

MATHS

BOOKS - KC SINHA ENGLISH

MATRICES - FOR COMPETITION

Solved Examples

1. Product of more than two Matrices :

Watch Video Solution

2. Find X if Y = [3, 2, 1, 4] and 2X + Y = [1, 0, -3, 2] .

3. If
$$A = \begin{bmatrix} 1 & -2 & 3 \\ -4 & 2 & 5 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 3 \\ 4 & 5 \\ 2 & 1 \end{bmatrix}$, find AB and BA and show

that $AB \neq BA$

If A=
$$\begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$
, then $\lim_{n \to \infty} \frac{A^n}{n}$ is (where $\theta \in R$)

Watch Video Solution

8. If D_1 and D_2 are diagonal matices of order 3×3 then (A) D_1^n is a diagonal matrix (B) $D_1D_2 = D_2D_1$ (C) $D_1^2 + D_2^2$ is diagonal matrix (D) D_1D_2 is a diagonal matrix

Watch Video Solution

9. For a matrix A of order 3×3 where $A = \begin{bmatrix} 1 & 4 & 5 \\ k & 8 & 8k - 6 \\ 1 + k^2 & 8k + 4 & 2k + 21 \end{bmatrix}$

(A) rank of A = 2f or k = -1(B)rankofA=1 for k=-1(C)rankofA=2 for

k=2(D)rankofA = 1f or k = 2

Exercise

1. Given
$$A = \begin{bmatrix} 1 & 2 & -3 \\ 5 & 0 & \\ 1 & -1 & 1 \end{bmatrix}$$
 and $B = [[3, -1, 2], [4, 25], [2, 0, 3]],$

find the matrix C such that A+C=B.

Watch Video Solution

2. If
$$P(x) = [(\cos x, \sin x), (-\sin x, \cos x):]]$$
, then show that

$$P(x). P(y) = P(x + y) = P(y). P(x).$$

3. Find the product of the following two matrices
$$\begin{bmatrix} 0 & c & -b \\ c & 0 & a \\ b & -a & 0 \end{bmatrix} \text{ and } \begin{bmatrix} a^2 & ab & ac \\ ab & b^2 & bc \\ ac & bc & c^2 \end{bmatrix}.$$
Watch Video Solution

4. Let $A = \left[0 - \tan(lpha/2) \tan(lpha/2) 0\right]$ and I be the identity matrix of

order 2. Show that $I + A = (I - A)[\cos \alpha - \sin \alpha \sin \alpha \cos \alpha]$.

Watch Video Solution

5. if
$$A = \begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix}$$
, then prove that $a^n = \begin{bmatrix} 1+2n & -4n \\ n & 1-2n \end{bmatrix}$,

where n is any posttive interger.

Watch Video Solution

6. Let A=[0100] show that $(aI+bA)^n=a^nI+na^{n-1}bA$, where I is the identitymatrix of order 2 and $n\in N.$

Watch Video Solution

7. A man buys 8 dozens of masngeos, 10 dozensof apples and 4 diozens of bannas. Mngoes cost Rs. 18 per dozen, apples Rs. 9 per dozen and banans

Rs 6 per dozen. Represent the quantities bought by a row matrix and the prices by a column matrix and hence obtain the total cost.

9. Solve the following system of linear equations by matrix method:

3x - 2y = 7, 5x + 3y = 1

Watch Video Solution

10. Use matrix method to solve the following system of equations:

$$5x - 7y = 2, \ 7x - 5y = 3$$

11. Solve the following system of linear equations by matrix method:

2x + 3y + 3z = 1, 2x + 2y + 3z = 2, x - 2y + 2z = 3

Watch Video Solution

12. Solve the following system of linear equations by matrix method:

$$x + y + z = 3, 2x - y + z = 2, x - 2y + 3z = 2$$

Watch Video Solution

13. If A is an invertible symmetric matrix the A^{-1} is

- A. a diagonal matrix
- B. symmetric
- C. skew symmetric
- D. none of these

14. If A is a skew-symmetric matrix and n is odd positive integer, then A^n is a skew-symmetric matrix a symmetric matrix a diagonal matrix none of these

15. Which of the following is no true?

- (A) (A')' = A
- (B) (A I)(A + I) = 0 such that $A^2 = I$

(C) $(AB)^n = A^n B^n where n \in N$ and AB = BA

(D) $(A + B)(A - B) = A^2 - B^2$, A and B being square matrices of

the same type

Watch Video Solution

16. A square matrix A is invertible if det(A) is equal to (A) -1 (B) 0 (C) 1 (D)

none of these

of these

Watch Video Solution

18. A square matix A is called idempotent if (A) $A^2=0$ (B) $A^2=I$ (C)

$$A^2=A$$
 (D) $2A=I$

Watch Video Solution

19. The value of det $\begin{vmatrix} a & 0 & 0 & 0 \\ 2 & b & 0 & 0 \\ 4 & 6 & c & 0 \\ 6 & 8 & 10 & d \end{vmatrix}$ is(A)0(B)a+b+c+d(C)abcd`(D) none

of these

20. If A and B are any two square matrices of the same order then (A) $(AB)^T = A^T B^T$ (B) $(AB)^T = B^T A^T$ (C) Adj(AB) = adj(A)adj(B)(D) $AB = 0 \rightarrow A = 0$ or B = 0

Watch Video Solution

21. A square matix A is a called singular if det A is (A) negative (B) zero (C)

positive (D) non-zero

Watch Video Solution

22. Let A by any m imes n matrix then A^2 can be found only when (A) m < n

(B) m=n (C) m>n (D) none of these

23. The matrix of the transformation reflection in the line x + y = 0 is (A)

$$\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$
(B)
$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
(C)
$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
(D)
$$\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$$

Watch Video Solution

24. Rank of a non zero matrix is always (A) 0 (B) 1 (C) $\, > 1$ (D) $\, > 0$

25. The values of x for which the matrix
$$\begin{bmatrix} x+a & b & c \\ a & x+b & c \\ a & b & x+c \end{bmatrix}$$
 is non-
singular are (A) $R - \{0\}$ (B) $R - \{-(a+b+c)\}$ (C) $R - \{0, -(a+b+c)\}$ (D) none of these
Watch Video Solution

