© 'doubtnut

India's Number 1 Education App

MATHS

BOOKS - KC SINHA ENGLISH

GP - FOR BOARDS

Solved Examples

1. Find the 15 th term of the G.P. $\frac{3}{2}, \frac{3}{4}, \frac{3}{8}, \ldots \ldots$

- Watch Video Solution

2. Which term of the G.P. $5,20,80, \ldots . ., 5120$ is 1280 '?

- Watch Video Solution

3. How many terms are there in the G.P. $2,2 \sqrt{2}, 4, \ldots 128$?

- Watch Video Solution

4. The fifth term of a G.P. is 81 whereas its second term is
5. Find the series and sum of its first eight terms.

- Watch Video Solution

5. The seventh term of a GL.P. is 8 times the fourth term and the term is 48 . Find the G.P.
6. The first term of a G.P. is 1 . The sum of the third and fifth terms is 90 . Find the common ratio of the G.P.

- Watch Video Solution

7. The third term of a G.P. is 3 . Find the product of its first five terms.

- Watch Video Solution

8. If the first and the nth terms of a G.P., are a and b respectively, and if P is the product of the first n terms.
prove that $P^{2}=(a b)^{n}$

- Watch Video Solution

9. If $a, b, a n d c$ are respectively, the pth, qth, and rth terms of a
G.P.,
show that
$(q-r) \log a+(r-p) \log b+(p-q) \log c=0$.

(D) Watch Video Solution

10. In a finite G.P. the product of the terms equidistant
from the beginning and the end is always same and equal to the product of first and last term.
11. If the product of three numbers in GP be 216 and their sum is 19 , then the numbers are

- Watch Video Solution

12. If the continued product of three numbers in G.P. is 216 and the sum of their products in pairs is 156 , find the numbers.

- Watch Video Solution

13. The sum of three numbers in G.P. is 21 and the sum of their squares is 189 . Find the numbers.
14. The sum of first three terms of a G.P. is $\frac{39}{10}$ and their product is 1 . Find the common ratio and the terms.

- Watch Video Solution

15. Find four numbers forming a geometric progression in which the third term is greater than the first term by 9 , and the second term is greater than the $4^{\text {th }}$ by 18.

- Watch Video Solution

16. A number consists of three digits which are in GP the sum of the right hand and left hand digits exceeds twice
the middle digits by 1 and the sum of the left hand and middle digits is two thirds of the sum of the middle and right hand digits. Find the number.

- Watch Video Solution

17. In a set of four numbers, the first three are in G.P. and the last three are in A.P. with difference 6. If the first number is the same as the fourth, find the four numbers.

- Watch Video Solution

18. Find the $1+1 / 2+\frac{1}{4}+\frac{1}{8}+\ldots \rightarrow n$ terms
19. Find the sum of n terms of the series
$(a+b)+\left(a^{2}+2 b\right)+\left(a^{3}+3 b\right)+\ldots$.

D Watch Video Solution

20. Find the sum of n term so the G.P. $\sqrt{7}, \sqrt{21}, 3 \sqrt{7}$

Also find the 8th term of the G.P.

D Watch Video Solution

21. Find the sum to n terms of the sequence, $8,88,888$, 8888....
22. How many terms of the series
$1+3+3^{2}+\ldots$ must be taken to meke $3280 ?$

D Watch Video Solution

23. Find the value off $\sum_{k=1}^{10}\left(2+3^{k}\right)$

D Watch Video Solution

24. Evaluate: $\sum_{r=1}^{n}\left(3^{r}-2^{r}\right)$
25. If S_{1}, S_{2} and S_{3} be respectively the sum of $\mathrm{n}, 2 \mathrm{n}$ and 3 n terms of a G.P., prove that $S_{1}\left(S_{3}-S_{2}\right)=S_{1}\left(S_{2}-S_{1}\right)^{2}$

- Watch Video Solution

26. If f is a function satisfying $f(x+y)=f(x) \times f(y)$ for all x, y
$\in N$ such that $f(1)=3$ and $f(1)+f(2)+\ldots+f(n)=120$, find the value of n

- Watch Video Solution

27. If $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ be in G.P. show that $(b-c)^{2}+(c-a)^{2}+$ $(d-b)^{2}=(a-d)^{2}$.
28. If a, b, c and d are in G.P. show that $\left(a^{2}+b^{2}+c^{2}\right)\left(b^{2}+c^{2}+d^{2}\right)=(a b+b c+c d)^{2}$.

