

MATHS

BOOKS - KC SINHA ENGLISH

COMPLEX NUMBERS - FOR COMPETITION

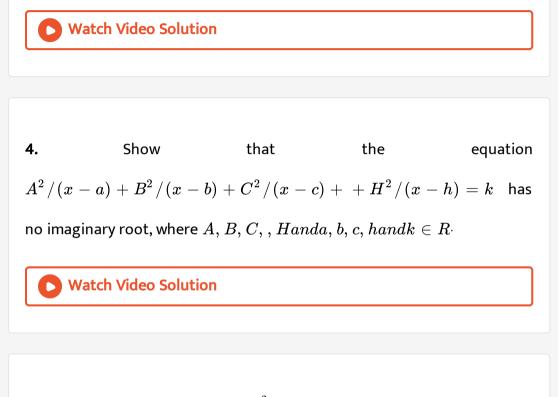
Solved Examples

1. Express
$$rac{1}{1+\cos heta-I\sin heta}$$
 in the form of a +ib .
Hint : $\sin^2 heta+\cos^2 heta=1$

Watch Video Solution

2. If
$$z_1=x_1+iy_1, z_2=x_2+iy_2$$
 and $z_1=rac{i(z_2+1)}{z_2-1}$, prove that $x_1^2+y_1^2-x_1=rac{x_2^2+y_2^2+2x_2-2y_2+1}{\left(x_2-1
ight)^2+y_2^2}$

3. Find the complex number z such that $z^2+|z|=0$



5. If lpha be a root of equation $x^2+x+1=0$ then find the vlaue of

$$\left(lpha+rac{1}{lpha}
ight)+\left(lpha^2+rac{1}{lpha^2}
ight)^2+\left(lpha^3+rac{1}{lpha^3}
ight)^2+\ldots+\left(lpha^6+rac{1}{lpha^6}
ight)^2$$

6. If n is anodd integer greter than 3 but not a multiple of 3 prove that

$$ig[(x+y)^n-x^n-y^nig]$$
 is divisible by $xy(x+y)ig(x^2+xy+y^2ig).$

Watch Video Solution

7. Prove that
$$\left|rac{z_1-z_2}{1-ar{z}_1z_2}
ight| < 1 \;\; ext{if}\;\;|z_1| < 1, |z_2| < 1$$

Watch Video Solution

If

is equal to

8.

Watch Video Solution

9. Let z_1, z_2 and z_3 be three distinct complex numbers , satisfying $|z_1|=|z_2|=|z_3|=1.$ Which of the following is/are true :

10. If
$$rac{3}{2}+\cos heta+i\sin heta=a+ib$$
, prove that $a^2+b^2=4a-3$

11. If z_1, z_2, z_3 are distinct nonzero complex numbers and $a, b, c \in \mathbb{R}^+$ such that $\frac{a}{|z_1 - z_2|} = \frac{b}{|z_2 - z_3|} = \frac{c}{|z_3 - z_1|}$ Then find the value of $\frac{a^2}{|z_1 - z_2|} + \frac{b^2}{|z_2 - z_3|} + \frac{c^2}{|z_3 - z_1|}$ Watch Video Solution

12. If
$$1, \alpha_1, \alpha_2, \alpha_3, ..., \alpha_{n-1}$$
 are n, nth roots of unity, then $(1-\alpha_1)(1-\alpha_2)(1-\alpha_3)...(1-\alpha_{n-1})$ equals to

13. If the argument of $(z-a)(\bar{z}-b)$ is equal to that $\left(\left(\sqrt{3}+i\right)\frac{1+\sqrt{3}i}{1+i}\right)$ where a,b,c are two real number and z is the complex conjugate o the complex number z find the locus of z in the rgand diagram. Find the value of a and b so that locus becomes a circle having its centre at $\frac{1}{2}(3+i)$

Watch Video Solution

14. Find the locus of z if arg
$$\left(\frac{z-1}{z+1}\right) = \frac{\pi}{4}$$

Watch Video Solution

15. If z_1, z_2, z_3 are the roots of cubic $3z^3 + 3az^2 = a^2z + b = 0$ then find the value of $\frac{1}{z_1 - z_2} + \frac{1}{z_2 - z_3} + \frac{1}{z_3 - z_1} 3a + b$ b. a + b c. 6 d. 0 e. b

16. If z_1 , z_2 and z_3 are the vertices of ΔABC , which is not right angled

triangle taken in anti-clock wise direction and z_0 is the circumcentre, then

$$igg(rac{z_0-z_1}{z_0-z_2}igg)rac{\sin 2A}{\sin 2B}+igg(rac{z_0-z_3}{z_0-z_2}igg)rac{\sin 2C}{\sin 2B}$$
 is equal to

Watch Video Solution

17. Let the complex numbers z_1, z_2 and z_3 be the vertices of an equilateral triangle let z_0 be the circumcentre of the triangle. Then prove that $z_1^2 + z_2^2 + z_3^2 = 3z_0^2$

Watch Video Solution

18. Two different non-parallel lines cut the circle |z| = r at points a, b, c and d, respectively. Prove that these lines meet at the point z given by $\frac{a^{-1} + b^{-1} - c^{-1} - d^{-1}}{a^{-1}b^{-1} - c^{-1}d^{-1}}$

19. If
$$\sqrt[3]{a+ib}=\xi y$$
 then prove that $\displaystyle rac{a}{x}+\displaystyle rac{b}{y}=4()x^2-y^2$

Watch Video Solution

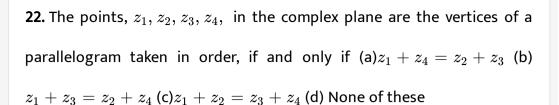
20. Point P represents the complex num,ber z = x + iy and point Q the complex num,ber $z + \frac{1}{z}$. Show that if P mioves on the circle |z| = 2 then Q oves on the ellipse $\frac{x^2}{25} + \frac{y^2}{9} = \frac{1}{9}$. If z is a complex such that |z| = 2 show that the locus of $z + \frac{1}{z}$ is an ellipse.

Watch Video Solution

Let

$$f(\theta) = \left(\cos\theta - \cos\frac{\pi}{8}\right) \left(\cos\theta - \cos\frac{3\pi}{8}\right) \left(\cos\theta - \cos\frac{5\pi}{8}\right) \left(\cos\theta - \cos\frac{7\pi}{8}\right) \left(\cos\theta - \cos\frac{\pi}{8}\right) \left(\cos\theta - \cos\frac{\pi}{8}\right)$$

then :



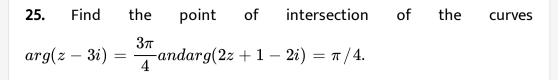
23. State true or false for the following.

For any complex number z, the minimum value of |z| + |z-1| is 1.

Watch Video Solution

24. The least positive integer n for which
$$\left(rac{1-i}{1-i}
ight)^n = rac{2}{\pi} {
m sin}^{-1} rac{1+x^2}{2x}$$
,

where x > 0 and $i = \sqrt{-1}$ is :



Watch Video Solution

26. about to only mathematics

Watch Video Solution

27. If all the roots of $z^3 + az^2 + bz + c = 0$ are of unit modulus, then (A)

 $|a|\leq 3$ (B) $|b|\leq 3$ (C) |c|=1 (D) none of these

Watch Video Solution

28. Let z_1, z_2 and origin represent vertices A,B,O respectively of an isosceles triangel OAB, where OA=OB and $\angle AOB = 2\theta$. If z_1, z_2 are the

roots of the equation $z^2+2az+b=0$ where a,b re comlex numbers

then
$$\cos^2 heta=$$
 (A) $rac{a}{b}$ (B) $rac{a^2}{b^2}$ (C) $rac{a}{b^2}$ (D) $rac{a^2}{b}$

Watch Video Solution

29. about to only mathematics

Watch Video Solution

30. If
$$k>1, |z_1|, k ext{ and } \left|rac{k-z_1 ar{z}_2}{z_1-kz_2}
ight|=1$$
, then (A) $z_2=0$ (B) $|z_2|=1$ (C) $|z_2|=4$ (D) $|z_2|< k$

