of a_{r} is (A) 2 (B) $r+1$ (C) r (D) $2 r$

- Watch Video Solution

50. The coefficients of x^{7} in the expansion of $\left(1-x^{4}\right)(1+x)^{9}$ is (A) 27
(B) -24 (C) 48 (D) -48

- Watch Video Solution

51. If $\left(1+x+x^{2}+x^{3}\right)^{n}=\sum_{r=0}^{3 n} a_{r} x^{r}$ and $\sum_{r=0}^{3 n} a_{r}=k$ and if
$\sum_{r=0}^{3 n} r a_{r}=\frac{\lambda n k}{2}$, the value of λ is

- Watch Video Solution

52. If the number of terms in $\left(x+1+\frac{1}{x}\right)^{n} \mathrm{n}$ being a natural number is 301 the $\mathrm{n}=$
A. (A) 300
B. (B) 100
C. (C) 149
D. (D) 150

Answer: null

53. Find the coefficient of x^{5} in the expansion of $\left(1+x^{2}\right)^{5}(1+x)^{4}$.

- Watch Video Solution

54. Let the co-efficients of x^{\prime} in $(1+x)^{2 n} \&(1+x)^{2 n-1}$ be $\mathrm{P} \& \mathrm{Q}$ respectively then $\left(\frac{P+Q}{Q}\right)^{5}=$

- Watch Video Solution

55. The sum of the coefficients of powers of x int eh expansion of the polynomial $\left(x-3 x^{2}+x^{3}\right)^{99}$ is (A) 0 (B) 1 (C) 2 (D) -1

- Watch Video Solution

56. The sixth term in the expansion of
$\left[\sqrt{\left\{2^{\log \left(10-3^{x}\right)}\right\}}+5 \sqrt{\left\{2^{(x-2) \log 3}\right\}}\right]^{m}$ is equal to 21 , if it is know that the binomial coefficient of the $2^{\text {nd }}, 3^{\text {nd }}$ and $4^{\text {th }}$ terms in the expansion
represents, respectively, the first, third and fifth terms of an A.P. (the symbol \log stand for logarithm tothe base 10). The minimum of expansion is

- Watch Video Solution

57.

A
student
wrote
$(1-x)^{-2}=1+2 x+3 x^{2}+4 x^{3}+\ldots \ldots . f$ or $-2<x<2$ and got
zero marks because
(A) x was allowed to be 0
(B) x was allowed to be -ve
(C) x was allowed to have negative as well as positive values
(D) $|x|$ was greater than 1 for some values of x

- Watch Video Solution

58. If the coefficient of the rth, $(r+1)$ th and $(r+2) t h$ terms in the expansion of $(1+x)^{n}$ are in A.P., prove that $n^{2}-n(4 r+1)+4 r^{2}-2=0$.
59. The two consecutive term in the expansion of $(3+2 x)^{74}$ which have equal cofficients are

- Watch Video Solution

60. If the 21 st and 22 nd terms in the expansin of $(1+x)^{44}$ are equal then x is equal $\mathrm{to}(A) \frac{21}{20}$ (B) $\frac{23}{24}$ (C) $\frac{8}{7}$ (D) $\frac{7}{8}$

- Watch Video Solution

61. If C_{r} stands for . ${ }^{n} C_{r}$ and $\sum_{r=1}^{n} \frac{r . C_{r}}{C_{r-1}}=210$ then $n=$
(A) 19
(B) 20
(C) 21
(D) none of these
62. If $(1+x)^{n}=\sum_{r=0}^{n} a_{2} x^{r}, b_{r}=1+\frac{a_{r}}{a_{r}-1}$
and $\prod_{r=1}^{n} b_{r}=\frac{(101)^{100}}{100!}$, then the value of $\frac{n}{20}$ is

