d'doubtnut

India's Number 1 Education App

MATHS

BOOKS - KC SINHA ENGLISH

CORDINATES AND STARIGHT LINES - FOR COMPETITION

Solved Examples

1. Let S be a square of unit area. Consider any quadrilateral which has one vertex on each side of S . If a, b, c and d denote the lengths of sides of the quadrilateral, prove that $2 \leq a_{2}+b_{2}+c_{2}+d_{2} \leq 4$

- Watch Video Solution

2. The distance between two parallel lines is unity. A point P lies between the lines at a distance a from one of them. Find the length of a side of an
equilateral triangle PQR, vertex Q of which lies on one of the parallel lines and vertex R lies on the other line.

- Watch Video Solution

3. Find the position of point $(4,1)$ after it undergoes the transformations successively : Reflection about the line $y=x-1$

- Watch Video Solution

4. Find the position of point $(4,1)$ after it undergoes the transformations successively : Translation by one unit along x-axis in the positive direction.

- Watch Video Solution

5. about to only mathematics
6. If $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right)$ and $C\left(x_{3}, y_{3}\right)$ are the vertices of a $\triangle A B C$ and (x, y) be a point on the internal bisector of angle A , then prove that
$b\left|\begin{array}{ccc}x & y & 1 \\ x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1\end{array}\right|+c\left|\begin{array}{ccc}x & y & 1 \\ x_{1} & y_{1} & 1 \\ x_{3} & y_{3} & 1\end{array}\right|=0$
where, $\mathrm{AC}=\mathrm{b}$ and $\mathrm{AB}=\mathrm{c}$.

- Watch Video Solution

7. The vertices of a triangle are
$A\left(x_{1}, x_{1} \tan \theta_{1}\right), B\left(x_{2}, x_{2} \tan \theta_{2}\right) \operatorname{and} C\left(x_{3}, x_{3} \tan \theta_{3}\right)$. if the circumcentre of $\operatorname{Delta} A B C$ coincides with the origin and $H(x, y)$ is the orthocentre, show that $\frac{y}{x}=\frac{\sin \theta_{1}+s \int h \eta_{2}+\sin \theta_{3}}{\cos \theta_{1}+\cos \theta_{2}+\cos \theta_{3}}$

- Watch Video Solution

8. A line L intersects three sides $B C, C A$ and $A B$ of a triangle in P, Q, R respectively, show that $\frac{B P}{P C} \cdot \frac{C Q}{Q A} \cdot \frac{A R}{R B}=-1$
9. If D, E, andF are three points on the sides $B C, A C, a n d A B$ of a triangle $A B C$ such that $A D, B E, a n d C F$ are concurrent, then show that $B D x C E x A F x E F x F B$.

- Watch Video Solution

10. If $A_{1}, A_{2}, A_{3}, \ldots, A_{n}$ are n points in a plane whose coordinates are $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right), \ldots,\left(x_{n}, y_{n}\right)$ respectively. $A_{1} A_{2}$ is bisected in the point $G_{1}: G_{1} A_{3}$ is divided at G_{2} in the ratio $1: 2, G_{3} A_{5}$ at G_{4} in the1: 4 and so on untill all the points are exhausted. Show that the coordinates of the final point so obtained are $\frac{x_{1}+x_{2}+\ldots .+x_{n}}{n}$ and $\underline{y_{1}+y_{2}+\ldots .+y_{n}}$ n

- Watch Video Solution

11. If A, B, C, D are points whose coordinates are $(-2,3),(8,9),(0,4)$ and $(3,0)$ respectively, find the ratio in which $A B$ is divided by $C D$.

- Watch Video Solution

12. If the vertices of a triangle have rational coordinates, then prove that the triangle cannot be equilateral.

- Watch Video Solution

13. Prove that that s triangle which has one of the angle as 30^{0} cannot have all vertices with integral coordinates.

- Watch Video Solution

14. The coordinatse of the vertices A, B and C of the triangle $A B C$ taken in anticlockwise order are respectively $\left(x_{r}, y_{r}\right), r=1,2,3$. Prove that the angle A is acute or obtuse according as : $\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)+\left(y_{1}-y_{2}\right)\left(y_{1}-y_{3}\right)>0$ or <0.

(-) Watch Video Solution

15. $A B C$ is a triangle whose medians $A D$ and $B E$ are perpendicular to each other. If $A D=p$ and $B E=q$ then area of $\triangle A B C$ is

- Watch Video Solution

16. Prove that a point can be found which is at the same distance from each of the four points $\left(a m_{1}, \frac{a}{m_{1}}\right),\left(a m_{2}, \frac{a}{m_{2}}\right),\left(a m_{3}, \frac{a}{m_{3}}\right) \operatorname{and}\left(\frac{a}{m_{1} m_{2} m_{3}}, a m_{1} m_{2} m_{3}\right)$
17. If the algebraic sum of perpendiculars from n given points on a variable straight line is zero then prove that the variable straight line passes through a fixed point

- Watch Video Solution

18. Find the coordinates of the vertices of a square inscribed in the triangle with vertices $A(0,0), B(2,1)$ and $C(3,0)$, given that two of its vertices are on the side AC'.

- Watch Video Solution

19. If the equal sides $A B$ and $A C$ each of whose length is $2 a$ of a righ aisosceles triangle $A B C$ be produced to P and so that $B P . C Q=A B$, the line $P Q$ always passes through the fixed point

- Watch Video Solution

20. Through the point $P(\alpha, \beta)$, where $\alpha \beta>0$, the straight line $\frac{x}{a}+\frac{y}{b}=1$ is drawn so as to form a triangle of area S with the axes. If $a b>0$, then the least value of S is $\alpha \beta$ (b) $2 \alpha \beta$ (c) $3 \alpha \beta$ (d) none

- Watch Video Solution

21. Let (h, k) be a fixed point, where $h>0, k>0$. A straight line passing through this point cuts the positive direction of the coordinate axes at the point PandQ. Find the minimum area of triangle $O P Q, O$ being the origin.

- Watch Video Solution

22. A straight line through the point $A(-2,-3)$ cuts the line $x+3 y=0$ and $x+y+1=0$ at B and C respectively. If $\mathrm{AB} \cdot \mathrm{AC}=20$ then equation of the possible line is
23. Show that if any line through the variable point $A(k+1,2 k)$ meets the lines $7 x+y-16=0,5 x-y-8=0, x-5 y+8=0$ at B, C, D, respectively, the $A C, A B$, and $A D$ are in harmonic progression. (The three lines lie on the same side of point A).

- Watch Video Solution

24. A line is such that its segment between the lines $5 x-y+4=0$ and $3 x+4 y-4=0$ is bisected at the point (1,5). Obtain its equation.

- Watch Video Solution

25. A variable line L passing through the point $B(2,5)$ intersects the lines $2 x^{2}-5 x y+2 y^{2}=0$ at P and Q . Find the locus of the point R on L such that distances $B P, B R$ and $B Q$ are in harmonic progression.

- Watch Video Solution

26. about to only mathematics

- Watch Video Solution

27. Let $A B C$ be a triangle with $A B=A C$. If D is the midpoint of $B C, E$ is the foot of the perpendicular drawn from D to $A C, a n d F$ is the midpoint of $D E$, then prove that $A F$ is perpendicular to $B E$.

- Watch Video Solution

28. The line $x+y=p$ meets the x - and y -axes at AandB, respectively. A triangle $A P Q$ is inscribed in triangle $O A B, O$ being the origin, with right angle at $Q P$ and Q lie, respectively, on $O B a n d A B$. If the area of triangle $A P Q$ is $\frac{3}{8} t h$ of the are of triangle $O A B$, the $\frac{A Q}{B Q}$ is equal to 2 (b) $\frac{2}{3}$ (c) $\frac{1}{3}$ (d) 3

- Watch Video Solution

29. Two consecutive sides of a parallelogram are $4 x+5 y=0$ and $7 x+2 y=0$. If the equation of one diagonal is $11 \mathrm{x}+7 \mathrm{y}=9$, find the equation of the other diagonal.