Watch Video Solution

31. Show that the area of the triangle on the Argand diagram formed by

the complex number z, izandz + iz is $rac{1}{2}{\left|z
ight|}^2$

32. Let $z_1 = 6 + i$ and $z_2 = 4 - 3i$. If z is a complex number such that $\arg\left(\frac{z-z_1}{z_2-z}\right) = \frac{\pi}{2}$ then (A) $|z - (5-i)| = \sqrt{5}$ (B) $|z - (5+i)| = \sqrt{5}$ (C) |z - (5-i)| = 5 (D) |z - (5+i)| = 5

Watch Video Solution

33. If z and \overline{z} represent adjacent vertices of a regular polygon of n sides where centre is origin and if $\frac{Im(z)}{Re(z)} = \sqrt{2} - 1$, then n is equal to:

Watch Video Solution

34. Let $z_1 and z_2$ be complex numbers such that $z_1 \neq z_2$ and $|z_1| = |z_2|$. If z_1 has positive real part and z_2 has negative imaginary part, then $\frac{z_1 + z_2}{z_1 - z_2}$ may be (a) zero (b) real and positive (c) real and negative (d) purely imaginary

35. Let the complex numbers z of the form
$$x + iy$$
 satisfy arg $\left(\frac{3z-6-3i}{2z-8-6i}\right) = \frac{\pi}{4}$ and $|z-3+i| = 3$. Then the ordered pairs (x, y) are (A) $\left(4 - \frac{4}{\sqrt{5}}, 1 + \frac{2}{\sqrt{5}}\right)$ (B) $\left(4 + \frac{5}{\sqrt{5}}, 1 - \frac{2}{\sqrt{5}}\right)$ (C) $(6-1)$ (D) $(0, 1)$

Watch Video Solution

36. If $z_1 = a + ib$ and $z_2 = c + id$ are complex numbers such that $|z_1| = |z_2| = 1$ and $Re(z_1\bar{z}_2) = 0$, then the pair of complex numbers $\omega_1 = a + ic$ and $\omega_2 = b + id$ satisfies

Watch Video Solution

37. If z_1, z_2, z_3 are non zero non collinear complex number such that $\frac{2}{z_1} = \frac{1}{z_2} + \frac{1}{z_3}$, then (A) ponts z_1, z_2, z_3 form and equilateral triangle (B) points z_1, z_2, z_3 lies on a circle (C) z_1, z_2, z_3 and origin are concylic (D) $z_1 + z_2 + z_3 = 0$

38. If $\cos \alpha + \cos \beta + \cos \gamma = 0$ and also $\sin \alpha + \sin \beta + \sin \gamma = 0$, then prove that $\cos 2\alpha + \cos 2\beta + \cos 2\gamma = \sin 2\alpha + \sin 2\beta + \sin 2\gamma = 0$ $\sin 3\alpha + \sin 3\beta + \sin 3\gamma = 3\sin(\alpha + \beta + \gamma)$ $\cos 3\alpha + \cos 3\beta + \cos 3\gamma = 3\cos(\alpha + \beta + \gamma)$

39. let z1, z2, z3 be vertices of $\triangle ABC$ in an anticlockwise order and $\angle ACB = \theta$ then $z_2 - z_3 = \frac{CB}{CA}(z_1 - z3)e^{i\theta}$. let p point on a circle with op diameter 2 points Q & R taken on a circle such that $\angle POQ\&QOR = \theta$ if O be origin and PQR are complex no. z1, z2, z3 respectively then $\frac{z_2}{z_1} =$ (A) $e^{i\theta}\cos\theta$ (B) $e^{i\theta}\cos2\theta$ (C) $e^{-i\theta}\cos\theta$ (D) $e^{2i\theta}\cos2\theta$

- $l \leq tz1, z2, z3 bevertices of riangle ABC \in ananticlockwise ext{ or } der ext{ and } ot ACB$
- $\circ \ \le sucht \widehat{oldsymbol{2}}POQ\&QOR = THETA \ ext{ if } \ Obe \ ext{or } ig \in \ ext{ and } PQRarecon$

Watch Video Solution

41. let z1, z2, z3 be vertices of $\triangle ABC$ in an anticlockwise order and $\angle ACB = \theta$ then $z_2 - z_3 = C \frac{B}{C} A(z_1 - z3) e^i \theta$.let p point on a circle with op diameter 2points Q & R taken on a circle such that $\angle POQ\&QOR = \theta$ if O be origin and PQR are complex no. z1, z2, z3 respectively then $\frac{z_3^2}{z_1 \cdot z_2} =$ (A) $\sec^2 \theta \cdot \cos 2\theta$ (B) $\cos \theta \cdot \sec^2(2\theta)$ (C) $\cos^2 \theta \cdot \sec 2\theta$ (D) $\sec \theta \cdot \sec^2(2\theta)$

Watch Video Solution

42. Which of the following is (are) correct? (A) $\bar{a}z_1 + a\bar{z}_1 - \bar{a}z_2 - a\bar{z}_2 = 0$ (B) $\bar{a}z_1 + a\bar{z}_1 + \bar{a}z_2 + a\bar{z}_2 = -b$ (C) $\bar{a}z_1 + a\bar{z}_1 + \bar{a}z_2 + a\bar{z}_2 = 2b$ (D) $\bar{a}z_1 + a\bar{z}_1 + \bar{a}z_2 + a\bar{z}_2 = -2b$ **43.** Which of the following is (are) correct? (A) $\overline{z_1 - z_2} - a(\overline{z}_1 - \overline{z}_2) = 0$ (B) $\overline{z_1 - z_2} + a(\overline{z}_1 - \overline{z}_2) = 0$ (C) $\overline{z_1 - z_2} + a(\overline{z}_1 - \overline{z}_2) = -b$ (D) $\overline{z_1 - z_2} + a(\overline{z}_1 - \overline{z}_2) = -b$

44. Which of the following is (are) correct? (A) $ar{z}_1+aar{z}_2=2b$ (B)

$$ar{z}_1 + aar{z}_2 = b$$
 (C) $ar{z}_1 + aar{z}_2 = \ - b$ (D) $ar{z}_1 + aar{z}_2 = \ - 2b$

Watch Video Solution

45. If
$$2+z+z^4=0,$$
 where z is a complex number then (A) $rac{1}{2}<|z|<1$
(B) $rac{1}{2}<|z|<rac{1}{3}$ (C) $|z|\geq 1$ (D) none of these

46.

 $|a_n| < 1f$ or n = 1, 2, 3, ... and $1 + a_1 z + a_2 z^2 + ... + a_n z^n = 0$ then z lies (A) on the circle $|z| = \frac{1}{2}$ (B) inside the circle $|z| = \frac{1}{2}$ (C) outside the circle $|z| = \frac{1}{2}$ (D) on the chord of the circle $|z| = \frac{1}{2}$ cut off by the line Re[(1+i)z] = 0

Watch Video Solution

47. of the roots of the equation is one zo $z^n {\cos heta_0} + z^{n-1} {\cos heta_2} + \ldots + z {\cos heta_{n-1}} + \cos heta_n = 2$, where $heta \in R$, then (A) $|z_0| < rac{1}{2}$ (B) $|z_0|>rac{1}{2}$ (C) $|z_0| = \frac{1}{2}$ (D)None of these

Watch Video Solution

lf

48. If ω and ω^2 are the nonreal cube roots of unity and $[1/(a+\omega)] + [1/(b+\omega)] + (1/(c+\omega)] = 2\omega^2$ and $[1/(a+\omega^2)] + [1/(b+\omega^2)] + [(1/(c+\omega^2)] + [1/(c+\omega^2)] = 2\omega$, then find the value of [1/(a+1)] + [1/(b+1)] + [1/(c+1)]

Watch Video Solution

49. Given that the complex numbers which satisfy the equation $|z\bar{z}^3| + |\bar{z}z^3| = 350$ form a rectangle in the Argand plane with the length of its diagonal having an integral number of units, then area of rectangle is 48 sq. units if z_1, z_2, z_3, z_4 are vertices of rectangle, then $z_1 + z_2 + z_3 + z_4 = 0$ rectangle is symmetrical about the real axis $arg(z_1 - z_3) = \frac{\pi}{4}$ or $\frac{3\pi}{4}$

1. Put the following in the form A + iB: $\frac{(\cos x + i \sin x)(\cos y + i \sin y)}{(\cot u + i)(1 + i \tan v)}$

2. IF $a \geq 1$, find all complex numbers z satisfying the equation z+a|z+1|+i=0

Watch Video Solution

3. ω is an imaginary root of unity. Prove that If a + b + c = 0, then prove that $(a + b\omega + c\omega^2)^3 + (a + b\omega^2 + c\omega^{\Box})^3 = 27ab$.