- Watch Video Solution

63. If P_{n} denotes the product of all the coefficients of $(1+x)^{n}$ and $8!P_{n+1}=9^{8} P_{n}$ then n is equal to

- Watch Video Solution

64. If the coefficient of x^{100} is in $1+(1+x)+(1+x)^{2}+(1+x)^{3}+\ldots \ldots \ldots+(1+x)^{n},(n \geq 100) i s^{201}($ then $n(A) 100$ (B) 200 (C) 101 (D) none of these

- Watch Video Solution

65. If $\quad n \frac{C_{0}}{2}-{ }^{n} \frac{C_{1}}{3}+{ }^{n} \frac{C_{2}}{4}-\ldots \ldots .+(-1)^{n} \wedge n \frac{C_{n}}{n+2}=$
$\frac{1}{1999 \times 2000}$ thenn= (A) 1998 (B) 1999 (C) 2000 (D) 2001

- Watch Video Solution

66. Statement-1: If $\sum_{r=1}^{n} r^{3}\left(\frac{{ }^{n} C_{r}}{{ }^{n} C_{r-1}}\right)^{2}=196$, then the sum of the coeficients of powerr of xin the expansion of the polynomial $\left(x-3 x^{2}+x^{3}\right)^{n}$ is -1 .
Statement-2: $\frac{{ }^{n} C_{r}}{.^{n} C_{r-1}}=\frac{n-r+1}{r} \forall n \in N$ and $r \in W$.

(Watch Video Solution

67. If $\left(1+x+x^{2}+x^{3}\right)^{n}=\sum_{r=0}^{3 n} a_{r} x^{r}$ and $\sum_{r=0}^{3 n} a_{r}=k$ and if $\sum_{r=0}^{3 n} r a_{r}=\frac{\lambda n k}{2}$, the value of λ is

- Watch Video Solution

68. If in the expansion of $(1+x)^{n}$ the coefficients of 14 th, 15th and 16th terms are in A.P. then $n={ }^{\prime}(A) 12$ (B) 23 (C) 27 (D) 34

- Watch Video Solution

69. If the four consecutive coefficients in any binomial expansion be a, b, c and d then (A) $\frac{a+b}{a}, \frac{b+c}{b}, \frac{c+d}{c}$ are in H.P.
$(b c+a d)(b-c)=2\left(a c^{2}-b^{2} d\right)$ (C) $\frac{b}{a}, \frac{c}{b}, \frac{d}{c}$ are in A.P. (D) none of these

- Watch Video Solution

70. In the expansion of $(a+b+c)^{10}$ (A) total number of terms in 66 (B) coefficient of $a^{8} b$ cis 90 (C) coefficient of $a^{4} b^{5} c^{3}$ is $0(\mathrm{D})$ none of these

- Watch Video Solution

71. Let $a_{n}=\frac{1000^{n}}{n!}$ for $n \in N$, then a_{n} is greatest, when value of n is

- Watch Video Solution

72. If in the expansion of $(a+b)^{n}, n \varepsilon N$ sum of odd and even terms be α and $\beta \quad$ respectively, then (A) $\quad\left(a^{2}-b^{2}\right)^{n}=\alpha^{2}-\beta^{2}(B)$
$\left(a^{2}-b^{2}\right)^{n}=(\alpha-\beta)^{n}$
$(a+b)^{n}-(a-b)^{n}=4 \alpha \beta(D)$
$(a+b)^{2 n}-(a-b)^{2 n}=4 \alpha \beta$

- Watch Video Solution

73. If the 4 th term in the expansion of $(a x+1 / x)^{n}$ is $5 / 2$, then a. $a=\frac{1}{2}$
b. $n=8$ c. $a=\frac{2}{3}$ d. $n=6$

- Watch Video Solution

74. If in the expansion of $(1+x)^{m}(1-x)^{n}$, the coefficients of x and x^{2} are 3 and -6 respectively, the value of m and n are

