

MATHS

BOOKS - KC SINHA ENGLISH

DIFFERENTIAL EQUATIONS - FOR BOARDS

Solved Examples

1. Find the order and degree of the following differential

equation:
$$\left(rac{d^3y}{dx^3}
ight)^2 - x \left(rac{dy}{dx}
ight)^3.$$

2. Determine the order and degree of the differential equation $\frac{d^2y}{dx^2} = \sqrt{1 + \left(\frac{dy}{dx}\right)^2}$ Watch Video Solution

3. Determine the order and degree of each of the following

differential equation. State also whether they are linear or

non-linear:
$$y=px+\sqrt{a^2p^2+b^2}, \;where\; p=rac{dy}{dx}$$

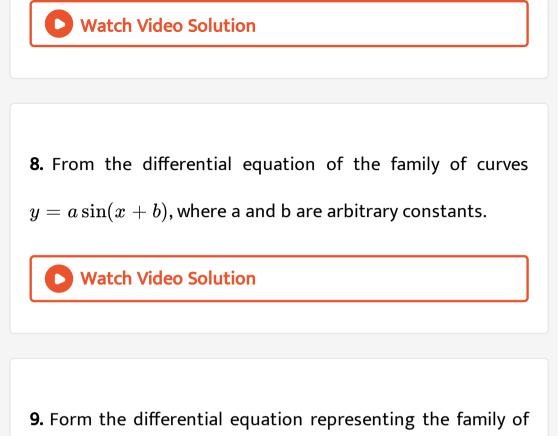
Watch Video Solution

4. Find the order and degree of the differential equation

$$rac{dy}{dx} + \sin\!\left(rac{dy}{dx}
ight) = 0$$

5. Find the order and degree of the differential equation

$$\log_e\!\left(1+rac{d^2y}{dx^2}
ight)=x$$


Watch Video Solution

6. The differential equation representing the family of curves

 $y^2=2cig(x+\sqrt{c}ig),\,$ where c is a positive parameter, is of (a) order 1 (b) order 2 (c) degree 3 (d) degree 4

7. Obtain the differential equation of the family of curves represented by $y = Ae^x + Be^{-x} + x^2$, where A and B are arbitrary constants.

curves $y = A \cos(x + B)$ where AS and B are parameters.

Watch Video Solution

10. Find the differential equation of the family of curves

 $y = Ae^x + Be^{-x}$, where A and B are arbitrary constants.

11. Form the differential equation corresponding to

 $y^2 = a(b-x)(b+x)$ by eliminating parameters $aandb_{-}$

Watch Video Solution

12. Show that the differential equation of all parabolas $y^2 = 4a(x-b)$ is given by

Watch Video Solution

13. Form the differential equation corresponding to $y^2 = a(b-x)^2$,where a and b are arbitrary constant.

14. Find the differential equation of the family of curves given

by
$$x^2+y^2=2ax$$

Watch Video Solution

15. Form the differential equation representing the family of

curves $y^2 - 2ay + x^2 = a^2$, where a is an arbitrary constant.

Watch Video Solution

16. Show that the differential equation representing one

parameter family of curves $(x^2-y^2)=cig(x^2+y^2ig)^2is\ ig(x^3-3xy^2ig)dx=ig(y^3-3x^2yig)dy$

17. Form the differential equation of all concentric circles at

the origin.

Watch Video Solution

18. Find the differential equation of family of all straight lines

passing through the origin .

Watch Video Solution

19. Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.

20. Form the differential equation of the family of circles touching the x-axis at origin.

Watch Video Solution

21. Form the differential equation of the family of circles in

the second quadrant and touching the coordinate axes.

Watch Video Solution

22. Show that $y = ae^{2x} + be^{-x}$ is a solution of the differential equation $\frac{d^2y}{dx^2} - 2y = 0.$

23. Show that the function $y = (A + Bx)e^{3x}$ is a solution of

the equation
$$\displaystyle rac{d^2y}{dx^2} - 6 \displaystyle rac{dy}{dx} + 9y = 0.$$

