©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - KC SINHA ENGLISH

MATRICES - FOR COMPETITION

Solved Examples

1. Product of more than two Matrices :

- Watch Video Solution

2. Find X if $Y=[3,2,1,4]$ and $2 X+Y=[1,0,-3,2]$.
3. If $A=\left[\begin{array}{ccc}1 & -2 & 3 \\ -4 & 2 & 5\end{array}\right]$ and $B=\left[\begin{array}{ll}2 & 3 \\ 4 & 5 \\ 2 & 1\end{array}\right]$, find $A B$ and $B A$ and show that $A B \neq B A$

- Watch Video Solution

4. If $A=[122212221]$, then prove that $A^{2}-4 A-5 I=O$.

- Watch Video Solution

5. if $F(x)=\left[\begin{array}{lll}\cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1\end{array}\right]$, show that $\mathrm{F}(\mathrm{x}) . \mathrm{F}(\mathrm{x}+\mathrm{Y})$.

- Watch Video Solution

6. If $\mathrm{A}=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$, then $\lim _{n \rightarrow \infty} \frac{A^{n}}{n}$ is (where $\theta \in R$)
7. if $F(x)=\left[\begin{array}{lll}\cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1\end{array}\right]$, show that $\mathrm{F}(\mathrm{x}) \cdot \mathrm{F}(\mathrm{x}+\mathrm{Y})$.

- Watch Video Solution

8. If D_{1} and D_{2} are diagonal matices of order 3×3 then (A) D_{1}^{n} is a diagonal matrix (B) $D_{1} D_{2}=D_{2} D_{1}$ (C) $D_{1}^{2}+D_{2}^{2}$ is diagonal matrix (D) $D_{1} D_{2}$ is a diagonal matix

- Watch Video Solution

9. For a matrix A of order 3×3 where $A=\left[\begin{array}{ccc}1 & 4 & 5 \\ k & 8 & 8 k-6 \\ 1+k^{2} & 8 k+4 & 2 k+21\end{array}\right]$
(A) rank of $A=2 f$ or $k=-1(B)$ rankofA=1 for $\mathrm{k}=-1(C)$ rankofA=2 for $\mathrm{k}=2(D) \operatorname{rankof} A=1 f$ or $k=2$

- Watch Video Solution

1. Given $A=\left[\begin{array}{ccc}1 & 2 & -3 \\ 5 & 0 & \\ 1 & -1 & 1\end{array}\right]$ and $B=[[3,-1,2],[4,25],[2,0,3]]$, find the matrix C such that $A+C=B$.

(Watch Video Solution

2. If $P(x)=[(\cos x, \sin x),(-\sin x, \cos x):]]$, then show that $P(x) . P(y)=P(x+y)=P(y) . P(x)$.

- Watch Video Solution

3. Find the product of the following two matrices $\left[\begin{array}{ccc}0 & c & -b \\ c & 0 & a \\ b & -a & 0\end{array}\right]$ and $\left[\begin{array}{ccc}a^{2} & a b & a c \\ a b & b^{2} & b c \\ a c & b c & c^{2}\end{array}\right]$.

D Watch Video Solution

4. Let $A=[0-\tan (\alpha / 2) \tan (\alpha / 2) 0]$ and I be the identity matrix of order 2. Show that $I+A=(I-A)[\cos \alpha-\sin \alpha \sin \alpha \cos \alpha]$.

- Watch Video Solution

5. if $A=\left[\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right]$, then prove that $a^{n}=\left[\begin{array}{ll}1+2 n & -4 n \\ n & 1-2 n\end{array}\right]$, where n is any posttive interger.

- Watch Video Solution

6. Let $A=[0100]$ show that $(a I+b A)^{n}=a^{n} I+n a^{n-1} b A$, where I is the identitymatrix of order 2 and $n \in N$.

- Watch Video Solution

7. A man buys 8 dozens of masngeos, 10 dozensof apples and 4 diozens of bannas. Mngoes cost Rs. 18 per dozen, apples Rs. 9 per dozen and banans

Rs 6 per dozen. Represent the quantities bought by a row matrix and the prices by a column matrix and hence obtain the total cost.

- Watch Video Solution

8. Expressing the following matrices as the sum of a symmetric and skew symmetric matrix : $\left[\begin{array}{ccc} & 2 & 4 \\ 6 & 8 & 1 \\ 3 & 5 & 7\end{array}\right]$

- Watch Video Solution

9. Solve the following system of linear equations by matrix method:
$3 x-2 y=7,5 x+3 y=1$

- Watch Video Solution

10. Use matrix method to solve the following system of equations:
$5 x-7 y=2,7 x-5 y=3$
11. Solve the following system of linear equations by matrix method:
$2 x+3 y+3 z=1,2 x+2 y+3 z=2, x-2 y+2 z=3$

- Watch Video Solution

12. Solve the following system of linear equations by matrix method:
$x+y+z=3,2 x-y+z=2, x-2 y+3 z=2$

- Watch Video Solution

13. If A is an invertible symmetric matrix the A^{-1} is
A. a diagonal matrix
B. symmetric
C. skew symmetric
D. none of these
14. If A is a skew-symmetric matrix and n is odd positive integer, then A^{n} is a skew-symmetric matrix a symmetric matrix a diagonal matrix none of these

- Watch Video Solution

15. Which of the following is no true?
(A) $\left(A^{\prime}\right)^{\prime}=A$
(B) $(A-I)(A+I)=0$ such that $A^{2}=I$
(C) $(A B)^{n}=A^{n} B^{n}$ wheren N and $A B=B A$
(D) $(A+B)(A-B)=A^{2}-B^{2}, A$ and B being square matrices of the same type

- Watch Video Solution

16. A square matrix A is invertible if $\operatorname{det}(A)$ is equal to (A) -1 (B) 0 (C) 1 (D) none of these

(D) Watch Video Solution

17. If A, B and C be the three square matrices such that $A=B+C$ then $\operatorname{det} \mathrm{A}$ is necessarily equal to (A) detB (B) $\operatorname{det} \mathrm{C}(\mathrm{C}) \operatorname{det} B+\operatorname{det} C$ (D) none of these

- Watch Video Solution

18. A square matix A is called idempotent if (A) $A^{2}=0$ (B) $A^{2}=I$ (C) $A^{2}=A$ (D) $2 A=I$

- Watch Video Solution

19. The value of det

$$
\left|\begin{array}{cccc}
a & 0 & 0 & 0 \\
2 & b & 0 & 0 \\
4 & 6 & c & 0 \\
6 & 8 & 10 & d
\end{array}\right| i s(A) 0(B) \mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}(C) \mathrm{abcd}^{\prime}(\mathrm{D}) \text { none }
$$ of these

20. If A and B are any two square matrices of the same order then (A)
$(A B)^{T}=A^{T} B^{T}$
(B) $(A B)^{T}=B^{T} A^{T}$
(C) $\operatorname{Adj}(A B)=a d j(A) a d j(B)$
(D) $A B=0 \rightarrow A=0$ or $B=0$

(Watch Video Solution

21. A square matix A is a called singular if det A is (A) negative (B) zero (C) positive (D) non-zero

D Watch Video Solution

22. Let A by any $m \times n$ matrix then A^{2} can be found only when (A) $m<n$
(B) $m=n$ (C) $m>n$ (D) none of these

(Watch Video Solution

23. The matrix of the transformation reflection in the line $x+y=0$ is (A)
$\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$
(B) $\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$
(C) $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
(D) $\left[\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right]$