- Watch Video Solution

29. If x, y, z are in G.P. and $a^{x}=b^{y}=c^{z}$, then (a)
$\log b a=\log _{a} c$ (b) $\log _{c} b=\log _{a} c$ (c) $\log _{b} a=\log _{c} b$
none of these

- Watch Video Solution

30. If $\frac{a+b x}{a-b x}=\frac{b+c x}{b-c x}=\frac{c+d x}{c-d x}(x \neq 0)$, then show that a, b, c and d are in G.P.

(D) Watch Video Solution

31. If a, b, c, d and p are different real numbers such that:
$\left(a^{2}+b^{2}+c^{2}\right) p^{I 2}-2(a b+b c+c d) p+\left(b^{2}+c^{2}+d^{2}\right) \leq 0$
, then show that a, b, c and d are in G.P.

(D) Watch Video Solution

32. Let a, b are roots of equation $x^{2}-3 x+p=0$ and c, d are roots of equation $x^{2}-12 x+q=0$. If a, b, c, d
(taken in that order) are in geometric progression then $\frac{q+p}{q-p}$ is equal to (A) $\frac{5}{7}$ (B) $\frac{15}{17}$ (C) $\frac{17}{15}$ (D) $\frac{7}{5}$
33. If p, q, r are in G.P. and the equations, $p x^{2}+2 q x+r=0$ and $\quad d x^{2}+2 e x+f=0$ have
common root, then show that $\frac{d}{p}, \frac{e}{q}, \frac{f}{r}$ are in A.P.

D Watch Video Solution

34. What will Rs. 500 amounts to in 10 years after its deposit in a bank which pays annual interest are 10\% compounded annually?

D Watch Video Solution

35. A manufacturer reckons that the value of a machine, which costs him Rs. 15625, will depreciate each year by 20%. Find the estimated value at the end of 5 years.

- Watch Video Solution

36. A person writes a letter to four of his friends. He asks
each one of them to copy the letter and mail to four different persons with instruction that they move the chain similarly. Assuming that the chain is not broken and that it costs 50 paise to mail one letter. Find the amount spend on the postage when 8 th set of letter is mailed.

- Watch Video Solution

37. Insert seven geometric means between 2 and 162 .

D Watch Video Solution

38. Find the value of n so that $\frac{a^{n+1}+b^{n+1}}{a^{n}+b^{n}}$ may be the geometric mean between a and b.

D Watch Video Solution

39. The value of $x+y+z$ is 15 if a, x, y, z, b are in A.P.
while the value of $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{z} i s \frac{5}{3}$ if $\mathrm{a}, \mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{b}$ are in H.P. the value of a and b are
40. If $x>0$ prove that $x+\frac{1}{x} \geq 2$

- Watch Video Solution

41. Prove that the product n geometric means between two quantities is equal to the nth power of a geometric mean of those two quantities.

- Watch Video Solution

42. If the A.M. of two positive numbers $\operatorname{aandb}(a>b)$ is twice their geometric mean. Prove that : $a: b=(2+\sqrt{3}):(2-\sqrt{3})$.
43. If a, b, c, d are in A.P. and x, y, z are in G.P., then show that $x^{b-c} \dot{y}^{c-a} \dot{z}^{a-b}=1$.

D Watch Video Solution

44. If the pth, q th, r th, and sth terms of an A.P. are in G.P., t hen $p-q, q-r, r-s$ are in a. A.P. b. G.P. c. H.P. d. none of these

D Watch Video Solution

45. If $p^{t h}, q^{t h}$, and $r^{t h}$ terms of an A.P. and G.P. are both
a, b and c respectively show that $a^{b-c} b^{c-a} c^{a-b}=1$.