Watch Video Solution

75. In the expansion of $\left(x^{2}+1+\frac{1}{x^{2}}\right)^{n}, n \in N$, number of terms is $2 n+1$

- Watch Video Solution

76. If n is a positive integer then ${ }^{\wedge} n C_{r}+{ }^{n} C_{r+1}={ }^{n+1}{ }^{\wedge} C_{r+1}$ Also coefficient of x^{r} in the expansion of $(1+x)^{n}={ }^{n} C_{r}$. In an identity in x , coefficient of similar powers of x on the two sides re equal. On the basis of above information answer the following question: If n is a positive integer then ${ }^{\wedge} n C_{n}+{ }^{n+1} C_{n}+{ }^{n+2} C_{n}+\ldots .+{ }^{n+k} C_{n}=$

$$
\begin{align*}
& \wedge(n+k+1) C_{n+2} \text { (B) ^}(n+k+1) C_{n+1} \text { (C) ^ }(n+k+1) C_{k} \tag{D}\\
& \wedge(n+k+1) C_{n-2} \tag{A}
\end{align*}
$$

77. If n is a positive integer then ${ }^{\wedge} n C_{r}+{ }^{n} C_{r+1}={ }^{n+1}{ }^{\wedge} C_{r+1}$ Also coefficient of x^{r} in the expansion of $(1+x)^{n}={ }^{n} C_{r}$. answer the following question: If n is a positive integer then ${ }^{\wedge} n C_{n}+{ }^{n+1} C_{n}+{ }^{n+2} C_{n}+\ldots . .+{ }^{n+k} C_{n}=(\mathrm{A}){ }^{\wedge}(n+k+1) C_{n+2}$
(B) ${ }^{\wedge}(n+k+1) C_{n+1}$
(C) ${ }^{\wedge}(n+k+1) C_{k}$
(D) ${ }^{\wedge}(n+k+1) C_{n-2}$

- Watch Video Solution

78. If n is a positive integer then ${ }^{\wedge} n C_{r}+{ }^{n} C_{r+1}={ }^{n+1}{ }^{\wedge} C_{r+1}$ Also coefficient of x^{r} in the expansion of $(1+x)^{n}={ }^{n} C_{r}$. answer the following question: If n is a positive integer then

$$
{ }^{\wedge} n C_{n}+{ }^{n+1} C_{n}+{ }^{n+2} C_{n}+\ldots \ldots+{ }^{n+k} C_{n}=(\mathrm{A}) \wedge(n+k+1) C_{n+2}
$$

(B) ${ }^{\wedge}(n+k+1) C_{n+1}$
(C) ${ }^{\wedge}(n+k+1) C_{k}$
(D) ${ }^{\wedge}(n+k+1) C_{n-2}$

- Watch Video Solution

79. If n is a positive integer then

$$
(1+x)^{n}={ }^{n} C_{0} x^{0}+{ }^{n} C_{1} x^{1}+{ }^{n} C_{2}^{2}+\ldots \ldots \ldots+{ }^{n} C_{r} x^{r}=\sum_{r=0}^{n}{ }^{\wedge} n C_{r} x^{r} \text { an }
$$

$$
{ }^{\wedge} n C_{r} x^{r}
$$

On the basis of above information answer the following question: If n is a positive \quad integer \quad then $\frac{1}{(49)^{n}}$ -
$\frac{8}{(49)^{n}}\left(\wedge(2 n) C_{1}\right)+\frac{8^{2}}{(49)^{n}}\left(\wedge(2 n) C_{2}\right)-\frac{8^{3}}{(49)^{n}}\left({ }^{\wedge}(2 n) c_{3}\right)+\ldots \ldots+\frac{8^{2 n}}{(49)}$
$\begin{array}{ll}\text { (A) }-1 \text { (B) } 1 \text { (C) }\left(\frac{64}{49}\right)^{n} & \text { (D) none of these }\end{array}$

(Watch Video Solution

80.