- Watch Video Solution

24. Rank of a non zero matrix is always (A) 0 (B) 1 (C) >1 (D) >0

- Watch Video Solution

25. The values of x for which the matrix $\left[\begin{array}{ccc}x+a & b & c \\ a & x+b & c \\ a & b & x+c\end{array}\right]$ is nonsingular are (A) $R-\{0\}$
(B) $\quad R-\{-(a+b+c)\}$
$R-\{0,-(a+b+c)\}(\mathrm{D})$ none of these

- Watch Video Solution

26. If $A=\left[\begin{array}{ccc}1 & 1 & 2 \\ 5 & 2 & 6 \\ -2 & -1 & -3\end{array}\right]$ then A is (A) nilpotent (B) idempotent (C) symmetric (D) none of these

- Watch Video Solution

27. If $A=\left[\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}\right]$ then (A) $A^{2}=I$ (B) $A^{2}=0$ (C) $A^{3}=0$ (D) none of these

- Watch Video Solution

28. If A and B are square matrices of order 3 then (A) $A B=0 \rightarrow|A|=0$ or $|B|=0$ (B) $A B=0 \rightarrow|A|=0$ and $|B|=0$ (C) $\operatorname{Adj}(A B)=\operatorname{AdjAAdjB}$ (D) $(A+B)^{-1}=A^{-1}+B^{-1}$

- Watch Video Solution

29. If A a non singular matrix an A^{T} denotes the transpose of A then (A)
$\left|A A^{T}\right| \neq\left|A^{2}\right|$
(B) $\left|A^{T} A\right| \neq\left|A^{T}\right|^{2}$
(C) $|A|+\left|A^{T}\right| \neq 0$
(D) $|A| \neq\left|A^{T}\right|$

- Watch Video Solution

30. If A and B are square matrices of the same order then $(A+B)^{2}=A^{2}+2 A B+B^{2}$ implies
A. (A) $A B=0$
B. (B) $A B+B A=0$
C. (C) $A B=B A$
D. (D) none of these

Answer: null

- Watch Video Solution

31. If $A=\left[\begin{array}{ccc}0 & 2 & -3 \\ -2 & 0 & -1 \\ 3 & 1 & 0\end{array}\right]$ then A is (A) diagonal matrix (B) symmetric matix (C) skew symmetric matrix (D) none of these

- Watch Video Solution

32. If $A=\left[\begin{array}{ll}2 & -4 \\ 1 & -1\end{array}\right]$ the value of A^{n} is (A) $\left[\begin{array}{cc}3^{n} & (-4)^{n} \\ 1 & (-1)^{n}\end{array}\right]$
$\left[\begin{array}{cc}3 n & -4 n \\ n & n\end{array}\right]$ (C) $\left[\begin{array}{cc}2+n & 5-n \\ n & -n\end{array}\right]$ (D) none of these

- Watch Video Solution

33. For a non singular matrix A of order n the rank of A is (A) less than n
(B) equal to n (C) greater than n (D) none of these

- Watch Video Solution

34. Inverse of diagonal matrix is (A) a diagonal matrix (B) symmetric (C) skew symmetric (D) none of these

- Watch Video Solution

35. IF $A=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$ then for all natural numbers $n A^{n}$ is equal to (A) $\left[\begin{array}{ll}1 & 0 \\ 1 & n\end{array}\right]$ (B) $\left[\begin{array}{ll}n & 0 \\ 1 & 1\end{array}\right]$ (C) $\left[\begin{array}{ll}1 & 0 \\ n & 1\end{array}\right]$ (D) none of these

- Watch Video Solution

36. Prove that the product of matrices $\left[\cos ^{2} \theta \cos \theta \sin \theta \cos \theta \sin \theta \sin ^{2} \theta\right]$ and $\left[\cos ^{2} \varphi \cos \varphi \sin \varphi \cos \varphi \sin \varphi \sin ^{2} \varphi\right]$ is the null matrix, when θ and φ differ by an odd multiple of $\frac{\pi}{2}$.

- Watch Video Solution

37. For an invertible square matrix of order 3 with real entries $A^{-1}=A^{2}$ then $\operatorname{det} A=(A) 1 / 3$ (B) 3 (C) 0 (D) 1

Watch Video Solution

38. if $\left[\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right] A\left[\begin{array}{ll}-3 & 2 \\ 5 & -3\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, then $A=$?

- Watch Video Solution

39. The roots of the equation det $\left[\begin{array}{ccc}1-x & 2 & 3 \\ 0 & 2-x & 0 \\ 0 & 2 & 3-x\end{array}\right]=0$ are (A) 1 and 2 (B) 1 and 3 (C) 2 and 3 (D) 1,2, and 3

- Watch Video Solution

40. If $A=\left[\begin{array}{ccc}1 & 2 & 0 \\ -1 & 1 & 2 \\ 2 & -1 & 1\end{array}\right]$ then $\operatorname{det}(\operatorname{Adj}(\operatorname{Adj} A))=$ (A) 13 (B) 13^{2} (C)
13^{4} (D) none of these

(D) Watch Video Solution

41. The transformation due of reflection of (x, y) through the origin is described by the matrix (A) $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ (B) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ (C) $\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$ $\left[\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right]$

- Watch Video Solution

42. If $A=\left[a_{i j}\right]_{m \times n}$ and $B=\left[b_{i j}\right]_{n \times p}$ then $(A B)^{\prime}$ is equal to (A) $B A^{\prime}$
(B) $B^{\prime} A$ (C) $A^{\prime} B^{\prime}$ (D) $B^{\prime} A^{\prime}$

- Watch Video Solution

43. If A is a skew-symmetric matrix and n is odd positive integer, then A^{n} is a skew-symmetric matrix a symmetric matrix a diagonal matrix none of these
44. If A is a skew-symmetric matrix and n is odd positive integer, then A^{n} is a skew-symmetric matrix a symmetric matrix a diagonal matrix none of these

- Watch Video Solution

45. if A and B are two symmetric matrices of the same order, prove that $(A B+B A)$ is also a symmetric matrix.

- Watch Video Solution

46. । $A=[x, y, z], B=\left[\begin{array}{lll}a & h & g \\ h & b & f \\ g & f & c\end{array}\right]$ and $C=[x, y, z]^{T}$, then $A B C$ is
(A) not defined (B) a 1×1 matrix (C) a 3×3 matrix (D) none of these

- Watch Video Solution

47. If for a square matrix $A, A^{2}=A t h e n|A|$ is equal to (A) -3 or 3 (B) -2 or $2(C) 0$ or $1(D)$ none of these

Watch Video Solution

48. For a matrix A of rank $\mathrm{r}(\mathrm{A}) \operatorname{rank}\left(A^{\prime}\right)<r(\mathrm{~B}) \operatorname{rank}\left(A^{\prime}\right)=r$. (C) rank $\left(A^{\prime}\right)>r(\mathrm{D})$ none of these

- Watch Video Solution

49. If $A=\left[\begin{array}{cccc}1 & 3 & 9 & 27 \\ 3 & 9 & 27 & 1 \\ 9 & 27 & 1 & 3 \\ 27 & 1 & 3 & 9\end{array}\right]$ then $\operatorname{det} A=(A) O$ (B) $-\left(80^{3}\right)$ (C) $\left(80^{3}\right) 27$ (D) 81^{3}