4. Find the integral solutions of the following equation: $\left(3+4i\right)^x=5^{rac{x}{2}}$

5. Find the number of non-zero integral solutions of the equation $|1-i|^x = 2^x$.

6. Find the integral solutions of the following equation: $(1-i)^x = (1+i)^x$

Watch Video Solution

7. Let
$$\left|\left((z)_1 - 2(z)_2\right) / \left(2 - z_1(z)_2\right)\right| = 1 and |z_2| \neq 1, where z_1 and z_2$$

are complex numbers. Show that $|z_1|=2$.

Watch Video Solution

8. if a,b,c are complex numbers such that a+b+c=0 and |a|=|b|=|c|=1 find the value of $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$

9. Show that for any two non zero complex numbers z_1,z_2 $(|z_1|+|z_2|)|z_1|z_1|+z_2|z_2||\leq 2|z_1+z_2|$

Watch Video Solution

10. Prove that $\left|\frac{z-1}{1-\bar{z}}\right| = 1$ where z is as complex number.

Watch Video Solution

11. Solve the equation $x^4 - 4x^2 + 8x + 35 = 0$ given that one of roots is

 $2 + \sqrt{-3}$

12. If
$$z_1, z_2, z_3$$
 are the roots of cubic $3z^3 + 3az^2 = a^2z + b = 0$ then find
the value of $\frac{1}{z_1 - z_2} + \frac{1}{z_2 - z_3} + \frac{1}{z_3 - z_1} 3a + b$ b. $a + b$ c. 6 d. 0 e. b
Watch Video Solution
13. about to only mathematics
Watch Video Solution

14. If $\left|z^2-1
ight|=\left|z
ight|^2+1$ show that the locus of z is as straight line.

Watch Video Solution

15. If
$$\log_{\sqrt{3}} \left| rac{|z|^2 - |z| + 1 ig|}{|z| + 2}
ight| < 2$$
 then locus of z is

16. Three points represented by the complex numbers a,b,c lie on a circle with centre 0 and rdius r. The tangent at C cuts the chord joining the points a,b and z. Show that $z = \frac{a^{-1} + b^{-1} - 2c^{-1}}{a^{-1}b^{-1} - c^{-2}}$

Watch Video Solution

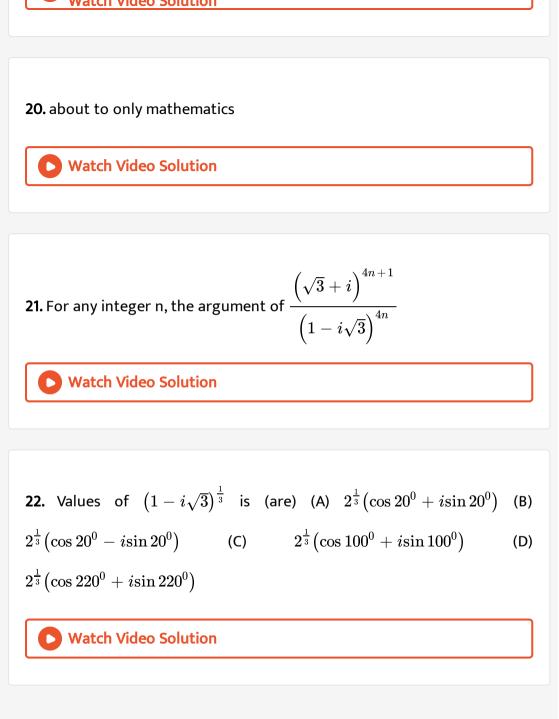
17. Show that
$$\left(rac{1+\cos\phi+i\sin\phi}{1+\cos\phi-i\sin\phi}
ight)^n=\cos n\phi+i\sin n\phi$$

Watch Video Solution

18. Show that the roots of equation
$$(1+z)^n = (1-z)^n are - i \tan\left(r\frac{\pi}{n}\right), r = 0, 1, 2, \dots, (n-1)$$
 excluding the value when n is even and $r = \frac{n}{2}$

Watch Video Solution

19. Find the least positive integer n for which $\left(\frac{1+i}{1-i}\right)^n$



23. The complex numbers z_1, z_2 and the origin form an equilateral triangle only if (A) $z_1^2 + z_2^2 - z_1 z_2 = 0$ (B) $z_1 + z_2 = z_1 z_2$ (C) $z_1^2 - z_2^2 = z_1 z_2$ (D) none of these

Watch Video Solution

24. for any complex nuber z maximum value of |z| - |z - 1| is (A) 0 (B) $\frac{1}{2}$ (C) 1 (D) $\frac{3}{2}$

Watch Video Solution

25.
$$\left(rac{1+i}{\sqrt{2}}
ight)^8+\left(rac{1-i}{\sqrt{2}}
ight)^8$$
 is equal to

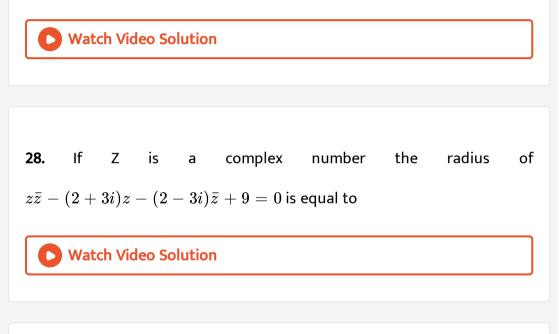
Watch Video Solution

26. The argument of
$$rac{1-i\sqrt{3}}{1+i\sqrt{3}}$$
 is 60^{0} b. 120^{0} c. 210^{0} d. 240^{0}

Match Video Colution

27. Which of the following is not correct? (A) |7+i|>|5+i| (B)

|7+i|>|7-i| (C) |7+2i|>|7+i| (D) none of these



29. The polynomial $x^6 + 4x^5 + 3x^4 + 2x^3 + x + 1$ is divisible by_____ where ω is one of the imaginary cube roots of unity. (a) $x + \omega$ (b) $x + \omega^2$ (c) $(x + \omega)(x + \omega^2)$ (d) $(x - \omega)(x - \omega^2)$

30. In Argand diagram, O, P, Q represent the origin, z and z + iz respectively then $\angle OPQ$ =

31. about to only mathematics

Watch Video Solution

32. The value of
$$(\sin \theta + i \cos \theta)^n$$
 is (A) $\sin n\theta + i \cos n\theta$ (B)
 $\cos n\theta - i \sin n\theta$ (C) $\cos\left(\frac{n\pi}{2} - n\theta\right) + is \sin\left(\frac{n\pi}{2} - n\theta\right)$ (D) none of

these

Watch Video Solution

33. If x = 2 + 5i (where i² =-1) and 2(1/(1!9!)+1/(3!7!))+1/(5!5!)=2^a/(b!)

, $then the value of (x^3 - 5x^2 + 33x - 19)$ is equal to

34. |z-i| < |z+i| represents the region (A) Re(z) > 0 (B) Re(z) < 0

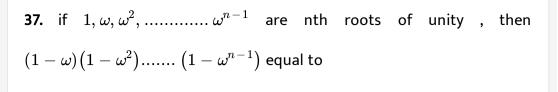
(C) Im(z)>0 (D) Im(z)<0

Watch Video Solution

35. The points representing complex numbers z for which |z-3| = |z-5| lie on the locus given by (A) circle (B) ellipse (C) straight line (D) none of these