$\sum_{r=0}^{n}(-1)^{r}{ }^{\wedge} n C_{r}\left[\frac{1}{2^{r}}+\frac{3}{2^{2 r}}+\frac{7}{2^{3 r}}+\frac{15}{2^{4 r}}+u p \rightarrow m t e r m s\right]=\frac{2^{m n}-}{2^{m n}\left(2^{n}-\right.}$

- Watch Video Solution

81. Sum of the series $a^{n}+a^{n-1} b+{ }^{n-2} b^{2}+\ldots \ldots \ldots \ldots+a b^{n}$ can be obtained by taking outt a^{n} or b^{n} comon and using the forumula of sum
of $(n+1)$ terms of G.P. N the basis of above information answer the following question: Coefficient
of

$$
\begin{equation*}
x^{50} \in(1+x)^{1000}+x(1+x)^{999}+\ldots \ldots . .+x^{999}(1+x)+x^{1000} \text { is } \tag{A}
\end{equation*}
$$

${ }^{\wedge} 1000 C_{50}(\mathrm{~B}){ }^{\wedge} 1002 C_{50}(\mathrm{C})^{\wedge} 1001 C_{50}(\mathrm{D}) \wedge 1001 C_{49}$

- Watch Video Solution

82. Sum of the series $a^{n}+a^{n-1} b+{ }^{n-2} b^{2}+\ldots \ldots \ldots .+a b^{n}$ can be obtained by taking outt a^{n} or b^{n} comon and using the forumula of sum of $(n+1)$ terms of G.P. answer the following question:Um of coeficients of x^{50} ` $(1+\mathrm{x})^{\wedge} 1000+\mathrm{x}(1+\mathrm{x})^{\wedge} 999+\ldots$.

- Watch Video Solution

83. Sum of the series $a^{n}+a^{n-1} b+{ }^{n-2} b^{2}+\ldots \ldots \ldots .+a b^{n}$ can be obtained by taking outt a^{n} or b^{n} comon and using the forumula of sum of $(n+1)$ terms of G.P. N the basis of above information answer the following question:

Coefficient
$x^{50} \in(1+x)^{1000}+x(1+x)^{999}+\ldots \ldots . .+x^{999}(1+x)+x^{1000}$ is (A)
${ }^{\wedge} 1000 C_{50}(\mathrm{~B}){ }^{\wedge} 1002 C_{50}(\mathrm{C}){ }^{\wedge} 1001 C_{50}(\mathrm{D}){ }^{\wedge} 1001 C_{49}$

- Watch Video Solution

84. In a binomial expansion $(x+y)^{n}$ gretest term means numericaly greatest term and therefore greatest term in $(x-y)^{n}$ and $(x+y)^{n}$ are ame. I frth therm t_{r} be the greatest term in the expansion of $(x+y)^{n}$ whose therms are all ositive, then $t_{r} \geq t_{r+1}$ and $t_{r} \geq t_{=}(r-1)$ i.e. $\frac{t_{r}}{t_{m}} \geq 1$ and $\frac{t_{r}}{t_{r-}} \geq 1$ ON the basis of above information answer the following question: Greatest term in the expansion of $\left(2+3 x 0^{10}\right.$, whernx $=\frac{3}{5}$ is (A) ^ $10 C_{5}\left(\frac{18}{5}\right)^{5}$
${ }^{\wedge} 10 C_{6}\left(\frac{18}{5}\right)^{6}$ (C) ${ }^{\wedge} 10 C_{4}\left(\frac{18}{5}\right)^{4}$ (D) none of these

- Watch Video Solution

85. In a binomial expansion $\left(x_{y}\right)^{n}$ gretest term means numericaly greatest term and therefore greatest term in $(x-y)^{n}$ and $(x+y)^{n}$ are
ame. I frth therm t_{r} be the greatest term in the expansion of $(x+y)^{n}$ whose therms are all ositive, then $t_{r} \geq t_{r+1}$ and $t_{r} \geq t_{=}(r-1) i . e . \frac{t_{r}}{t_{m}} \geq 1$ and $\frac{t_{r}}{t_{r-}} \geq 1$ On the basis of above information answer the following question:If rth term is the greatest term in the expansion $f\left(2-3 x 0^{10}\right.$ then $r=(A) 5$ (B) 6 (C) 7 (D) none of these