- Watch Video Solution

30. One diagonal of a square is the portion of the line $7 x+5 y=35$ intercepted by the axes. Obtain the extremities of the other diagonal.

- Watch Video Solution

31. A line $4 x+y=1$ through the point $A(2,-7)$ meets the line $B C$ whose equation os $3 x=4 y+1=0$ at the point B. Find the equation to the line $A C$ so that $A B=A C$.

- Watch Video Solution

32. A ray of light is sent along the line $x-2 y-3=0$ upon reaching the line $3 x-2 y-5=0$, the ray is reflected from it. Find the equation of the line containing the reflected ray.

- Watch Video Solution

33. A man starts from the point $P(-3,4)$ and will reach the point $Q(0,1)$ touching the line $2 x+y=7$ at R . The coordinates R on the line so that he will travel in the shortest distance is

- Watch Video Solution

34. A ray of light is sent along the line $2 x-3 y=5$. After refracting across the line $x+y=1$ it enters the opposite side after torning by 15^{0} away from the line $x+y=1$. Find the equation of the line along which the refracted ray travels.
35. The equations of two equal sides $A B a n d A C$ of an isosceles triangle $A B C$ are $x+y=5$ and $7 x-y=3$, respectively. Then the equation of side $B C$ if $\operatorname{ar}(A B C)=5 u n i t^{2}$ is $x-3 y+1=0$ (b) $x-3 y-21=0$ $3 x+y+2=0$ (d) $3 x+y-12=0$

- Watch Video Solution

36. The equations of the sides $A B$ and $A C$ of a triangle $A B C$ are $3 x+4 y+9=0$ and $4 x-3 y+16=0$ respectively. The third side passes through the point $D(5,2)$ sucht^ $\mathrm{BD}: \mathrm{DC}=4: 5^{\prime}$. Find the equation of the third side.

- Watch Video Solution

37. The equations of two sides of a triangle are $3 x-2 y+6=0$ and $4 x+5 y-20$ and the orthocentre is (1,1). Find the equation of the third side.
38. The equation of perpendicular bisectors of side $A B, B C$ of triangle $A B C$ are $x-y=5, x+2 y=0$ respectively and $A(1,-2)$ then coordinate of C

- Watch Video Solution

39. If the image of the point $\left(x_{1}, y_{1}\right)$ with respect to the mirror $a x+b y+c=0$ be $\left(x_{2}, y_{2}\right)$ then.
(a) $\frac{x_{2}-x_{1}}{a}=\frac{a x_{1}+b y_{1}+c}{a^{2}+b^{2}}$
(b) $\frac{x_{2}-x_{1}}{a}=\frac{y_{2}-y_{1}}{b}$
(c) $\frac{x_{2}-x_{1}}{a}=-2\left(\frac{a x_{1}+b y_{1}+c}{a^{2}+b^{2}}\right)$
(d) None of these

- Watch Video Solution

40. If the lines $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$ cut the coordinae axes at concyclic points, then prove that $\left|a_{1} a_{2}\right|=\left|b_{1} b_{2}\right|$

- Watch Video Solution

41. Equations of the diagonals of a rectangle are $y+8 x-17=0$ and $y-8 x+7=0$. If the area of the rectangle is 8 sq. units, then the equation of the sides of the rectangle is/are

- Watch Video Solution

42. about to only mathematics

- Watch Video Solution

43. If $l x+m y+n=0$, where l, m, n are variables, is the equation of a variable line and l, m, n are connected by the relation $a l+b m+c n=0$
where a, b, c are constants. Show that the line passes through a fixed point.

- Watch Video Solution

44. A triangle has two of its sides along the lines $y=m_{1} x \& y=m_{2} x$ where m_{1}, m_{2} are the roots of the equation $3 x^{2}+10 x+1=0$ and $H(6,2)$ be the orthocentre of the triangle. If the equation of the third side of the triangle is $a x+b y+1=0$, then $a=3$ (b) $b=1$ (c) $a=4$ (d) $b=-2$

(Watch Video Solution

45. Two triangles $A B C$ and $P Q R$ are such that the perpendiculars from A to $Q R$, B to $R P$ and C to $P Q$ are concurrent .Show that the perpendicular from P to $B C, Q$ to $C A$ and R to $A B$ are also concurrent .

D Watch Video Solution

46. Let $A B$ be a line segment of length 4 with A on the line $y=2 x$ and B on the line $y=x$. The locus of the middle point of the line segment is

- Watch Video Solution

47. A rectangle $P Q R S$ has its side $P Q$ parallel to the line $y=m x$ and vertices P, Q, and S on the lines $y=a, x=b$, and $x=-b$, respectively. Find the locus of the vertex R .

- Watch Video Solution

48. about to only mathematics

- Watch Video Solution

49. Let C_{1} and C_{2} be respectively, the parabolas $x^{2}=y-1$ and $y^{2}=x-1$ Let P be any point on C_{1} and Q be any point on C_{2}. Let P_{1} and Q_{1} be the refelections of P and Q , respectively with respect to the
line $\mathrm{y}=\mathrm{x}$.
Arithemetic mean of $P P_{1}$ and $Q Q_{1}$ is always less than

- Watch Video Solution

50. about to only mathematics

- Watch Video Solution

51. A variable line cuts n given concurrent straight lines at $A_{1}, A_{2} \ldots A_{n}$ such that $\sum_{i=1}^{n} \frac{1}{O A_{i}}$ is a constant. Show that it always passes through a fixed point, O being the point of intersection of the lines

- Watch Video Solution

52. The vertices B, C of a triangle $A B C$ lie on the lines $4 y=3 x$ and $y=0$ respectively and the side BC passes through
thepoint $P(0,5)$. If ABOC is a rhombus, where O is the origin and the point P is inside the rhombus, then find the coordinates of ' A '.

- Watch Video Solution

53. Two sides of a rhombus lying in the first quandrant are given by $3 x-$ $4 y=0$ and $12 x-5 y=0$ If the length of the longer diagonal is 12 , then find the equation of the other two sides of the rhombus.

- Watch Video Solution

54. If $\left(\alpha, \alpha^{2}\right)$ lies inside the triangle formed by the lines
$2 x+3 y-1=0, x+2 y-3=0,5 x-6 y-1=0$ then

$$
\begin{align*}
& 2 \alpha+3 \alpha^{2}-1>0 \quad \alpha+2 \alpha^{2}-3<0 \quad \alpha+2 \alpha^{2}-3<0 \tag{d}\\
& 6 \alpha^{2}-5 a+1>0
\end{align*}
$$

- Watch Video Solution

55. Find the position of the origin with respect to theriangle whose sides are $x+1=0,3 x-4 y-5=0$ and $5 x+12 y-27=0$.

- Watch Video Solution

56. about to only mathematics

- Watch Video Solution

57. For points $P \equiv\left(x_{1}, y_{1}\right)$ and $Q \equiv\left(x_{2}, y_{2}\right)$ of the coordinate plane, a new distance $d(P, Q)=\left|x_{1}-x_{1}\right|+\left|y_{1}-y_{2}\right|$. Let $O=(0,0)$ and $A=(3,2)$. Prove that the set of points in the first quadrant which are equidistant (with respect to the new distance) from O and A consists of the union of a line segment of finite length and an infinite ray. Sketch this set in a labelled diagram.

- Watch Video Solution

58. about to only mathematics

- Watch Video Solution

59. Let $O(0,0), P(3,4)$, and $Q(6,0)$ be the vertices of triangle $O P Q$. Find the point R inside the triangle $O P Q$ such that the triangles $O P R, P Q R, O Q R$ are of equal areas.

- Watch Video Solution

60.

$R \equiv(\cos (\beta-\alpha+\theta), \sin (\beta-\theta))$, where $0<\alpha, \beta, \theta<\pi / 4$. Then

- Watch Video Solution

61. If x_{1}, x_{2}, x_{3} as well as y_{1}, y_{2}, y_{3} are in $G P$ with the same common ratio, then the points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$, and $\left(x_{3}, y_{3}\right)$. (a)lie on a straight
line (b)lie on an ellipse (c)lie on a circle (d) are the vertices of a triangle.