26. If
$$A = \begin{bmatrix} 1 & 1 & 2 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{bmatrix}$$
 then A is (A) nilpotent (B) idempotent (C)

symmetric (D) none of these

Watch Video Solution

27. If
$$A = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$
 then (A) $A^2 = I$ (B) $A^2 = 0$ (C) $A^3 = 0$ (D)

none of these

Watch Video Solution

28. If A and B are square matrices of order 3 then (A) $AB = 0 \rightarrow |A| = 0$ or |B| = 0 (B) $AB = 0 \rightarrow |A| = 0$ and |B| = 0(C) Adj(AB) = AdjAAdjB (D) $(A + B)^{-1} = A^{-1} + B^{-1}$

29. If A a non singular matrix an A^T denotes the transpose of A then (A) $|AA^T| \neq |A^2|$ (B) $|A^TA| \neq |A^T|^2$ (C) $|A| + |A^T| \neq 0$ (D) $|A| \neq |A^T|$

Watch Video Solution

30. If A and B are square matrices of the same order then $(A+B)^2 = A^2 + 2AB + B^2$ implies

A. (A) AB=0

B. (B) AB + BA = 0

C. (C) AB = BA

D. (D) none of these

Answer: null

31. If
$$A = \begin{bmatrix} 0 & 2 & -3 \\ -2 & 0 & -1 \\ 3 & 1 & 0 \end{bmatrix}$$
 then A is (A) diagonal matrix (B) symmetric

matix (C) skew symmetric matrix (D) none of these

Watch Video Solution

32. If
$$A = \begin{bmatrix} 2 & -4 \\ 1 & -1 \end{bmatrix}$$
 the value of A^n is (A) $\begin{bmatrix} 3^n & (-4)^n \\ 1 & (-1)^n \end{bmatrix}$ (B) $\begin{bmatrix} 3n & -4n \\ n & n \end{bmatrix}$ (C) $\begin{bmatrix} 2+n & 5-n \\ n & -n \end{bmatrix}$ (D) none of these

Watch Video Solution

33. For a non singular matrix A of order n the rank of A is (A) less than n

(B) equal to n (C) greater than n (D) none of these

34. Inverse of diagonal matrix is (A) a diagonal matrix (B) symmetric (C)

skew symmetric (D) none of these

35. IF
$$A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$
 then for all natural numbers $n A^n$ is equal to (A)
 $\begin{bmatrix} 1 & 0 \\ 1 & n \end{bmatrix}$ (B) $\begin{bmatrix} n & 0 \\ 1 & 1 \end{bmatrix}$ (C) $\begin{bmatrix} 1 & 0 \\ n & 1 \end{bmatrix}$ (D) none of these

Watch Video Solution

36. Prove that the product of matrices $\left[\cos^2\theta\cos\theta\sin\theta\sin\theta\sin^2\theta\right]$

and $\left[\cos^2\varphi\cos\varphi\sin\varphi\cos\varphi\sin\varphi\sin\varphi\sin^2\varphi\right]$ is the null matrix, when θ and φ differ by an odd multiple of $\frac{\pi}{2}$.

37. For an invertible square matrix of order 3 with real entries $A^{-1} = A^2$

then det A= (A) 1/3 (B) 3 (C) 0 (D) 1

38. if
$$\begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix} A \begin{bmatrix} -3 & 2 \\ 5 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
, then $A = ?$

Watch Video Solution

39. The roots of the equation det
$$\begin{bmatrix} 1 - x & 2 & 3 \\ 0 & 2 - x & 0 \\ 0 & 2 & 3 - x \end{bmatrix} = 0$$
 are (A) 1

and 2 (B) 1 and 3 (C) 2 and 3 (D) 1,2, and 3

40. If
$$A = \begin{bmatrix} 1 & 2 & 0 \\ -1 & 1 & 2 \\ 2 & -1 & 1 \end{bmatrix}$$
 then $\det(Adj(AdjA)) =$ (A) 13 (B) 13^2 (C)

 13^4 (D) none of these

41. The transformation due of reflection of (x, y) through the origin is described by the matrix (A) $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ (B) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ (C) $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ (D) $\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$

Watch Video Solution

42. If $A = [a_{ij}]_{m \times n}$ and $B = [b_{ij}]_{n \times p}$ then (AB)' is equal to (A) BA'(B) B'A (C) A'B' (D) B'A'

Watch Video Solution

43. If A is a skew-symmetric matrix and n is odd positive integer, then A^n is a skew-symmetric matrix a symmetric matrix a diagonal matrix none of

these

44. If A is a skew-symmetric matrix and n is odd positive integer, then A^n is a skew-symmetric matrix a symmetric matrix a diagonal matrix none of these

Watch Video Solution

45. if A and B are two symmetric matrices of the same order , prove that

(AB+BA)is also a symmetric matrix.

Watch Video Solution

46. I
$$A = [x, y, z], B = \begin{bmatrix} a & h & g \\ h & b & f \\ g & f & c \end{bmatrix}$$
 and $C = [x, y, z]^T$, then ABC is

(A) not defined (B) a 1 imes 1 matrix (C) a 3 imes 3 matrix (D) none of these

47. If for a square matrix $A, A^2 = Athen|A|$ is equal to (A) -3 or 3 (B)

 $-\,2\,\,\,{
m or}\,\,\,2$ (C) $0\,\,\,{
m or}\,\,\,1$ (D) none of these

48. For a matrix A of rank r (A) rank (A') < r (B) rank (A') = r. (C) rank

 $(A^{\,\prime})>r$ (D) none of these

Watch Video Solution

49. If A=
$$\begin{bmatrix} 1 & 3 & 9 & 27 \\ 3 & 9 & 27 & 1 \\ 9 & 27 & 1 & 3 \\ 27 & 1 & 3 & 9 \end{bmatrix}$$
 then det A= (A) 0 (B) - (80³) (C) (80³)27 (D)