Watch Video Solution

36. about to only mathematics



Watch Video Solution

38. If
$$1, \alpha_1, \alpha_2, \ldots, \alpha_{n-1}$$
 be nth roots of unity then
 $(1 + \alpha_1)(1 + \alpha_2), \ldots, \ldots, (1 + \alpha_{n-1}) =$ (A) 0 or 1 according as n is
even or odd (B) 0 or 1 according as n is odd or even (C) n (D) $-n$

Watch Video Solution

39. If ω be a nth root of unity, then $1 + \omega + \omega^2 + \ldots + \omega^{n-1}$ is (a)O(B)

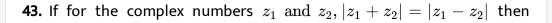
1 (C) -1 (D) 2

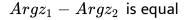
40. If |z| = 2 and locus of 5z - 1 is the circle having radius a and $z_1^2 + z_2^2 - 2z_1z_2\cos\theta = 0$, $then|z_1|:|z_2| =$ (A) a (B) 2a (C) $\frac{a}{10}$ (D) none of these

41. If $|z-4+3i| \le 1$ and m and n be the least and greatest values of |z| and K be the least value of $\frac{x^4+x^2+4}{x}$ on the interval $(0,\infty)$, then K=

Watch Video Solution

42. If $a\hat{i} + b\hat{j} + c\hat{k}$ be a unit vector and z is a complex number such that (1+a)z = b + ic, $then \frac{1-iz}{1+z}$ (A) $\frac{a+ib}{1+z}$ (B) $\frac{1+c}{a+ib}$ (C) (a+ib)(1+c) (D) none of these





44. Number of solutions of $Reig(z^2ig)=0$ and $|z|=r\sqrt{2}$ where z is a

complex number and r>0 is (A) 2 (B) 4 (C) 5 (D) none of these

45. If ω is an imaginary fifth root of uinty, the find the value of $\log_2|1+\omega+\omega^2+\omega^3-1/\omega|.$

Watch Video Solution

46. If z is a unimodular number $(\neq \pm i)$ then $\frac{z+i}{z-i}$ is (A) purely real (B) purely imaginary (C) an imaginary number which is not purely imaginary (D) both purely real and purely imaginary

47. The locus of the complex number z satisfying the inequaliyt

$$\log_{rac{1}{\sqrt{2}}}igg(rac{|z-1|+6}{2|z-1|-1}igg) > 1igg(2where|z-1|
eq rac{1}{2}igg)$$
 is (A) a circle (B)

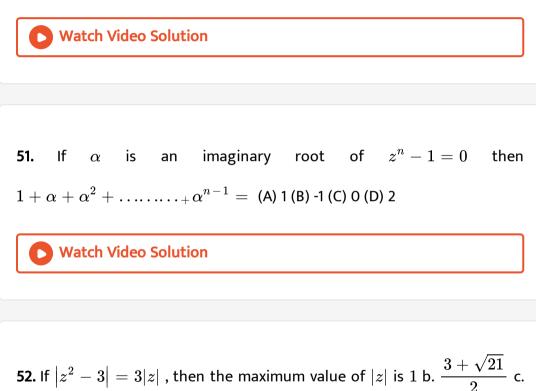
interior of a circle (C) exterior of circle (D) none of these

Watch Video Solution

48.	The	number	of	complex	numbers	Z	satisfying
$ z-3-i = z-9-i { m and} z-3+3i = { m are}$							
Watch Video Solution							

49. If |z|= maximum $\{|z + 2|, |z - 2|\}$, then $(A)|z-\bar{z}| = 1/2(B)|z+\bar{z}|=4(C)$ $|z+\bar{z}|=1/2(D)|z-\bar{z}=2$

50. If z_1 and z_2 are complex numbers such that $|z_1 - z_2| = |z_1 + z_2|$ and A and B re the points representing z_1 and z_2 then the orthocentre of $\triangle OAB$, where O is the origin is (A) $\frac{z_1 + z_2}{2}$ (B) O (C) $\frac{z_1 - z_2}{2}$ (D) none of these



52. If
$$|z^2 - 3| = 3|z|$$
, then the maximum value of $|z|$ is 1 b. $\frac{3+\sqrt{21}}{2}$ c. $\frac{\sqrt{21}-3}{2}$ d. none of these

53. If |z+2-i|=5 then the maximum value of |3z+9-7i| is K, then

find k

54. Let $P \equiv \sqrt{3}e^{i\frac{\pi}{3}}$, $Q \equiv \sqrt{3}e^{-\frac{\pi}{3}}$ and $R \equiv \sqrt{3}e^{-i\pi}$. If P,Q,R form a triangle PQR in the Argand plane, then $\triangle PQR$ is (A) isosceles (B) equilateral (C) scalene (D) none of these

Watch Video Solution

55. If $|z| \ge 5$ then the least value of $\left|z + \frac{2}{z}\right|$ is (A) $\frac{23}{5}$ (B) $\frac{24}{5}$ (C) 5 (D) none of these

56. If $Re\left(\frac{2z+1}{iz+1}\right) = 1$, the the locus of the point representing z in the complex plane is a (A) straight line (B) circle (C) parabola (D) none of these

57.
$$|z - 4| + |z + 4| = 16$$
 where z is as complex number ,tehn locus of z is (A) a circle (B) a straight line (C) a parabola (D) none of these

58. A,B and C are the points respectively the complex numbers z_1 , z_2 and z_3 respectivley, on the complex plane and the circumcentre of $\triangle ABC$ lies at the origin. If the altitude of the triangle through the vertex. A meets the circumcircle again at P, prove that P represents the complex number $\left(-\frac{z_2z_3}{z_1}\right)$.

Watch Video Solution

59. The points, z_1 , z_2 , z_3 , z_4 , in the complex plane are the vertices of a parallelogram taken in order, if and only if (a) $z_1 + z_4 = z_2 + z_3$ (b) $z_1 + z_3 = z_2 + z_4$ (c) $z_1 + z_2 = z_3 + z_4$ (d) None of these

Watch Video Solution

60. If all the roots of $z^3+az^2+bz+c=0$ are of unit modulus, then (A)

 $|a|\leq 3$ (B) $|b|\leq 3$ (C) |c|=1 (D) none of these

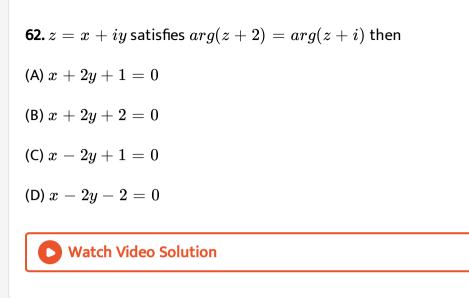
Watch Video Solution

lf

$$a=z_{1}+z_{2}+z_{3},b=z_{1}+\omega z_{2}+\omega^{2}z_{3},c=z_{1}+\omega^{2}z_{2}+\omega z_{3}ig(1,\omega,\omega^{2}$$

are cube roots of unity), then the value of z_2 in terms of a,b, and c is (A)

$$rac{a\omega^2+b\omega+c}{3}$$
 (B) $rac{a\omega^2+b\omega^2+c}{3}$ (C) $rac{a+b+c}{3}$ (D) $rac{a+b\omega^2+c\omega}{3}$



63. The points $A(z_1)$, $B(z_2)$ and $C(z_3)$ form an isosceles triangle in the Argand plane right angled at B, then $\frac{z_1 - z_2}{z_3 - z_2}$ can be (A) 1 (B) -1 (C) -i (D)

none of these

Watch Video Solution

64. The number of solutions of $\sqrt{2}|z-1|=z-i, \,$ where z=x+iy is

(A) 0 (B) 1 (C) 2 (D) 3

65. If $|2z - 1| = |z - 2| and z_1, z_2, z_3$ are complex numbers such that `|z 1-alpha||z|d. >2|z|`

A. <|z|

B. null

C. null

D. null

Answer: null

Watch Video Solution

66. If $1, \alpha_1, \alpha_2, \dots, \alpha_{3n}$ be the roots of equation $z^{3n+1} - 1 = 0$ and ω be an imaginary cube root of unity , then $\frac{(\omega^2 - \alpha_1)(\omega^2 - \alpha_2)\dots(\omega^2 - \alpha_{3n})}{(\omega - \alpha_1)(\omega - \alpha_2)\dots(\omega - \alpha_{3n})}$