- Watch Video Solution

62. The locus of the orthocenter of the triangle formed by the line ($1+\mathrm{p}) \mathrm{x}-$ $\mathrm{py}+\mathrm{p}(1+\mathrm{p})=0,(1+\mathrm{q}) \mathrm{x}-\mathrm{qy}+\mathrm{q}(1+\mathrm{q})=0$ and $\mathrm{y}=0$, whete $p \neq q$, is

- Watch Video Solution

63. Let $A(h, k), B(1,1)$ and $C(2,1)$ be the vertices of a right angled triangle with $A C$ as its hypotenuse. If the area of the triangle is 1 , then the set of values which ' k ' can take is given by

- Watch Video Solution

64. The perpendicular bisector of the line segment joining $P(1,4)$ and $Q(k, 3)$ has y - intercept -4 Then a possible value of k is
65. The lines $p\left(p^{2}+1\right) x y+q=0 \quad$ and
$\left(p^{2}+1\right)^{2} x+\left(p^{2}+1\right) y+2 q=0$ are perpendicular to a common line for (1) no value of p (2) exactly one value of p (3) exactly two values of p
(4) more than two values of p

- Watch Video Solution

66. The number of integral values of m for which the x-coordinate of the point of intersection of the lines $3 x+4 y=9$ and $y=m x+1$ is also an integer is

- Watch Video Solution

Exercise

1. Let the opposite angular points of a square be $(3,4) \operatorname{and}(1,-1)$. Find the coordinates of the remaining angular points.
2. $A(-4,0)$ and $B(-1,4)$ are two given points. Cand D are points which are symmetric to the given points A and B respectively with respect to y-axis.

Calculate the perimeter of the trapezium ABDC.

- Watch Video Solution

3. If the point A is symmetric to the point $B(4,-1)$ with respect to the bisector of the first quadrant, then the length of $A B$ is:

- Watch Video Solution

4. A line through the point $A(2,0)$ which makes an angle of 30^{0} with the positive direction of x-axis is rotated about A in clockwise direction through an angle 15°. Find the equation of the straight line in the new position.
5. The point $(1,-2)$ is reflected in the x-axis and then translated parallel to the positive direction of x-axis through a distance of 3 units, find the coordinates of the point in the new position.

- Watch Video Solution

6. The line segment joining $A(3,0)$ and $B(5,2)$ is rotated about A in the anticlockwise direction through an angle of 45° so that B goes to C. If D is the reflection of C in y-axis, find the coordinates of D.

- Watch Video Solution

7. Two vertices of a triangle are $A(2,1)$ and $B(3,-2)$. The third vertex
C lies on the line $y=x+9$. If the centroid of $\triangle A B C$ lies on y-axis, find the coordinates of C and the centroid.
8. If a, b, c are the $p t h, q t h, r t h$ terms, respectively, of an $H P$, show that the points $(b c, p),(c a, q)$, and $(a b, r)$ are collinear.

Watch Video Solution

9. The area of a triangle is $\frac{3}{2}$ square units. Two of its vertices are the points $A(2,-3)$ and $B(3,-2)$, the third vertex of the triangle lies on the line $3 x-y-2=0$, then third vertex C is

D Watch Video Solution

10. Prove that the quadrilateral whose vertices are $A(-2,5), B(4,-1), C(9,1)$ and $D(3,7)$ is a parallelogram and find its area. If E divides AC in the ration $2: 1$, prove that D, E and the middle point F of $B C$ are collinear.

- Watch Video Solution

11. A line through the point $A(2,0)$ which makes an angle of 30° with the positive direction of x-axis is rotated about A in clockwise direction through an angle 15°. Find the equation of the straight line in the new position.

Watch Video Solution

12. A line through the point $P(1,2)$ makes an angle of 60^{0} with the positive directin of $x-a \xi s$ and is rotated about P in the clockwise direction through an angle 15°. Find the equation of the straight line in the new position.

- Watch Video Solution

13. The line $2 x-y=5$ turns about the point on it, whose ordinate and abscissae are equal through an angle of 45° in the anti-clockwise direction. Find the equation of the line in the new position.
14. The line $x+2 y=4$ is-translated parallel to itself by 3 units in the sense of increasing x and is then rotated by 30° in the clockwise direction about the point where the shifted line cuts the x-axis.Find the equation of the line in the new position

- Watch Video Solution

15. $A B$ is a side of a regular hexagon $A B C D E F$ and is of length a with A as the origin and $A B$ and $A E$ as the x -axis andy-axis respectively. Find the equation of lines $A C, A F$ and $B E$

- Watch Video Solution

16. A straight road is at a distance of $5 \sqrt{2}$ miles from a place. The shortest distance of the road from the place is in the N.E. direction. Do the following villages which (i) is 6 miles East and 4 miles North from the
place lie on the road or no, (ii) is 4 miles East and 3 miles North from the place, lie on the road or not?

- Watch Video Solution

17. In the given figure, PQR is an euilateral triangle and OSPT is a square. If $\mathrm{OT}=2 \sqrt{2}$ units, find the equation of lines $\mathrm{OT}, \mathrm{OS}, \mathrm{SP}, \mathrm{QR}, \mathrm{PR}$, and PQ .

(Watch Video Solution

18. Two particles start from the point ($2,-1$), one moves 2 units along the line $x+y=1$ and the other moves 5 units along the line $x-2 y=4$. If the
particles move upward w.r.t coordinates axes, then find their new positions.

- Watch Video Solution

19. One end of a thin straight elastic string is fixed at $A(4,-1)$ and the other end B is at $(1,2)$ in the unstretched condition. If the string is stretched to triple its length to the point C, then find the coordinates of this point.

- Watch Video Solution

20. The line $P Q$ whose equation is $x-y=2$ cuts the x-axis at P, and Q is $(4,2)$. The line PQ is rotated about P through 45° in the anticlockwise direction. The equation of the line PQ in the new position is

- Watch Video Solution

21. The extremities of a diagonal of a squaer are $(1,1),(-2,-1)$. Obtain the other two vertices and the equation of the other diagonal.

Watch Video Solution

22. The straight line passing through $P\left(x_{1}, y_{1}\right)$ and making an angle α with x -axis intersects $A x+B y+C=0$ in Q then $P Q=$ \qquad

- Watch Video Solution

23. A line which the positive direction of x-axis is drawn through the point $P(3,4)$, to cut the curve $y^{2}=4 x$ at Q and R. Show that the lengths of the segments $P Q$ and $P R$ are numerical values of the roots of the equation $r^{2} \sin ^{2} \theta+4 r(2 \sin \theta-\cos \theta)+4=0$

- Watch Video Solution

24. The lines $2 x+3 y+19=0$ and $9 x+6 y-17=0$, cut the coordinate axes at concyclic points.

Watch Video Solution

25. A straight line L is perpendicular to the line $5 x-y=1$. The area of the triangle formed by line L, and the coordinate axes is 5 . Find the equation of line L.

- Watch Video Solution

26. The line $2 x+3 y=12$ meets the x -axis at A and y -axis at B . The line through $(5,5)$ perpendicular to $A B$ meets the x-axis and the line $A B$ at C and E respectively. If O is the origin of coordinates, find the area of figure OCEB.

- Watch Video Solution

27. about to only mathematics

- Watch Video Solution

28. A light beam, emanating from the point $(3,10)$ reflects from the straight line $2 x+y-6=0$ and, then passes through the point $(7,2)$.Find the equations of the incident and reflected beams .