 81^3

50. If
$$A = egin{bmatrix} ab & b^2 \ -a^2 & -ab \end{bmatrix}$$
 , show that $A^2 = O$.

negative (C) positive (D) non real

Watch Video Solution

53. If A is a non singular square matrix then |adj. A| is equal to (A) |A| (B)

$$\left|A
ight|^{n-2}$$
 (C) $\left|A
ight|^{n-1}$ (D) $\left|A
ight|^{n}$

54. If
$$\begin{bmatrix} 1 & -\tan\theta \\ \tan\theta & 1 \end{bmatrix} \begin{bmatrix} 1 & \tan\theta \\ -\tan\theta & 1 \end{bmatrix}^{-1} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$$
, then $a = 1, \ b = 0$ (b) $a = \cos 2\theta, \ b = \sin 2\theta$ (c) $a = \sin 2\theta, \ b = \cos 2\theta$ (d)

none of these

Watch Video Solution

55. If
$$A = \begin{bmatrix} \cos x & \sin x \\ -\sin x & \cos x \end{bmatrix}$$
 and $A. (adjA) = k \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ then the value of k is

56. If I_n is the identity matrix of order n then $\left(I_n\right)^{-1}$ (A) does not exist (B)

$$I=0$$
 (C) $I=I_n$ (D) $I=nI_n$

Watch Video Solution

57. The number of all possible matrices of order 3 imes 3 with each entry 0 or

1 is:(a) 27 (b) 18 (c) 81 (d) 512

is equal to

63. If A is a square matrix which of the following is not as symmetric matrix? (A) A - A' (B) A + A' (C) AA' (D) A + B

Watch Video Solution

64. If A is an invertible matrix, then which of the following is not true $(A^2) - 1 = (A^{-1})^2$ (b) $|A^{-1}| = |A|^{-1}$ (c) $(A^T)^{-1} = (A^{-1})^T$ (d) $|A| \neq 0$

69. If A is any mxn matrix and B is a matrix such that AB and BA are both

defined, then B is a matrix of order

72. If
$$A = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}$$
 and a,b,c are non zero real numbers, then A^{-1} is
(A) $\frac{1}{abc} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ (B) $\frac{1}{abc} \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & c & 0 \end{bmatrix}$ (C) $\frac{1}{abc} \begin{bmatrix} a^{-1} & 0 & 0 \\ 0 & b^{-1} & 0 \\ 0 & c^{-1} & 1 \end{bmatrix}$ (D)

74. If
$$A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$
 and $n \varepsilon N$ then A^n is equal to (A) $2^{n-1}A$ (B) $2^n A$ (C)

nA (D) none of these

Watch Video Solution

75. If
$$A = \begin{bmatrix} 1 & 0 \\ \frac{1}{2} & 1 \end{bmatrix}$$
 then A^{50} is (A) $\begin{bmatrix} 1 & 25 \\ 0 & 1 \end{bmatrix}$ (B) $\begin{bmatrix} 1 & 0 \\ 25 & 1 \end{bmatrix}$ (C) $\begin{bmatrix} 1 & 0 \\ 0 & 50 \end{bmatrix}$
(D) $\begin{bmatrix} 1 & 0 \\ 50 & 1 \end{bmatrix}$

D Watch Widoo Colution

76. If $\begin{bmatrix} \alpha & \beta \\ \gamma & -\alpha \end{bmatrix}$ is to be square root of two-rowed unit matrix, then α, β and γ should satisfy the relation. a. $1 - \alpha^2 + \beta\gamma = 0$ b. $\alpha^2 + \beta\gamma = 0$ c. $1 + \alpha^2 + \beta\gamma = 0$ d. $1 - \alpha^2 - \beta\gamma = 0$

Watch Video Solution

77. if the following system of equations is consistent

$$(a+1)^3x + (a+2)^3y = (a+3)^3$$

 $(a+1)x + (a+2)y = a+3$
 $x+y = 1$

then find the value of a.

Watch Video Solution

78. Let $A=ig[a_{ij}ig]_{n imes n}$ be a square matrix and let c_{ij} be cofactor of a_{ij} in A. If C= $ig[C_{ij}ig]$, then 79. Let $F(\alpha) = [\cos \alpha - \sin \alpha 0 \sin \alpha \cos \alpha 0001]$ and $G(\beta) = [\cos \beta 0 \sin \beta 010 - \sin \beta 0 \cos \beta]$. Show that $[F(\alpha)]^{-1} = F(-\alpha)$ (ii) $[G(\beta)]^{-1} = G(-\beta)$ (iii) $[F(\alpha)G(\beta)]^{-1} = G(-\beta)F(-\alpha)$.

Watch Video Solution

80. If A is a square matrix of order n imes n and λ is a scalar then $|\lambda A|$ is (A) $\lambda|A|$ (B) $\lambda^n|A|$ (C) $|\lambda||A|$ (D) none of these

Watch Video Solution

81. If
$$A = \begin{bmatrix} \cos^2 \alpha & \cos \alpha \sin \alpha \\ \cos \alpha \sin \alpha & \sin^2 \alpha \end{bmatrix}$$
 and $B = \begin{bmatrix} \cos^2 \beta & \cos \beta \sin \beta \\ \cos \beta \sin \beta & \sin^2 \beta \end{bmatrix}$

are two matrices such that AB is the null matrix, then

82. If A and B are two matrices such that AB=A, BA=B, then A^{25} is equal to

(A)
$$A^{-1}$$
 (B) A (C) $B^{-1}(D)$ B
Watch Video Solution

83.
$$IfA = egin{bmatrix} \cos heta & \sin heta \ -\sin heta & \cos heta \end{bmatrix}, then \lim_{x_{>}\infty} \; rac{1}{n} A^n$$
 is

Watch Video Solution

84. If
$$A = \begin{bmatrix} a & b & c \\ x & y & z \\ p & q & r \end{bmatrix}$$
, $B = \begin{bmatrix} q & -b & y \\ -p & a & -x \\ r & -c & z \end{bmatrix}$ and if A is invertible,

then which of the following is not true? (a) |A| = |B| (b) |A| = -|B|

(c) $\left|adjA
ight|=\left|adjB
ight|$ (d) A is invertible if and only if B is invertible

85. The number of different mastrices which can be formed using 12 different real numbers is (A) 6(12)! (B) 3(12)! (C) 2(10)! (D) 4(10)!

