©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - KC SINHA ENGLISH

CARTESIAN SYSTEMS OF RECTANGULAR COORDINATES FOR BOARDS

Solved Examples

1. In which quadrant do the points lie: $(5,-4)$

- Watch Video Solution

2. In which quadrant do the points lie: $(-3,-2)$
3. In which quadrant do the points lie: $(4,3)$

- Watch Video Solution

4. In which quadrant do the points lie: $(-5,2)$

- Watch Video Solution

5. In which quadrant do the points lie: $(0,-3)$

- Watch Video Solution

6. Plot the following points on a graph paper : $(3,4)$ (ii) $-2,3)$
$(-5,-2)$ (iv) $(4,-3)$

- Watch Video Solution

7. Plot the points ($-2,-3$)

- Watch Video Solution

8. Plot the points $(-3,0)$

- Watch Video Solution

9. Where does a point having y-coordinate -2 lie?

- Watch Video Solution

10. If three vertices of a rectangle or $(0,0),(2,0)$ and $(0,3)$, find the coordinates of the fourth vertex.

- Watch Video Solution

11. The base of an equilateral triangle with side 20 cm lies along x-axis such that the mid-point of the base is at the origin. Find the vertices of the triangle

- Watch Video Solution

12. Prove that the distance of the point $(a \sin \alpha, a \sin \alpha)$ from the origin is independent of α.

- Watch Video Solution

13. Let $A(6,-1), B(1,3)$ and $C(x, 8)$ be three points such that $\mathrm{AB}=\mathrm{BC}$, then the vlue of x are

- Watch Video Solution

14. Using distance formula, show that the points $(1,5),(2,4)$ and $(3,3)$ are collinear.

- Watch Video Solution

15. about to only mathematics

- Watch Video Solution

16. If the segments joining the points $A(a, b)$ and $B(c, d)$ subtends an angle θ at the origin, prove that: $\theta=\frac{a c+b d}{\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)}$

- Watch Video Solution

17. Find the circumcentre of the triangle whose vertices are $(-2,-3),(-1,0)$ and ($7,-6$). Also find the radius of the circumircle.
18. The opposite vertices of a square are $(2,6)$ and $(0,-2)$. Find the coordinates of the other vertices.

- Watch Video Solution

19. Two vertices of an equilateral triangle are $(0,0)$ and $(0,2 \sqrt{3})$. Find the third vertex

- Watch Video Solution

20. Prove that the points $(-4,-1),(-2,-4),(4,0)$ and $(2,3)$ are the vertices of a rectangle.

- Watch Video Solution

21. Using distance formula, prove the apollonius' theorem that is in $\Delta A B C, A B^{2}+A C^{2}=2\left(A D^{2}+B D^{20}\right)$, where D is the middle point of $B C$.

- Watch Video Solution

22. Find the coordinates of the point which divides the line segment joining the points $(5,-2)$ and $(9,6)$ internally in the ratio3: 1

- Watch Video Solution

23. The coordinates of one end of a diameter of a circle are ($5,-7$). If the coordinates of the centre be $(7,3)$ find the coordinates of the other end of the diameter.

- Watch Video Solution

24. $A(1,1)$ and $B(2,-3)$ are two points and D is a point on AB produced towards B such that $A D=3 A B$. Find the coordinates of D .

- Watch Video Solution

25. Find the coordinates of points which trisect the line segment joining $(1,-2) \operatorname{and}(-3,4)$.

- Watch Video Solution

26. P, Q and R are three collinear points. P and Q are $(3,4)$ and $(7,7)$ respectively, and $P R=10$ units. Find the coordinates of R.

- Watch Video Solution

27. Find the ratio in which the point $(2, y)$ divides the line segment joining $(4,3)$ and $(6,3)$ and hence find the value of y.
28. Find the ratio in which the line segment joining $(2,-3)$ and $(5,6)$ is divided by the y-axis. Also find the point of division.

- Watch Video Solution

29. Determine the ratio in which the straight line $x-y-2=0$ divides the line segment joining $(3,-1)$ and $(8,9)$.

- Watch Video Solution

30. If $(-3,2),(1,-2)$ and $(5,6)$ are the mid-points of the sides of a triangle, find the coordinates of the vertices of the triangle.