- Watch Video Solution

29. Let $A \equiv(3,2)$ and $B \equiv(5,1)$. ABP is an equilateral triangle is constructed one the side of $A B$ remote from the origin then the orthocentre of triangle ABP is :

- Watch Video Solution

30. The vertices of a triangle are
$A\left(x_{1}, x_{1} \tan \theta_{1}\right), B\left(x_{2}, x_{2} \tan \theta_{2}\right) \operatorname{and} C\left(x_{3}, x_{3} \tan \theta_{3}\right)$. if the circumcentre
of Delta $A B C$ coincides with the origin and $H(x, y)$ is the orthocentre, show that $\frac{y}{x}=\frac{\sin \theta_{1}+s \int h \eta_{2}+\sin \theta_{3}}{\cos \theta_{1}+\cos \theta_{2}+\cos \theta_{3}}$

(Watch Video Solution

31. The circumcentre of a triangle with vertices $(a, a \tan \alpha), B(b, b \tan \beta)$ and $C(c, c \tan \gamma)$ lies at the origin, where $0<\alpha \beta, \gamma<\pi / 2$ and $a+\beta+\gamma=\pi$. Show that its orthocentre lies on the line $4 \cos \left(\frac{\alpha}{2}\right) \cos \left(\frac{\beta}{2}\right) \cos \left(\frac{\gamma}{2}\right) x-4 \sin \left(\frac{\alpha}{2}\right) \sin \left(\frac{\beta}{2}\right) \sin \left(\frac{\gamma}{2}\right) y=y$

- Watch Video Solution

32. Determine whether the origin lies inside or outside the triangle whose sides are given by the equations $7 x-5 y-11=0,8 x+3 y+31=0, x+8 y-19=0$.

- Watch Video Solution

33. The equations of two sides of a square are $3 x+4 y-5=0$ and $3 x+4 y-15=0$. The third side has a point $(6,5)$ on it. Find the equation of this third side and the remaining side of the square.

- Watch Video Solution

34. Show that the reflection of the line $p x+q y+r=0$ in the line $x+y+1=0$ is the line $q x+p y+(p+q-r)=0$, where $p \neq-q$.

- Watch Video Solution

35. A rhombus has two of its sides parallel to the lines $y=2 x+3$ and $y=7 x+2$. If the diagonals cut at $(1,2)$ and one vertex is on the y-axis, find the possible values of the coordinate of that vertex.

- Watch Video Solution

36. if x and y coordinates of a point P in x - yplane are given by $x=(u \cos \alpha) t, y=(u \sin \alpha) t-\frac{1}{2} g t^{2}$ where t is a aprameter and u, α, g the constants. Then the locus of the point P is a parabola then whose vertex is:

Watch Video Solution

37. A variable line through the point $\left(\frac{6}{5}, \frac{6}{5}\right)$ cuts the coordinate axes at the points A and B respectively. If the point P divides $A B$ internally in the ratio $2: 1$, then the equation of the locus of P is

- Watch Video Solution

38. A straight line moves in such a way that the length of the perpendicular upon it from the origin is always p. Find the locus of the centroid of the triangle which is formed by the line and the axes.

- Watch Video Solution

39. A right angled triangle $A B C$ having a right angle at $C, C A=b$ and $C B=a$, move such that angular points A and B slide along x-axis and y-axis respectively. Find the locus of C

- Watch Video Solution

40. The vertices of a triangle ABC are the points $(0, b),(-a, 0),(a, 0)$.

Find the locus of a point P which moves inside the triangle such that the product of perpendiculars from P to $A B$ and $A C$ is equal to the square of the perpendicular to $B C$.

- Watch Video Solution

41. Find the locus of the point at which two given portions of the straight line subtend equal angle.

- Watch Video Solution

42. A point is moving in such a way that sum of the squares of perpendiculars drawn from it to the sides of an equilaeral triangle is constant. Prove that its locus is a circle.

- Watch Video Solution

43. Find the locus of the middle points of the segment of a line passing through the point of intersection of lines $a x+b y+c=0$ and $l x+m y+n=0$ and intercepted between the axes.

- Watch Video Solution

44. A point P move along the y-axis. Another point Q moves so that the fixed straight line $x \cos \alpha+y \sin \alpha=p$ is the perpendicular bisector of the line segment $P Q$.Find the locus of Q.

- Watch Video Solution

45. The vertices $B a n d C$ of a triangle $A B C$ lie on the lines $3 y=4 x a n d y=0$, respectively, and the side $B C$ passes through the point $\left(\frac{2}{3}, \frac{2}{3}\right)$. If $A B O C$ is a rhombus lying in the first quadrant, O being the origin, find the equation of the line $B C$.

- Watch Video Solution

46. $A B C$ is a right angled triangle, right-angled at A. The coordinates of B and C are $(6,4)$ and $((14,10)$ respectively. The angle between the side AB and x -axis is 45°. Find the coordinates of A.

- Watch Video Solution

47. The line joining $A(b \cos \alpha, b \sin \alpha)$ and $B(a \cos \beta, a \sin \beta)$ is produced to the point $M(x, y)$ so that $A M$ and $B M$ are in the ratio $b: a$. Then prove that $x+y \tan \left(\frac{\alpha+\beta}{2}\right)=0$.
48. The equation of the side AB and AC of a triangle ABC are $3 x+4 y+9$ and $4 x-3 y+16=0$ respectively. The third side passes through the point $D(5,2)$ such that $B D: D C=4: 5$. Find the equation of the third side.

- Watch Video Solution

49. Let n be the number of points having rational coordinates at a fixed distance fromt the point $(0, \sqrt{3})$. Then

- Watch Video Solution

50. If poitns $A(3,5)$ and B are equidistant from $H(\sqrt{2}, \sqrt{5})$ and B has rational coordinates,then $A B=$

- Watch Video Solution

51. Find the number of point (x, y) having integral coordinates satisfying the condition $x^{2}+y^{2}<25$

Watch Video Solution

52. $A B C$ is an equilateral triangle such that the vertices B and C lie on two parallel lines at a distance 6 . If A lies between the parallel lines at a distance 4 from one of them, then the length of a side of the equilatereal triangle is

- Watch Video Solution

53. If all the vertices of a triangle have integral coordinates, then the triangle may be (a) right-angle (b) equilateral (c) isosceles (d) none of these

- Watch Video Solution

54. Let $A \equiv(-4,0), B \equiv(-1,4) . C$ and D are points which are symmetric to points A and B respectively with respect to y -axis, then area of the quadrilateral $A B C D$ is (A) 8 sq units (B) 12 sq. units (C) 20 sq. units (D) none of these

(D) Watch Video Solution

55. If x_{1}, x_{2}, x_{3} as well as y_{1}, y_{2}, y_{3} are in G.P. with same common ratio, then prove that the points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \operatorname{and}\left(x_{3}, y_{3}\right)$ are collinear.

- Watch Video Solution

56. If x_{1}, x_{2}, x_{3} as well as y_{1}, y_{2}, y_{3} are in $G P$ with the same common ratio, then the points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$, and $\left(x_{3}, y_{3}\right)$. (a)lie on a straight line (b)lie on an ellipse (c)lie on a circle (d) are the vertices of a triangle.

- Watch Video Solution

57. $P(3,1), Q(6,5)$ and $R(x, y)$ are three points such that $P R Q$ is a right angle and the area of $\triangle R Q P$ is 7 sq.unit. Find the number of such points R.

- Watch Video Solution

58. Let $\alpha=L t_{m \rightarrow \infty} L t_{n \rightarrow \infty} \cos ^{2 m}\lfloor n \pi x$, where $\quad x$ is rational, $\beta=L t_{m \rightarrow \infty} L t_{n \rightarrow \infty} \cos ^{2 m}\left\lfloor n \pi x\right.$, where 'x' $^{\prime}$ ' is irrational, then the area of the triangle having vertices $(\alpha, \beta),(-2,1)$ and $(2,1)$ is (A) 2 (B) 4 (C) 1 (D) none of these

- Watch Video Solution

59. The incenter of the triangle with vertices $(1, \sqrt{3}),(0,0)$, and $(2,0)$ is
$\left(1, \frac{\sqrt{3}}{2}\right)$
(b) $\left(\frac{2}{3}, \frac{1}{\sqrt{3}}\right)\left(\frac{2}{3}, \frac{\sqrt{3}}{2}\right)$
(d) $\left(1, \frac{1}{\sqrt{3}}\right)$

- Watch Video Solution

60. If $P(1,2) Q(4,6), R(5,7)$, and $S(a, b)$ are the vertices of a parallelogram $P Q R S$, then (a) $a=2, b=4 \quad$ (b) $a=3, b=4 \quad$ (c) $a=2, b=3$ (d) $a=1, b=-1$

- Watch Video Solution

61. If a point P moves such that the sum of its distances from two perpendicular lines is less than or equal to 2 and S be the region consisting of all such points P, then area of the region S is: (A) 4 sq.untis (B) 8 sq. units (C) 6 sq. units (D) none of these

- Watch Video Solution

62. about to only mathematics

- Watch Video Solution

63. If the algebraic sum of the perpendicular distances from the points $(3,1),(-1,2)$ and $(1,3)$ to a variable line be zero, and $\left|\begin{array}{ccc}x^{2}+1 & x+1 & x+2 \\ 2 x+3 & 3 x+2 & x+4 \\ x+4 & 4 x+3 & 2 x+5\end{array}\right|=m x^{4}+n x^{3}+p x^{2}+q x+r \quad$ be \quad an identity in x, then the variable line always passes through the point (A)
$(-r, m)$
(B) $(-m, r)$
(C) (r, m)
(D) $(2 r, m)$

- Watch Video Solution

64. A man starts from the point $P(-3,4)$ and reaches point $Q(0,1)$ touching X - axis at R such that $P R+R Q$ is minimum, then the point R is

- Watch Video Solution

65.