- Watch Video Solution

50. If $A=\left[\begin{array}{cc}a b & b^{2} \\ -a^{2} & -a b\end{array}\right]$, show that $A^{2}=O$.

- Watch Video Solution

51. If $A=\left[\begin{array}{ccc}2 & 0 & 0 \\ 0 & \cos & \sin x \\ 0 & -\sin x & \cos x\end{array}\right]$ then $(\operatorname{AdjA})^{-1}=$ (A) $\frac{1}{2} A$ (B) A (C) 2 A
(D) 4 A

- Watch Video Solution

52. Each diagonal element of a skew symmetric matrix is (A) zero (B) negative (C) positive (D) non real

- Watch Video Solution

53. If A is a non singular square matrix then $|a d j . A|$ is equal to (A) $|A|$ (B)
$|A|^{n-2}$
(C) $|A|^{n-1}$
(D) $|A|^{n}$

- Watch Video Solution

54. If $\left[\begin{array}{cc}1 & -\tan \theta \\ \tan \theta & 1\end{array}\right]\left[\begin{array}{cc}1 & \tan \theta \\ -\tan \theta & 1\end{array}\right]^{-1}=\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$, then $a=1, b=0$ (b) $a=\cos 2 \theta, b=\sin 2 \theta$ (c) $a=\sin 2 \theta, b=\cos 2 \theta$ (d) none of these

- Watch Video Solution

55. If $A=\left[\begin{array}{cc}\cos x & \sin x \\ -\sin x & \cos x\end{array}\right]$ and $A .(\operatorname{adj} A)=k\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ then the value of k is

- Watch Video Solution

56. If I_{n} is the identity matrix of order n then $\left(I_{n}\right)^{-1}(\mathrm{~A})$ does not exist (B) $=0(\mathrm{C})=I_{n}(\mathrm{D})=n I_{n}$

- Watch Video Solution

57. The number of all possible matrices of order 3×3 with each entry 0 or

Watch Video Solution

58. The number of all the possible matrices of order 2×2 with each entry 0,1 or 2 si (A) 12 (B) 64 (C) 81 (D) none of these

- Watch Video Solution

59. If A is an invertible matrix then $\operatorname{det}\left(A^{-1}\right)$ is equal to (A) 1 (B) $\frac{1}{|A|}$
$|A|$ (D) none of these

(Watch Video Solution

60. If A and B are two invertible matrices of the same order, then adj (AB) is equal to

- Watch Video Solution

61. If matrix $A B=0$, then $A=0$ or $B=0$ or both A and B are null matrices.

- Watch Video Solution

62. about to only mathematics

- Watch Video Solution

63. If A is a square matrix which of the following is not as symmetric matrix? (A) $A-A^{\prime}$ (B) $A+A^{\prime}$ (C) $A A^{\prime}$ (D) $A+B$

- Watch Video Solution

64. If A is an invertible matrix, then which of the following is not true
$\left(A^{2}\right)-1=\left(A^{-1}\right)^{2}$
(b) $\left|A^{-1}\right|=|A|^{-1}$
(c) $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$
$|A| \neq 0$
65. If $A=\left[a_{i j}\right]_{m \times n}$ is a matrix of rank r then (A) $r<\min \{m, n\}$ (B) $r \leq \min \{m, n\}(C) r=\min \{m, n\}$ (D) none of these

- Watch Video Solution

66. If A and B are symmetric matrices, then $A B A$ is

D Watch Video Solution

67. Simplify $\cos \theta[\cos \theta \sin \theta \sin \theta \cos \theta]+\sin \theta[\sin \theta-\cos \theta \cos \theta \sin \theta]$

D Watch Video Solution

68. about to only mathematics

- Watch Video Solution

69. If A is any mxn matrix and B is a matrix such that $A B$ and $B A$ are both defined, then B is a matrix of order

(Watch Video Solution

70. If A is a skew-symmetric matrix of odd order n, then $|A|=0$

- Watch Video Solution

71. If $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ then A^{2} is equal to

(Watch Video Solution

72. If $A=\left[\begin{array}{ccc}a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c\end{array}\right]$ and $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are non zero real numbers, then A^{-1} is
(A) $\frac{1}{a b c}\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ (B) $\frac{1}{a b c}\left[\begin{array}{lll}a & 0 & 0 \\ 0 & b & 0 \\ 0 & c & 0\end{array}\right]$ (C) $\frac{1}{a b c}\left[\begin{array}{ccc}a^{-1} & 0 & 0 \\ 0 & b^{-1} & 0 \\ 0 & c^{-1} & 1\end{array}\right]$
$\left[\begin{array}{ccc}a^{-1} & 0 & 0 \\ 0 & b^{-1} & 0 \\ 0 & 0 & c^{-1}\end{array}\right]$

Watch Video Solution

73. The trnsformation orthogonal projection on X -axis is given by the matrix (A) $\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ (B) $\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$ (C) $\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$ (D) $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$

- Watch Video Solution

74. If $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$ and $n \varepsilon N$ then A^{n} is equal to (A) $2^{n-1} A$ (B) $2^{n} A$ (C) $n A$ (D) none of these

- Watch Video Solution

75. If $A=\left[\begin{array}{cc}1 & 0 \\ \frac{1}{2} & 1\end{array}\right]$ then A^{50} is (A) $\left[\begin{array}{cc}1 & 25 \\ 0 & 1\end{array}\right]$
(B) $\left[\begin{array}{cc}1 & 0 \\ 25 & 1\end{array}\right]$
(C) $\left[\begin{array}{cc}1 & 0 \\ 0 & 50\end{array}\right]$
(D) $\left[\begin{array}{cc}1 & 0 \\ 50 & 1\end{array}\right]$
76. If $\left[\begin{array}{cc}\alpha & \beta \\ \gamma & -\alpha\end{array}\right]$ is to be square root of two-rowed unit matrix, then α, β and γ should satisfy the relation. a. $1-\alpha^{2}+\beta \gamma=0 \mathrm{~b} . \alpha^{2}+\beta \gamma=0 \mathrm{c}$. $1+\alpha^{2}+\beta \gamma=0 \mathrm{~d} .1-\alpha^{2}-\beta \gamma=0$

- Watch Video Solution

77. if the following system of equations is consistent
$(a+1)^{3} x+(a+2)^{3} y=(a+3)^{3}$
$(a+1) x+(a+2) y=a+3$
$x+y=1$
then find the value of a.

- Watch Video Solution

78. Let $A=\left[a_{i j}\right]_{n \times n}$ be a square matrix and let $c_{i j}$ be cofactor of $a_{i j}$ in A. If $\mathrm{C}=\left[C_{i j}\right]$, then
79. Let $F(\alpha)=[\cos \alpha-\sin \alpha 0 \sin \alpha \cos \alpha 0001]$ and $G(\beta)=[\cos \beta 0 \sin \beta 010-\sin \beta 0 \cos \beta]$. Show that
$[F(\alpha)]^{-1}=F(-\alpha)$
$[G(\beta)]^{-1}=G(-\beta)$
$[F(\alpha) G(\beta)]^{-1}=G(-\beta) F(-\alpha)$.