- Watch Video Solution

46. If a, b, c are in A.P., prove that the following are also in
A.P. (i) $\frac{1}{b c}, \frac{1}{c a}, \frac{1}{a b}, \quad$ (ii) $b+c, c+a, a+b$
$a\left(\frac{1}{b}+\frac{1}{c}\right), b\left(\frac{1}{c}+\frac{1}{a}\right), c\left(\frac{1}{a}+\frac{1}{b}\right)$
$a^{2}(b+c), b^{2}(c+a), c^{2}(a+b)$
$\frac{1}{\sqrt{b}+\sqrt{c}}, \frac{1}{\sqrt{c}+\sqrt{a}}, \frac{1}{\sqrt{a}+\sqrt{b}}$

D Watch Video Solution

47. If $a^{x}=b^{y}=c^{z}$ and a, b, c are in G.P. show that $\frac{1}{x}, \frac{1}{y}, \frac{1}{z}$ are in A.P.
48. If $\frac{x+y}{2}, y, \frac{y+z}{2}$ are in HP, then x, y, z are in

D Watch Video Solution

49. If distinct numbers x, y, z are in G.P. and $\frac{1}{x+a}, \frac{1}{y+a}, \frac{1}{z+a}$ are in A.P., prove that $a=y$.

D Watch Video Solution

50. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in A.P., $\mathrm{b}, \mathrm{c}, \mathrm{d}$ are in G.P. and $\frac{1}{c}, \frac{1}{d}, \frac{1}{e}$ are in A.P. prove that $\mathrm{a}, \mathrm{c}, \mathrm{e}$ are in G.P.
51. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in A.P., $\mathrm{b}, \mathrm{c}, \mathrm{d}$ are in G.P. and $\frac{1}{c}, \frac{1}{d}, \frac{1}{e}$ are in A.P. prove that $\mathrm{a}, \mathrm{c}, \mathrm{e}$ are in G.P.

- Watch Video Solution

52. If three positive numbers $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in A.P. and
$\frac{1}{a^{\circ}}, \frac{1}{b^{2}}, \frac{1}{c^{2}}$ also in A.P. , then

- Watch Video Solution

Exercise

1. Find the 10th term of the G.P. $5,25,125, \ldots$... Also find its nth term.
2. Find: the 8th term of the G.P. $0.3,0.03,0.012$,

- Watch Video Solution

3. Find the $20^{t h}$ and $n^{t h}$ terms of the G.P. $\frac{5}{2}, \frac{5}{4}, \frac{5}{8}$,

- Watch Video Solution

4. Find the $12^{\text {th }}$ term of a G.P. whose 8 th term is 192 and the common ratio is 2 .
5. Which term of the geometric sequence: $2 \sqrt{3}, 6,6 \sqrt{3}, \ldots . . i s 1458 ?$

- Watch Video Solution

6. Which term of the G.P.: $\sqrt{3}, 3,3, \sqrt{3}$, is 729 ?

- Watch Video Solution

7. Which term of the G.P., $2,8,32, \ldots$ up to n terms in 131072?
8. Which term of the progression $0.004,0.02,0.1, .$. is 12.5 ?

- Watch Video Solution

9. Which term of the G.P.: $\frac{1}{3}, \frac{1}{9}, \frac{1}{27}$ is $\frac{1}{19683}$?

- Watch Video Solution

10. Which term of the geometric sequence:
$\frac{1}{4},-\frac{1}{2}, 1, \ldots$. Is 64 ?

- Watch Video Solution

11. How many terms are there in the G.P.
$0.03,0.06,0.12, \ldots . ., 3.84 ?$

- Watch Video Solution

12. If 5th nd 8 th of a G.P. be 48 and 384 respectively. Find the G.P. if term of G.P. are real numbers.

D Watch Video Solution

13. If the 6 th and 10 th terms of a G.P. are $\frac{1}{16}$ and $\frac{1}{256}$ respectively. Find the G.P. if its terms are real numbers.
14. If the pth, th, rth terms of a G.P. are x, y, z respectively, prove that $x^{q-r} \cdot y^{r-p} \cdot z^{p-q}=1$.

D Watch Video Solution

15. If 5th, 8th, and 11th terms of a G.P. are p, q and s respectively, prove that $q^{2}=p s$.

- Watch Video Solution

16. If the $4^{\text {th }}, 10^{\text {th }}$ and $16^{\text {th }}$ terms of a G.P. are x, y and z , respectively. Prove that $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are in G.P.
17. The $4^{\text {th }}$ term of a G.P. is square of its second term, and the first term is 3 . Determine its $7^{\text {th }}$ term.