- Watch Video Solution

86. In a binomial expansion $\left(x_{y}\right)^{n}$ gretest term means numericaly greatest term and therefore greatest term in $(x-y)^{n}$ and $(x+y)^{n}$ are ame. I frth therm t_{r} be the greatest term in the expansion of $(x+y)^{n}$ whose therms are all ositive, then $t_{r} \geq t_{r+1}$ and $t_{r} \geq t_{=}(r-1) i . e . \frac{t_{r}}{t_{m}} \geq 1$ and $\frac{t_{r}}{t_{r-}} \geq 1$ On the basis of above information answer the following question:The set al values of x for which thegreatest term in teh expnsionof $(1+x)^{30}$ may have the greatest coefficient is (A) $\left(\frac{14}{15}, \frac{15}{14}\right)$ (B) $\left[\frac{15}{16}, \frac{16}{15}\right]$ (C) $\left(\frac{15}{16}, \frac{16}{15}\right)$
none of these
87. Let a, b, c, d be the four consecutive coefficients of the binomial expansion $(1+x)^{n}$ On the basis of above information answer the following question: $\frac{a}{a+b}, \frac{b}{b+c}, \frac{c}{c+d}$ are in (A) A.P. (B) G.P. (C) H.P. (D) none of these

- Watch Video Solution

88. If the four consecutive coefficients in the any binomial expansion be a,b,c,d then prove that: $\frac{a+b}{a}, \frac{b+c}{b}, \frac{c+d}{c}$ are in H.P.

- Watch Video Solution

89. about to only mathematics
90. Assertion: $\quad \sum_{r=0}^{n}(r+1) \cdot{ }^{n} C_{r}=(n+2) 2^{n-1}, \quad$ Reason: $\sum_{r=0}^{n}(r+1) .{ }^{n} C_{r} x^{r}=(1+x)^{n}+n x(1+x)^{n-1}$ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not the correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

91. Assertion: Number of rational terms in the expansion of $\left(2^{\frac{1}{3}}+3^{\frac{1}{2}}\right)^{630}$ is 6 , Reason: If p is a prime number then p^{k} is rational only when k is an integer (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not the correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

92. Assertion: If $(1+a x)^{n}=1+8 x+24^{2}+\ldots \ldots \ldots$. then vaues of a and n are 2 and 4 Reason $\mathbb{I N}$ an identity in x the coefficients of similar powers of x on the two sides are equal. (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

93. Assertion: Sum of coefficient of the polynomiasl ${ }^{`}\left(1+3 x^{\wedge} 2-5 x^{\wedge} 3\right)^{\wedge} 2001$ is
-1. Reason: Sum of coefficients of a polynomial in x can be obtained by putting $\mathrm{x}=1$ in the polynomial. (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

94. Assertion: $\quad \sum_{r=0}^{n}(r+1) \cdot{ }^{n} C_{r}=(n+2) 2^{n-1}, \quad$ Reason: $\sum_{r=0}^{n}(r+1) .{ }^{n} C_{r} x^{r}=(1+x)^{n}+n x(1+x)^{n-1}$ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not the correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

95. Assertion: If n is an even positive integer n then
$\sum_{r=1}^{n-1} \frac{1}{\lfloor r\lfloor n-r}=\frac{2^{n-1}}{\lfloor n}$.
Reason:
${ }^{\wedge} n C_{1}+{ }^{n} C_{3}+\ldots \ldots \ldots+{ }^{n} C_{n-1}=2^{n-1}$ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not the correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

96. Assertion: If n is an even positive integer n then $\sum_{r=0}^{n}$
$\frac{{ }^{n} C_{r}}{r+1}=\frac{2^{n+1}-1}{n+1}$, Reason : $\sum_{r=0}^{n} \frac{{ }^{n} C_{r}}{r+1} x^{r}=\frac{(1+x)^{n+1}-1}{n+1}$ (A) Both
A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