- Watch Video Solution

31. Find the centroid of the trianlge whose vertices are $(-1,4),(5,2)$ and ($-1,3$)

- Watch Video Solution

32. Find the coordinates of the centreof the circle inscribed in the triangle whose vertices are $(7,-36),(7,20)$ and $(-8,0)$

- Watch Video Solution

33. Prove that the centroid of any triangle is the same as the centroid of the triangle formed by joining the middle points of its sides

- Watch Video Solution

34. Show that the quadrilateral with vertices
$(3,2),(0,5),(-3,2),(0,-1)$ is square.
35. If x coordinates of two points B and C are the roots of equation $x^{2}+4 x+3=0$ and their y coordinates are the roots of equation $x^{2}-x-6=0$. If x coordinate of B is less than x coordinate of C and y coordinate of B is greater than the y coordinate of C and coordinates of a third point A be (3, -5), find the length of the bisector of the interior angle at A .

- Watch Video Solution

36. If the points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$ be the three consecutive vertices of a parallelogram, find the coordinates of the fourth vertex.

- Watch Video Solution

37. about to only mathematics
38. Find the area of the triangle whose vertices A, B, C are respectively, $(3,4),(-4,3)$ and $(8,6)$.

- Watch Video Solution

39. Find the area of the quadrilateral whose vertices are $(-3,2),(5,4),(7,-6)$ and $(-5,-4)$

D Watch Video Solution

40. Find the area of the pentagon whose vertices are $(4,3),(-5,6),(0,-7),(3,-6),(-7,-2)$
41. Show that the points $(3,3),(h, 0)$ and $(0, k)$ are collinear if $\frac{1}{h}+\frac{1}{k}=\frac{1}{3}$

Watch Video Solution

42. If $(1,4)$ is the centroid of a triangle and the coordinates of its any two vertices are $(4,-8)$ and $(-9,7)$, find the area of the triangle.

- Watch Video Solution

43. The area of a triangle is 5 . Two of its vertices are $(2,1)$ and $(3,-2)$. The third vertex lies on $y=x+3$. Find the third vertex.

- Watch Video Solution

44. The coordinates of points A, B, C and P are $(6,3),(-3,5),(4,-2)$ and (x, y) respectively, prove that
$\frac{\Delta P B C}{\Delta A B C}=\frac{x+y-2}{7}$

- Watch Video Solution

45. Thevertices of a triangle ABC are $A(-7,8), B(5,2)$ and $C(11,0)$. If
$\mathrm{D}, \mathrm{E}, \mathrm{F}$ are the mid-points of the sides $B C, C A$ and $A B$ respectively, show that $\triangle A B C=4 \Delta D E F$.

- Watch Video Solution

46. The coordinates of points P, Q, R and S are $(-3,5),(4,-2),(p, 3 p)$ and $(6,3)$ respectively, and the ares of $\triangle P Q R$ and $\triangle Q R S$ are in ratio 2:3. Find p.

- Watch Video Solution

47. The coordinates of two poitns A and B are $(3,4)$ and $(5,-2)$, respectively. Find the coordintes of points P if $P A=P B$ and area of
$\triangle P A B$ is 10 sq.unit.

- Watch Video Solution

48. If A, B, C, D are points whose coordinates are $(-2,3),(8,9),(0,4)$ and $(3,0)$ respectively, find the ratio in which $A B$ is divided by $C D$.

- Watch Video Solution

49. If the vertices of a triangle having integral coordinates. Prove that triangle can't be equileteral .

- Watch Video Solution

50. prove that the area of a triangle is four times the area of the triangle formed by joining the mid-points of its sides.
51. Find the locus of a point at which the angle subtended by the line segment joining $(1,2)$ and $(-1,3)$ is a right angle.

- Watch Video Solution

52. Find the locus of a point such that the sum of its distances from the points $(0,2) \operatorname{and}(0,-2)$ is6.

- Watch Video Solution

53. Find the equation of the locus of a point which moves so that its distance from the x-axis is double of its distance from the y-axis.

- Watch Video Solution

54. If the coordinates of a variable point P are $(a \cos \theta, b \sin \theta)$, where θ is a variable quantity, then find the locus of P.

- Watch Video Solution

55. $A B$ is a variable line sliding between the coordinate axes in such a way that A lies on the x-axis and B lies on the y-axis. If P is a variable point on $A B$ such that $P A=b, P b=a$, and $A B=a+b$, find the equation of the locus of P.