- Watch Video Solution

80. If A is a square matrix of order $n \times n$ and λ is a scalar then $|\lambda A|$ is (A)
$\lambda|A|$ (B) $\lambda^{n}|A|$ (C) $|\lambda||A|$ (D) none of these

- Watch Video Solution

81.

$$
A=\left[\begin{array}{cc}
\cos ^{2} \alpha & \cos \alpha \sin \alpha \\
\cos \alpha \sin \alpha & \sin ^{2} \alpha
\end{array}\right]
$$

$B=\left[\begin{array}{cc}\cos ^{2} \beta & \cos \beta \sin \beta \\ \cos \beta \sin \beta & \sin ^{2} \beta\end{array}\right]$
are two matrices such that $A B$ is the null matrix, then
82. If A and B are two matrices such that $A B=A, B A=B$, then A^{25} is equal to
(A) A^{-1}
(B) A (C) $B^{-1}(D) B^{`}$

- Watch Video Solution

83. If $A=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$, then $\operatorname{Lim}_{x>\infty} \frac{1}{n} A^{n}$ is

- Watch Video Solution

84. If $A=\left[\begin{array}{lll}a & b & c \\ x & y & z \\ p & q & r\end{array}\right], B=\left[\begin{array}{ccc}q & -b & y \\ -p & a & -x \\ r & -c & z\end{array}\right]$ and if A is invertible, then which of the following is not true? (a) $|A|=|B|$ (b) $|A|=-|B|$
(c) $|a d j A|=|a d j B|$ (d) A is invertible if and only if B is invertible

- Watch Video Solution

85. The number of different mastrices which can be formed using 12 different real numbers is (A) $6(12)$! (B) $3(12)$! (C) $2(10)$! (D) $4(10)$!|

Watch Video Solution

86. Which of the following is a non singular matrix? (A) $\left[\begin{array}{lll}1 & a & b+c \\ 1 & b & c+a \\ 1 & c & a+b\end{array}\right]$
(B) $\left[\begin{array}{ccc}1 & \omega & \omega^{2} \\ \omega & \omega^{2} & 1 \\ \omega^{2} & 1 & \omega\end{array}\right]$ where omega is non real and $\omega^{3}=1 \quad$ (C)
$\left[\begin{array}{ccc}1^{2} & 2^{2} & 3^{2} \\ 2^{2} & 3^{2} & 4^{2} \\ 3^{2} & 4^{2} & 5^{2}\end{array}\right]$ (D) $\left[\begin{array}{ccc}0 & 2 & -3 \\ -2 & 0 & 5 \\ 3 & -5 & 0\end{array}\right]$

- Watch Video Solution

87. If A and B are two $n \times n$ matrices such that $|A|=|B|$ then (A) $A^{\prime}=A$ (B) $A=B$ (C) $A^{\prime}=B^{\prime}(\mathrm{D})$ none of these
88. If $A=\left[a_{i j}\right]$ is a square matrix of order 3 and $A_{i j}$ denote cofactor of the element $a_{i j}$ in $|A|$ then the value of $|A|$ is given by

- Watch Video Solution

89. If for matrix $A, A^{2}+l=0$, where I is the identity matrix, then A equals

- Watch Video Solution

90. The system of linear equations $a x+b y=0, c x+d y=0$ has a non trivial solution if (A) $a d+b c=0$ (B) $a d-b c=0$ (C) $a d-b c, 0$ $a d-b c .0$

- Watch Video Solution

91. The equation $2 x+y+z=0, x+y+z=1,4 x+3 y+3 z=2$ have (A) no solution (B) only one solution (C) infinitely many solutions (D)

- Watch Video Solution

92. The value of a for which the system of linear equations $a x+y+z=0, a y+z=0, x+y+z=0$ possesses non-trivial solution is

- Watch Video Solution

93.

The
system
of
equations
$3 x+y-z=0,5 x+2 y-3 z=0,15 x+6 y-9 z=5$ has (A) no solution (B) a unique solution (C) two distinct solutions (D) infinitely many solutions

- Watch Video Solution

94. If $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$ then $\operatorname{adj} \mathrm{A}=$

95. If $I=[1001], J=[01-10]$ and $B=[\cos \theta \sin \theta-\sin \theta \cos \theta]$, then
 B equals $I \cos \theta+J \sin \theta$
 (b) $I \sin \theta+J \cos \theta$
 (c) $I \cos \theta-J \sin \theta$
 $I \cos \theta+J \sin \theta$

- Watch Video Solution

96. If $A=\left[(1,0,0),(0,1,0),(1, b, 0]\right.$ then A^{2} is equal is (A) unit matrix
(B) null matrix (C) A (D) $-A$

- Watch Video Solution

97. A, B are two matrices such that $A B$ and $A+B$ are both defined; show that A, B are square matrices of the same order.
98. If A and B are symmetric matrices of order $n(A \neq B)$ then (A$) \mathrm{A}+\mathrm{B}$ is skew symmetric (B) $A+B$ is symmetric (C) $A+B$ is a diagonal matrix (D) $A+B$ is a zero matrix

- Watch Video Solution

99. If $A=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right], B=\left[\begin{array}{ccc}-5 & 4 & 0 \\ 0 & 2 & -1 \\ 1 & -3 & 2\end{array}\right]$ then (A) $A B=\left[\begin{array}{c}-2 \\ -1 \\ 4\end{array}\right]$ (B)
$A B=\left[\begin{array}{lll}-2, & -1,4\end{array}\right]$ (C) $A B=[4,-1,2]$ (D) $A B=\left[\begin{array}{ccc}-5 & 4 & 0 \\ 0 & 4 & -2 \\ 3 & -9 & 6\end{array}\right]$

- Watch Video Solution

100. If A and B are square matrices of order 2 , then $\operatorname{det}(A+B)=0$ is possible only when $\operatorname{det}(A)=0$ or $\operatorname{det}(B)=0$ (b) $\operatorname{det}(A)+\operatorname{det}(B)=0$ (c) $\operatorname{det}(A)=0$ and $\operatorname{det}(B)=0$ (d) $A+B=O$

- Watch Video Solution

101. From the matrix equation $A B=A C$, we conclude $B=C$ provided.

- Watch Video Solution

102. If each element of a 3×3 matrix A is multiplied by 3 then the determinant of the newly formed matrix is (A) $3 \operatorname{det} A$ (B) $9 \operatorname{det} A$ (C) $(\operatorname{det} A)^{3}$ (D) $27 \operatorname{det} A$

- Watch Video Solution

103. If A and B are two nonzero square matrices of the same order such that the product $A B=O$, then

- Watch Video Solution

104. about to only mathematics

- Watch Video Solution

105. The system of linear equations $x+y+z=2,2 x+y-z=3,3 x+2 y+k z=4 \quad$ has \quad a unique solution if (A) $k \neq 0$ (B) $-1<k<1$ (C) $-2<k<2$ (D) $k=0$

- Watch Video Solution

106. If $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ then $A^{\wedge} 4=(A)\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ (B) $\left[\begin{array}{cc}1 & 1 \\ 0 & 10\end{array}\right]$ (C) $\left[\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right]$
$\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$

- Watch Video Solution

107. The order of $[x, y, z],\left[\begin{array}{lll}a & h & g \\ h & b & f \\ g & f & c\end{array}\right],\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ is (A) $3 x 1$ (B) 1×1 (C) 1×3 (D) 3×3

- Watch Video Solution

108. $\left[\begin{array}{cc}1 & 3 \\ 3 & 10\end{array}\right]^{-1}=$ (A) $\left[\begin{array}{cc}10 & 3 \\ 3 & 1\end{array}\right]$ (B) $\left[\begin{array}{cc}10 & -3 \\ -3 & 1\end{array}\right]$ (C) $\left[\begin{array}{cc}1 & 3 \\ 3 & 10\end{array}\right]$
$\left[\begin{array}{cc}-1 & -3 \\ -3 & -10\end{array}\right]$

- Watch Video Solution

109. If $A+B=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$ and $A-2 B=\left[\begin{array}{cc}-1 & 1 \\ 0 & -1\end{array}\right]$, then A is equal to