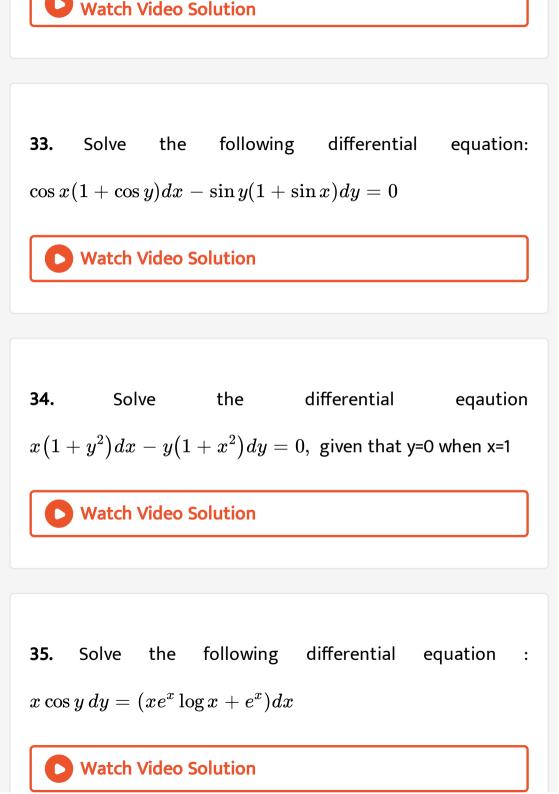
Watch Video Solution

24. Verify that $y = ae^{3x} + be^{-x}$ is a solution of differential

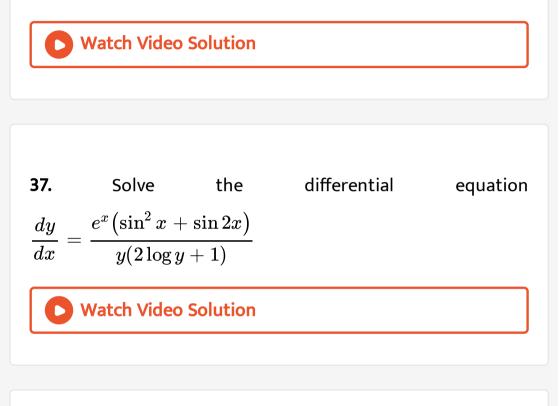
equation
$$rac{d^2y}{dx^2} - 2rac{dy}{dx} - 3y = 0$$

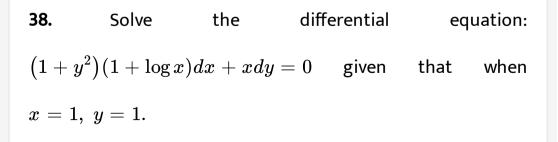
Watch Video Solution

25. Show that $y=Ax+rac{B}{x}, x
eq 0$ is a solution of the differential equation $x^2rac{d^2y}{dx^2}+xrac{dy}{dx}-y=0$


26. Show that, $v=rac{A}{r}+B$ satisfies the differential equation $rac{d^2v}{dr^2}+rac{2}{r}.rac{dv}{dr}=0$

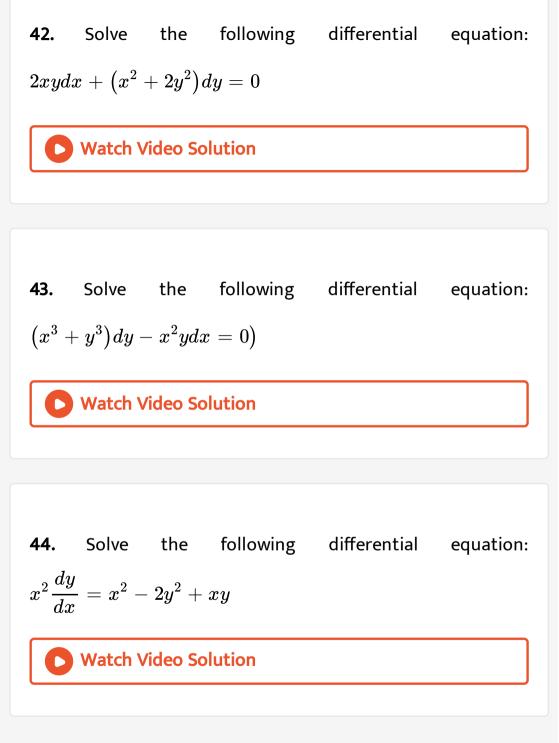
Watch Video Solution


27. solve the differential equation
$$rac{dy}{dx}=e^{x+y}+x^2e^y$$


28. Solve the differential equation
$$\frac{dy}{dx} = \sqrt{4 - y^2}, -2 < y < 2$$
Watch Video Solution

29. Solve the differential equation $(\sqrt{a+x})rac{dy}{dx} + x = 0$ Watch Video Solution **30.** Solve the differential equation $\frac{dy}{dx} = \frac{1+y^2}{1+x^2}$ Watch Video Solution **31.** Solve the differential equation $\frac{dy}{dx} = \sin^{-1} x$ Watch Video Solution **32.** Solve the following differential equation: $(1+e^{2x})dy+(1+y^2)e^xdx=0$

36. Solve the differential equation $rac{dy}{dx} = \log(x+1)$


39. Solve:
$$(x+y)^2 rac{dy}{dx} = a^2$$

Watch Video Solution

40. Solve the differential equation:

$$\sin^{-1}\left(rac{dy}{dx}
ight) = x+y.$$

41. Solve the following differential equation
$$(x^2 + xy)dy = (x^2 + y^2)dx$$

Vatch Video Solution

45. solve the differential equation $(y+x)rac{dy}{dx}=y-x$

Watch Video Solution

46. Solve :

$$\Big\{x\cos\Big(rac{y}{x}\Big)+y\sin\Big(rac{y}{x}\Big)\Big\}ydx=\Big\{y\sin\Big(rac{y}{x}\Big)-x\cos\Big(rac{y}{x}\Big)\Big\}xdy$$

47. Solve
$$\Big(1+2e^{x\,/\,y}\Big)dx+2e^{x\,/\,y}(1-x\,/\,y)dy=0.$$

48. Solve the following differential equation: $y \, dx + x \log \left(\frac{y}{x} \right) dy = 2x \, dy$

Watch Video Solution

49. Solve each of the following initial value problem: $2xy + y^2 - 2x^2 \frac{dy}{dx} = 0, \ y(1) = 2$

Watch Video Solution

50. Solve the differential equation $x\frac{dy}{dx} - y = x \tan\left(\frac{y}{x}\right)$, given $y = \frac{\pi}{2}$ when x = 1.