- Watch Video Solution

56. If O be origin and A is a point on the locus $y^{2}=8 x$.find the locus of the middle point of $O A$

- Watch Video Solution

57. A and B are two fixed points. Draw the locus of a point P such that angle $A P B=90^{\circ}$.

- Watch Video Solution

58. A straight line segment of length/moves with its ends on two mutually perpendicular lines. Find the locus of the point which divides the line segment in the ratio 1:2

- Watch Video Solution

59. Describe the locus of the point (x, y) satisfying the equation $(x-2)^{2}+(y-3)^{2}=25$

- Watch Video Solution

60. Describe the locus of the point (x, y) satisfying the equation $x-y=0$

Watch Video Solution

61. Examine whether point $(2,-5)$ lies on the curve $x^{2}+y^{2}-2 x+1=0$

- Watch Video Solution

Exercise

1. In which quadrant do the following points lies: $(10,-3)$

- Watch Video Solution

2. In which quadrant do the following points lies: $(-4,-6)$
3. In which quadrant do the following points lies: $(-8,6)$

- Watch Video Solution

4. in which quadrant $\left(\frac{3}{2}, 5\right)$ lies

- Watch Video Solution

5. In which quadrant do the following points lies: $(0,-5)$

- Watch Video Solution

6. Plot the points in a rectangular coordinate system: $(4,5)$

- Watch Video Solution

7. Plot the points in a rectangular coordinate system: ($-2,7$)

- Watch Video Solution

8. Plot the points in a rectangular coordinate system: ($-2,-7$)

- Watch Video Solution

9. Plot the points in a rectangular coordinate system: $(6,-2)$

- Watch Video Solution

10. Plot the points in a rectangular coordinate system: $(-4,2)$

- Watch Video Solution

11. Plot the points in a rectangular coordinate system: $(4,0)$
12. Where does a point having y-coordinate -5 lie?

- Watch Video Solution

13. If three vertices of a rectangle are $(-2,0),(2,0),(2,1)$, find the coordinates of the fourth vertex

- Watch Video Solution

14. The base of an equilateral triangle with side $2 a$ lies along the yaxis such that the midpoint of the base is at the origin. Find vertices of the triangle.

- Watch Video Solution

15. Let ABCD be a rectangle such that $A B=10$ units and $B C=8$ units. Taking AB and AD as x and y axis respectively, find the coordinates of A, B, C and D.

- Watch Video Solution

16. Find the distance between the pair of points: $(0,0),(-5,12)$

- Watch Video Solution

17. Find the distance between the pair of points: $(4,5),(-3,2)$

- Watch Video Solution

18. Examine whether the points $(1,-1),(-5,7)$ and $(2,5)$ are equidistant from the point $(-2,3)$?
19. Find a if the distance between $(a, 2)$ and $(3,4)$ is 8 .

- Watch Video Solution

20. A line is of length 10 units and one of its ends is $(-2,3)$. If the ordinate of the other end is 9 , prove that the abscissa of the other end is 6 or -10

- Watch Video Solution

21. The distance between the points $(a \cos \alpha, a \sin \alpha)$ and ($a \cos \beta, a \sin \beta$) where $\mathrm{a}>0$

- Watch Video Solution

22. Find the distance between the points : $\left(a t_{1}^{2}, 2 a t_{1}\right)$ and $\left(a t_{2}^{2}, 2 a t_{2}\right)$
23. Find the distance between the points: $(a-b, b-a),(a+b, a+b)$

- Watch Video Solution

24. Find the distance between the points : $(\cos \theta, \sin \theta),(\sin \theta, \cos \theta)$

- Watch Video Solution

25. Find a point on the x-axis which is equidistant from the points $(7,6)$ and $(-3,4)$.

- Watch Video Solution

26. The point on the y-axis which is equidistant from the points (3,2) and $(-5,-2)$ is
27. Find the point on x-axis which is equidistant from the pair of points: $(7,6)$ and $(3,4)$

- Watch Video Solution

28. Find a point on y-axis which is equidistant from the points $(5,-2)$ and ($-3,2$).

- Watch Video Solution

29. Using distance formula, examine whether the sets of points are collinear: $(3,5),(1,1),(-2,-5)$

- Watch Video Solution

30. Using distance formula, examine whether the sets of points are collinear : $(5,1),(1,-1),(11,4)$

Watch Video Solution

31. Using distance formula, examine whether the sets of points are collinear : $(0,0),(9,6),(3,2)$

- Watch Video Solution

32. Using distance formula, examine whether the sets of points are collinear : ($-1,2$), (5, 0), (2, 1)

- Watch Video Solution

33. If $A \equiv(6,1), B \equiv(1,3), C \equiv(x, 8)$, find the value of x such that $A B=B C$
34. Prove that the distance between the points $(a+r \cos \theta, b+r \sin \theta)$ and (a, b) is independent of θ.

- Watch Video Solution

35. Use distance formula to show that the points $(\operatorname{cosec} 2 \theta, 0),\left(0, \sec ^{2} \theta\right)$ and $(1,1)$ are collinear.