- Watch Video Solution

110. If $A=\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right]$ then $A^{2}=$ (A) $\left[\begin{array}{cc}8 & -5 \\ -5 & 3\end{array}\right]$ (B) $\left[\begin{array}{cc}8 & -5 \\ 5 & 3\end{array}\right]$
$\left[\begin{array}{cc}8 & -5 \\ -5 & -3\end{array}\right]$ (D) $\left[\begin{array}{cc}8 & 5 \\ -5 & 3\end{array}\right]$

- Watch Video Solution

111. The inverse of the matrix $\left[\begin{array}{cc}2 & 3 \\ -4 & 7\end{array}\right]$ is (A) $\left[\begin{array}{cc}-2 & -3 \\ 4 & -7\end{array}\right]$
$\frac{1}{26}\left[\begin{array}{cc}7 & -3 \\ 4 & 2\end{array}\right]$ (C) $\left[\begin{array}{cc}7 & 4 \\ -3 & 2\end{array}\right]$ (D) $\left[\begin{array}{cc}7 & -3 \\ 4 & 2\end{array}\right]$
112. the order of the single matrix obtained from $\left[\begin{array}{cc}1 & -1 \\ 0 & 2 \\ 2 & 3\end{array}\right]\left\{\left[\begin{array}{ccc}-1 & 0 & 2 \\ 2 & 0 & 1\end{array}\right]-\left[\begin{array}{ccc}0 & 1 & 23 \\ 1 & 0 & 21\end{array}\right]\right\}$ is
(A) 2×3 (B) 2×2 (C) 3×2 (D) 3×3

- Watch Video Solution

113. The inverse of the matrix $\left[\begin{array}{lll}1 & 0 & 0 \\ a & 1 & 0 \\ b & c & 1\end{array}\right]$ is (A) $\left[\begin{array}{ccc}1 & 0 & 0 \\ -a & 1 & 0 \\ b & c & 1\end{array}\right]$
$\left[\begin{array}{ccc}1 & 0 & 0 \\ -a & 1 & 0 \\ a c & b & 1\end{array}\right]$ (C) $\left[\begin{array}{ccc}1 & -a & a c-b \\ -0 & 1 & -c \\ 0 & 0 & 1\end{array}\right]$ (D) $\left[\begin{array}{ccc}1 & 0 & 0 \\ -a & 1 & 0 \\ a c-b & -c & 1\end{array}\right]$

- Watch Video Solution

114. If the matrix A is both symmetric and skew symmetric, then (A) A is a diagonal matrix $\begin{array}{lll}\text { (B) } A \text { is a zero matrix (C) } A \text { is a square matrix } & \text { (D) None }\end{array}$ of these

- Watch Video Solution

115. If A is a non singular matrix of order 3 then $|\operatorname{adj}(\operatorname{adjA})|$ equals (A)
$|A|^{4}$ (B) $|A|^{6}$
(C) $|A|^{3}$
(D) none of these

- Watch Video Solution

116. If $A=\left[\begin{array}{ccc}4 & -5 & -2 \\ 5 & -4 & 2 \\ 2 & 2 & 8\end{array}\right]$, then $A(\operatorname{adj} A) \quad$ equals
$\left[\begin{array}{ccc}36 & -36 & 18 \\ 36 & 36 & -18 \\ 18 & -18 & 9\end{array}\right]$ (В) $\left[\begin{array}{ccc}-36 & 36 & 18 \\ -36 & 36 & -18 \\ -18 & 18 & 9\end{array}\right]$ (С) $\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & -0 & 0\end{array}\right]$ (D) none of these

- Watch Video Solution

117. If $A=\left[\begin{array}{ll}1 & 2 \\ 4 & 1\end{array}\right]$, then $A^{-1}=$
(A) $\left[\begin{array}{cc}-1 & -2 \\ 4 & 1\end{array}\right]$
(B) $-\frac{1}{7}\left[\begin{array}{cc}1 & 2 \\ -4 & -1\end{array}\right]$
(C) $\frac{1}{7}\left[\begin{array}{cc}-1 & -2 \\ 4 & 1\end{array}\right]$ (D) $\frac{1}{9}\left[\begin{array}{ll}1 & 2 \\ 4 & 1\end{array}\right]$
118. Value of $\left|\begin{array}{lll}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{array}\right|$ is (A) $\quad(a-b)(b-c)(c-a)$
$\left(a^{2}-b^{2}\right)\left(b^{2}-c^{2}\right)\left(c^{2}-a^{2}\right)$ (C) $(a-b+c)(b-c+a)(c+a-b)$
none of these

- Watch Video Solution

119. $\left[\begin{array}{lll}7 & 1 & 2 \\ 9 & 2 & 1\end{array}\right]\left[\begin{array}{l}3 \\ 4 \\ 5\end{array}\right]+2\left[\begin{array}{l}4 \\ 2\end{array}\right]$ is equal to

- Watch Video Solution

120. Multiplicative inverse of the matrix $\left[\begin{array}{ll}2 & 1 \\ 7 & 4\end{array}\right]$ is

- Watch Video Solution

121. If $f(x)=x^{2}+4 x-5$ and $A=\left[\begin{array}{cc}1 & 2 \\ 4 & -3\end{array}\right]$, then $\mathrm{f}(\mathrm{A})$ is equal to

- Watch Video Solution

122. The inverse of the matrix $\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]$ is (A) $\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]$
$\left[\begin{array}{ccc}0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0\end{array}\right]$ (C) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ (D) $\left[\begin{array}{ccc}\frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{2}\end{array}\right]$

- Watch Video Solution

123. If $A=\left[\begin{array}{ccc}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & a & 1\end{array}\right]$ and $A^{-1}\left[\begin{array}{ccc}1 / 2 & -1 / 2 & 1 / 2 \\ -4 & 3 & b \\ 5 / 2 & -3 / 2 & 1 / 2\end{array}\right]$ then

- Watch Video Solution

124. If $A=\left[\begin{array}{ccc}0 & -1 & 2 \\ 1 & 0 & 3 \\ -2 & -3 & 0\end{array}\right]$, then $A+2 A^{t}$ equals (A) A (B) $-A^{t}$ (C) A^{t} (D) $2 A^{2}$

- Watch Video Solution

125. The adjoint of the matrix $\left[\begin{array}{ll}2 & 5 \\ 3 & 1\end{array}\right]$ is (A) $\left[\begin{array}{ll}2 & 5 \\ 3 & 1\end{array}\right]$ (B) $\left[\begin{array}{cc}1 & -5 \\ -3 & 2\end{array}\right]$
$\left[\begin{array}{cc}1 & -3 \\ -5 & 2\end{array}\right]$ (D) $\left[\begin{array}{cc}-1 & 3 \\ 5 & -2\end{array}\right]$

- Watch Video Solution

126. If A is a square matrix, then $A-A^{\prime}$ is a
A. diagonal matrix
B. skew symmetric matrix
C. symmetric matrix
D. none of these

- Watch Video Solution

127. If $A=\left[\begin{array}{cc}2 & 3 \\ 5 & -2\end{array}\right]$ then $19 A^{-1}$ is equal to (A) A^{\prime} (B) 2 A (C) $\frac{1}{2} A$ (D) A

- Watch Video Solution

128. The matrix X in the equation $A X=B$, such that $A=\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right]$ is given by (A) $\left[\begin{array}{cc}1 & 0 \\ -3 & 1\end{array}\right]$
$[(1,-4), 0,1)]$ (C) $\left[\begin{array}{cc}1 & -3 \\ 0 & 1\end{array}\right]$ (D) $\left[\begin{array}{cc}0 & -1 \\ -3 & 1\end{array}\right]$

