# ©゙doubtnut 

India's Number 1 Education App

## MATHS

## BOOKS - KC SINHA ENGLISH

## INTEGRAL CALCULUS - PREVIOUS YEAR QUESTIONS - FOR COMPETITION

## Solved Examples

1. At present, a firm is manufacturing 2000 items. It is estimated that the rate of change of production P w.r.t. additional number of workers x is given by $\frac{d P}{d x}=100-12 \sqrt{x}$. If the firm employs 25 more workers, then the new level of production of items is (1) 3000 (2) 3500 (3) 4500 (4) 2500

## - Watch Video Solution

2. The area (in square units) bounded by the curves $y=\sqrt{x}, 2 y-x+3=0, x$-axis, and lying in the first quadrant is

## - Watch Video Solution

3. If $\int f(x) d x=\Psi(x)$, then $\int x^{5} f(x)^{3} d x$ is equal to

## - Watch Video Solution

4. The area under the curve $y=|\cos x-\sin x|, 0 \leq x \leq \frac{\pi}{2}$, and above $x$-axis is: (A) $2 \sqrt{2}+2$ (B) 0 (C) $2 \sqrt{2}-2$ (D) $2 \sqrt{2}$

## - Watch Video Solution

5. If a curve passes through the point $\left(2, \frac{7}{2}\right)$ and has slope $\left(1-\frac{1}{x^{2}}\right)$ at any point $(x, y)$ on it, then the ordinate of the point on the curve whose abscissa is -2 is: (A) $\frac{5}{2}$ (B) $\frac{3}{2}$ (C) $-\frac{3}{2}$ (D) $-\frac{5}{2}$
6. The value of $\int_{-\pi / 2}^{\pi / 2} \frac{\sin ^{2} x}{1+2^{x}} d x$ is

## - Watch Video Solution

7. The integral $\int \frac{x d x}{2-x^{2}+\sqrt{2-x^{2}}}$ equals: (A) $\log \left|1+\sqrt{2+x^{2}}\right|+C$
(B) $\quad x \log \left|1-\sqrt{2+x^{2}}\right|+C$
(C) $\quad-\log \left|1+\sqrt{2-x^{2}}\right|+C$
$x \log \left|1-\sqrt{2-x^{2}}\right|+C$

## - Watch Video Solution

8. The area enclosed by the curve $y=\sin x+\cos$ xandy $=|\cos x-\sin x|$ over the interval $\left[0, \frac{\pi}{2}\right]$ is (a) $4(\sqrt{2}-2)$ (b) $2 \sqrt{2}(\sqrt{2}-1)(c) 2(\sqrt{2}+1)$ (d) $2 \sqrt{2}(\sqrt{2}+1)$

## - Watch Video Solution

9. A curve passes through the point $\left(1, \frac{\pi}{6}\right)$. Let the slope of the curve at eact point ( $\mathrm{x}, \mathrm{y}$ ) be $\frac{y}{x}+\sec \left(\frac{y}{x}\right), x>0$. Then, the equation of the curve is

## ( Watch Video Solution

10. Let $f:[0,1] \rightarrow R$ (the set of all real numbers) be a function. Suppose the function $f$ is twice differentiable, $f(0)=f(1)=0$ and satisfies $f^{\prime \prime}(x)-2 f^{\prime}(x)+f(x) \geq e^{x}, x \in[0,1]$ Which of the following is true for $0<x<1 \quad$ ? (A) $0<f(x)<\infty \quad$ (B) $-\frac{1}{2}<f(x)<\frac{1}{2}$
$-\frac{1}{4}<f(x)<1$ (D) $-\infty<f(x)<0$

## - Watch Video Solution

11. Let $f:[0,1] \rightarrow R$ ( the set if all real numbers be a function. Suppose the function f us twice differentiable,$f(0)=f(1)=0$ and satisfies $f\left({ }^{\prime \prime}(x)-2 f(x) \geq e^{x}, x \in[0,1]\right.$
if the function $e^{-x} f(x)$ assume its minimum in the interval $[0,1]$ at $x=\frac{1}{4}$, then which of the folowing is true ?

## - Watch Video Solution

12. Let $S$ be the area of the region enclosed by $y-e^{-x^{2}}, y=0, x=0$ and $x=1$. Then

## - Watch Video Solution

13. Let $I R \vec{I} R$ be defined as $f(x)=|x|++x^{2}-1 \mid$. The total number of points at which $f$ attains either a local maximum or a local minimum is $\qquad$

## - Watch Video Solution

14. If $‘ f(x)=\int_{e t}{ }^{\wedge} 2(t-2)(t-3) d t$ for $t \in[0, x]$ for $x \in(0, \infty)$, then (A) $f$ has a local maximum at $x=2(B) f$ is decreasing on $(2,3)(C)$ there exists some
$c \in(0, \infty)$ such that $f^{\prime \prime}(c)=0(D) f$ has a local minimum at $x=3$.

## - Watch Video Solution

15. 

The integral $\int \frac{\sec ^{2} x}{(\sec x+\tan x)^{9 / 2}} d x$ equals (for some arbitrary constan

## - Watch Video Solution

16. Let

$$
f(x)=\int_{x^{2}}^{x^{3}} \frac{d t}{\ln t}
$$

$x>1$ and $g(x)=\int_{1}^{x}\left(2 t^{2}-\ln t\right) f(t) d t(x>1), \quad$ then: (a) $g \quad$ is increasing on $(1, \infty)$ (b) g is decreasing on $(1, \infty)$ (c) g is increasing on $(1,2)$ and decreasing on $(2, \infty)$ (d) $g$ is decreasing on $(1,2)$ and increasing on $(2, \infty)$

## - Watch Video Solution

17. Consider the statements: $P$ : There exists some $x$ IR such that $f(x)+2 x$ $=2(1+x 2) \mathrm{Q}$ : There exists some x IR such that $2 \mathrm{f}(\mathrm{x})+1=2 \mathrm{x}(1+\mathrm{x})$ $f(x)=(1-x)^{2} \sin ^{2} x+x^{2} \quad \forall x \in R$ Then (A) both P and Q are true (B) $P$ is true and $Q$ is false (C) $P$ is false and $Q$ is true (D) both $P$ and $Q$ are false.