97. Assertion: The coefficient of x^{4} in $\left(1+x+x^{2}+x^{3}\right)^{n}$ is
${ }^{\wedge}{ }_{n} C_{4}+{ }^{n} C_{2}+{ }^{n} C_{1} \cdot{ }^{n} C_{2}$,
Reason:
$\left(1+x+x^{2}+x^{3}\right)^{n}=(1+x)^{n}\left(1+x^{2}\right)^{n}$ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

98. Let the coefficients of $(2 r+1)$ th and $(r+2)$ th terms be equal. Assertion: $r=15$ Reason : ${ }^{\wedge} n C_{x}={ }^{I} n C_{y} \rightarrow x+y=n(\mathrm{~A})$ Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

99. Let $\mathrm{n} \in \mathrm{N}$ and $f(n)=2^{5 n+5}-31 n-32$ Assertion: $f(n)$ is divisible by 961, Reason : $2^{5 n}=(1+31)^{n}$ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

100. If $a_{n}=\sum_{r=0}^{n} \frac{1}{{ }^{\wedge} n C_{r}}$, then $\sum_{r=0}^{n} \frac{r}{{ }^{n} n C_{r}}$ equals $(n-1) a_{n}$ b. $n a_{n}$ c. $(1 / 2) n a_{n}$ d. none of these
101. If in the expansion of $(1+x)^{m}(1-x)^{n}$, the coefficients of x and x^{2} are 3 and -6 respectively, the value of m and n are

- Watch Video Solution

102. For any positive integer (m, n) (with $n \geq m$), Let $\binom{n}{m}=.{ }^{n} C_{m}$

Prove that
$\binom{n}{m}+2\binom{n-1}{m}+3\binom{n-2}{m}+\ldots+(n-m+1)\binom{m}{m}=$
($\mathrm{n}+2, \mathrm{~m}+2$)

- Watch Video Solution

103. Prove that
$\binom{n}{r}+2\binom{n}{r-1}+\binom{n}{r-2}=\binom{n+2}{r}$
104. In the binomial expansion of $(a-b)^{n} \geq 5$, the sum of the 5th and 6th term is zero. Then a / b equals $(n-5) / 6$ b. $(n-4) / 5$ c. $n /(n-4)$ d. $6 /(n-5)$

- Watch Video Solution

105. The sum $\sum_{i=0}^{m}((10) c,(i))\binom{20}{m-1}$, where $\binom{p}{q}=0$ if $p<q$, is maximum when m is equal to (A) 5 (B) 10 (C) 15 (D) 20

- Watch Video Solution

106. The coefficient of x^{24} in
$\left(1+x^{2}\right)^{12}\left(1+x^{12}\right)\left(1+x^{24}\right)$ is

- Watch Video Solution

107. If n and k are positive integers, show that $2^{k}(n C 0)(n k)-2^{k-1}(n C 1)(n-1 C k-1)+2^{k-2}(n C 2)((n-2 k-2))$ stands for ${ }^{\wedge} n C_{k}$.

- Watch Video Solution

108. If ${ }^{\wedge} n-1 C_{r}=\left(k^{2}-3\right)^{n} C_{r+1}$, thenk $\in(-\infty,-2]$ b. $[2, \infty)$ c.
$[-\sqrt{3}, \sqrt{3}]$ d. $(\sqrt{3}, 2]$

- Watch Video Solution

109.

The
value
of
$\binom{30}{0}\binom{30}{10}-\binom{30}{1}\binom{30}{11}+(302)(3012)++(3020)(3030)=\quad$ а.
^ $60 C 20$ b. ^ $30 C 10 \mathrm{c} .{ }^{\wedge} 60 C 30 \mathrm{~d} .{ }^{\wedge} 40 C 30$

- Watch Video Solution