Let
$P \equiv(a, b), Q \equiv(c, d)$ and $0<a<b<c<d, L \equiv(a, 0), M \equiv(c, 0), R$
lies on x -axis such that $P R=R Q$ is minimum, then R divides $L M$ (A)
internally in the ration $a: b$ (B) internally in the ration $b: c$ (C) internally in the ration $b: d(\mathrm{D})$ internally in the ratio $d: b$

- Watch Video Solution

66. If $a=\frac{\tan \theta}{\tan 3 \theta}$, then the point $P\left(a, a^{2}\right)$ (A) necessarily lies in the acute angle between the lines $y=3 x$ and $3 y=x$ (B) may lie on line $3 y=x$ or $y=3 x$ (C) necessarily lies in the obtuse angle between the lines $3 y=x$ and $y=3 x$ (D) $a \varepsilon\left(\frac{1}{3}, 3\right)$

- Watch Video Solution

67. If α an integer and $P\left(\alpha, \alpha^{2}\right)$ is a point in the interior of the quadrilateral
$x=0, y=0,4 x+y-21=0$ and $3 x+y-4=0$, and $(1+a x)^{n}=1$ then $\alpha=(\mathrm{A}) a(\mathrm{~B})-a(\mathrm{C}) a^{2}$ (D) none of these

- Watch Video Solution

68. If a, b, c are variables such that $21 a+40 b+56 c=0$ then the family of lines $a x+b y+c=0$ passes through (A) $\left(\frac{7}{14}, \frac{9}{4}\right)$ (B) $\left(\frac{4}{7}, \frac{3}{8}\right)$ $\left(\frac{3}{8}, \frac{5}{7}\right)$ (D) $(2,3)$

- Watch Video Solution

69. Consider a triangle $P Q R$ with $P \equiv(0,0), Q \equiv(a, 0), R \equiv(0, b)$. Then the centroid, orthocentre and circumcentre (A) lies on a straight line (B) form a scalene triangle with area $\frac{a}{2}|a b|$ (C) form a right-angled triangle with area $\frac{1}{2}|a b|$ (D) none of these

- Watch Video Solution

70. The equaiton of the line which bisects the obtuse angle between the lines

$$
\begin{equation*}
x-2 y+4=0 \text { and } 4 x-3 y+2=0 \tag{A}
\end{equation*}
$$

$(4-\sqrt{5}) x-(3-2(\sqrt{5}) y+(2-4 \sqrt{5})=0$
$(3-2 \sqrt{5}) x-(4-\sqrt{5}) y+(2+4(\sqrt{5})=0$
$(4+\sqrt{5} x-(3+2(\sqrt{5}) y+(2+4(\sqrt{5})=0$ (D) none of these

(D) Watch Video Solution

71. If two sides of a triangle are represented by $2 x-3 y+4=0$ and $3 x+2 y-3=0$, then its orthocentre lies on the line : (A) $x-y+\frac{8}{15}=0$ (B) $3 x-2 y+1=0$ (C) $9 x-y+\frac{9}{13}=0$ (D) $4 x+3 y+\frac{5}{13}=0$

Watch Video Solution

72. Equation of the line equidistant from
$3 x+4 y-25=0$ and $3 x+4 y+25=0$ is
(A) $6 x+4 y+5=0$
(B) $3 x+4 y=0$
(C) $3 x-4 y+5=0$
$6 x+8 y+5=0$

- Watch Video Solution

73. The equation of a line through $(2,-4)$ which cuts the axes so that the intercepts are equal in magnitude is :
(A) $\quad x+y+2=0 \quad$ (B) $\quad x-y+2=0 \quad$ (C) $\quad x+y+6=0$
$x+y-6=0$

- Watch Video Solution

74. If a line is perpendicular to the line $5 x-y=0$ and forms a triangle with coordinate axes of area 5 sq. units, then its equation is :

- Watch Video Solution

75. Find the equation of a straight line through the intersection of $2 x-3 y+4=0$ and $3 x+4 y-5=0$ and parallel to Y-axis

- Watch Video Solution

76. A variable line intersects the co-ordinate axes at A and B and passes through a fixed point (a, b).then the locus of the vertex C of the rectangle $O A C B$ where O is the origin is
77. The family of lines $(l+3 m) x+2(l+m) y=(m-l)$, where $l \neq 0$ passes through a fixed point having coordinates $(\mathrm{A})(2,-1)(\mathrm{B})(0,1)(\mathrm{C})$ $(1,-1)(\mathrm{D})(2,3)$

- Watch Video Solution

78. The equation of the line passing through (1,2) and having a distance equal to 7 units from the points $(8,9)$ is

- Watch Video Solution

79. If a, b, c are in A.P., then the line $a x+b y+c=0$ passes through a fixed point. write the coordinates of that point.
80. The coordinates of the vertices A and B of an isosceles triangle $A B C(A C=B C)$ are $(-2,3)$ and $(2,0)$ respectively. A line parallel to $A B$ and having a y-intercept equal to $\frac{43}{12}$ passes through C, then the coordinatse of C are : (A) $\left(-\frac{3}{4}, 1\right)$ (B) $\left(1, \frac{17}{6}\right)$ (C) $\left(\frac{2}{3}, \frac{4}{5}\right)$ (D) $(1,0)$

- Watch Video Solution

81. The equaiton of the line perpendicular to $2 x+6 y+5=0$ and having the length of x-intercept equal to 3 units can be (A) $y=3 x+5$ (B) $2 y=6 x+1$ (C) $y=3 x+9$ (D) none of these

- Watch Video Solution

82. The point on the line $3 x-2 y=1$ which is closest to the origin is
(A) $\left(\frac{3}{13},-\frac{2}{13}\right)$
(B) $\left(\frac{5}{11}, \frac{2}{11}\right)$
(C) $\left(\frac{3}{5}, \frac{2}{5}\right)$
(D) none of these

- Watch Video Solution

83. Verify the following: $(5,-1,1),(7,-4,7),(1,-6,10)$ and $(-1,-3,4)$ are the vertices of a rhombus.

- Watch Video Solution

84. Find the distance of the point $(2,5)$ from the line $3 x+y+4=0$ measured parallel to the line $3 x-4 y+8=0$

- Watch Video Solution

85. If $A(-1,0), B(1,0)$ and $C(3,0)$ are three given points, then the locus of point D satisfying the relation $D A^{2}+D B^{2}=2 D C^{2}$ is (A) a straight line parallel to x-axis (B) a striaght line parallel to y-axis (C) a circle (D) none of these

- Watch Video Solution

86. A point (1,1) undergoes reflection in the x-axis and then the coordinates axes are rotated through an angle of $\frac{\pi}{4}$ in anticlockwise direction. The final position of the point in the new coordinate system is

- Watch Video Solution

87. If the point $(1, a)$ lies in between the lines $x+y=1$ and $2(x+y)=3$ then a lies in
(i) $(-\infty, 0) \cup(1, \infty)$ (ii) $\left(0, \frac{1}{2}\right)$ (iii) $(-\infty, 0) \cup\left(\frac{1}{2}, \infty\right)$ (iv) none of these