51. Solve the following differential equation:

$$\frac{dy}{dx} + \sec x \cdot y = \tan x \left(0 \le x < \frac{\pi}{2} \right)$$

D

52. Solve the following differential equation:

$$\frac{dy}{dx} + 2\tan x \cdot y = \sin x$$
 Also find the particular solution if
 $y = 0$ when $x = \frac{\pi}{3}$

Watch Video Solution

53. Solve:
$$x \log x \frac{dy}{dx} + y = 2 \log x$$

54. Solve the following differential equation :

$$(x^2 - 1) \frac{dy}{dx} + 2xy = \frac{2}{(x^2 - 1)}$$

Watch Video Solution
55. Solve the following differential equations:
 $(1 + x^2) \frac{dy}{dx} - 2xy = (x^2 + 2)(x^2 + 1)$
Watch Video Solution

56. Solve the differential equation
$$\left[\frac{e^{-2\sqrt{x}}}{\sqrt{x}} - \frac{y}{\sqrt{x}}\right]\frac{dx}{dy} = 1(x \neq 0)$$

57. Solve the differential equation :

$$xrac{dy}{dx}+y-x+xy \operatorname{cot} x=0, x
eq 0.$$

Watch Video Solution

58. Solve the differential equation: $rac{dy}{dx}+rac{y}{x}=e^x, x>0$

59. Solve:
$$rac{dy}{dx} - 2y = \cos 3x$$

60. Find the general solution of the differential equations:

$$x\log xrac{dy}{dx}+y=rac{2}{x}\log x$$

Watch Video Solution

61. Find the particular solution of the differential equation

$$rac{dy}{dx}+y\cot x=2x+x^2\cot x(x
eq 0)$$
given that $y=0$ when $x=rac{\pi}{2}.$

Watch Video Solution

62. Solve the following differential equation, given that y = 1

when
$$x=2$$
: $xrac{dy}{dx}+y=x^3$

63. Solve the differential equation $\frac{dy}{dx} - 3y \cot x = \sin 2x$ given y = 2 when $x = \frac{\pi}{2}$. Watch Video Solution

64. The differential equations, find a particular solution

satisfying the given condition:
$$ig(1+x^2ig)rac{dy}{dx}+2xy=rac{1}{1+x^2};y=0$$
when $x=1$

Watch Video Solution

65. Find the particular solution of the differential equation. $\frac{dy}{dx} + y \cot x = 4x \ \cos ec x, \ (x \neq 0), \ \text{given that} \ y = 0$ when $x = \frac{\pi}{2}$.

66. Solve:
$$\left(x+2y^3
ight)rac{dy}{dx}=y.$$

67. Solve the following differential equation:

$$(1 + y^2)dx = (\tan^{-1}y - x)dy$$

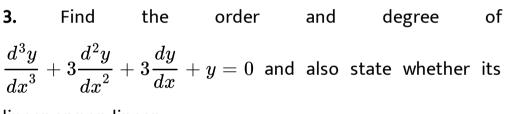
Watch Video Solution

68. Solve the following differential equation:
$$\displaystyle rac{dy}{dx} + \displaystyle rac{y}{x} = x^3$$

69. Solve the following differential equation:
$$\tan y \cdot \frac{dy}{dx} + \tan x = \cos y \cos^2 x$$

70. The Integrating Factor of the differential equation $\left(1-y^2
ight)rac{dx}{dy}+yx=ay$

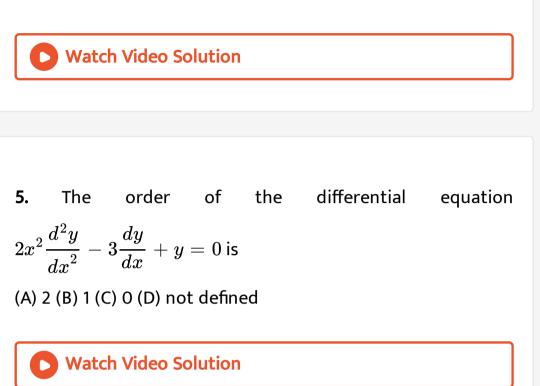
Watch Video Solution



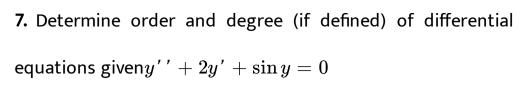
1. Find the order and degree of $\displaystyle rac{d^2y}{dx^2} + 4x = 0$ and also state