- Watch Video Solution

36. If the point (x, y) is equidistant from the points $(2,3)$ and $(6,-1)$, find the relation between x and y.

- Watch Video Solution

37. If the point $P(x, y)$ be equidistant from the points $(a+b, b-a)$ and $(a-b, a+b)$, prove that $\frac{a-b}{a+b}=\frac{x-y}{x+y}$.

- Watch Video Solution

38. Show that the points $(3,4),(8,-6)$ and $(13,9)$ are the vertices of a right angled triangle.

- Watch Video Solution

39. Determine the type (isosceles, right-angled, right-angled isosceles, equilateral, scalence) of the triangles whose vertices are:
$(1,1),(-\sqrt{3}, \sqrt{3}),(-1,-1)$

- Watch Video Solution

40. Determine the type (isosceles, right-angled, right-angled isosceles, equilateral, scalene) of the triangles whose vertices are: $(0,2),(7,0),(2,5)$

(Watch Video Solution

41. Determine the type (isosceles, right-angled, right-angled isosceles, equilateral, scalence) of the triangles whose vertices are: $(-2,5),(7,10),(3,-4)$

- Watch Video Solution

42. Determine the type (isosceles, right-angled, right-angled isosceles, equilateral, scalene) of the triangles whose vertices are: $(4,4),(3,5),(-1,-1)$

- Watch Video Solution

43. Determine the type (isosceles, right-angled, right-angled isosceles, equilateral, scalence) of the triangles whose vertices are: $(1,2 \sqrt{3}),(3,0),(-1,0)$

(D) Watch Video Solution

44. Determine the type (isosceles, right-angled, right-angled isosceles, equilateral, scalence) of the triangles whose vertices are: $(0,6),(-5,3),(3,1)$

- Watch Video Solution

45. If $A\left(a t^{2}, 2 a t\right), B\left(\frac{a}{t^{2}},-\frac{2 a}{t}\right)$ and $C(a, 0)$ be any three points, show that $\frac{1}{A C}+\frac{1}{B C}$ is independent of t.

- Watch Video Solution

46. If the two vertices of an equilateral triangle be $(0,0),(3, \sqrt{3})$, find the third vertex.

- Watch Video Solution

47. Find the circumcentre and circumradius of the triangle whose vertices are $(-2,3),(2,-1)$ and $(4,0)$.

- Watch Video Solution

48. The vertices of a triangle $A B C$ are $A(0,0), B(2,-1)$ and $C(9,2)$, find $\cos B$.

- Watch Video Solution

49. The centre of a circle is $(2 x-1,3 x++1)$ and radius is 10 units.

Find the value of x if the circle passes through the point $(-3,-1)$.
50. Prove that the point $(4,3),(6,4),(5,6)$ and $(3,5)$ asre the vertices of a square.

- Watch Video Solution

51. Prove that the points $(3,2),(6,3),(7,6)$ and $(4,5)$ are the vertices of a parallelogram. Is it a rectangle?

- Watch Video Solution

52. Prove that the points $(6,8),(3,7),(-2,-2),(1,-1)$ are the vertices of a parallelogram.

- Watch Video Solution

53. Prove that the points $(4,8),(0,2)(3,0)$ and $(7,6)$ are the vertices of a rectangle.

- Watch Video Solution

54. Show that the points $A(1,0), B(5,3), C(2,7)$ and $D(-2,4)$ are the vertices of a rhombus.

- Watch Video Solution

55. $A(-4,0)$ and $B(-1,4)$ are two given points C and D are poinsts which are symmetric to the given points A and B respectively with respect to y-axis. Calculate the perimeter of the trapezium $A B C D$.

- Watch Video Solution

56. A line segement AB through the point $A(2,0)$ which makes an angle of 30^{0} with the positive direction of x-axis is rotated about A in anticlockwise direction through an angle of 15^{0}. If C be the new position of point $B(2+\sqrt{3}, 1)$, find the coordinates of C.

- Watch Video Solution

57. The point $(1,-2)$ is reflected in the x-axis and then translated parallel to the positive direction of x-axis through a distance of 3 units, find the coordinates of the point in the new position.

- Watch Video Solution

58. The line segment joining $A(3,0)$ and $B(5,2)$ is rotated about A in the anticlockwise direction through an angle of 45° so that B goes to C. If D is the reflection of C in y-axis, find the coordinates of D.
59. Let $A B C D$ be a rectangle and P be any point in its plane. Show that $P A^{2}+P C^{2}=P B^{2}+P D^{2}$ using coordinate geometry.