- Watch Video Solution

18. in a G.P $(p+q)$ th term $=m$ and $(p-q)$ th term $=n$, then find its p th term

- Watch Video Solution

19. The product of three consecutive terms of a GP Is -64 and the first term is four times the third. Find the terms.
20. Find a G.P. for which sum of the first two terms is

- 4 and the fifth term is 4 times the third term.

D Watch Video Solution

21. Find the three numbers in G.P., whose sum is 13 and the sum of whose squars is 91.

D Watch Video Solution

22. The sum of first three terms of a G.P. is $13 / 12$ and their product is -1 . Find the G.P.
23. The sum of first three terms of a G.P. is 16 and the sum of the next three terms is 128 . Determine the first term, the common ratio and the sum to n terms of the GP.

D Watch Video Solution

24. The first term of a G.P. is 1 . The sum of the third term and fifth term is 90 . Find the common ratio of G.P.

D Watch Video Solution

25. Three numbers whose sum is 15 are in A.P. If they are added by 1,4 and 19 respectively, they are in GP. The numbers are

- Watch Video Solution

26. The sum of three numbers in G.P., is 56 . If we subtract $1,7,21$ from those numbers in that order, we obtain an arthimatic progression. Find the numbers.

- Watch Video Solution

27. Find three numbers in G.P. whose sum is 52 and the sum of whose products i pairs is 624.
28. From thre numbers in G.P., other three numbers in G.P.
are subtracted and the remainder are also found to be in G.P. Prove that the three sequences have the same common ratio.

D Watch Video Solution

29. Find the sum of indicated terms of each of the following geometric progression: 1,2,4,8,......,upto 12 terms

- Watch Video Solution

30. Find the sum of indicated terms of each of the following geometric progression: $1, \frac{1}{3}, \frac{1}{9}, \frac{1}{27}, \ldots, n$

D Watch Video Solution

31. Find the sum to indicated number of terms in each of the geometric progressions : 0.15, 0.015, 0.0015, ..., 20 terms.

- Watch Video Solution

32. Find the sum of indicated terms of each of the following geometric progression:
$1,-\frac{1}{2}, \frac{1}{4},-\frac{1}{8}, \ldots, n$ terms
33. Find the sum of the following geometric progression: 1,3,9,27, to 8 terms.

- Watch Video Solution

34. Find the sum of indicated terms of each of the following geometric progression: 1,-3,9,-27, 9 terms

- Watch Video Solution

35. Find the sum of indicated terms of each of the following geometric progression:
$x^{2}, x^{4}, x^{6}, \ldots, n t e r m s(x \neq \pm 1)$
36. Find the sum to indicated number of terms in each of the geometric progressions : $1,-a, a^{2}-a^{3}, \dot{n}$ terms (if $a \neq-1$)

D Watch Video Solution

37. Find the sum of indicated terms of each of the following geometric progression: $1+\frac{2}{3}+\frac{4}{9}+\ldots . ., n$ terms and 5 terms
38. A G.P. has first term 729 and 7th term 64. Find the sum of its first 7 terms.

D Watch Video Solution

39. Find the sum of the products of the corresponding terms of the sequences $2,4,8,16,32$ and $128,32,8,2, \frac{1}{2}$.

- Watch Video Solution

40. Find the sum of n terms of the sequence

$$
\left(x+\frac{1}{x}\right)^{2},\left(x^{2}+\frac{1}{x^{2}}\right)^{2},\left(x^{3}+\frac{1}{x^{3}}\right)^{2}
$$

41. Evaluate $: \sum_{k=1}^{n}\left(2^{k}+3^{k-1}\right)$

- Watch Video Solution

42. How many terms of the series $1+2+2^{3}+\ldots$ must be taken to make 511?

D Watch Video Solution

43. How many terms of the G.P. $3,3 / 2,3 / 4$, be taken together to make $\frac{3069}{512}$?
44. The sum of some terms of G. P. is 315 whose first term and the common ratio are 5 and 2 , respectively. Find the last term and the number of terms.