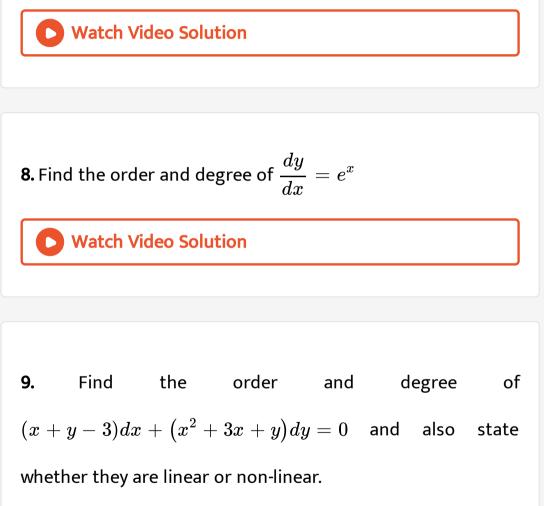
whether its linear or non-linear.

2.
$$a=rac{\left[1+\left(rac{dy}{dx}
ight)^2
ight]^{3/2}}{rac{d^2y}{dx^2}}$$
, where a is constant.


Watch Video Solution

linear or non-linear.


4. Find the order and degree of
$$x^2 \left(\frac{d^2y}{dx^2}\right)^3 + y \left(\frac{dy}{dx}\right)^4 + y^4 = 0$$
 and also state whether its


linear or non-linear.

6. Determine order and degree (if defined) of differential

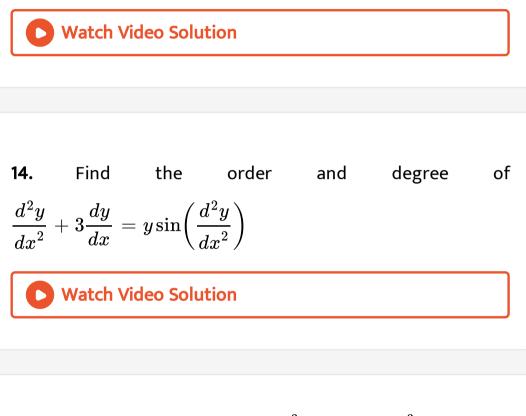
equations given $y' + y = e^x$

10. Find the order and degree of
$$\frac{d^3y}{dx^3} + \left(\frac{d^2y}{dx^2}\right)^3 + \frac{dy}{dx} + 4y = \sin x$$
 and also state

whether they are linear or non-linear.

Watch Video Solution

11. Find the order and degree of
$$5rac{d^2y}{dx^2} = \left[1 + \left(rac{dy}{dx}
ight)^2
ight]^{rac{3}{2}}$$


and also state whether they are linear or non-linear.

Vatch Video Solution

12. Determine order and degree (if defined) of differential

equations given
$$\left(rac{ds}{dt}
ight)^4+3srac{d^2s}{dt^2}=0$$

13. Find the order and degree of y ''' $+y^2+e^{y'}=0$

15. Find the order and degree of
$$rac{d^3y}{dx^3} - 2\siniggl(rac{d^3y}{dx^3}iggr) = 0$$

16. Form a differential equation for the family of curves represented by $ax^2 + by^2 = 1$, where a and b are arbitrary constants.

Watch Video Solution

17. The differential equation satisfying all the curves $y = ae^{2x} + be^{-3x}$, where a and b are arbitrary constants, is

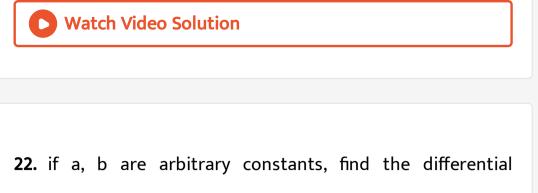
Watch Video Solution

18. If a is arbitrary constant, find the differential equation of

$$x^2+y^2=a^2$$

19. Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b. $y = ae^{3x} + be^{-2x}$

Watch Video Solution

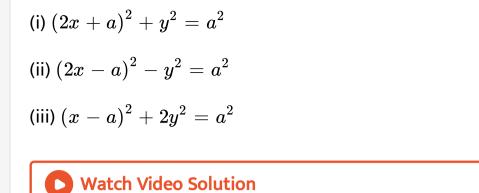

20. Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b. $\frac{x}{a} + \frac{y}{b} = 1$

> Watch Video Solution

21. Form a differential equation representing the given family

of curves by eliminating arbitrary constants a and b.