- Watch Video Solution

88. $A=\left(\sqrt{1-t^{2}}+t, 0\right)$ and $B=\left(\sqrt{1-t^{2}}-t, 2 t\right)$ are two variable points then the locus of mid-point of $A B$ is
89. The equation of a straight line passing through $(3,2)$ and cutting an intercept of 2 units between the lines $3 x+4 y=11$ and $3 x+4 y=1$ is
(A) $2 x+y-8=0$
(B) $3 y-4 x+6=0$
(C) $3 x+4 y-17=0$
$2 x-y-4=0$

- Watch Video Solution

90. The coordinates of the foot of perpendicular drawn from the point (2,
4) on the line $x+y=1$ are (A) $\left(\frac{1}{2}, \frac{1}{2}\right)$ (B) $\left(-\frac{1}{2}, \frac{3}{2}\right)$ (C) $\left(\frac{1}{4}, \frac{3}{4}\right)$
(D) $\left(\frac{3}{2},-\frac{1}{2}\right)$

- Watch Video Solution

91. The equation of straight line equally inclined to the axes and equidistant from the point $(1,-2)$ and $(3,4)$ is:

- Watch Video Solution

92. The equation $\sqrt{x^{2}+4 y^{2}-4 x y+4}+x-2 y=1$ represent a (A) straight line (B) circle (C) parabola (D) pair of lines

D Watch Video Solution

93. If a $\Delta A B C$ remains always similar to a given triangle and the point A is fixed and the point B always moves on a given straight line, then locus of C is (A) a circle (B) a straight line (C) a parabola (D) none of these

- Watch Video Solution

94. about to only mathematics

- Watch Video Solution

95. A variable line through the point (p, q) cuts the x and y axes at A and B respectively. The lines through A and B parallel to y -axis and
x -axis respectively meet at P. If the locus of P is $3 x+2 y-x y=0$, then
(A) $\quad p=2, q=3$
(B) $\quad p=3, q=2$
(C) $\quad p=2, q=-3$
$p=-3, q=-2$

- Watch Video Solution

96. If $f(x+y)=f(x) f(y) \forall x, y \in R$ and $\mathrm{f}(1)=2$, then area enclosed by $3|x|+2|y| \leq 8$ is

- Watch Video Solution

97. about to only mathematics

- Watch Video Solution

98. The point $(-4,5)$ is vertex of a square and one of its diagonal is
$7 x-y+8=0$. The equation of other diagonal is
99. If (α, β) be the circumcentre of the triangle whose sides are $3 x-y=5, x+3 y=4$ and $5 x+3 y+1=0$, then (A) $11 \alpha-21 \beta=0$
(B) $11 \alpha+21 \beta=0$ (C) $\alpha+2 \beta=0$ (D) none of these

- Watch Video Solution

100. if $\frac{x}{a}+\frac{y}{b}=1$ is a variable line where $\frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{1}{c^{2}}$ (c is constant) then the locus of foot of the perpendicular drawn from origin

- Watch Video Solution

101. If the
lines
$a x+b y+c=0, b x+c y+a=0$ and $c x+a y+b=0(a, b, c \quad$ being distinct) are concurrent, then
(A) $a+b+c=0$
(B) $a+b+c=1$
(C) $a b+b c+c a=1$
(D) $a b+b c+c a=0$

- Watch Video Solution

102. If a, b, c are the $p t h, q t h, r t h$ terms respectively of an $H . P$., then the lines $b c x+p y+1=0, c a x+q y+1=0$ and $a b x+r y+1=0$ (A) are concurrent (B) form a triangle (C) are parallel (D) none of these

- Watch Video Solution

103. If a, b, c are in A.P. then the family of lines $a x+b y+c=0$ (A) passes through a fixed point (B) cuts equal intercepts on both the axes
(C) forms a triangle with the axes with area $=\frac{1}{2}|a+c-2 b|$ (D) none of these

- Watch Video Solution

104. The value of a for which the image of the point ($a, a-1$) w.r.t. the mirror $3 x+y=6 a$ is the point $\left(a^{2}+1, a\right)$ is

- Watch Video Solution

105.

Prove
that
the
lines
$a x+b y+c=0, b x+c y+a=0$ and $c x+a y+b=0$ are concurrent if $a+b+c=0$ or $a+b \omega+c \omega^{2}+c \omega=0$ where ω is a complex cube root of unity .

- Watch Video Solution

106. Through the point $P(\alpha, \beta)$, where $\alpha \beta>0$, the straight line $\frac{x}{a}+\frac{y}{b}=1$ is drawn so as to form a triangle of area S with the axes. If $a b>0$, then the least value of S is $\alpha \beta$ (b) $2 \alpha \beta$ (c) $3 \alpha \beta$ (d) none

- Watch Video Solution

107. The line $x+y=4$ divides the line joining the points $(-1,1)$ and $(5,7)$ in the ratio

- Watch Video Solution

108. The vertex of an equilateral triangle is $(2,3)$ and the equation of the opposite side is $x+y=2$. Then, the other two sides are $y-3=(2 \pm \sqrt{3})(x-2)$.

- Watch Video Solution

109. Find the equation of the bisector of the acute angle between the lines $3 x-4 y+7=0$ and $12 x+5 y-2=0$.

- Watch Video Solution

110. If one of the diagonals of a square is along the line $x=2 y$ and one of its vertices is $(3,0)$, then its sides through this vertex are given by the
$y+3 x+9=0,3 y+x-3=0 \quad$ (С) $\quad y-3 x+9=0,3 y-x+3=0$
(D) $y-3 x+9=0,3 y+x+9=0$

(Watch Video Solution

111. The orthocentre of triangle with vertices
$\left(2, \frac{\sqrt{3}-1}{2}\right),\left(\frac{1}{2},-\frac{1}{2}\right),\left(2,,-\frac{1}{2}\right)$

- Watch Video Solution

112. A line through $A(-5,-4)$ meets the lines $x+3 y+2=0,2 x+y+4=0 a n d x-y-5=0 \quad$ at \quad the points B, CandD rspectively, if $\left(\frac{15}{A B}\right)^{2}+\left(\frac{10}{A C}\right)^{2}=\left(\frac{6}{A D}\right)^{2}$ find the equation of the line.

(Watch Video Solution

113. The normal form of the eqatuion of the line $x+\sqrt{3 y}=4$ is (A) $x \cos 60^{\circ}+y \sin 60^{\circ}=2$
(B) $\quad x \cos 24^{0}-y \sin 24^{0}-2$ $x \cos 240^{\circ}+y \sin 240^{\circ}-2$ (D) none of these

- Watch Video Solution

114. The equation of the line bisecting the obtuse angle between
$y-x=2$ and $2 y+x=5 \quad$ is \quad (A) $\quad \frac{y-x-2}{\sqrt{2}}=\frac{2 y-x-5}{\sqrt{5}}$
$\frac{y-x-2}{\sqrt{2}}=\frac{-2 y-x+5}{\sqrt{5}}$
(C) $\frac{y-x-2}{\sqrt{2}}=\frac{2 y+x-5}{\sqrt{5}}$
(D) none of
these

- Watch Video Solution

115. The equation of the diagonal through origin of the quadrilateral formed by the lines $x=0, y=0, x+y-1=0$ and $6 x+y-3=0$, is

- Watch Video Solution

116. A line passes through the point $(2,2)$ and is perpendicular to the lines $3 x+y=3$. Its y-intercept is $1 / 3$ b. $2 / 3$ c. 1 d. $4 / 3$