86. Which of the following is a non singular matrix? (A) $\begin{bmatrix} 1 & a & b + c \\ 1 & b & c + a \\ 1 & c & a + b \end{bmatrix}$ (B) $\begin{bmatrix} 1 & \omega & \omega^2 \\ \omega & \omega^2 & 1 \\ \omega^2 & 1 & \omega \end{bmatrix}$ where omega is non real and $\omega^3 = 1$ (C) $\begin{bmatrix} 1^2 & 2^2 & 3^2 \\ 2^2 & 3^2 & 4^2 \\ 3^2 & 4^2 & 5^2 \end{bmatrix}$ (D) $\begin{bmatrix} 0 & 2 & -3 \\ -2 & 0 & 5 \\ 3 & -5 & 0 \end{bmatrix}$ Watch Video Solution

87. If A and B are two n imes n matrices such that |A| = |B| then (A) A' = A (B) A = B (C) A' = B' (D) none of these

88. If $A = \left[a_{ij}
ight]$ is a square matrix of order 3 and A_{ij} denote cofactor of

the element a_{ij} in |A| then the value of |A| is given by

89. If for matrix $A, A^2 + l = 0$, where I is the identity matrix, then A equals

Watch Video Solution

90. The system of linear equations ax + by = 0, cx + dy = 0 has a non trivial solution if (A) ad + bc = 0 (B) ad - bc = 0 (C) ad - bc, 0 (D) ad - bc.0

91. The equation 2x + y + z = 0, x + y + z = 1, 4x + 3y + 3z = 2

have (A) no solution (B) only one solution (C) infinitely many solutions (D)

none of these

ax+y+z=0, ay+z=0, x+y+z=0 possesses non-trivial

solution is

94. If
$$A = egin{bmatrix} 1 & 2 \ 2 & 1 \end{bmatrix}$$
 then adj A=

95. If I=[1001] , J=[01-10] and $B=[\cos heta \sin heta - \sin heta \cos heta]$, then

B equals $I\cos\theta + J\sin\theta$ (b) $I\sin\theta + J\cos\theta$ (c) $I\cos\theta - J\sin\theta$ (d)

 $I\cos heta+J\sin heta$

Watch Video Solution

96. If A = [(1, 0, 0), (0, 1, 0), (1, b, 0] then A^2 is equal is (A) unit matrix

(B) null matrix (C) A (D) -A

Watch Video Solution

97. A, B are two matrices such that AB and A + B are both defined; show that A, B are square matrices of the same order.

98. If A and B are symmetric matrices of order $n(A \neq B)$ then (A) A+B is skew symmetric (B) A+B is symmetric (C) A+B is a diagonal matrix (D) A+B is a zero matrix

Watch Video Solution

99. If
$$A = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$$
, $B = \begin{bmatrix} -5 & 4 & 0 \\ 0 & 2 & -1 \\ 1 & -3 & 2 \end{bmatrix}$ then (A) $AB = \begin{bmatrix} -2 \\ -1 \\ 4 \end{bmatrix}$ (B)
 $AB = \begin{bmatrix} -2 \\ -1 \\ 4 \end{bmatrix}$ (C) $AB = \begin{bmatrix} 4, -1, 2 \end{bmatrix}$ (D) $AB = \begin{bmatrix} -5 & 4 & 0 \\ 0 & 4 & -2 \\ 3 & -9 & 6 \end{bmatrix}$

Watch Video Solution

100. If A and B are square matrices of order 2, then det(A + B) = 0 is possible only when det(A) = 0 or det(B) = 0 (b) det(A) + det(B) = 0(c) det(A) = 0 and det(B) = 0 (d) A + B = O

```
101. From the matrix equation AB=AC, we conclude B=C provided.
```


102. If each element of a 3×3 matrix A is multiplied by 3 then the determinant of the newly formed matrix is (A) $3 \det A$ (B) $9 \det A$ (C) $(\det A)^3$ (D) $27 \det A$

Watch Video Solution

103. If A and B are two nonzero square matrices of the same order such

that the product AB = O, then

104. about to only mathematics

105.Thesystemoflinearequationsx + y + z = 2, 2x + y - z = 3, 3x + 2y + kz = 4hasauniquesolution if (A) $k \neq 0$ (B) -1 < k < 1 (C) -2 < k < 2 (D) k = 0

Watch Video Solution

106. If
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 then A^A4= (A) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ (B) $\begin{bmatrix} 1 & 1 \\ 0 & 10 \end{bmatrix}$ (C) $\begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$ (D) $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

Watch Video Solution

107. The order of
$$[x, y, z]$$
, $\begin{bmatrix} a & h & g \\ h & b & f \\ g & f & c \end{bmatrix}$, $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ is (A) $3x1$ (B) 1×1 (C)

1 imes 3 (D) 3 imes 3

108.
$$\begin{bmatrix} 1 & 3 \\ 3 & 10 \end{bmatrix}^{-1} =$$
 (A) $\begin{bmatrix} 10 & 3 \\ 3 & 1 \end{bmatrix}$ (B) $\begin{bmatrix} 10 & -3 \\ -3 & 1 \end{bmatrix}$ (C) $\begin{bmatrix} 1 & 3 \\ 3 & 10 \end{bmatrix}$ (D) $\begin{bmatrix} -1 & -3 \\ -3 & -10 \end{bmatrix}$

109. If
$$A + B = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$
 and $A - 2B = \begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix}$, then A is equal to

Watch Video Solution

110. If
$$A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$$
 then $A^2 = (A) \begin{bmatrix} 8 & -5 \\ -5 & 3 \end{bmatrix}$ (B) $\begin{bmatrix} 8 & -5 \\ 5 & 3 \end{bmatrix}$ (C) $\begin{bmatrix} 8 & -5 \\ -5 & -3 \end{bmatrix}$ (D) $\begin{bmatrix} 8 & 5 \\ -5 & 3 \end{bmatrix}$

Watch Video Solution

111. The inverse of the matrix $\begin{bmatrix} 2 & 3 \\ -4 & 7 \end{bmatrix}$ is (A) $\begin{bmatrix} -2 & -3 \\ 4 & -7 \end{bmatrix}$ (B) $\frac{1}{26} \begin{bmatrix} 7 & -3 \\ 4 & 2 \end{bmatrix}$ (C) $\begin{bmatrix} 7 & 4 \\ -3 & 2 \end{bmatrix}$ (D) $\begin{bmatrix} 7 & -3 \\ 4 & 2 \end{bmatrix}$ 112. the order of the single matrix obtained from $\begin{bmatrix}
1 & -1 \\
0 & 2 \\
2 & 3
\end{bmatrix}
\left\{
\begin{bmatrix}
-1 & 0 & 2 \\
2 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
0 & 1 & 23 \\
1 & 0 & 21
\end{bmatrix}
\right\}$ is $(A) 2 \times 3 (B) 2 \times 2 (C) 3 \times 2 (D) 3 \times 3$