$$y = e^{2x}(a + bx)$$


equation of $y = a \cos nx + b \sin nx$

Watch Video Solution

23. Find the differential equation of the family of curves $y = A \cos x + B \sin x$, where A, B are parameters.

Watch Video Solution

24. Form the differential equation of the family of curves represented by the equation (a being the parameter):

25. Find the differential equation of the family of curves $(x + a)^2 - 2y^2 = a^2$, where a is an arbitrary constant.

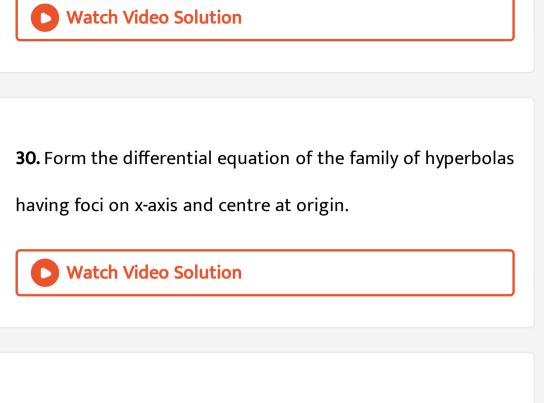
Watch Video Solution

26. Form the differential equation representing the family of curves given by $(x - a)^2 + 2y^2 = a^2$, where a is an arbitrary constant.

27. Show that the differential equation of which
$$y = 2(x^2 - 1) + ce^{-x} \cdot 2$$
 is a solution, is $\frac{dy}{dx} + 2xy = 4x^3$.

Watch Video Solution

28. Form the differential equation of simple harmonic motion


given by $x = A\cos(nt + \alpha)$, where n is fixed and A, α are

parameters.

29. Form the differential equation of the family of circles

having centre on y-axis and radius 3 units.

31. Find the differential equation of all the circles which pass

thorough the origin and whose centres lie on x-axis.

Watch Video Solution

32. about to only mathematics

33. Verify that the function $y = e^{-3x}$ is a solution of the differential equation $\frac{d^2y}{dx^2} + \frac{dy}{dx} - 6y = 0$

Watch Video Solution

34. Verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation: $y = e^x + 1: y'' - y' = 0$ Watch Video Solution

35. Verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation :

$$y=Ax$$
 : $xy'=y(x
eq 0)$

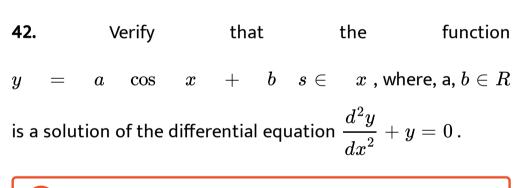
36. Verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation: $y = \cos x + C : y' + \sin x = 0$

37. In each of the following verify that the given function (explicit or implicit) is a solution of the corresponding differentia equation: $y = x \sin x$ ii. $y = \sqrt{a^2 - x^2}$

38. Verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation: $xy = \log y + C : y' = \frac{y^2}{1 - xy} (xy \neq 1)$ Watch Video Solution

39. Verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation: $x + y = \tan^{-1} y : y^2 y' + y^2 + 1 = 0$

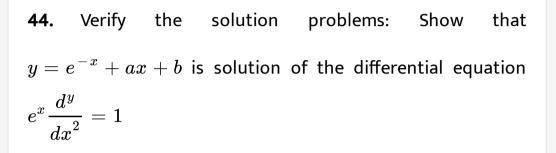
Watch Video Solution


40. Verify that $y = 4 \sin 3x$ is a solution of the differential

equation
$$rac{d^2y}{dx^2}+9y=0.$$

41. Show that the function $y = A \cos 2x + B \sin 2x$ is a solution of the differential equation $\frac{d^2y}{dx^2} + 4y = 0$