- Watch Video Solution

45. A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of terms occupying odd places, then find its common ratio.

- Watch Video Solution

46. Sum up to n terms the series
47. Find the sum of the following series:
$9+99+999+\rightarrow n$ terms

D Watch Video Solution

48. The sum of the following series
$4+44+444+\ldots \ldots . . .$. . to n term is:

- Watch Video Solution

49. Find the sum of the following series up to n terms: (i)
$5+55+555+\cdots$
$.6+.66+.666+.$.

(D) Watch Video Solution

50. Evaluate $7+77+777+\ldots$.. upto n

D Watch Video Solution

51. Find the sum of the following series:
$0.6+0.66+0.666 \rightarrow n$ terms

D Watch Video Solution

52. Find the sum of the following series:
$0.5+0.55+0.555+\rightarrow$ nterms
53. Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from $(n+1)^{t h}$ to $(2 n)^{t h}$ term is $\frac{1}{r^{n}}$. 9873740001

- Watch Video Solution

54. LetS be the sum, P the product, and R the sum of reciprocals of n terms in a G.P. Prove that $P^{2} R^{n}=S^{n}$.

- Watch Video Solution

55. If $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$. are in G.P., then show that $(a+b)^{2},(b+c)^{2},(c+d)^{2}$ are in G.P.

D Watch Video Solution

56. If $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$. are in G.P., then show that $(a-b)^{2},(b-c)^{2},(c-d)^{2}$ are in G.P.

D Watch Video Solution

57. about to only mathematics
58. If a, b, c, d are in G.P. prove that:
$\left(a^{2}+b^{2}\right),\left(b^{2}+c^{2}\right),\left(c^{2}+d^{2}\right) \quad$ are \quad in \quad G.P.
$\left(a^{2}-b^{2}\right),\left(b^{2}-c^{2}\right),\left(c^{2}-d^{2}\right) \quad$ are \quad in \quad G.P.
$\frac{1}{a^{2}+b^{2}}, \frac{1}{b^{2}+c^{2}}, \frac{1}{c^{2}+d^{2}}$ are in G.P.

- Watch Video Solution

59. If a, b, c are in G.P. prove that $\left(a^{n}+b^{n}\right),\left(b^{n}+c^{n}\right),\left(c^{n}+d^{n}\right)$ are in G.P.

- Watch Video Solution

60. If a, b, c are in G.P., then show that $a(b-c)^{2}=c(a-b)^{2}$
61. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in G.P., then show that : $\left(a^{2}-b^{2}\right)\left(b^{2}+c^{2}\right)=\left(b^{2}-c^{2}\right)\left(a^{2}+b^{2}\right)$

(D) Watch Video Solution

62. If a, b, c are in G.P., then prove that $\log a^{n}, \log b^{n}, \log c^{n}$ are in A.P.

- Watch Video Solution

63. If a, b, c are in G.P., prove that:
$a\left(b^{2}+c^{2}\right)=c\left(a^{2}+b^{2}\right)$
64. For what value of x , the number $-\frac{2}{7}, x,-\frac{2}{7}$ are in G.P.?

- Watch Video Solution

65. Show that the products of the corresponding terms of

> the sequences a, ar, $a r^{2}, ; a r^{n-1}$ and $A, A R, A R^{2}, \vdots A R^{n-1}$, form a G.P, and find the common ratio.

- Watch Video Solution

66. A person has 2 parents, 4 grandparents, 8 great grandparents, and so on. Find the number of his ancestors during the ten generations preceding his own.

D Watch Video Solution

67. The number of bacteria in a certain culture doubles every hour. If there were 30 bacteria present in the culture originally, how many bacteria will be present at the end of 2 nd hour, 4th hour and nth hour?

D Watch Video Solution

68. A man deposited Rs 10000 in a bank at the rate of 5%
simple interest annually. Find the amount in $15^{\text {th }}$ year since he deposited the amount and also calculate the total amount after 20 years.

- Watch Video Solution

69. Shamshad Ali buys a scooter for Rs. 2200. He pays Rs.

4000 cash and agrees to pay the balance in annual instalments of Rs. 1000 plus 10% interest on the unpaid amount. How much the scooter will cost him?