Watch Video Solution

113. The inverse of the matrix
$$\begin{bmatrix} 1 & 0 & 0 \\ a & 1 & 0 \\ b & c & 1 \end{bmatrix}$$
 is (A)
$$\begin{bmatrix} 1 & 0 & 0 \\ -a & 1 & 0 \\ b & c & 1 \end{bmatrix}$$
 (B)
$$\begin{bmatrix} 1 & 0 & 0 \\ -a & 1 & 0 \\ ac & b & 1 \end{bmatrix}$$
 (C)
$$\begin{bmatrix} 1 & -a & ac - b \\ -0 & 1 & -c \\ 0 & 0 & 1 \end{bmatrix}$$
 (D)
$$\begin{bmatrix} 1 & 0 & 0 \\ -a & 1 & 0 \\ ac - b & -c & 1 \end{bmatrix}$$
 (B) **Watch Video Solution**

114. If the matrix A is both symmetric and skew symmetric, then (A) A is a diagonal matrix (B) A is a zero matrix (C) A is a square matrix (D) None of these

115. If A is a non singular matrix of order 3 then |adj(adjA)| equals (A) $|A|^4$ (B) $|A|^6$ (C) $|A|^3$ (D) none of these

these

Watch Video Solution

117. If
$$A = \begin{bmatrix} 1 & 2 \\ 4 & 1 \end{bmatrix}$$
, then $A^{-1} = (A) \begin{bmatrix} -1 & -2 \\ 4 & 1 \end{bmatrix}$ (B) $-\frac{1}{7} \begin{bmatrix} 1 & 2 \\ -4 & -1 \end{bmatrix}$
(C) $\frac{1}{7} \begin{bmatrix} -1 & -2 \\ 4 & 1 \end{bmatrix}$ (D) $\frac{1}{9} \begin{bmatrix} 1 & 2 \\ 4 & 1 \end{bmatrix}$

118. Value of
$$\begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix}$$
 is (A) $(a-b)(b-c)(c-a)$ (B)
 $(a^2-b^2)(b^2-c^2)(c^2-a^2)$ (C) $(a-b+c)(b-c+a)(c+a-b)$ (D)

none of these

Watch Video Solution

119.
$$\begin{bmatrix} 7 & 1 & 2 \\ 9 & 2 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix} + 2 \begin{bmatrix} 4 \\ 2 \end{bmatrix}$$
 is equal to

Watch Video Solution

120. Multiplicative inverse of the matrix
$$\begin{bmatrix} 2 & 1 \\ 7 & 4 \end{bmatrix}$$
 is

121. If
$$f(x) = x^2 + 4x - 5$$
 and $A = \begin{bmatrix} 1 & 2 \\ 4 & -3 \end{bmatrix}$, then f(A) is equal to

122. The inverse of the matrix
$$\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
 is (A)
$$\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
 (B)
$$\begin{bmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{bmatrix}$$
 (C)
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 (D)
$$\begin{bmatrix} \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{2} \end{bmatrix}$$

Watch Video Solution
$$\begin{bmatrix} 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1/2 & -1/2 & 1/2 \end{bmatrix}$$

123. If
$$A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & a & 1 \end{bmatrix}$$
 and $A^{-1} \begin{bmatrix} 1/2 & 1/2 & 1/2 \\ -4 & 3 & b \\ 5/2 & -3/2 & 1/2 \end{bmatrix}$ then

124. If
$$A = \begin{bmatrix} 0 & -1 & 2 \\ 1 & 0 & 3 \\ -2 & -3 & 0 \end{bmatrix}$$
, $then A + 2A^t$ equals (A) A (B) $-A^t$ (C) A^t (D)

 $2A^2$

Watch Video Solution

125. The adjoint of the matrix
$$\begin{bmatrix} 2 & 5 \\ 3 & 1 \end{bmatrix}$$
 is (A) $\begin{bmatrix} 2 & 5 \\ 3 & 1 \end{bmatrix}$ (B) $\begin{bmatrix} 1 & -5 \\ -3 & 2 \end{bmatrix}$ (C) $\begin{bmatrix} 1 & -3 \\ -5 & 2 \end{bmatrix}$ (D) $\begin{bmatrix} -1 & 3 \\ 5 & -2 \end{bmatrix}$

Watch Video Solution

126. If A is a square matrix, then A - A' is a

A. diagonal matrix

B. skew symmetric matrix

C. symmetric matrix

D. none of these

Answer: A

127. If
$$A=egin{bmatrix}2&3\\5&-2\end{bmatrix}$$
 then $19A^{-1}$ is equal to (A) A ' (B) 2A (C) $rac{1}{2}A$ (D) A

Watch Video Solution

128. The matrix X in the equation
$$AX = B$$
, such that $A = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$ is given by (A) $\begin{bmatrix} 1 & 0 \\ -3 & 1 \end{bmatrix}$ (B) $[(1, -4), 0, 1)]$ (C) $\begin{bmatrix} 1 & -3 \\ 0 & 1 \end{bmatrix}$ (D) $\begin{bmatrix} 0 & -1 \\ -3 & 1 \end{bmatrix}$

Watch Video Solution

129. If $\begin{bmatrix} 1 & a & 2 \\ 1 & 2 & 5 \\ 2 & 1 & 1 \end{bmatrix}$ is non invertible then a= (A) 2 (B) 1 (C) 0 (D) -1

130. Using properties of determinant, if $\begin{vmatrix} -a^2 & ab & ac \\ ab & -b^2 & bc \\ ac & bc & -c^2 \end{vmatrix} = \mu a^2 b^2 c^2$,

find μ

Watch Video Solution

131. If
$$A = \begin{bmatrix} 1 & \tan\left(\frac{\theta}{2}\right) \\ -\tan\left(\frac{\theta}{2}\right) & 1 \end{bmatrix}$$
 and $AB = I$, $thenB =$ (A)
 $\left\{\cos^{2}\left(\frac{\theta}{2}\right)\right\}A$ (B) $\left\{\cos^{2}\left(\frac{\theta}{2}\right)\right\}A$ ' (C) $\left\{\cos^{2}\left(\frac{\theta}{2}\right)\right\}I$ (D) none of these