Watch Video Solution



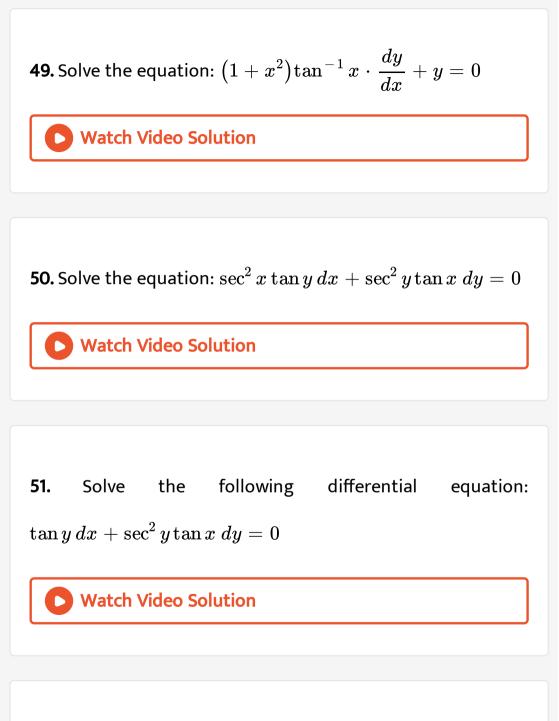
Watch Video Solution

43. Show that the differential equation of which $y=2ig(x^2-1ig)+ce^{-x}$ ^2 is a solution, is

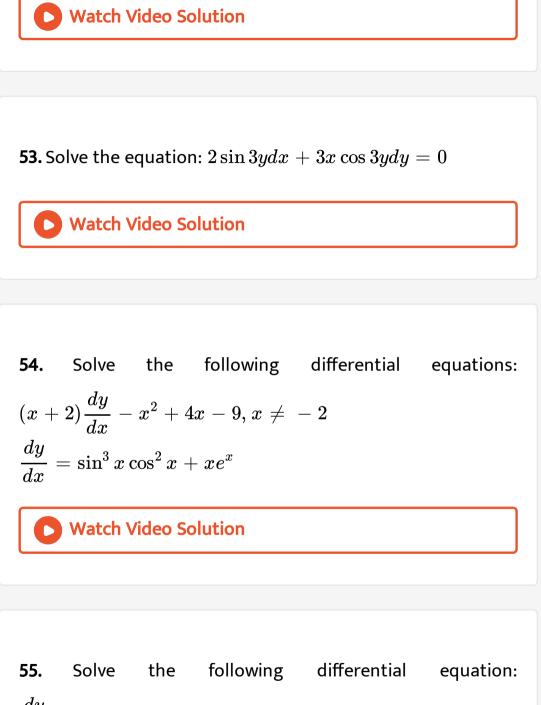
$$rac{dy}{dx}+2xy=4x^3$$
 .

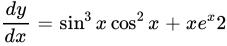
45. Show that $y = e^x (A \cos x + B \sin x)$ is the solution of

the differential equation
$$rac{d^2y}{dx^2} - 2rac{dy}{dx} + 2y = 0.$$


46. Verify that $y=ce^{tan-1_x}$ is a solution of differential equation $(1+x^2)rac{d^2y}{dx^2}+xrac{dy}{dx}=0.$

Watch Video Solution


47. Verify that the function


$$y = C_1 e^{ax} \cos bx + C2ax \sin bx$$
, C_1, C_2 , are arbitrary
constants is a solution of the differentia equation
 $\frac{d^2y}{dx^2} - 2a\frac{dy}{dx} + (a^2 + b^2)y = 0$
Vatch Video Solution

48. Solve the following differential equation: $rac{dy}{dx} = (e^x + 1)y$

52. Solve :
$$ig(x^2-yx^2ig)dy+ig(y^2+x^2y^2ig)dx=0$$

56. Solve the differential equation: $rac{dy}{dx} = rac{1-\cos x}{1+\cos x}$

Watch Video Solution

57. Solve:
$$\displaystyle rac{dy}{dx} + y = 1$$

Watch Video Solution

58. Solve the equation:
$$(x+1)\frac{dy}{dx} = 2xy$$

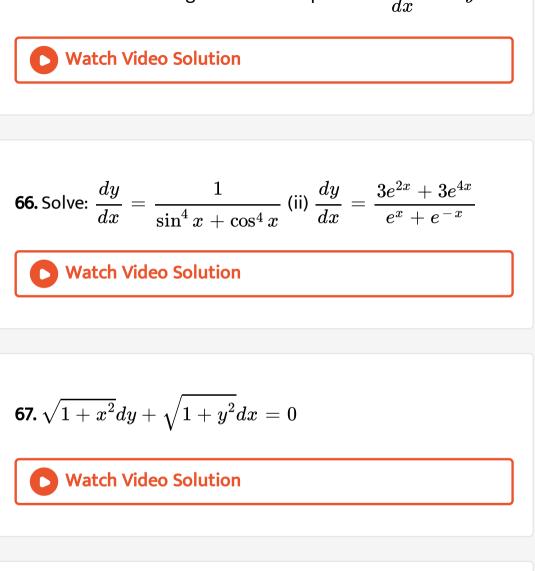
59. Solve:
$$e^x\sqrt{1-y^2}dx+rac{y}{x}dy=0$$

60. Solve the following differential equation:

$$y(1-x^2)\frac{dy}{dx} = x(1+y^2)$$

Watch Video Solution

61. Solve
$$rac{dy}{dx} = xy + x + y + 1$$


62. Solve the following differential equations.

$$\frac{dy}{dx} = e^{x-y} + x^2 e^{-y}$$

Watch Video Solution

63. Solve the initial value problem
$$y' = y \cot 2x, y\left(\frac{\pi}{4}\right) = 2.$$

Watch Video Solution

64. Solve the following differential equation:

$$xy(y+1)dy = (x^2 = 1)dx$$

Watch Video Solution

65. Solve the following differential equation: $5 \frac{dy}{dx} = e^x y^4$

68.
$$\frac{dy}{dx} \tan y = \sin(x+y) + \sin(x-y)$$

69. Solve the differential equation $x \left(x^2 - 1
ight) rac{dy}{dx} = 1$, given

that when x = 2, y = 0.

70. Find the solution of the differential equation $\cos y dy + \cos x \sin y dx = 0$ given that $y = \pi/2$, when $x = \pi/2$.

> Watch Video Solution

71. Solve the differential equation $(x-1)rac{dy}{dx}=2xy$, given

that y(2) = 1

72. The differential equations, find a particular solution

satisfying the given condition:
$$\cos{\left(rac{dy}{dx}
ight)}=a(a\in R);y=2$$
 when x=0

Watch Video Solution

73. Find the equation of the curve passing through the point

(1, 1) whose differential equation is $xdy=ig(2x^2+1ig)dx(x
eq 0ig).$

Watch Video Solution

74. The volume of spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3

seconds it is 6 units. Find the radius of balloon after t seconds.