67. If α and β are two fixed complex numbers, then the equation $z = a\alpha + (1 - a)\beta$, wherea ϵR represents in the Argand plane (A) a straight line passing through α and β (B) a straight line passing through α but not through β (C) a striaght line passing through β but not through α (D) a straight line passing neighter through α not or through β

Watch Video Solution

68. If
$$\begin{vmatrix} x^2 + x & x - 1 & x + 1 \\ x & 2x & 3x - 1 \\ 4x + 1 & x - 2 & x + 2 \end{vmatrix} = px^4 + qx^3 + rx^2 + sx + t$$
 be n
identity in x and ω be an imaginary cube root of unity,
 $\frac{a + b\omega + c\omega^2}{c + a\omega + b\omega^2} + \frac{a + b\omega + c\omega^2}{b + c\omega + a\omega^2} =$ (A) p (B) $2p$ (C) $-2p$ (D) $-p$

Watch Video Solution

69. z_1, z_2, z_3, z_4 are distinct complex number representing the vertices of a quadrilateral ABCD taken in order. If $z_1 - z_4 = z_2 - z_3$ and $arrac{g(z_4-z_1)}{z_2-z_1}=rac{\pi}{2},$ then the quadrilateral is rectangle (2) rhombus

trapezium (4) parallelogram square

70. If z_1, z_2, z_3 be the vertices A,B,C respectively of triangle ABC such that

 $|z_1| = |z_2| = |z_3|$ and $|z_1 + z_2| = |z_1 - z_2|$ then C= (A) $\frac{\pi}{2}$ (B) $\frac{\pi}{3}$ (C) $\frac{\pi}{6}$ (D) $\frac{\pi}{4}$

Watch Video Solution

71. If
$$z_1, z_2, z_3$$
 be the vertices of a triangle ABC such that
 $|z_1| = |z_2| = |z_3|$ and $|z_1 + z_2|^2 = |z_1|^2 + |z_2|^2$, then
 $\left| arg, \left(\frac{z_3 - z_1}{z_3 - z_2} \right) \right| =$ (A) $\frac{\pi}{2}$ (B) $\frac{\pi}{3}$ (C) $\frac{\pi}{6}$ (D) $\frac{\pi}{4}$

72. If
$$\sec^{-1}\left(\frac{z-2}{i}\right)$$
 lies between 0 and $\frac{\pi}{2}$, where $z = x + iy$ then (A)
 $x > 2, y > 1$ (B) $x = 2, y > 1$ (C) $x = 2, y = 1$ (D) $x < 2, y = 1$
Watch Video Solution

73. The system of equation $|z-1-i|=\sqrt{2}~~{
m and}~~|z|=2$ has

- (A) one solutions
- (B) two solution
- (C) three solutions

(D) none of these

Watch Video Solution

74. If $z_1, z_2, z_3, \dots, z_{n-1}$ are the roots of the equation $1 + z + z^2 + \dots + z^{n-1} = 0$, where $n \in N$, n > 2 then (A) z_1, z_2, \dots, z_{n-1} are terms of a G.P. (B) z_1, z_2, \dots, z_{n-1} are terms of an A.P. (C) $|z_1| = |z_2| = |z_3| = .$ $|z_{n-1}| \neq 1$ (D) none of these **75.** If the greatest value of |z| such that $|z-3-4i|\leq a$ is equal to the

least value of $x^4+x+rac{5}{x}\in (0,\infty) thena=$ (A) 1 (B) 4 (C) 3 (D) 2

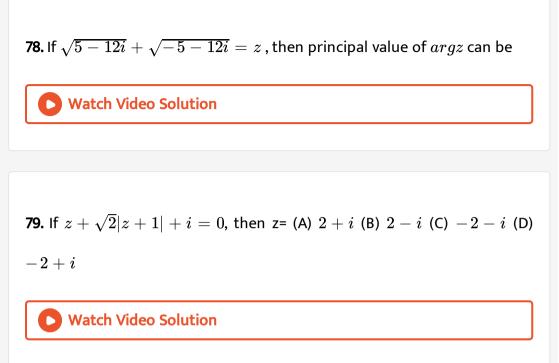
Watch Video Solution

76. |z-4|+|z+4|=16 where z is as complex number ,then locus of z

is (A) a circle (B) a straight line (C) a parabola (D) none of these

Watch Video Solution

77. Let z_1, z_2, z_3 be three distinct non zero complex numbers which form an equilateral triangle in the Argand pland. Then the complex number associated with the circumcentre of the tirangle is (A) $\frac{z_1 z_2}{z_3}$ (B) $\frac{z_1 z_3}{z_2}$ (C) $\frac{z_1 + z_2}{z_3}(D) \frac{z_1 + z_2 + z_3}{3}$



80. If A and B represent the complex numbers z_1 and z_2 such that $|z_1 - z_2| = |z_1 + z_2|$, then circumcentre of $\triangle AOB$, O being the origin is (A) $\frac{z_1 + 2z_2}{3}$ (B) $\frac{z_1 + z_2}{3}$ (C) $\frac{z_1 + z_2}{2}$ (D) $\frac{z_1 - z_2}{3}$ Watch Video Solution

81. If α, β are complex numbers then the maximum value of $\frac{\alpha \bar{\beta} + \bar{\alpha} \beta}{|\alpha \beta|}$ is

equal to :

82. about to only mathematics

83. If z_1 , z_2 , z_3 be the vertices A,B,C respectively of an equilateral trilangle on the Argand plane and $|z_1| = |z_2| = |z_3|$ then (A) Centroid oif the triangle ABC is the complex number 0 (B) Distance between centroid and orthocentre of the triangle ABC is 0 (C) Centroid of the tirangle ABC divides the line segment joining circumcentre and orthcentre in the ratio 1:2 (D) Complex number representing the incentre of the triangle ABC is a non zero complex number

84. If $|z-4+3i|\leq 3,\,$ then the least value of |z|=

(B) 3

(C) 4

(D) 5

85. If |z| = 5, then the locus of -1 + 2z is (A) a circle having center (2,0)

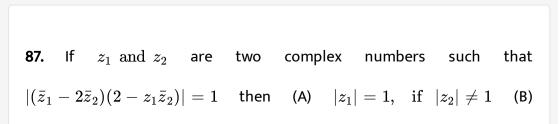
(B) a circle having center $(\,-1,0)$ (C) a circle having radius 5 (D) a circle

having radius 9

Watch Video Solution

Watch Video Solution

86. $|z+3| \leq 3$, then the greatest and least value of |z| are



$$|z_1|=2, ext{ if } |z_2|
eq 1$$
 (C) $|z_2|=2, ext{ if } |z_1|
eq 1$ (D) $|z_2|=1, ext{ if } |z_1|
eq 2$

Watch Video Solution

88. If
$$\left|z-\frac{4}{z}\right|=2$$
 then the greatest value of $|z|$ is:

Watch Video Solution

89. If z is a complex number different form $\frac{i}{3}$ then locus of z if $\left|\frac{3z}{3z-i}\right| = 1$ is (A) a straightline paralel to x axis (B) a straight line having slope undefined (C) as straight line having slope 0 (D) a straight line passing through the point $\left(2, \frac{1}{6}\right)$

Watch Video Solution

90. If z_1 and z_2 two non zero complex numbers such that $|z_1 + z_2| = |z_1|$ then which of the following may be true (A)