- Watch Video Solution

129. If $\left[\begin{array}{lll}1 & a & 2 \\ 1 & 2 & 5 \\ 2 & 1 & 1\end{array}\right]$ is non invertible then $a=(A) 2$ (B) 1 (C) 0 (D) -1
130. Using properties of determinant, if $\left|\begin{array}{ccc}-a^{2} & a b & a c \\ a b & -b^{2} & b c \\ a c & b c & -c^{2}\end{array}\right|=\mu a^{2} b^{2} c^{2}$, find μ

- Watch Video Solution

131. If $A=\left[\begin{array}{cc}1 & \tan \left(\frac{\theta}{2}\right) \\ -\tan \left(\frac{\theta}{2}\right) & 1\end{array}\right]$ and $A B=I$, then $B=$
$\left\{\cos ^{2}\left(\frac{\theta}{2}\right)\right\} A(\mathrm{~B})\left\{\cos ^{2}\left(\frac{\theta}{2}\right)\right\} A^{\prime}$ (C) $\left\{\cos ^{2}\left(\frac{\theta}{2}\right)\right\} I(\mathrm{D})$ none of these

- Watch Video Solution

132. । $A=\left[\begin{array}{ll}0 & 5 \\ 0 & 0\end{array}\right]$ and $f(x)=1+x+x^{2}+\ldots+x^{16}, \operatorname{thenf}(A)=$
(A) O (B) $\left[\begin{array}{ll}1 & 5 \\ 0 & 1\end{array}\right]$
(C) $\left[\begin{array}{ll}1 & 5 \\ 0 & 0\end{array}\right]$
(D) $\left[\begin{array}{ll}0 & 5 \\ 1 & 1\end{array}\right]$

- Watch Video Solution

133. If A is a non singular square matrix 3 then $\left|\operatorname{adj}\left(A^{3}\right)\right|$ equals (A) $|A|^{8}$
(B) $|A|^{6}$
(C) $|A|^{9}$
(D) $|A|^{12}$

Watch Video Solution

134. If A is a square matrix of order $n \times n$ and k is a scalar, then $\operatorname{adj}(k A)$ is equal to (1) $k a d j A$ (2) $k^{n} a d j A$ (3) $k^{n-1} a d j A$ (4) $k^{n+1} a d j A$

- Watch Video Solution

135. If $A=\left[\begin{array}{ccc}3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right]$, then the trace of the matrix $\operatorname{Adj}(\operatorname{Adj} A)$ is

- Watch Video Solution

136. If $A=\left[\begin{array}{ll}1 & 0 \\ 2 & 0\end{array}\right]$ and $B=\left[\begin{array}{cc}0 & 0 \\ 1 & 12\end{array}\right]$ then= (A) $A B=0, B A=0$
$A B=0, B A \neq 0$ (C) $A B \neq 0, B A=0$ (D) $A B \neq 0, B A \neq 0$
137. The value of a for which system of equations, $a^{3} x+(a+1)^{3} y+(a+2)^{3} z=0, a x+(a+1) y+(a+2) z=0, x+y+$ has a non-zero solution is:

(Watch Video Solution

138. If I_{3} is the identity matrix of order 3 then I_{3}^{-1} is (A) 0 (B) $3 I_{3}$ (C) I_{3}
(D) does not exist

D Watch Video Solution

139. If matrix $A B=0$, then $A=0$ or $B=0$ or both A and B are null matrices.

- Watch Video Solution

140. The matrix [$05-7-50117-110$] is (a) a skew-symmetric matrix (b) a symmetric matrix (c) a diagonal matrix (d) an upper triangular matrix

Watch Video Solution

141. $A=\left[a_{i j}\right]_{m \times n}$ is a square matrix, if :

- Watch Video Solution

142. If $A=\left[\begin{array}{cc}2 & 2 \\ -3 & 2\end{array}\right]$ and $B=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right] \operatorname{then}\left(B^{-1} A^{-1}\right)^{-1}=$
(A) $\left[\begin{array}{cc}2 & -2 \\ 2 & 3\end{array}\right]$
(B) $\left[\begin{array}{cc}3 & -2 \\ 2 & 3\end{array}\right]$
(C) $\frac{1}{10}\left[\begin{array}{cc}2 & 2 \\ -2 & 3\end{array}\right]$
(D) $\frac{1}{10}\left[\begin{array}{cc}3 & -2 \\ -2 & 2\end{array}\right]$

- Watch Video Solution

143. If $A=[023-4]$ and $k A=[03 a 2 b 24]$, then the values of k, a, b, are respectively (a) $-6,-12,-18$ (b) $-6,4,9$ (c) $-6,-4,-9$ (d) $-6,12,18$
144. If $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$, then $A^{n}=$
(A) $\left[\begin{array}{cc}1 & 2 n \\ 0 & 1\end{array}\right]$
(B) $\left[\begin{array}{ll}2 & n \\ 0 & 1\end{array}\right]$
(C) $\left[\begin{array}{ll}1 & 2 n \\ 0 & -1\end{array}\right]$
(D) $\left[\begin{array}{ll}1 & n \\ 0 & 1\end{array}\right]$

- Watch Video Solution

145. For the matrix $A=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 2 & 1 \\ 2 & 1 & 0\end{array}\right]$ which of the following is correct?
(A) $A^{3}+3 A^{2}-I=0$ (B) $A^{3}-3 A^{2}-I=0$ (C) $A^{3}+2 A^{2}-I=0$ (D) $A^{3}-A^{2}+I=0$

- Watch Video Solution

146. If $A^{2}-A+I=0$, then the inverse of A is

- Watch Video Solution

147. If $\left[\begin{array}{ccc}2+x & 3 & 4 \\ 1 & -1 & 2 \\ x & 1 & -5\end{array}\right]$ is a singular matrix then x is
(A) $\frac{13}{25}$ (B) $-\frac{25}{13}$ (C) $\frac{5}{13}$ (D) $\frac{25}{13}$

- Watch Video Solution

148. If $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & -1\end{array}\right]$ then A^{2} is equal to

- Watch Video Solution

149. If $A=\left[\begin{array}{cc}1 & 2 \\ 3 & -5\end{array}\right]$ then A^{-1} is
A. $\left[\begin{array}{cc}-5 & -2 \\ -3 & 1\end{array}\right]$
B. $\left[\begin{array}{cc}\frac{5}{11} & \frac{2}{11} \\ \frac{3}{11} & -\frac{1}{11}\end{array}\right]$
C. $\left[\begin{array}{rr}-\frac{5}{11} & -\frac{2}{11} \\ -\frac{3}{11} & -\frac{1}{11}\end{array}\right]$
D. $\left[\begin{array}{cc}5 & 2 \\ 3 & -1\end{array}\right]$
150. If A and B are two square matrices of the same order then $(A-B)^{2}$
is (A) $A^{2}-A B-B A+B^{2}$
(B) $A^{2}-2 A B+B^{2}$
(C) $A^{2}-2 B A+B^{2}$
(D) $A^{2}-B^{2}$

- Watch Video Solution

151. If $A=\left[\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right]$ and I is the identity matrix of order 2 , then show that $A^{2}=4 A-3 I$ Hence find A^{-1}.