D Watch Video Solution

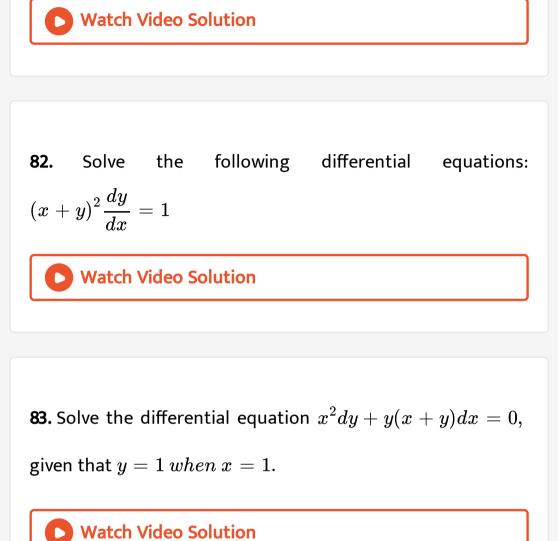
75. Solve:
$$(x-y)^2 rac{dy}{dx} = 1$$

Watch Video Solution

76. Solve:
$$rac{dy}{dx} = \cos(x+y)$$

Watch Video Solution

77. Solve the equation
$$(x+y+1)igg(rac{dy}{dx}igg)=1$$


78. Solve the differential equation $rac{dy}{dx}+1=e^{x+y}$

79. Solve
$$rac{dy}{dx} = \cos(x+y) + \sin(x+y)$$

Watch Video Solution

80. Solve:
$$ig(x^2+2xy+y^2+1ig)rac{dy}{dx}=2(x+y)$$

81. Solve:
$$\left(x-y
ight)^2 rac{dy}{dx} = a^2$$

84. Solve the following differential equations: $rac{dy}{dx} - rac{y-x}{y+x}$

85. Solve:
$$2xyrac{dy}{dx}=x^2+y^2$$

86. Solve:
$$xyrac{dy}{dx}=x^2-y^2$$

Watch Video Solution

87. Solve the differential equation (x+y)dy = (x-y)dx

Watch Video Solution

88. Show that the differential equation $2xy\frac{dy}{dx} = x^2 + 3y^2$

is homogeneousand solve it.

89.
$$\displaystyle rac{dy}{dx} + \displaystyle rac{x-2y}{2x-y} = 0$$

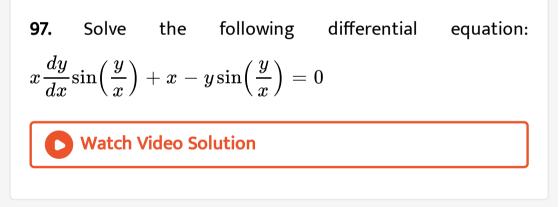
Watch Video Solution

90.
$$y^2 + x^2 rac{dy}{dx} = xy rac{dy}{dx}$$

Watch Video Solution

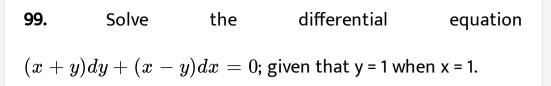
91. Solve
$$xigg(rac{dy}{dx}igg) = y(\log y - \log x + 1)$$

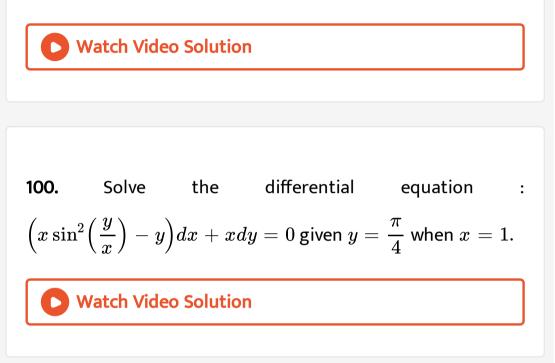
92. Solve:
$$(x-y)rac{dy}{dx}=x+3y$$


93.
$$ig(x^3+3xy^2ig) dx + ig(y^3+3x^2yig) dy = 0$$

94. Solve:
$$\left(x-\sqrt{xy}
ight)dy=ydx$$

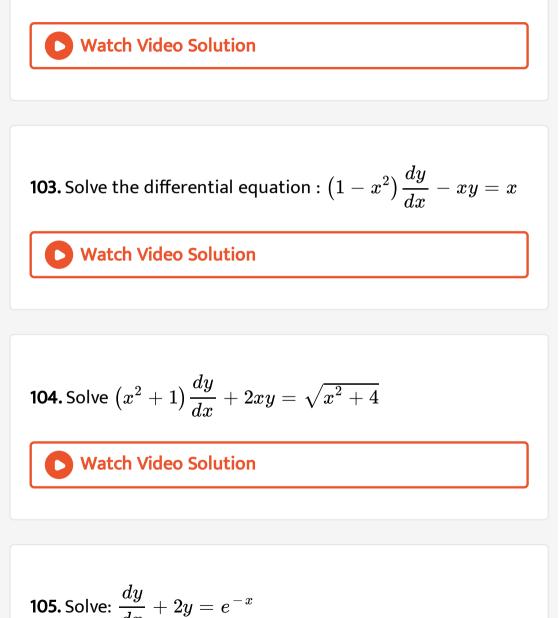
95. Solve the following differential equation:
$$x \frac{dy}{dx} - y = 2 \sqrt{y^2 - x^2}$$