 $argz_1-argz_2=0$ (B) $argz_1-argz_2=\pi$ (C) $|z_1-z_2|=||z_1|-|z_2||$

(D) $argz_1 - argz_2 = 4\pi$

Watch Video Solution

91. The complex numbers $z_1 = 1 + 2i$, $z_2 = 4 - 2i$ and $z_3 = 1 - 6i$ form the vertices of a (A) a right angled triangle (B) isosceles triangle (C) equilateral triangle (D) triangle whose one of the sides is of length 8

Watch Video Solution

92. If the vertices of an equilateral triangle are situated at $z = 0, z = z_1$ and $z = z_2$ then which of the following is(are) true? (A) $|z_1| = |z_2|$ (B) $|z_1 + z_2| = |z_1| + |z_2|$ (C) $|z_1 - z_2| = |z_1|$ (D) $|\arg z_1^{-1} \arg z_2| = \frac{\pi}{3}$ **93.** If z_1 and z_2 are two complex numbers for which $|(z_1 - z_2)(1 - z_1 z_2)| = 1$ and $|z_2| \neq 1$ then (A) $|z_2| = 2$ (B) $|z_1| = 1$ (C) $z_1 = e^{i\theta}$ (D) $z_2 = e^{i\theta}$

Watch Video Solution

94. If $\sin x + \sin y + \sin z = 0 = \cos x + \cos y + \cos z$, then find the

value of
$$\cos(heta-x)+\cos(heta-y)+\cos(heta-z)$$

Watch Video Solution

95. Find the complex number z satisfying the equation $\left|\frac{z-12}{z-8i}\right| = \frac{5}{3}, \left|\frac{z-4}{z-8}\right| = 1$

96. Which of the following is correct for any two complex numbers

 z_1 and z_2 ?

Watch Video Solution

97. Values
$$(s)(-i)^{1/3}$$
 is/are $\frac{\sqrt{3}-i}{2}$ b. $\frac{\sqrt{3}+i}{2}$ c. $\frac{-\sqrt{3}-i}{2}$ d. $\frac{-\sqrt{3}+i}{2}$

Watch Video Solution

98. The modulus and the principal asrgumentof the complex nuber $\frac{1-i}{3+i} + 4i$ are (A) modulus $=\sqrt{3}$ (B) modulus =6 (C) $arg = \tan^{-1}(18)$ (D) $arg = tn^{-1}\left(\frac{3}{4}\right)$

99. If a and b are two real number lying between 0 and 1 such that $z_1 = a + i$, $z_2 = 1 + bi$ and $z_3 = 0$ form anequilateral trilangle , then (A) $a = 2 + \sqrt{3}$ (B) $b = 4 - \sqrt{3}$ (C) $a = b = 2 - \sqrt{3}$ (D) a = 2, $b = \sqrt{3}$

Watch Video Solution

100. If z_1, z_2, z_3, z_4 be the vertices of a parallelogram taken in anticlockwise direction and $|z_1 - z_2| = |z_1 - z_4|$, then $\sum_{r=1}^4 (-1)^r z_r = 0$ (b) $z_1 + z_2 - z_3 - z_4 = 0$ $ar \frac{g(z_4 - z_2)}{z_3 - z_1} = \frac{\pi}{2}$ (d)

None of these

Watch Video Solution

101. If $|z_1+z_2|=|z_1-z_2|$ and $|z_1|=|z_2|,$ then (A) $z_1=\pm iz_2$ (B) $z_1=z_2$ (C) $z_=-z_2$ (D) $z_2=\pm iz_1$

102. If $|z| = \min(|z - 1|, |z + 1|)$, where z is the complex number and f be a one -one function from $\{a, b, c\} \rightarrow \{1, 2, 3\}$ and f(a) = 1 is false, $f(b) \neq 1$ is false and $f(c) \neq 2$ is true then $|z + \overline{z}| = (A) f(a)$ (B) f(c)(C) $\frac{1}{2}f(a)$ (D) f(b)

Watch Video Solution

103. about to only mathematics

Watch Video Solution

104.

$$|z_1=1,|z_2|=2,|z_3|=3 \,\, {
m and} \,\, |z_1+z_2+z_3|=1, then |9z_1z_2+4z_3z_1+z_3|=1$$

If

is equal to

Watch Video Solution

105. If $|z_1| = |z_2| = ... = |z_n| = 1$, then $|z_1 + z_2 + ... + z_n|$ is equal to :

106. If $\left|z-\frac{4}{z}\right|=2$, then the maximum value of |Z| is equal to (1) $\sqrt{3}+1$ (2) $\sqrt{5}+1$ (3) 2 (4) $2+\sqrt{2}$

Watch Video Solution

107. If
$$\left|z-rac{4}{2}z
ight|=2$$
 then the least of $|z|$ is (A) $\sqrt{5}-1$ (B) $\sqrt{5}-2$ (C) $\sqrt{5}$ (D) 2

Watch Video Solution

108. If $|z-4+3i|\leq~-2,~$ then the least value of |z|=~ (A) 2 (B) 3 (C) 4

(D) 5

109. let A & B be two set of complex number defined by $A = \{z : |z| = 12\}$ and $B = \{z : |z - 3 - 4i| = 5\}$. Which of the given statement(s) is (are) true? (A) $A \subseteq B$ (B) $A = B = \phi$ (C) $A \cap B \neq \phi$ (D) $B \subseteq A$

Watch Video Solution

110. Let A & B be two set of complex number defined by $A = \{z : |z| = 12\}$ and $B = \{z : |z - 3 - 4i| = 5\}$. Let $z_1 \varepsilon A$ and $z_2 \varepsilon B$ then the value of $|z_1 - z_2|$ necessarily lies between (A) 3 and 15 (B) 0 and 22 (C) 2 and 22 (D) 4 and 14

Watch Video Solution

111. If $B: \{z: |z - 3 - 4i|\} = 5$ and C={z:Re[(3+4i)z]=0} then the number

of elements in the set B intesection C `is (A) O (B) 1 (C) 2 (D) none of these

112. If $|z-4+3i|\leq 3,\,$ then the least value of $|z|=\,$ (A) 2 (B) 3 (C) 4 (D)

5

113. If $|z - 25i| \le 15$ then least positive value of argz = (A) $\pi - \tan^{-1}\left(\frac{3}{4}\right)$ (B) $\tan^{-1}\left(\frac{3}{4}\right)$ (C) $\tan^{-1}\left(\frac{4}{3}\right)$ (D) $\pi - \tan^{-1}\left(\frac{4}{3}\right)$

Watch Video Solution

114. If |z| < 1, then 1 + 2z lies (A) on or inside circle having center at origin and radius 2 (B) outside the circle having center at origin and radius 2 (C) inside the circle having center at (1,0) and radius 2 (D) outside the circle having center at (1,0) and radius 2.

115. If the complex numbers z_1 , z_2 , z_3 represents the vertices of a triangle ABC, where z_1 , z_2 , z_3 are the roots of equation $z^3 + 3\alpha z^2 + 3\alpha z^2 + 3\beta z + \gamma = 0$, α , β , γ beng complex numbers and $\alpha^2 = \beta then \bigtriangleup ABC$ is (A) equilateral (B) right angled (C) isosceles but not equilateral (D) scalene

Watch Video Solution

116. If a and b are two real number lying between 0 and 1 such that $z_1 = a + i$, $z_2 = 1 + bi$ and $z_3 = 0$ form an equilateral triangle , then (A) $a = 2 + \sqrt{3}$ (B) $b = 4 - \sqrt{3}$ (C) $a = b = 2 - \sqrt{3}$ (D) a = 2, $b = \sqrt{3}$

Watch Video Solution

117. Let the complex numbers z_1 , z_2 and z_3 be the vertices of a equilateral triangle. Let z_0 be the circumcentre of the tringel ,then $z_1^2 + z_2^2 + z_3^2 = (A) z_0^2$ (B) $3z_0^2$ (C) $9z_0^2$ (D) 0