- Watch Video Solution

152. If $P=\left[\begin{array}{ccc}i & 0 & -i \\ 0 & -i & i \\ -i & i & 0\end{array}\right]$ and $Q=\left[\begin{array}{cc}-i & i \\ 0 & 0 \\ i & -i\end{array}\right]$ then PQ is equal to
(A) $\left[\begin{array}{cc}-2 & 2 \\ 1 & -1 \\ 1 & -1\end{array}\right]$
(B) $\left[\begin{array}{cc}2 & -2 \\ -1 & 1 \\ -1 & 1\end{array}\right]$
(C) $\left[\begin{array}{cc}2 & 2 \\ -1 & 1\end{array}\right]$ (D) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

- Watch Video Solution

153. Let R be a square matrix of order greater than 1 such that R is upper triangular matrix .Further suppose that none of the diagonal elements of the square matrix R vanishes. Then (A) R must be non $\operatorname{singular}(\mathrm{B}) R^{-1}$ does not exist (C) R^{-1} is an upper triangular matrix (D) R^{-1} is a lower triangular matrix

- Watch Video Solution

154. If $A^{-1}=\left[\begin{array}{lll}1 & -1 & 0 \\ 0 & -2 & 1 \\ 0 & 0 & -1\end{array}\right]$ then

- Watch Video Solution

155. Let $A=\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]$, then

- Watch Video Solution

156. Which of the following is a triangular matrix? (A) a scalar matrix (B) a lower triangular matrix (C) an upper triangular matrix (D) a diagonal matrix

- Watch Video Solution

157. If A and B are square matrices of the same order such that $A B=B A$, then (A) $(A-B)(A+B)=A^{2}-B^{2}$ (B) $(A+B)^{2}=A^{2}+2 A B+B^{2}$
(C) $(A+B)^{3}=A^{3} A^{2} B+3 A B^{2}+B^{3}$
(D) $(A B)^{2}=A^{2} B^{2}$

- Watch Video Solution

158. The homogeneous system $A X=)$ of n linear equation in n variables has
(A) a unique solutions if $|A| \neq 0$ (B) infinitely many solution if $|A|=0$ (C) no solution (D) none of these

- Watch Video Solution

159. The homogeneous system $A X=O$ of n linear equation in n variables has (A) a unique solutions if $|A| \neq 0(\mathrm{~B})$ infinitely many solution if $|A|=0$ (C) no solution (D) none of these

- Watch Video Solution

160. Let A, B, C be 2×2 matrices with entries from the set of real numbers. Define operations $\backslash^{\prime *} \mid '$ as follows $A \cdot B=\frac{1}{2}(A B+B A)$ then (A)
$A \cdot I=A$
$A \cdot A=A^{2}$
(C)
$A \cdot B=B \cdot A$
(D)
$A \cdot(B+C)=A \cdot B+A \cdot C$

- Watch Video Solution

161. If $A=\left[\begin{array}{ccc}0 & \sin \alpha & \sin \alpha \sin \beta \\ -\sin \alpha & 0 & \cos \alpha \cos \beta \\ -\sin \alpha \sin \beta & -\cos \alpha \cos \beta & 0\end{array}\right]$ then
(A) $|A|$ is independent of α and β (B) A^{-1} depends only on beta (C)
A^{-1} does not exist (D) none of these

- Watch Video Solution

162. Let $A=\left|\begin{array}{ccc}1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1\end{array}\right|$, where $0 \leq \theta \leq 2 \pi$. Then

- Watch Video Solution

163. If $A=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$ then (A) $A^{-n}=\left[\begin{array}{cc}1 & 0 \\ -n & 1\end{array}\right], n \varepsilon N$
$\lim _{n \rightarrow 00} \frac{1}{n^{2}} A^{-n}=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ (C) $\lim _{n \rightarrow \infty} \frac{1}{n} A^{-n}=\left[\begin{array}{cc}0 & 0 \\ -1 & 0\end{array}\right]$ (D) none of these

- Watch Video Solution

164. If A and B are symmetric matrices of same order, then $A B-B A$ is a

- Watch Video Solution

165. Let A and B are two matrices such that $A B=B A$, then for every $n \in N$

- Watch Video Solution

166. Which of the following is a symmetric matrix?
(A) a null matrix (B) a triangular matrix (C) an idenity matrix (D) a diagonal matrix

- Watch Video Solution

167. If A and B are square matrices of the same order then $(A+B)^{2}=A^{2}+2 A B+B^{2}$ implies

- Watch Video Solution

168. If A is an invertible matrix of order $n \times n,(n \geq 2)$, $\operatorname{then}(A) A$ is symmetric (B) $\operatorname{adj} A$ is invertible (C) $\operatorname{Adj}(\operatorname{Adj} A)=|A|^{n-2} A$ (D) none of these
169. If A is an invertible matrix then which of the following are true? (A)
$A \neq 0$
(B) $|A| \neq 0$ (C) $a d j A \neq 0$
(D) $A^{-1}=|A| a d j A$

- Watch Video Solution

170. If A and B are two invertible matrices of the same order, then adj (AB) is equal to

- Watch Video Solution

171. Consider the system of equations
$x+y+z=6$
$x+2 y+3 z=10$
$x+2 y+\lambda z=\mu$
the system has unique solution if (a) $\lambda \neq 3$ (b) $\lambda=3, \mu=10$ (c)
$\lambda=3, \mu \neq 10$ (d) none of these
172. If A is a square matrix of order 2×2 and $B=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$, such that $A B=B A$, then A can be

- Watch Video Solution

173. A square matrix A is said to be orthogonal if $A^{T} A=I$ If A is a square matrix of order n and k is a scalar, then $|k A|=K^{n}|A| A l s o\left|A^{T}\right|=|A|$ and for any two square matrix Ad B of same order $A B|=|A|| B \mid$ On the basis of above information answer the following question: IF A is a 3×3 orthogonal matrix such that $|A|=1$, then $|A-I|=$ (A) 1 (B) -1 (C) 0 (D) none of these

- Watch Video Solution

174. A square matrix A is said to be orthogonal if $A^{T} A=I$ If A is a sqaure matrix of order n and k is a scalar, then $|k A|=K^{n}|A| A l s o\left|A^{T}\right|=|A|$ and for any two square matrix A d B of
same order $A B|=|A|| B \mid$ On the basis of abov einformation answer the following question: If A is an orthogonal matrix then (A) A^{T} is an orthogonal matrix but A^{-1} is not an orthogonal matrix (B) A^{T} is not an orthogonal mastrix but A^{-1} is an orthogonal matrix (C) Neither A^{T} nor A^{-1} is an orthogonal matrix (D) Both A^{T} and A^{-1} are orthogonal matices.