Watch Video Solution

132. I
$$A = \begin{bmatrix} 0 & 5 \\ 0 & 0 \end{bmatrix}$$
 and $f(x) = 1 + x + x^2 + \ldots + x^{16}$, then $f(A) = (A) 0 (B) \begin{bmatrix} 1 & 5 \\ 0 & 1 \end{bmatrix} (C) \begin{bmatrix} 1 & 5 \\ 0 & 0 \end{bmatrix} (D) \begin{bmatrix} 0 & 5 \\ 1 & 1 \end{bmatrix}$

133. If A is a non singular square matrix 3 then $\left|adj(A^3)\right|$ equals (A) $|A|^8$ (B) $|A|^6$ (C) $|A|^9$ (D) $|A|^{12}$

134. If A is a square matrix of order n imes n and k is a scalar, then adj(kA)

is equal to (1) kadjA (2) k^nadjA (3) $k^{n-1}adjA$ (4) $k^{n+1}adjA$

Watch Video Solution

135. If
$$A = \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$$
 , then the trace of the matrix $Adj(AdjA)$ is

136. If
$$A = \begin{bmatrix} 1 & 0 \\ 2 & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} 0 & 0 \\ 1 & 12 \end{bmatrix}$ then= (A) $AB = 0, BA = 0$ (B)
 $AB = 0, BA \neq 0$ (C) $AB \neq 0, BA = 0$ (D) $AB \neq 0, BA \neq 0$

137. The value of a for which system of equations , $a^3x + (a+1)^3y + (a+2)^3z = 0$, ax + (a+1)y + (a+2)z = 0, x + y + bas a non-zero solution is:

Watch Video Solution

138. If I_3 is the identity matrix of order 3 then I_3^{-1} is (A) 0 (B) $3I_3$ (C) I_3

(D) does not exist

Watch Video Solution

139. If matrix AB=0, then A=0 or B =0 or both A and B are null matrices.

140. The matrix [05 - 7 - 50117 - 110] is (a) a skew-symmetric matrix (b)

a symmetric matrix (c) a diagonal matrix (d) an upper triangular matrix

141.
$$A = ig[a_{ij}ig]_{m imes n}$$
 is a square matrix , if :

Watch Video Solution

142. If
$$A = \begin{bmatrix} 2 & 2 \\ -3 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ then $(B^{-1}A^{-1})^{-1} =$
(A) $\begin{bmatrix} 2 & -2 \\ 2 & 3 \end{bmatrix}$ (B) $\begin{bmatrix} 3 & -2 \\ 2 & 3 \end{bmatrix}$ (C) $\frac{1}{10} \begin{bmatrix} 2 & 2 \\ -2 & 3 \end{bmatrix}$ (D) $\frac{1}{10} \begin{bmatrix} 3 & -2 \\ -2 & 2 \end{bmatrix}$

Watch Video Solution

143. If A = [023 - 4] and kA = [03a2b24], then the values of k, a, b, are respectively (a) -6, -12, -18 (b) -6, 4, 9 (c) -6, -4, -9 (d) -6, 12, 18

144. If
$$A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$
, $then A^n =$
(A) $\begin{bmatrix} 1 & 2n \\ 0 & 1 \end{bmatrix}$ (B) $\begin{bmatrix} 2 & n \\ 0 & 1 \end{bmatrix}$ (C) $\begin{bmatrix} 1 & 2n \\ 0 & -1 \end{bmatrix}$ (D) $\begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix}$

145. For the matrix
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 2 & 1 & 0 \end{bmatrix}$$
 which of the following is correct?
(A) $A^3 + 3A^2 - I = 0$ (B) $A^3 - 3A^2 - I = 0$ (C) $A^3 + 2A^2 - I = 0$ (D) $A^3 - A^2 + I = 0$

Watch Video Solution

146. If $A^2 - A + I = 0$, then the inverse of A is

147. If
$$\begin{bmatrix} 2+x & 3 & 4\\ 1 & -1 & 2\\ x & 1 & -5 \end{bmatrix}$$
 is a singular matrix then x is
(A) $\frac{13}{25}$ (B) $-\frac{25}{13}$ (C) $\frac{5}{13}$ (D) $\frac{25}{13}$

148. If
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & -1 \end{bmatrix}$$
 then A^2 is equal to

Watch Video Solution

149. If
$$A = \begin{bmatrix} 1 & 2 \\ 3 & -5 \end{bmatrix}$$
 then A^{-1} is
A. $\begin{bmatrix} -5 & -2 \\ -3 & 1 \end{bmatrix}$
B. $\begin{bmatrix} \frac{5}{11} & \frac{2}{11} \\ \frac{3}{11} & -\frac{1}{11} \end{bmatrix}$
C. $\begin{bmatrix} -\frac{5}{11} & -\frac{2}{11} \\ -\frac{3}{11} & -\frac{1}{11} \end{bmatrix}$
D. $\begin{bmatrix} 5 & 2 \\ 3 & -1 \end{bmatrix}$

150. If A and B are two square matrices of the same order then $(A - B)^2$ is (A) $A^2 - AB - BA + B^2$ (B) $A^2 - 2AB + B^2$ (C) $A^2 - 2BA + B^2$ (D) $A^2 - B^2$

Watch Video Solution

151. If $A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$ and I is the identity matrix of order 2, then show that $A^2 = 4A - 3I$ Hence find A^{-1} .

Watch Video Solution

152. If
$$P = \begin{bmatrix} i & 0 & -i \\ 0 & -i & i \\ -i & i & 0 \end{bmatrix}$$
 and $Q = \begin{bmatrix} -i & i \\ 0 & 0 \\ i & -i \end{bmatrix}$ then PQ is equal to
(A) $\begin{bmatrix} -2 & 2 \\ 1 & -1 \\ 1 & -1 \end{bmatrix}$ (B) $\begin{bmatrix} 2 & -2 \\ -1 & 1 \\ -1 & 1 \end{bmatrix}$ (C) $\begin{bmatrix} 2 & 2 \\ -1 & 1 \end{bmatrix}$ (D) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

153. Let R be a square matrix of order greater than 1 such that R is upper triangular matrix .Further suppose that none of the diagonal elements of the square matrix R vanishes. Then (A) R must be non singular (B) R^{-1} does not exist (C) R^{-1} is an upper triangular matrix (D) R^{-1} is a lower triangular matrix