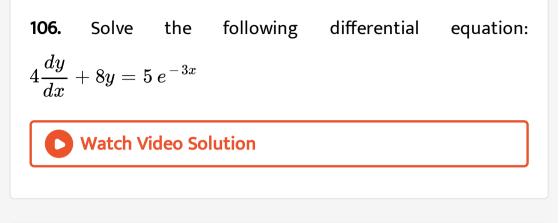

96. Solve:
$$y^2 dx + ig(x^2 + xy + y^2ig) dy = 0$$

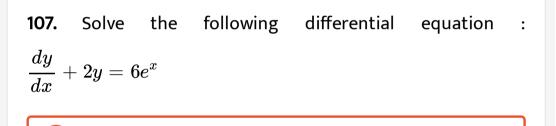


98. Solve the differential equation $x^2 dy + y(x+y) dx = 0$,

given that y = 1 when x = 1.

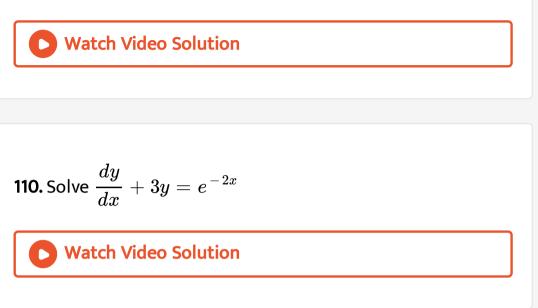





101. Find the particular solution of the differential equation

$$xrac{dy}{dx}-y+x\cos ec \Big(rac{y}{x}\Big)=0;$$
 given that $y=0$ when $x=1.$

102. about to only mathematics



109. Solve the following differential equations: $x \frac{dy}{dx} = x + y$

111. Solve the each of the following differential equation:

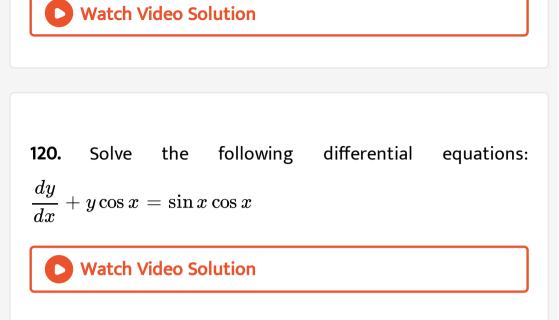
$$xrac{dy}{dx}+2y=x^2,\;x
eq 0$$

112. Solve:
$$rac{dy}{dx} + y = \cos x$$

113. Solve:
$$\displaystyle rac{dy}{dx} + y = e^x$$

Watch Video Solution

114. Solve:
$$xrac{dy}{dx}-y=x+1$$


Watch Video Solution

115. Solve:
$$rac{dy}{dx} + y = \cos x = \sin x$$

116. Solve:
$$\frac{dy}{dx} + \frac{y}{x} = x^n$$

Watch Video Solution
117. Solve the following differential equation:
 $\frac{dy}{dx} - y \tan x = e^x \sec x$
Watch Video Solution

118. Solve:
$$ig(1+x^2ig)rac{dy}{dx}+2xy=\cos x$$

119. Solve:
$$(\sec x) \frac{dy}{dx} = y + \sin x$$

121. Solve:
$$rac{dy}{dx}+2y\cot x=3x^2\cos ec^2x$$

122. Solve:
$$rac{dy}{dx} + y an x = 2x + x^2 an x$$
 .

123. Solve:
$$x rac{dy}{dx} = y(\log y - \log x - 1)$$

124.
$$\left(1-x^2
ight)rac{dy}{dx}+xy=ax$$

Watch Video Solution

125. Find the particular solution of the differential equation

$$rac{dy}{dx} + y \cot x = 2x + x^2 \cot x (x
eq 0)$$
given that $y = 0$ when $x = rac{\pi}{2}.$

126. Solve
$$ydx + ig(x-y^2ig)dy = 0$$

127. Solve the each of the following differential equation:

$$ig(x+3y^2ig)rac{dy}{dx}=y$$

Watch Video Solution

128. Solve:
$$ig(x-y^3ig)rac{dy}{dx}+y=0$$

Watch Video Solution

129. Solve:
$$rac{dy}{dx} + x \sin 2y = x^3 \cos^2 y = \sin x$$

130. Solve
$$x rac{dy}{dx} + y = y^2 \ln x.$$

131.
$$rac{dy}{dx} = x^3y^3 - xy$$