- Watch Video Solution

175. A square matrix A is said to be orthogonal if $A^{T} A=I$ If A is a sqaure matrix of order n and k is a scalar, then $|k A|=K^{n}|A| A l s o\left|A^{T}\right|=|A|$ and for any two square matrix Ad B of same order $A B|=|A|| B \mid$ On the basis of abov einformation answer the following question:If $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] \quad$ and $\mathrm{P} \quad$ is a orthogonal martix and $B=P A P^{T}, P^{T} B^{2009} P=$ (A) $\left[\begin{array}{cc}1 & 2009 \\ 0 & 1\end{array}\right] \quad$ (B) $\left[\begin{array}{cc}1 & 2009 \\ 2009 & 1\end{array}\right]$ $\left[\begin{array}{cc}1 & 0 \\ 2009 & 1\end{array}\right]$ (D) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

- Watch Video Solution

176. If A is a square matrix of any order then $|A-x|=0$ is called the characteristic equation of matrix A and every square matrix satisfies its characteristic equation. For example if $A=\left[\begin{array}{ll}1 & 2 \\ 1 & 5\end{array}\right], \quad$ Then $[(A-x I)],=\left[\begin{array}{ll}1 & 2 \\ 1 & 5\end{array}\right]-\left[\begin{array}{cc}x & 0 \\ 0 & x\end{array}\right]=\left[\begin{array}{cc}1-x & 2 \\ 1-0 & 5-u\end{array}\right]=\left[\begin{array}{cc}1-x & 2 \\ 1 & 5-x\end{array}\right]$ Characteristic equation of matri A is $\left|\begin{array}{cc}1-x & 2 \\ 1 & 5-x\end{array}\right|=0$ or $(1-x)\left(5-x 0-2=0\right.$ or $x^{2}-6 x+3=0$. Matrix A will satisfy this equation ie. $A^{2}-6 A+3 I=0$ then A^{-1} can be determined by multiplying both sides of this equation let $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & -2 & 4\end{array}\right]$ On the basis fo above information answer the following questions: If $6 A^{-1}=A^{2}+a A+b I, \operatorname{then}(a, b) \quad$ is (A) $(-6,11)(B)(-11,60(C)(11,6)(D)(6,11)$

- Watch Video Solution

177. If A is a square matrix of any order then $|A-x|=0$ is called the chracteristic equation of matrix A and every square matrix satisfies its chatacteristic equation. For example if $A=\left[\begin{array}{ll}1 & 2 \\ 1 & 5\end{array}\right], \quad$ Then
$[(A-x I)],=\left[\begin{array}{ll}1 & 2 \\ 1 & 5\end{array}\right]-\left[\begin{array}{cc}x & 0 \\ 0 & x\end{array}\right]=\left[\begin{array}{cc}1-x & 2 \\ 1-0 & 5-x\end{array}\right]=\left[\begin{array}{cc}1-x & 2 \\ 1 & 5-x\end{array}\right]$ Characteristic equation of matrix A is

$$
\left|\begin{array}{cc}
1-x & 2 \\
1 & 5-x
\end{array}\right|=0 \text { or }(1-x)(5-x)(0-2)=0 \text { or } x^{2}-6 x+3=0
$$

Matrix A will satisfy this equation ie. $A^{2}-6 A+3 I=0 . A^{-1}$ can be determined by multiplying both sides of this equation. Let
$A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & -2 & 4\end{array}\right]$ On the basis for above information answer the following questions:Sum of elements of A^{-1} is (A) 2 (B) -2 (C) 6 (D) none of these

- Watch Video Solution

178. । $A=\left[\begin{array}{ll}0 & 5 \\ 0 & 0\end{array}\right]$ and $f(x)=1+x+x^{2}+\ldots+x^{16}, \operatorname{thenf}(A)=$
(A) O (B) $\left[\begin{array}{ll}1 & 5 \\ 0 & 1\end{array}\right]$
(C) $\left[\begin{array}{ll}1 & 5 \\ 0 & 0\end{array}\right]$
(D) $\left[\begin{array}{ll}0 & 5 \\ 1 & 1\end{array}\right]$

- Watch Video Solution

179. If the matrix $\left[\begin{array}{ccc}1 & 3 & \lambda+2 \\ 2 & 4 & 8 \\ 3 & 5 & 10\end{array}\right]$ is singular then find λ

- Watch Video Solution

180. If $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 4\end{array}\right]$ and $A^{2}-x A-I=0$ then find x .

- Watch Video Solution

181. For a 3×3 matrix A if $|A|=4$, then find $|A d j A|$

- Watch Video Solution

182. Assertion: $|M|=0$, Reason: Determinant of a skew symmetric matrix is 0 . (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

183. Assertion: $\left|A A^{T}\right|=0$, Reason : A is a skew symmetric matrix (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

184. Assertion : A^{-1} exists, Reason: $|A|=0$ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

185. Assertion: $|\operatorname{Aadj} A|=-1$, Reason : If A is a non singular square matrix of order n then $|\operatorname{adj} A|=|A|^{n-1}$ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te
correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

186. Assertion: adj A is a no singular matrix., Reason: A is a no singular matix. (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

187. Assertion: If $\left|A^{2}\right|=25$ then $A= \pm \frac{1}{5}$, Reason: $|A B|=|A||B|$ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false.
(D) A is false but R is true.

- Watch Video Solution

188. Asertion: The system of equations has unique solution for $\lambda=-5$, Reason: The determinant $\left|\begin{array}{ccc}3 & -1 & 4 \\ 1 & 2 & -3 \\ 6 & 5 & \lambda\end{array}\right| \neq 0 f$ or $\lambda \neq-5$ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

189. If M is a 3×3 matrix, where det $M=1 a n d M M^{T}=1$, where I is an identity matrix, prove theat $\operatorname{det}(M-I)=0$.

- Watch Video Solution

190. about to only mathematics

- Watch Video Solution

191. If $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -2 & 4\end{array}\right], 6 A^{-1}=A^{2}+c A+d I$, then $(c, \mathrm{~d})$ is :

- Watch Video Solution

192. Let $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1\end{array}\right]$ and U_{1}, U_{2}, U_{3} be column matrices satisfying
$A U_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], A U_{2}=\left[\begin{array}{l}2 \\ 3 \\ 6\end{array}\right], A U_{3}=\left[\begin{array}{l}2 \\ 3 \\ 1\end{array}\right]$.ff U is 3×3 matrix whose columns are $U_{1}, U_{2}, U_{3}, \quad$ then $|U|=$

- Watch Video Solution

193. If $A=\left(\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1\end{array}\right), U_{1}, U_{2}$, and U_{3} are column matrices
satisfying $A U_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right), A U_{2}=\left(\begin{array}{l}2 \\ 3 \\ 0\end{array}\right)$ and $A U_{3}=\left(\begin{array}{l}2 \\ 3 \\ 1\end{array}\right)$ and
U is 3×3 matrix when columns are U_{1}, U_{2}, U_{3} then
answer the following questions
The sum of the elements of U^{-1} is

- Watch Video Solution

194. Let $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1\end{array}\right]$ and U_{1}, U_{2}, U_{3} be column matrices satisfying
$A U_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], A U_{2}=\left[\begin{array}{l}2 \\ 3 \\ 6\end{array}\right], A U_{3}=\left[\begin{array}{l}2 \\ 3 \\ 1\end{array}\right]$.f U is 3×3 matrix whose
columns are U_{1}, U_{2}, U_{3}, then $|U|=$

Watch Video Solution

195. Consider the system of equations
$x-2 y+3 z=-1$
$-x+y-2 z=k$
$x-3 y+4 z=1$

Statement -1 The system of equation has no solutions for $k \neq 3$. statement -2 The determinant $\left|\begin{array}{lll}1 & 3 & -1 \\ -1 & -2 & k \\ 1 & 4 & 1\end{array}\right| \neq 0$, for $k \neq 3$.

- Watch Video Solution

196. Let A be the set of all 3×3 symmetric matrices all of whose either 0 or 1 . Five of these entries are 1 and four of them are 0.

The number of matrices in A is

- Watch Video Solution

197. Let A be the set of all 3×3 symmetric matrices all of whose either 0 or 1 . Five of these entries are 1 and four of them are 0 .

The number of matrices in A is

- Watch Video Solution

198. Let A be the set of all 3×3 symmetric matrices all of whose either 0 or 1 . Five of these entries are 1 and four of them are 0.

The number of matrices in A is

- Watch Video Solution