118. If the complex number z_1 , z_2 and z_3 represent the vertices of an equilateral triangle inscribed in the circle |z| = 2 and $z_1 = 1 + i\sqrt{3}$ then (A) $z_2 = 1$, $z_3 = 1 - i\sqrt{3}$ (B) $z_2 = 1 - i\sqrt{3}$, $z_3 = -i\sqrt{3}$ (C) $z_2 = 1 - i\sqrt{3}$, $z_3 = -1 + i\sqrt{3}$ (D) $z_2 = -2$, $z_3 = 1 - i\sqrt{3}$

Watch Video Solution

119. The locus of the centre of a variable circle touching circle |z|=2internally and circle |z-4|=1 externally is (A) a parabola (B) a hyperbola (C) a ellipse (D) none of these

Watch Video Solution

120. Locus of the centre of the circle touching circles |z| = 3 and |z - 4| = 1 externally is (A) a parabola (B) a hyperbola (C) an ellipse (D) none of these

121. Locus the centre of the variable circle touching |z - 4| = 1 and the line Re(z) = 0 when the two circles on the same side of the line is (A) a parabola (B) an ellipse (C) a hyperbola (D) none of these

Watch Video Solution

122. If $|z-1|+|z+3|\leq 8,\,$ then the maximum, value of |z-4|is=

Watch Video Solution

123. If z_1, z_2, z_3 are three points lying on the circle |z| = 2 then the minimum value of the expression $|z_1 + z_2|^2 + |z_2 + z_3|^2 + |z_3 + z_1|^2 =$

124. If $z \text{ and } \bar{z}$ represent adjacent vertices of a regular polygon of n sides

where centre is origin and if $rac{Im(z)}{Re(z)}=\sqrt{2}-1$, then n is equal to:

Watch Video Solution

125. The value of the expression

$$2^{199} \sin\left(\frac{\pi}{199}\right) \sin\left(\frac{2\pi}{199}\right) \sin\left(\frac{3\pi}{199}\right) \dots \sin\left(\frac{198\pi}{199}\right) =$$

Watch Video Solution

126.
$$\frac{1}{a+\omega} + \frac{1}{b+\omega} + \frac{1}{c+\omega} + \frac{1}{d+\omega} = \frac{1}{\omega}$$
 where, a,b,c,d, \in R and ω is a complex cube root of unity then find the value of $\sum \frac{1}{a^2 - a + 1}$

127. If
$$x = 2 + 5i$$
 (where $i^2 = -1$) and $2\left(\frac{1}{1!9!} + \frac{1}{3!7!}\right) + \frac{1}{5!5!} = \frac{2^a}{b!}$, then the value of

$$\left(x^3-5x^2+33x-19
ight)$$
 is equal to

Watch Video Solution

128. Let z be a complex number lying on a circle centred at the origin having radius r. If the area of the triangle having vertices as z, $z\omega$ and $z + z\omega$, where omega is an imaginary cube root of unity is $12\sqrt{3}$ sq. units, then the radius of the circle r=

Watch Video Solution

129. Number of solutions of $Reig(z^2ig)=0$ and $|z|=r\sqrt{2}$ where z is a

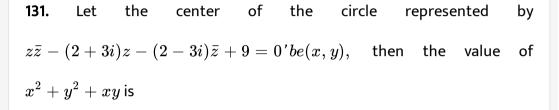
complex number and r>0 is (A) 2 (B) 4 (C) 5 (D) none of these

Watch Video Solution

130. Let z_1, z_2 and origin be the vertices A,B,O respectively of an isosceles

triangle OAB, where OA=OB and $\angle AOB = 2\theta$. If z_1, z_2 are the roots of

equation $z^2+z+9=0$ then $\sec^2 heta=$



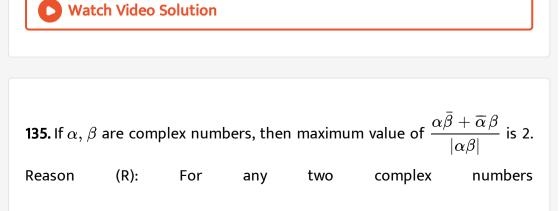
Watch Video Solution

132. Assertion (A): If $1, \omega, \omega^2$ are the cube roots of unity, then roots of equation $(x - 2)^3 - 27 = 0$ are $5,2 + 3\omega, 2 + 3\omega^2$, Reason (R): If α be one cube root of a number, then its other two cube roots are $\alpha\omega$ and $\alpha\omega^2$ (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not the correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

133. Assertion (A): $argz_1 - argz_2 = 0$, Reason: If $|z_1 + z_2| = |z_1| + |z_2|$, then origin z_1, z_2 are colinear and z_1, z_2 lie on the same side of the origin. (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not the correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

Watch Video Solution

134. Assertion (A): Circumcentre of $\triangle POQ$ is $\frac{z_1 + z_2}{2}$, Reason (R): Circumcentre of a right triangle is the middle point of the hypotenuse. (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not the correct explanation of A (C) A is true but R is false. (D) A is false but R is true.



 z_1 and z_2 , $|z_1 - z_2| \ge |z_1| - |z_2|$ (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not the correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

Watch Video Solution

136. Assertion (A): z_1 , z_2 and origin form an equilateral triangle if $p^2 = 6q$ for the equation $z^2 + pz + q = 0$, Reason (R): Triangle having vertices z_1 , z_2 , z_3 in the Argand plane is equilateral if $z_1^2 + z_2^2 + z_3^2 = z_1z_2 + z_2z_3 + z_3z_1$ (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

Watch Video Solution

137. Assertion (A): Points representing z_1 , z_2 , z_3 are collinear. Reason (R): Three numbers a,b,c are in A.P., if b - a = c - b (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

Watch Video Solution

138. Assertion (A): $argz_1 - argz_2 = 0$, Reason: If $|z_1 + z_2| = |z_1| + |z_2|$, then origin z_1, z_2 are colinear and z_1, z_2 lie on the same side of the origin. (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not the correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

> Watch Video Solution

139. Assertion (A): $\frac{z}{4-z^2}$ lies on y-axis. Reason(R): $|z|^2 = z\overline{z}$ (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

140. If α , β are complex numbers, then maximum value of $\frac{\alpha\beta + \overline{\alpha}\beta}{|\alpha\beta|}$ is 2. Reason (R): For any two complex numbers z_1 and z_2 , $|z_1 - z_2| \ge |z_1| - |z_2|$ (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not the correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

Watch Video Solution

141. Assertion (A): $\frac{z}{4-z^2}$ lies on y-axis. Reason(R): $|z|^2=zbarz$ (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

Watch Video Solution

142. If $\omega(\,
eq 1)$ is a cube root of unity, and $\left(1+\omega
ight)^7=A+B\omega$. Then (A,

B) equals

143. Let $z \, \, {
m and} \, \, \omega$ be two non zero complex numbers such that $|z| \, = \, |\omega|$

and $argz + arg\omega = \pi$, then z equals

(A) ω

(B) $-\omega$

(C) $\overline{\omega}$

(D) $-\overline{\omega}$

Watch Video Solution

144. Let $zand\omega$ be two complex numbers such that $|z| \le 1, |\omega| \le 1and|z - i\omega| = |z - i\omega| = 2, thenz$ equals 1 or i b. i or -i c. 1 or -1 d. i or -1

Watch Video Solution

145. about to only mathematics

146. If $|z| \leq 1$ and $|\omega| \leq 1$, show that

$$|z-\omega|^2 \leq \left(|z|-|\omega|^2
ight) + \{arg(z)-arg(\omega)\}^2.$$

Watch Video Solution

147.Findthesum
$$1 imes (2 - \omega) imes (2 - \omega^2) + 2 imes (-3 - \omega) imes (3 - \omega^2) + \ldots + (n - 1) imes (3 - \omega^2) + \ldots + (n - 1) imes (n -$$

, where ω is an imaginary cube root of unity.

Watch Video Solution

148. For positive integer n_1, n_2 the value of the expression $(1+i)^{n1} + (1+i^3)^{n1}(1+i^5)^{n2}(1+i^7)^{n_{20}}$, where $i = \sqrt{-1}$, is a real number if and only if (a) $n_1 = n_2 + 1$ (b) $n_1 = n_2 - 1$ (c) $n_1 = n_2$ (d) $n_1 > 0, n_2 > 0$

149. find all nonzero complex number z satisfying $ar{z}=iz^2$.