- Watch Video Solution

70. A farmer buys a used tractor for Rs. 12000. He pays Rs. 6000 cash and agrees to pay the remaining balance in annual instalments of Rs. 500 plus 12% interest on the unpaid amount. How much the tractor cost him?

D Watch Video Solution

71. Insert 5 geometric means between 16 and $\frac{1}{4}$.

- Watch Video Solution

72. Insert two number between 3 and 81 so that the resulting sequence is G.P.
73. Insert three numbers between 1 and 256 so that the resulting sequence is a G.P.

- Watch Video Solution

74. Insert six G.M. ' s between $\frac{8}{27}$ and $\frac{-81}{16}$.

- Watch Video Solution

75. The sum of two numbers is 6 times their geometric means, show that numbers are in the ratio $(3+2 \sqrt{2}):(3-2 \sqrt{2})$.
76. If odd number of G.M.|'s are inserted between two given quantities a and b, show that the middle G.M. $=\sqrt{a b}$

D Watch Video Solution

77. If A.M. and GM. of two positive numbers a and b are 10 and 8 , respectively find the numbers.

- Watch Video Solution

78. If A and G be A.M. and GM., respectively between two positive numbers, prove that the numbers are
$A \pm \sqrt{(A+G)(A-G)}$.

- Watch Video Solution

79. If A.M. and G.M. between two numbers is in the ratio $m: n$ then prove that the numbers are in the ratio $\left(m+\sqrt{m^{2}-n^{2}}\right):\left(m-\sqrt{m^{2}-n^{2}}\right)$

- Watch Video Solution

80. If one G.M., G and two A.M's p and q be inserted between two given numbers, prove that
$G^{2}=(2 p-q)(2 q-p)$
81. If one A.M. A and two G.M.''s p and q be inserted between two given numbers, shwo that $\frac{p^{2}}{q}+\frac{q^{2}}{p}=2 A$

- Watch Video Solution

82. If a is the A.M. between b and c, b the G.M. between a and c , then show that $\frac{1}{a}, \frac{1}{c}, \frac{1}{b}$ are in A.P.

- Watch Video Solution

83. If $x, y, a n d z$ are pth, qth, and rth terms, respectively, of an A.P. nd also of a G.P., then $x^{y-z} y^{z-x} z^{x-y}$ is equal to $x y z \mathrm{~b} .0 \mathrm{c} .1 \mathrm{~d}$. none of these
84. An A.P. and a G.P. of positive terms have the same first
term and the sum of their first, second and third terms
are respectively, $1, \frac{1}{2}$ and 2 . Show that the sum of their fourth terms is $\frac{19}{2}$

D Watch Video Solution

85. Let $a(a \neq 0)$ is a fixed real number and $\frac{a-x}{p x}=\frac{a-y}{q y}=\frac{a-z}{r z}$. If p, q, r are in A.P., show that $\frac{1}{x}, \frac{1}{y}, \frac{1}{z}$ are in A.P.

D Watch Video Solution

86. about to only mathematics

- Watch Video Solution

87. If a,b,c,d be in G.P. and $a^{x}=b^{y}=c^{z}=d^{w}$, prove that $\frac{1}{x}, \frac{1}{y}, \frac{1}{z}, \frac{1}{w}$ are in A.P.

- Watch Video Solution

88. If reciprocals of $(y-x), 2(y-a),(y-z)$ are in A.P., prove that $x-a, y-a, z-a$ are in G.P.
89. If a series of numbers be in G.P., show that their logarithms are in A.P

- Watch Video Solution

90. If $a, b, a n d c$ are in A.P ., P,q and r are in H.P and $a p, b q$ and cr are in G.P., then $\frac{p}{r}+\frac{r}{p}$ is equal to

D Watch Video Solution

91. a, b, x are in A.P., are in G.P. and a, b, z are in H.P. then:
92. If $\mathrm{x}, 1, \mathrm{z}$ are in A.P. $\mathrm{x}, 2, \mathrm{z}$ are in G.P., show that $\frac{1}{x}, \frac{1}{4}, \frac{1}{z}$ are in A.P.

- Watch Video Solution