Watch Video Solution

60. Prove analytically that the diagonals of a rectangle are equal

- Watch Video Solution

61. Prove analytically that the sum of square of the diagonals of a rectangle is equal to the sum of squares of its sides.

- Watch Video Solution

62. Find the coordinates of the point which divides the line segment joining $(2,4)$ and $(6,8)$ in the ratio1: 3 internally and externally.
63. Find the coordinates of the points which trisect the line segment joining the points $(2,3)$ and $(6,5)$.

- Watch Video Solution

64. $A(1,4)$ and $B(4,8)$ are two points. P is a point on $A B$ such that $A P=A B+B P$. If $A P=10$, find the coordinates of P.

- Watch Video Solution

65. The line segment joining $A(2,3)$ and $B(-3,5)$ is extended through each end by a length equal to its original length. Find the coordinates of the new ends.

- Watch Video Solution

66. The line segment joining $A(6,3)$ to $B(-1,-4)$ is doubled in length by having its length added to each end. Find the coordinates of the new ends.

- Watch Video Solution

67. The coordinatse of two points A and B are $(-1,4)$ and $(5,1)$, respectively. Find the coordinates of the point P which lie on extended line $A B$ such that it is three times as far from B as from A.

- Watch Video Solution

68. Find the distance of that point from the origin which divides the line segment joining the points $(5,-4)$ and $(3,-2)$ in the ratio $4: 3$.

- Watch Video Solution

69. The coordinates of the middle points of the sides of a triangle are $(1,1),(2,3)$ and $(4,1)$, find the coordinates of its vertices.

- Watch Video Solution

70. $A(1,-2)$ and $B(2,5)$ are two points. The lines $O A, O B$ are produced to C and D respectively, such that $O C=2 O A$ and $O D=2 O B$. Find $C D$.

- Watch Video Solution

71. Find the lengths of the medians of a triangle whose vertices are $A(-1,3), B(1,-1)$ and $C(5,1)$.

- Watch Video Solution

72. If $A(1,5), B(-2,1)$ and $C(4,1)$ be the vertices of $\triangle A B C$ and internal bisector of $\angle A$ meets $B C$ at D, find $A D$.

Watch Video Solution

73. If the mid-point of the line joining $(3,4)$ and $(k, 7)$ is (x, y) and $2 x+2 y+1=0$ find the value of k.

- Watch Video Solution

74. One end of a diameterof a circle is at $(2,3)$ and the centre is $(-2,5)$, find the coordinates of the other end of the diameter.

- Watch Video Solution

75. If the point $C(-1,2)$ divides internally the line segment joining $A(2,5)$ and B in ratio 3:4, find the coordinates of B .
76. Find the ratio in which $(-8,3)$ divides the join of points
(2, -2) and ($-4,1$) Externally.

- Watch Video Solution

77. In what ratio does the x-axis divide the line segment joining the points
$(2,-3)$ and $(5,6)$?

- Watch Video Solution

78. Find the ratio in which the line segment joining of the points $(1,2)$ and $(-2,3)$ is divided by the line $3 x+4 y=7$

- Watch Video Solution

79. Find the centroid and incentre of the triangle whose vertices are $(2,4),(6,4),(2,0)$.

- Watch Video Solution

80. The vertices of a triangle are at $(2,2),(0,6)$ and $(8,10)$. Find the coordinates of the trisection point of each median which is nearer the opposite side.

- Watch Video Solution

81. Two vertices of a triangle are $(1,4)$ and $(5,2)$. If its centroid is $(0,-3)$, find the third vertex.

- Watch Video Solution

82. The coordinates of centroid of a triangle are $(\sqrt{3}, 2)$ and two of its vertices are $(2 \sqrt{3},-1)$ and $(2 \sqrt{3}, 5)$. Find the third vertex of the triangle.

- Watch Video Solution

83. Find the centroid of the triangle $A B C$ whose vertices are $A(9,2), B(1,10)$ and $C(-7,-6)$. Find the coordinates of the middle points of its sides and hence find the centroid of the triangle formed by joining these middle points. Do the two triangles have same centroid?

- Watch Video Solution

84. If $(1,2),(0,-1)$ and $(2,-1)$ are the middle points of the sides of a triangle, find the coordinates of its centroid.

- Watch Video Solution

85. Find the incentre of the triangle with vertices $A 91, \sqrt{3}), B(0,0)$ and $C(2,0)$.

- Watch Video Solution

86. The mid-points of the sides of a triangle are $\left(\frac{1}{2}, 0\right),\left(\frac{1}{2}, \frac{1}{2}\right)$ and $\left(0, \frac{1}{2}\right)$. Find the coordinates of the incentre.