Watch Video Solution

154. If
$$A^{-1} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & -2 & 1 \\ 0 & 0 & -1 \end{bmatrix}$$
 then

Watch Video Solution

155. Let
$$A = egin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$$
 , then

156. Which of the following is a triangular matrix? (A) a scalar matrix (B) a lower triangular matrix (C) an upper triangular matrix (D) a diagonal matrix

157. If A and B are square matrices of the same order such that AB=BA, then (A) $(A - B)(A + B) = A^2 - B^2$ (B) $(A + B)^2 = A^2 + 2AB + B^2$ (C) $(A + B)^3 = A^3A^2B + 3AB^2 + B^3$ (D) $(AB)^2 = A^2B^2$

Watch Video Solution

158. The homogeneous system AX=) of n linear equation in n variables has (A) a unique solutions if $|A| \neq 0$ (B) infinitely many solution if |A| = 0 (C) no solution (D) none of these

159. The homogeneous system AX=Oof n linear equation in n variables has (A) a unique solutions if $|A| \neq 0$ (B) infinitely many solution if |A| = 0 (C) no solution (D) none of these

160. Let A,B,C be 2×2 matrices with entries from the set of real numbers. Define operations \'*\' as follows $A \cdot B = \frac{1}{2}(AB + BA)$ then (A) $A \cdot I = A$ (B) $A \cdot A = A^2$ (C) $A \cdot B = B \cdot A$ (D) $A \cdot (B + C) = A \cdot B + A \cdot C$

161. If
$$A = \begin{bmatrix} 0 & \sin \alpha & \sin \alpha \sin \beta \\ -\sin \alpha & 0 & \cos \alpha \cos \beta \\ -\sin \alpha \sin \beta & -\cos \alpha \cos \beta & 0 \end{bmatrix}$$
 then
(A) $|A|$ is independent of α and β (B) A^{-1} depends only on beta (C)
 A^{-1} does not exist (D) none of these

162. Let
$$A = egin{bmatrix} 1 & \sin heta & 1 \ -\sin heta & 1 & \sin heta \ -1 & -\sin heta & 1 \ \end{pmatrix},$$
 where $0 \le heta \le 2\pi.$ Then

163. If
$$A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$
 then (A) $A^{-n} = \begin{bmatrix} 1 & 0 \\ -n & 1 \end{bmatrix}$, $n \in N$ (B)
$$\lim_{n \to 00} \frac{1}{n^2} A^{-n} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
 (C) $\lim_{n \to \infty} \frac{1}{n} A^{-n} = \begin{bmatrix} 0 & 0 \\ -1 & 0 \end{bmatrix}$ (D) none of

these

164. If A and B are symmetric matrices of same order, then AB - BA is a

165. Let A and B are two matrices such that AB = BA, then

for every $n \in N$

$$(A+B)^2 = A^2 + 2AB + B^2$$
 implies

168. If A is an invertible matrix of order $n \times n$, $(n \ge 2)$, then(A)A is symmetric (B) adjA is invertible (C) $Adj(AdjA) = |A|^{n-2}A$ (D) none of these

169. If A is an invertible matrix then which of the following are true? (A)

A
eq 0 (B) |A|
eq 0 (C) adjA
eq 0 (D) $A^{-1} = |A|adjA$

x+y+z=6

x + 2y + 3z = 10

 $x + 2y + \lambda z = \mu$

the system has unique solution if (a) $\lambda
eq 3$ (b) $\lambda = 3, \mu = 10$ (c)

 $\lambda=3, \mu
eq 10$ (d) none of these

172. If A is a square matrix of order 2×2 and $B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, such that AB = BA, then A can be

173. A square matrix A is said to be orthogonal if $A^T A = I$ If A is a square matrix of order n and k is a scalar, then $|kA| = K^n |A| A lso |A^T| = |A|$ and for any two square matrix A d B of same order AB| = |A| |B| On the basis of above information answer the following question: IF A is a 3×3 orthogonal matrix such that |A| = 1, then |A - I| = (A) 1 (B) -1 (C) 0 (D) none of these

Watch Video Solution

174. A square matrix A is said to be orthogonal if $A^T A = I$ If A is a square matrix of order n and k is a scalar, then $|kA| = K^n |A| A lso |A^T| = |A|$ and for any two square matrix A d B of

same order AB| = |A| |B| On the basis of abov einformation answer the following question: If A is an orthogonal matrix then (A) A^T is an orthogonal matrix but A^{-1} is not an orthogonal matrix (B) A^T is not an orthogonal mastrix but A^{-1} is an orthogonal matrix (C) Neither A^T nor A^{-1} is an orthogonal matrix (D) Both A^T and A^{-1} are orthogonal matrices.

Watch Video Solution

175. A square matrix A is said to be orthogonal if $A^{T}A = I$ If A is a sqaure matrix of order n and k is a scalar, then $|kA| = K^{n}|A|Also|A^{T}| = |A|$ and for any two square matrix A d B of same order AB| = |A| |B| On the basis of abov einformation answer the following question: If $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ and P is a orthogonal matrix and $B = PAP^{T}, P^{T}B^{2009}P = (A) \begin{bmatrix} 1 & 2009 \\ 0 & 1 \end{bmatrix}$ (B) $\begin{bmatrix} 1 & 2009 \\ 2009 & 1 \end{bmatrix}$ (C) $\begin{bmatrix} 1 & 0 \\ 2009 & 1 \end{bmatrix}$ (D) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

176. If A is a square matrix of any order then |A - x| = 0 is called the characteristic equation of matrix A and every square matrix satisfies its characteristic equation. For example if $A = \begin{vmatrix} 1 & 2 \\ 1 & 5 \end{vmatrix}$, Then $[(A - xI)], = \begin{bmatrix} 1 & 2 \\ 1 & 5 \end{bmatrix} - \begin{bmatrix} x & 0 \\ 0 & x \end{bmatrix} = \begin{bmatrix} 1 - x & 2 \\ 1 - 0 & 5 - u \end{bmatrix} = \begin{bmatrix} 1 - x & 2 \\ 1 & 5 - x \end{bmatrix}$ Characteristic equation of matri A is $igg| egin{array}{ccc} 1-x & 2 \ 1 & 5-x \end{array} igg| = 0 \, \, {
m or} \, \, (1-x)(5-x0-2=0 \, \, \, {
m or} \, \, \, x^2-6x+3=0. \end{array}$ Matrix A will satisfy this equation ie. $A^2-6A+3I=0$ then A^{-1} can be determined by multiplying both sides of this equation let $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & -2 & 4 \end{bmatrix}$ On the basis fo above information answer the following questions: If $6A^{-1} = A^2 + aA + bI, then(a,b)$ is (A) (-6,11) (B) (-11,60 (C) (11,6) (D) (6,11)