## - Watch Video Solution

18. The value of the integral $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(x^{2}+\ln \left(\frac{\pi+x}{\pi-x}\right)\right) \cos x d x$ is

## - Watch Video Solution

19. If the integral $\int \frac{5 \tan x}{\tan x-2} d x=x+a \ln |\sin x-2 \cos x|+k$ then a is equal to (1) -1 (2) -2 (3) 1 (4) 2

## - Watch Video Solution

20. The population $p(t)$ at time $t$ of a certain mouse species satisfies the differential equation $\frac{d p(t)}{d t}=0.5 p(t)-450$. If $p(0)=850$, then the time at which the population becomes zero is

## - Watch Video Solution

21. The area bounded between the parabolas $x^{2}=\frac{y}{4}$ and $x^{2}=9 y$ and the straight line $y=2$ is (1) $20 \sqrt{2}$ (2) $\frac{10 \sqrt{2}}{3}$ (3) $\frac{20 \sqrt{2}}{3}$ (4) $10 \sqrt{2}$

## - Watch Video Solution

22. If $g(x)=\int_{0}^{x} \cos ^{4} t d t$, then $g(x+\pi)$ equals $g(x)+g(\pi)$
$g(x)-g(\pi) g(x) g(\pi)$ (d) $\frac{g(x)}{g(\pi)}$

## - Watch Video Solution

23. Thevalueof $\int_{\sqrt{1 n 2}}^{\sqrt{1 n 3}} \frac{x \sin x^{2}}{\sin x^{2}+\sin \left(1 n 6-x^{2}\right)}$ dxis $\frac{1}{4} 1 n \frac{3}{2}$ (b) $\frac{1}{21} n \frac{3}{2}$ $\ln \frac{3}{2}$ (d) $\frac{1}{61} n \frac{3}{2}$

## - Watch Video Solution

24. Let the straight line $\mathrm{x}=\mathrm{b}$ divide the area enclosed by $y=(1-x)^{2}, y=0$, and $x=0 \quad$ into two parts $R_{1}(0 \leq x \leq b)$ and $R_{2}(b \leq x \leq 1)$ such that $R_{1}-R_{2}=\frac{1}{4}$. Then b equals

## - Watch Video Solution

25. Let $f:[1, \infty]$ be a differentiable function such that $f(1)=2$. If $6 \int_{1}^{x} f(t) d t=3 x f(x)-x^{3}$ for all $x \geq 1$, then the value of $f(2)$ is

## - Watch Video Solution

26. Let $f:[-1,2] \rightarrow[0, \infty)$ be a continuous function such that $f(x)=f(1-x) f$ or all $x \in[-1,2]$. Let $R_{1}=\int_{-1}^{2} x f(x) d x$, and $R_{2}$ be the area of the region bounded by $y=f(x), x=-1, x=2$, and the x- axis. Then $R_{1}=2 R_{2}$ (b) $R_{1}=3 R_{2}$ (c) $2 R_{1}=R_{2}$ (d) $3 R_{1}=R_{2}$

## - Watch Video Solution

27. Let $y^{\prime}(x)+y(x) g^{\prime}(x)=g(x) g^{\prime}(x), y(0)=0, x \in R$, where $f^{\prime}(x)$ denotes $\frac{d f(x)}{d x}$, and $g(x)$ is a given non-constant differentiable function on R with $\mathrm{g}(0)=\mathrm{g}(2)=0$. Then the value of $y(2)$ is $\qquad$

## - Watch Video Solution

28. The area of the region enclosed by the curves $y=x, x=e, y=\frac{1}{x}$ and the positive $x$-axis is (1) $\frac{1}{2}$ square units (2) 1 square units (3) $\frac{3}{2}$ square units (4) $\frac{5}{2}$ square units
29. Let I be the purchase value of an equipment and $V(t)$ be the value after it has been used for t years. The value $\mathrm{V}(\mathrm{t})$ depreciates at a rate given by differential equation $\frac{d V(t)}{d t}=-\mathrm{k}(\mathrm{T}-\mathrm{t})$, where $k>0$ is a constant and $T$ is the total life in years of the equipment. Then the scrap value $V(T)$ of the equipment is : (1) $T^{2}-\frac{1}{k}$ (2) $I-\frac{k T^{2}}{2}$ (3) $I-\frac{k(T-t)^{2}}{2}$
$e^{-k T}$

## - Watch Video Solution

30. If $\frac{d y}{d x}=y+3 \quad$ and $\quad \mathrm{y}(0)=2$, then $y(\ln 2)$ is equal to : (1) 7 (2) 5 (3) $13(4)-2$

## - Watch Video Solution

31. For $x \in\left(0, \frac{5 \pi}{2}\right)$, define $f(x)=\int_{0}^{x} \sqrt{t} \sin t \mathrm{dt}$ Then f has: local maximum at $\pi$ and $2 \pi$. local minimum at $\pi$ and $2 \pi$ local minimum at $\pi$ and local maximum at $2 \pi$. local maximum at $\pi$ and local minimum at $2 \pi$.
32. The value of $\int_{0}^{1} \frac{8 \log (1+x)}{1+x^{2}} d x$ is

- Watch Video Solution