- Watch Video Solution

87. Two vertices of a triangle are $A(2,1)$ and $B(3,-2)$. The third vertex C lies on the line $y=x+9$. If the centroid of $\triangle A B C$ lies on y-axis, find the coordinates of C and the centroid.

- Watch Video Solution

88. Prove that the points $(-2,-1),(1,0),(4,3)$ and $(1,2)$ are the vertices of a parallelogram.

(D) Watch Video Solution

89. Show that the points $A(1,0), B(5,3), C(2,7)$ and $D(-2,4)$ are the vertices of a rhombus.

- Watch Video Solution

90. Prove that the points $(4,8),(0,2)(3,0)$ and $(7,6)$ are the vertices of a rectangle.

- Watch Video Solution

91. Prove that the points $(4,3),(6,4),(5,6)$ and $(3,5)$ are the vertices of a square.

- Watch Video Solution

92. If $(6,8),(3,7)$ and $(-2,-2)$ be the coordinates of the three consecutive vertices of a parallelogram, find the coordinates of the fourth vertex.

- Watch Video Solution

93. Three consecutive vertices of a rhombus are $(5,3),(2,7)$ and $(-2,4)$. Find the fourth vertex

- Watch Video Solution

94. A quadrilateral has the vertices at the points $(-4,2),(2,6),(8,5)$ and $(9,-7)$. Show that the mid points of the sides of this quadrilateral are the vertices of a parallelogram.

- Watch Video Solution

95. about to only mathematics

- Watch Video Solution

96. If $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ divide the sides BC, CA and AB of $\triangle A B C$ in the same ratio, prove that the centroid of the triangles $A B C$ and $P Q R$ coincide.

- Watch Video Solution

97. Prove that three times the sum of the squares of the sides of a triangle is equal to four times the sum of the squares of the medians of the triangle.

- Watch Video Solution

98. If G be the centroid of a triangle $A B C$, prove that, \hat{A} $\mathrm{AB} 2+\mathrm{BC} 2+\mathrm{CA} 2=3(\mathrm{GA} 2+\mathrm{GB} 2+\mathrm{GC} 2)$
99. Prove that the mid-point of the hypotenuse of a right triangle is equidistant from its vertices.

- Watch Video Solution

100. Find the area of the triangle whose vertices are : $(3,-4),(7,5),(-1,10)$

- Watch Video Solution

101. Find the area of the triangle whose vertices are : $\left(a t_{1}^{2}, 2 a t_{1}\right),\left(a t_{2}^{2}, 2 a t_{2}\right),\left(a t_{3}^{2}, 2 a t_{3}\right)$

- Watch Video Solution

102. Find the area of the triangle whose vertices are : $(a \cos \alpha, b \sin \alpha),(a \cos \beta, b \sin \beta),(a \cos \gamma, b \sin \gamma)$

- Watch Video Solution

103. Find the area of the quadrilateral whose vertices are : $(1,1),(7,-3),(12,2)$ and $(7,21)$

- Watch Video Solution

104. Find the area of the quadrilateral whose vertices are : $(-4,5),(0,7),(5,-5)$ and $(-4,-2)$

- Watch Video Solution

105. Find the area of the pentagon whose vertices are $(4,3),(-5,6),(0,-7),(3,-6),(-7,-2)$
106. Find the area of the hexagon whose vertices taken in order are $(5,0),(4,2),(1,3),(-2,2),(-3,-1)$ and $(0,-4)$.

- Watch Video Solution

107. If A, B, C are the points $(-1,5),(3,1),(5,7)$ respectively and D, E, F are the middle points of $B C, C A$ and $A B$ respectively, prove that Area of $\triangle A B C=4 \Delta D E F$.

- Watch Video Solution

108. Three vertices of a triangle are $A(1,2), B(-3,6)$ and $C(5,4)$. If D , E and F are the mid-points of the sides opposite to the vertices A, B and C, respectively, show that the area of triangle ABC is four times the area of triangle DEF.
109. Find the area of a triangle ABC if the coordinates of the middle points of the sides of the triangle are $(-1,-2),(6,1)$ and $(3,5)$

- Watch Video Solution

110. The vertices of a $\triangle A B C$ are $A(3,0), B(0,6)$ and $C(6,9)$. A straight line $D E$ divides $A B$ and $A C$ in the ration $1: 2$ at D and E respectively, prove that $\frac{\Delta A B C}{\Delta A D E}=9$

- Watch Video Solution

111. Prove that the area of the triangle whose vertices are $(t, t-2),(t+2, t+2) \operatorname{and}(t+3, t)$ is independent of t.