Watch Video Solution

177. If A is a square matrix of any order then |A - x| = 0 is called the chracteristic equation of matrix A and every square matrix satisfies its chatacteristic equation. For example if $A = \begin{bmatrix} 1 & 2 \\ 1 & 5 \end{bmatrix}$, Then

 $[(A - xI)], = \begin{bmatrix} 1 & 2 \\ 1 & 5 \end{bmatrix} - \begin{bmatrix} x & 0 \\ 0 & x \end{bmatrix} = \begin{bmatrix} 1 - x & 2 \\ 1 - 0 & 5 - x \end{bmatrix} = \begin{bmatrix} 1 - x & 2 \\ 1 & 5 - x \end{bmatrix}$ Characteristic equation of matrix A is $\begin{vmatrix} 1 - x & 2 \\ 1 & 5 - x \end{vmatrix} = 0$ or (1 - x)(5 - x)(0 - 2) = 0 or $x^2 - 6x + 3 = 0$ Matrix A will satisfy this equation ie. $A^2 - 6A + 3I = 0$. A^{-1} can be determined by multiplying both sides of this equation. Let $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & -2 & 4 \end{bmatrix}$ On the basis for above information answer the following questions: Sum of elements of A^{-1} is (A) 2 (B) -2 (C) 6 (D) none

of these

Watch Video Solution

178. I
$$A = \begin{bmatrix} 0 & 5 \\ 0 & 0 \end{bmatrix}$$
 and $f(x) = 1 + x + x^2 + \ldots + x^{16}$, then $f(A) = (A) \ 0 \ (B) \begin{bmatrix} 1 & 5 \\ 0 & 1 \end{bmatrix}$ (C) $\begin{bmatrix} 1 & 5 \\ 0 & 0 \end{bmatrix}$ (D) $\begin{bmatrix} 0 & 5 \\ 1 & 1 \end{bmatrix}$

Watch Video Solution

179. If the matrix $\begin{bmatrix} 1 & 3 & \lambda+2\\ 2 & 4 & 8\\ 3 & 5 & 10 \end{bmatrix}$ is singular then find λ

180. If
$$A = \begin{bmatrix} 1 & 3 \\ 3 & 4 \end{bmatrix}$$
 and $A^2 - xA - I = 0$ then find x.

181. For a 3 imes 3 matrix A if |A|=4, then find |AdjA|

Watch Video Solution

182. Assertion: |M| = 0, Reason: Determinant of a skew symmetric matrix is 0. (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

183. Assertion: $|AA^{T}| = 0$, Reason : A is a skew symmetric matrix (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

Watch Video Solution

184. Assertion : A^{-1} exists, Reason: |A| = 0 (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

Watch Video Solution

185. Assertion: |AadjA| = -1, Reason : If A is a non singular square matrix of order n then $|adjA| = |A|^{n-1}$ (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te

correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

Watch Video Solution

186. Assertion: adj A is a no singular matrix., Reason: A is a no singular matix. (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

Watch Video Solution

187. Assertion: If $|A^2| = 25$ then $A = \pm \frac{1}{5}$, Reason: |AB| = |A||B| (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

188. Asertion: The system of equations has unique solution for $\lambda = -5$,

Reason: The determinant $\begin{vmatrix} 3 & -1 & 4 \\ 1 & 2 & -3 \\ 6 & 5 & \lambda \end{vmatrix}
eq 0f \text{ or } \lambda \neq -5$ (A) Both A

and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

Watch Video Solution

189. If M is a 3×3 matrix, where det $M = 1 and M M^T = 1, where I$ is

an identity matrix, prove theat det (M - I) = 0.

Watch Video Solution

190. about to only mathematics

191. If
$$A = egin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -2 & 4 \end{bmatrix}, 6A^{-1} = A^2 + cA + dI$$
, then (c,d) is :

192. Let
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix}$$
 and U_1, U_2, U_3 be column matrices satisfying
 $AU_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, AU_2 = \begin{bmatrix} 2 \\ 3 \\ 6 \end{bmatrix}, AU_3 = \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$. If U is 3×3 matrix whose

columns are $U_1, U_2, U_3, \hspace{0.2cm} ext{then} \hspace{0.2cm} |U| =$

Watch Video Solution

193. If
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{pmatrix}$$
, U_1, U_2 , and U_3 are column matrices
satisfying $AU_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $AU_2 = \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix}$ and $AU_3 = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$ and

U is 3 imes 3 matrix when columns are U_1, U_2, U_3 then

answer the following questions

The sum of the elements of U^{-1} is

Watch Video Solution

194. Let
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix}$$
 and U_1, U_2, U_3 be column matrices satisfying
 $AU_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, AU_2 = \begin{bmatrix} 2 \\ 3 \\ 6 \end{bmatrix}, AU_3 = \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$. If U is 3×3 matrix whose

columns are U_1, U_2, U_3 , then |U| =

Watch Video Solution

195. Consider the system of equations

x-2y+3z=-1

-x+y-2z=k

x-3y+4z=1

Statement -1 The system of equation has no solutions for k
eq 3.

statement -2 The determinant
$$egin{array}{ccc} 1 & 3 & -1 \ -1 & -2 & k \ 1 & 4 & 1 \ \end{array}
onumber
onumber
eq 0, for $k
eq 3.$$$

Watch Video Solution

196. Let A be the set of all 3 imes 3 symmetric matrices all of whose either 0

or 1. Five of these entries are 1 and four of them are 0.

The number of matrices in A is

Watch Video Solution

197. Let A be the set of all 3 imes 3 symmetric matrices all of whose either 0

or 1. Five of these entries are 1 and four of them are 0.

The number of matrices in A is

198. Let A be the set of all 3 imes 3 symmetric matrices all of whose either 0

or 1. Five of these entries are 1 and four of them are 0.

The number of matrices in A is