150. Let z_1 and z_2 be the roots of the equation $z^2 + pz + q = 0$, where the coefficients p and q may be complex numbers. Let A and Brepresent z_1 and z_2 in the complex plane, respectively. If $\angle AOB = \theta \neq 0$ and OA = OB, where O is the origin, prove that $p^2 = 4q\cos^2(\theta/2)$.

Watch Video Solution

151. Let $\bar{b}z + b(\bar{z}) = c, b \neq 0$ be a line the complex plane, where \bar{b} is the complex conjugate of b. If a point z_1 i the reflection of the point z_2 through the line then show that $c = \bar{z}_1 b + z_2 \bar{b}$

152. If ω is an imaginary cube root of unity, then $(1 + \omega - \omega^2)^7$ is equal to 128ω (b) -128ω $128\omega^2$ (d) $-128\omega^2$

Watch Video Solution

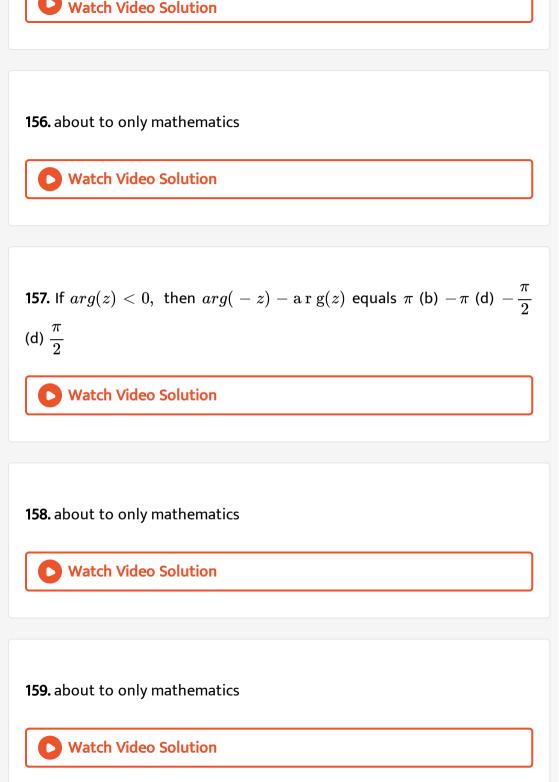
153. The value of
$$sum\sum_{n=1}^{13}{\left(i^n+i^{n+1}
ight)},$$
 where $i=\sqrt{-1}$ equals i (b) $i-1$ (c) $-i$ (d) 0

Watch Video Solution

154.
$$x + iy = egin{bmatrix} 6i & -3i & 1 \ 4 & 3i & -1 \ 20 & 3 & i \end{bmatrix}$$
, find x and y.

Watch Video Solution

155. about to only mathematics



160. The complex numbers z_1 , z_2 and z_3 satisfying $\frac{z_1 - z_3}{z_2 - z_3} = \frac{1 - i\sqrt{3}}{2}$ are the vertices of triangle which is (1) of area zero (2) right angled isosceles(3) equilateral (4) obtuse angled isosceles

161. Let
$$\omega = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$$
. Then the value of the determinant $|1111 - 1 - \omega^2 \omega^2 1 \omega^2 \omega^4|$ is 3ω b. $3\omega(\omega - 1)$ c. $3\omega^2$ d. $3\omega(1 - \omega)$

Watch Video Solution

162. about to only mathematics

163. Let a complex number lpha, lpha
eq 1, be a root of hte evation $z^{p+q}-z^p-z^q+1=0,$ where p,q are distinct primes. Show that either

$$1+lpha+lpha^2+\ +lpha^{p-1}=0 \ {
m or} \ 1+lpha+lpha^2+\ +lpha^{q-1}=0$$
 , but not

both together.

164. If
$$|z| = 1$$
 and $w = \frac{z-1}{z+1}$ (where $z \neq -1$), then $Re(w)$ is 0 (b)
 $\frac{1}{|z+1|^2} \left| \frac{1}{z+1} \right|, \frac{1}{|z+1|^2}$ (d) $\frac{\sqrt{2}}{|z|1|^2}$

Watch Video Solution

165. If z_1 and z_2 are two complex numbers such that $|z_1| < 1 < |z_2|$ then prove that $\Big|rac{1-z_1ar z_2}{z_1-z_2}\Big| < 1$

Watch Video Solution

166. about to only mathematics

167. If $\omega(\neq 1)$ be an imaginary cube root of unity and $\left(1+\omega^2\right)^n=\left(1+\omega^4\right)^n$, then the least positive value of n is (a) 2 (b) 3 (c) 5 (d) 6

Watch Video Solution

168. Find the centre and radius of the circle formed by all the points represented by z = x + iy satisfying the relation $\left|\frac{z-\alpha}{z-\beta}\right| = k(k \neq 1)$, where α and β are the constant complex numbers given by $\alpha = \alpha_1 + i\alpha_2, \beta = \beta_1 + i\beta_2$.

Watch Video Solution

169. a, b, c are integers, not all simultaneously equal, and ω is cube root of unity $(\omega \neq 1)$, then minimum value of $|a + b\omega + c\omega^2|$ is 0 b. 1 c. $\frac{\sqrt{3}}{2}$ d. $\frac{1}{2}$

170. The shaded region, where $P = (-1, 0), Q = (-1 + \sqrt{2}, \sqrt{2})R = (-1 + \sqrt{2}, -\sqrt{2}), S = (1, 0)$

is represented by Figure



Watch Video Solution

171. If one of the vertices of the square circumscribing the circle $|z-1| = \sqrt{2}$ is $2 + \sqrt{3}i$, where $i = \sqrt{-1}$. Find the other vertices of the

square.

172. If $w = \alpha + i\beta$, where $\beta \neq 0$ and $z \neq 1$, satisfies the condition that $\left(\frac{w - \overline{w}z}{1 - z}\right)$ is a purely real, then the set of values of z is $|z| = 1, z \neq 2$ (b) |z| = 1 and $z \neq 1$ (c) $z = \overline{z}$ (d) None of these

Watch Video Solution

173. A man walks a distance of 3 units from the origin towards the North-East $(N45^0E)$ direction.From there, he walks a distance of 4 units towards the North-West $(N45^0W)$ direction to reach a point P. Then, the position of P in the Argand plane is (a) $3e^{\frac{i\pi}{4}} + 4i$ (b) $(3 - 4i)e^{\frac{i\pi}{4}}$ $(4 + 3i)e^{\frac{i\pi}{4}}$ (d) $(3 + 4i)e^{\frac{i\pi}{4}}$

Watch Video Solution

174. If |z| = 1 and $z \neq \pm 1$, then all the values of $\frac{z}{1-z^2}$ lie on a line not passing through the origin $|z| = \sqrt{2}$ the x-axis (d) the y-axis

175. A particle P starts from the point $z_0 = 1 + 2i$, where $i = \sqrt{-1}$. It moves first horizontally away from origin by 5 units and then vertically away from origin by 3 units to reach a point z_1 . From z_1 the particle moves $\sqrt{2}$ units in the direction of the vector $\hat{i} + \hat{j}$ and then it moves through an angle $\frac{\pi}{2}$ in anticlockwise direction on a circle with centre at origin, to reach a point z_2 . The point z_2 is given by 6 + 7i (b) -7 + 6i 7 + 6i (d) -6 + 7i

Watch Video Solution

176. Let $z=\cos heta+i\sin heta$, where $i=\sqrt{-1}$. Then the value of $\sum_{m=1}^{15}Imig(z^{2m-1}ig)$ at $heta=2^\circ$ is

177. Let z = x + iy be a complex number where x and y are integers. Then ther area of the rectangle whose vertices are the roots of the equaiton $\bar{z}z^3 + z\bar{z}^3 = 350$.