- Watch Video Solution

112. If $A(x, y), B(1,2)$ and $C(2,1)$ are the vertices of a triangle of area 6 square units, show that $x+y=15$ or -9 .

Watch Video Solution

113. Prove that the points $(a, b+c),(b, c+a) \operatorname{and}(c, a+b)$ are collinear.

- Watch Video Solution

114. If the points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$, and $\left(x_{3}, y_{3}\right)$ are collinear show that $\frac{y_{2}-y_{3}}{x^{2} x_{3}}+\frac{y_{3}-y_{1}}{x_{3} x_{1}}+\frac{y_{1}-y_{2}}{x_{1} x_{2}}=0$

- Watch Video Solution

115. Prove that the points $(a, b),\left(a_{1}, b_{1}\right)$ and $\left(a-a_{1}, b-b_{1}\right)$ are collinear if $a b_{1}=a_{1} b$.

- Watch Video Solution

116. Three points $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right)$ and $C(x, y)$ are collinear. Prove that: $\left(x-x_{1}\right)\left(y_{2}-y_{1}\right)=\left(x_{2}-x_{1}\right)\left(y-y_{1}\right)$.

- Watch Video Solution

117. Show that the points $(a, 0),(0, b)$ and $(1,1)$ are collinear if $\frac{1}{a}+\frac{1}{b}=1$

- Watch Video Solution

118. Find the values of x if the points $(2 x, 2 x),(3,2 x+1)$ and $(1,0)$ are collinear.

- Watch Video Solution

119. Show that the straight line joining the points $A(0,-1)$ and $B(15,2)$ divides the line joining the points $C(-1,2)$ and $D(4,-5)$ internally in the ratio 2:3.

- Watch Video Solution

120. Find the area of the triangle whose vertices are $(a+1)(a+2),(a+2),(a+2)(a+3),(a+3)$ and $(a+3)(a+4),(a+$

- Watch Video Solution

121. A Point A divides the join of $\mathrm{P}(-5,1)$ and $\mathrm{Q}(3.5)$ in the ratio $k: 1$. Then the integral value of K for which the area of $\triangle A B C$. Where B is $(1,5)$ and C is $(7,-2)$ is equal to 2 units in magnitude is

- Watch Video Solution

- Watch Video Solution

123. If the area of the quadrilateral whose angular points taken in order are $(1,2),(-5,6),(7,-4)$ and $(h,-2)$ be zero, show that $h=3$.

- Watch Video Solution

124. Find the area of the triangle whose vertices A, B, C are $(3,4),(-4,3),(8,6)$ respectively and hence find the length of perpendicular from A to $B C$.

- Watch Video Solution

125. The coordinates of the centroid of a triangle and those of two of its vertices are respectively $\left(\frac{2}{3}, 2\right),(2,3),(-1,2)$. Find the area of the triangle.

- Watch Video Solution

126. The area of a triangle is 3 square units. Two of its vertices are $A(3,1), B(1,-3)$ and the third vertex of the triangle lies on x-axis. Find the coordinates of the third vertex C.

- Watch Video Solution

127. The area of a parallelogram is 12 square units. Two of its vertices are the points $A(-1,3)$ and $B(-2,4)$. Find the other two vertices of the parallelogram, if the point of intersection of diagonals lies on x-axis on its positive side.
128. The area of a triangle is $\frac{3}{2}$ square units. Two of its vertices are the points $A(2,-3)$ and $B(3,-2)$, the third vertex of the triangle lies on the line $3 x-y-2=0$, then third vertex C is

- Watch Video Solution

129. Prove that the quadrilateral whose vertices are $A(-2,5), B(4,-1), C(9,1)$ and $D(3,7)$ is a parallelogram and find its area. If E divides AC in the ration $2: 1$, prove that D, E and the middle point F of BC are collinear.

- Watch Video Solution

130. Prove that points $(-3,-1),(2,-1),(1,1)$ and $(-2,1)$ taken in order are the vertices of a trapezium.

- Watch Video Solution

131. Show that the line joining the centroid of a triangle to its vertices divide it into three triangles of equal area.

- Watch Video Solution

132. Find the equation of the set of all points $P(x, y)$ such that the line $O P$ is coincident with the line joining P and the point $(3,2)$.

- Watch Video Solution

133. The equation of the locus of points equidistant from $(-1,-1)$ and $(4,2)$ is

Watch Video Solution

134. Find the equation of the locus of a point P if the sum of squares of distances of the point P from the axes is p^{2}.
135. Find the equation of the set of all points which are equidistant from the points $\left(a^{2}+b^{2}, a^{2}-b^{2}\right)$ and $\left(a^{2}-b^{2}, a^{2}+b^{2}\right)$

- Watch Video Solution

136. Square of the distance of the point from x-axis is double of its distance from the origin.

- Watch Video Solution

137. Write the equation of locus of a point whose distance from y-axis is always equal to the double of its distance from x-axis.