- Watch Video Solution

117. If the sum of the distances of a moving point in a plane from the axes is 1 , then find the locus of the point.

- Watch Video Solution

118. about to only mathematics

- Watch Video Solution

119. Find the equation of the line passing through the point $(2,3)$ and making an 3 intercept of length 2 units between the lines $y+2 x=3$ and $y+2 x=5$.
120. Line L has intercepts $a a n d b$ on the coordinate axes. When the axes are rotated through a given angle keeping the origin fixed, the same line L has intercepts $p a n d q$. Then $a^{2}+b^{2}=p^{2}+q^{2} \frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{1}{p^{2}}+\frac{1}{q^{2}}$ $a^{2}+p^{2}=b^{2}+q^{2}(\mathrm{~d}) \frac{1}{a^{2}}+\frac{1}{p^{2}}=\frac{1}{b^{2}}+\frac{1}{q^{2}}$

- Watch Video Solution

121. The distance between the parallel Ines $y=2 x+4$ and $6 x=3 y-5$ is

(Watch Video Solution

122. The pair of points which lie on the same side of the straight line

$$
\begin{align*}
& 3 x-3 y-7=0 \quad \text { is } \quad \text { (A) } \quad(0,-1)(0,0) \quad \text { (B) } \quad(0,1),(3,0) \tag{C}\\
& (-1,-1),(3,7) \text { (D) }(24,-3),(1,1)
\end{align*}
$$

123. The equation of the base of an equilateral triangle $A B C$ is $x+y=2$ and the vertex is $(2,-1)$. The area of the triangle $A B C$ is: $\frac{\sqrt{2}}{6}$ (b) $\frac{\sqrt{3}}{6}$ (c) $\frac{\sqrt{3}}{8}$ (d) None of these

- Watch Video Solution

124.

$3 x+4 y+6=0, \sqrt{2} x+\sqrt{3} y+2 \sqrt{2}=0$ and $4 x+7 y+8=0$ are (A) sides of triangle (B) concurrent (C) parallel (D) none of these

- Watch Video Solution

125. $P(3,1), Q(6,5)$ and $R(x, y)$ are three points such that $P R Q$ is a right angle and the area of $\Delta R Q P$ is 7 sq.unit. Find the number of such points R .
126. Let $P S$ be the median of the triangle with vertices $P(2,2), Q(6,-1) \operatorname{and} R(7,3)$ Then equation of the line passing through $(1,-1)$ and parallel to $P S$ is $2 x-9 y-7=0$ $2 x-9 y-11=02 x+9 y-11=02 x+9 y+7=0$

- Watch Video Solution

127. The orthocentre of the triangle formed by the lines $x y=0$ and $x+y=1$ is $\left(\frac{1}{2}, \frac{1}{2}\right)$ (b) $\left(\frac{1}{3}, \frac{1}{3}\right)(0,0)$ (d) $\left(\frac{1}{4}, \frac{1}{4}\right)$

- Watch Video Solution

128. If $\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta_{1}, \beta_{2}, \beta_{3}$ are the values of n for which $\sum_{r=0}^{n-1} x^{2 r}$ is divisible by $\sum_{r=0}^{n-1} x^{r}$, then the triangle having vertices $\left(\alpha_{1}, \beta_{1}\right),\left(\alpha_{2}, \beta_{2}\right)$ and $\left(\alpha_{3}, \beta_{3}\right)$ cannot be

- Watch Video Solution

129. about to only mathematics

- Watch Video Solution

130. about to only mathematics

- Watch Video Solution

131. The equation to a pair of opposite sides of a parallelogram are $x^{2}-5 x+6=0$ and $y^{2}+5=0$. The equations to its diagonals are $x+4 y=13, y=4 x-7$ $4 x+y=13,4 y=x-7$
$4 x+y=13, y=4 x-7$ (d) $y-4 x=13, y+4 x-7$

- Watch Video Solution

132. Equation(s) of the straight line(s), inclined at 30° to the x-axis such that the length of its (each of their) line segment(s) between the
coordinates axes is 10 units, is (are)

- Watch Video Solution

133. A ray of light travelling along the line $x+y=1$ is incident on the X axis and after refraction the other side of the X - axis by turning $\pi / 6$ by turning away from the X - axis. The equation of the line along which the refracted ray travels is

- Watch Video Solution

134. The incident ray is along the line $24 x+7 y+5=0$. Find the equation of mirrors.

- Watch Video Solution

135. about to only mathematics
136. A straight line passing through the point $(2,2)$ and the axes enclose an area λ. The intercepts on the axes made by the line are given by the two roots of:

- Watch Video Solution

137. Let L be the line $2 x+y-2=0$. The axes are rotated by 45° in clockwise direction then the intercepts made by the line L on the new axes are respectively

- Watch Video Solution

138. The sides of a triangle are the straight line $x+y=1,7 y=x$, and $\sqrt{3} y+x=0$. Then which of the following is an interior point of the triangle?
139. $A(1,3)$ and $C(7,5)$ are two opposite vertices of a square. The equation of side through A is

- Watch Video Solution

140. If $b y+c y=a$, where a, b, c are of the same sign, be a line such that the area enclosed by the line and the axes of reference is $1 / 8 u_{n i t}{ }^{2}$, then

- Watch Video Solution

141. If $6 a^{2}-3 b^{2}-c^{2}+7 a b-a c+4 b c=0$ then the family of lines $a x+b y+c,|a|+|b| \neq 0$ is concurrent at

- Watch Video Solution

142. One diagonal of a square is the portion of the line $\sqrt{3} x+y=2 \sqrt{3}$ intercepted by the axes. Obtain the extremities of the other diagonal is
143. about to only mathematics

- Watch Video Solution

144. A straight line L is perpendicular to the line $5 x-y=1$. The aera of the triangle formed by line L and the coordinate area is 5 . Find the equation of line L.

- Watch Video Solution

145. Find all points on $x+y=4$ that lie at a unit distance from the line $4 x+3 y-10=0$.

- Watch Video Solution

146. One side of a square makes an angle α with x axis and one vertex of the square is at origin. Prove that the equations of its diagonals are $x(\sin \alpha+\cos \alpha)=y(\cos \alpha-\sin \alpha)$ or $x(\cos \alpha-\sin \alpha)+y(\sin \alpha+\cos \alpha)=a$, where a is the length of the side of the square.

- Watch Video Solution

147. Let the algebraic sum of the perpendicular distance from the points $(2,0),(0,2)$, and $(1,1)$ to a variable straight line be zero. Then the line passes through a fixed point whose coordinates are \qquad

- Watch Video Solution

148. The area of a triangle is 5 . Two of its vertices are $(2,1)$ and $(3,-2)$
. The third vertex lies on $y=x+3$. Find the third vertex.
149. If (α, β) is the foot of perpendicular from $\left(x_{1}, y_{1}\right)$ to line
$l x+m y+n=0, \quad$ then
(A) $\frac{x_{1}-\alpha}{l}=\frac{y_{1}-\beta}{m}$
$\left.\frac{x-1-\alpha}{l}\right)=\frac{l x_{1}+m y_{1}+n}{l^{2}+m^{2}}$
(C) $\frac{y_{1}-\beta}{m}=\frac{l x_{1}+m y_{1}+n}{l^{2}+m^{2}}$
$\frac{x-\alpha}{l}=\frac{l \alpha+m \beta+n}{l^{2}+m^{2}}$

Watch Video Solution

150. The condition to be imposed on β, so that $(0, \beta)$ lies on or insideof the triangle having equation of sides as $y+3 x+2=0,3 y-2 x-5=0$ and $4 y+x-14=0$, is

- Watch Video Solution

151. The equations of two equal sides $A B a n d A C$ of an isosceles triangle $A B C$ are $x+y=5$ and $7 x-y=3$, respectively. Then the equation of side $B C$ if $\operatorname{ar}(A B C)=5 u n i t^{2}$ is $x-3 y+1=0$ (b) $x-3 y-21=0$ $3 x+y+2=0$ (d) $3 x+y-12=0$
152. Two sides of a triangle are $(a+b) x+(a-b) y-2 a b=0$ and $(a-b) x+(a+b) y-2 a b=0$. If the triangle is isosceles and the third side passes through point $(b-a, a-b)$, then the equation of third side can be

- Watch Video Solution

153. Statement I : If centroid and circumcentre of a triangle are known its orthocentre can be found

Statement II : Centroid, orthocentre and circumcentre of a triangle are collinear.