(Watch Video Solution

138. Find the equation of the set of points for which every ordinate is greater than the corresponding abscissa by a given distance d.

Watch Video Solution

139. If a point P moves such that its distance from $(a, 0)$ is always equal to $a+x$-coordinate of P, show that the locus of P is $y^{2}=4 a x$.

- Watch Video Solution

140. Show that the equation of the locus of a point which moves so that the sum of its distance from two given points $(k, 0)$ and $(-k, 0)$ is equal to $2 a$ is : $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2}-k^{2}}=1$

- Watch Video Solution

141. If the sum of the distances of a moving point from two fixed points $(a e, 0)$ and $(-a e, 0)$ be $2 a$, prove that the locus of the point is: $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2}\left(1-e^{2}\right)}=1$

- Watch Video Solution

142. Find the locus of a variable point $\left(a t^{2}, 2 a t\right)$ where t is the parameter.

- Watch Video Solution

143. If the coordinates of a vartiable point P be $\left(t+\frac{1}{t}, t-\frac{1}{t}\right)$, where t is the variable quantity, then the locus of P is

- Watch Video Solution

144. If the coordinates of a variable point be $(\cos \theta+\sin \theta, \sin \theta-\cos \theta)$, where θ is the parameter, then the locus of P is
145. If $A(\cos \theta, \sin \theta), B(\sin \theta, \cos \theta), C(1,2)$ are the vertices of $\Delta A B C$.

Find the locus of its centroid if θ varies.

- Watch Video Solution

146. A point moves so that its distance from the point $(-2,3)$ is always three times its distance from the point $(0,3)$. Find the equation to its locus.

- Watch Video Solution

147. A and B are two given points whose coordinates are $(-5,3)$ and $(2,4)$ respectively. A point P moves in such a manner that $P A: P B=3: 2$. Find the equation to the locus traced out by P.
148. find the equation of the locus of a points such that sum of its distance from $(0,3)$ and $(0,-3)$ is 8.

- Watch Video Solution

149. S is the point $(0,4)$ and M is the foot of the perpendicular drawn from a point P to the y-axis. If P moves such that the distance $P S$ and $P M$ remain equal find the locus of P.

- Watch Video Solution

150. If $A(1,1)$ and $B(-2,3)$ are two fixed points, find the locus of a point P so that area of $\triangle P A B$ is 9 units.

- Watch Video Solution

151. Find the locus of a point such that the line segments having end points $(2,0)$ and $(-2,0)$ subtend a right angle at that point.

- Watch Video Solution

152. If P is the middle point of the straight line joining a given point $A(1,2)$ and Q, where Q is a variable point on the curve $x^{2}+y^{2}+x+y=0$. Find the locus of P.

- Watch Video Solution

153. $A(2,3)$ is a fixed point and $Q(3 \cos \theta, 2 \sin \theta)$ a variable point. If P divides $A Q$ internally in the ratio $3: 1$, find the locus of P .

- Watch Video Solution

154. From the point $A(6,-8)$, all possible lines are drawn to cut the x axis. Find the locus of their middle points.

Watch Video Solution

155. A stick of length l slides with its ends on two mutually perpendicular lines. Find the locus of the middle point of the stick.

- Watch Video Solution

156. Prove that the locus of a point equidistant from the extermities of a line segment is the perpendicular bisector if it.

- Watch Video Solution

157. Describe the locus of the point (x, y) satisfying the condition $x^{2}+y^{2}=a^{2}$.
158. Describe the locus of the point (x, y) satisfying $(x-1)^{2}+(y-1)^{2}=2^{2}$.

- Watch Video Solution

159. Examine whether point $(1,2)$ lies on the curve $4 x^{2}-y^{2}=0$.

- Watch Video Solution

160. Examing whether point $(2,-3)$ lies on the curve $x^{2}-2 y^{2}+6 x y+8=0$.

- Watch Video Solution

161. If the equation $a x^{2}+2 h x y+b y^{2}=0$ and $b x^{2}-2 h x y+a y^{2}=0$ represent the same curve, then show that $a+b=0$.

Watch Video Solution

162. Find the value of k if the point $(1,2)$ lies on the curve

$$
(k-10) x^{2}+y^{2}-(k-7) x-(3 k-27) y+11=0
$$

- Watch Video Solution