- Watch Video Solution

154. Let P, Q, R be three non-collinear points having rational coordinatse. (1) Coordinates of incentre of $\triangle P Q R$ are rational (2)

Incentre of a triangle is the point of intersection of internal bisectors of angle of the triangle. (A) Both 1 and 2 are true and 2 is the correct explanation of 1 (B) Both 1 and 2 are true and 2 is not a correct explanation of 1 (C) 1 is true but 2 is false (D) 1 is false but 2 is true

D Watch Video Solution

155. Let O be the origin and $P \equiv\left(a, a^{2}\right)$. (1) If $P\left(a, a^{2}\right)$ lies in the first quadrant between the lines $y=x$ and $y=2 x$, then $1<a<2$. (2) Slope of $O P$ is a.
(A) Both 1 and 2 are true and 2 is the correct explanation of 1
(B) Both 1 and 2 are true and 2 is not a correct explanation of 1
(C) 1 is true but 2 is false
(D) 1 is false but 2 is true

- Watch Video Solution

156. If the lines $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$ cut the coordinae axes at concyclic points, then prove that $\left|a_{1} a_{2}\right|=\left|b_{1} b_{2}\right|$

- Watch Video Solution

157. (1) The straight lines $(2 k+3) x+(2-k) y+3=0$, where k is a variable, pass through the fixed point $\left(-\frac{3}{7},-\frac{6}{7}\right)$.
(2) The family of lines $a_{1} x+b_{1} y+c_{1}+k\left(a_{2} x+b_{2} y+c_{2}\right)=0$, where k is a variable, passes through the point of intersection of lines $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$
(A) Both 1 and 2 are true and 2 is the correct explanation of 1
(B) Both 1 and 2 are true and 2 is not a correct explanation of 1
(C) 1 is true but 2 is false
(D) 1 is false but 2 is true

- Watch Video Solution

158. If the lines $y=3 x+1$ and $2 y=x+3$ are equally inclined to the line $y=m x+4$, then $m=$
159. Show that the four lines $a x \pm b y \pm c=0$ enclose a rhombus whose area is $\frac{2 c^{2}}{|a b|}$

- Watch Video Solution

160. Prove that the area of the parallelogram formed by the lines $x \cos \alpha+y \sin \alpha=p, x \cos \alpha+y s \in \alpha=q, x \cos \beta+y \sin \beta=$ rand \cos,

- Watch Video Solution

161. The image of line $2 x+y=1$ in line $x+y+2=0$ is : (A)
$x+2 y-7=0$
(B) $2 x+y-7=0$
(C) $\quad x+2 y+7=0$
$2 x+y+7=0$

- Watch Video Solution

162. Image of ellipse $4 x^{2}+9 y^{2}=36$ in the line $y=x$ is:
(A) $9 x^{2}+4 y^{2}=36$
(B) $3 x^{2}+2 y^{2}=36$
(C) $2 x^{2}+3 y^{2}=36$
(D) none of these

- Watch Video Solution

163. The mirror image of the parabola $y^{2}=4 x$ in the tangent to the parabola at the point $(1,2)$ is

- Watch Video Solution

164. about to only mathematics

- Watch Video Solution

165. Two consecutive sides of a parallelogram are $4 x+5 y=0$ and $7 x+2 y=$

0 . If the equation of one diagonal is $11 x+7 y=9$, find the equation of the other diagonal.

- Watch Video Solution

166. Lines $L_{1} \equiv a x+b y+c=0$ and $L_{2} \equiv l x+m y+n=0$ intersect at the point P and make an angle θ with each other. Find the equation of a line different from L_{2} which passes through P and makes the same angle θ with L_{1}.

- Watch Video Solution

167. The equation of sides $B C, C A, A B$ of a triangle $A B C$ are $a x+b y+c=0, l x+m y+n=0$ and $p x+q y+r=0$ respectively, then the line : $\frac{p x+q y+r}{a p+b q}=\frac{l x+m y+n}{a l+m b}$ is (A) perpendicular to AB (B) perpendicular to $A C(C)$ perpendicular to $B C(D)$ none of these
168. If a and b are parameters, then each line of the family of lines $x(a+2 b)+y(a-3 b)=a-b$ passes through the point whose distance from origin is: (A) $\frac{3}{5}$ (B) $\frac{\sqrt{13}}{5}$ (C) $\frac{\sqrt{11}}{5}$ (D) $\frac{4}{5}$

- Watch Video Solution

169. about to only mathematics

- Watch Video Solution

170. A line cuts the x -axis at $A(7,0)$ and the y -axis at $B(0,-5) \mathrm{A}$ variable line $P Q$ is drawn perpendicular to $A B$ cutting the x-axis in P and the y-axis in Q. If $A Q$ and $B P$ intersect at R, find the locus of R.

- Watch Video Solution

171. A straight line l passes through a fixed point (6,8). If locus of the foot of perpendicular on line l from origin is a circle, then radius of this circle is ...

- Watch Video Solution

172. A line is such that its segment between the lines $5 x-y+4=0$ and $3 x+4 y-4=0$ is bisected at the point (1,5). Obtain its equation.

- Watch Video Solution

173. A straight line L is perpendicular to the line $5 x-y=1$. The aera of the triangle formed by line L and the coordinate area is 5 . Find the equation of line L .

- Watch Video Solution

174. A line $4 x+y=1$ through the point $A(2,-7)$ meets the line $B C$ whose equation os $3 x=4 y+1=0$ at the point B. Find the equation to the line $A C$ so that $A B=A C$.

- Watch Video Solution

175. Let $A B$ be a line segment of length 4 with A on the line $y=2 x$ and B on the line $y=x$. Determine the locus of the mid-points of all such line segments.

- Watch Video Solution

176. Let $O(0,0), P(3,4)$, and $Q(6,0)$ be the vertices of triangle $O P Q$. Find the point R inside the triangle $O P Q$ such that the triangles $O P R, P Q R, O Q R$ are of equal areas.

- Watch Video Solution

177. Let S be a square of unit area. Consider any quadrilateral which has one vertex on each side of S . If a, b, c and d denote the lengths of sides of the quadrilateral, prove that $2 \leq a_{2}+b_{2}+c_{2}+d_{2} \leq 4$

- Watch Video Solution

178. The equations of two sides of a triangle are $3 x-2 y+6=0$ and $4 x+5 y-20$ and the orthocentre is (1,1). Find the equation of the third side.

- Watch Video Solution

179. Let the four consecutive compartments made by the lines $2 x-3 y+1=0$ and $3 x-5 y+2=0$ be I, II, III and IV respectively. Let (0,0) belong to compartment I. We associate four numbers 100, 200, 300 and 400 to the compartments I, II, III and IV respectively. Then the number associated to the compartment in which ($-1,1$) belong is ...
180. A ray of light is sent along the line $x-2 y-3=0$. On reaching the line $3 x-2 y-5=0$, the ray is reflected from it. If the equation of reflected ray be $a x-2 y=c$, where a and c are two prime numbers differing by 2 , then $a+c=$

- Watch Video Solution

$$
\begin{aligned}
& \text { 181. Consider the lines given by : } \\
& L_{1}: x+3 y-5=0, L_{2}: 3 x-k y-1=0, L_{3}: 5 x+2 y-12=0 \text { If } a \text { be }
\end{aligned}
$$ the value of k for which lines L_{1}, L_{2}, L_{3} do not form a triangle and c be the value of k for which one of L_{1}, L_{2}, L_{3} is parallel to at least one of the other lines, then $a b c=$

- Watch Video Solution

182. A ray of light emanating from $(-4,3)$ after reflection from x-axis at $(\alpha, 0)$ is normal to circle $x^{2}+y^{2}-10 x-2 y+25=0$, then $4 \alpha=$
183. If the quadrilateral formed by the lines
$a x+b y+c=0,6 \sqrt{3} x+8 \sqrt{3} y+k=0$,
$a x+b y+k=0$ and $6 \sqrt{3} x+8 \sqrt{3} y+c=0$ has diagonals at right angles, then the value of $a^{2}+b^{2}=\ldots$

- Watch Video Solution

184. about to only mathematics

- Watch Video Solution

